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Abstract
On a relatively large length-scale, the fire-fronts of wind-driven
bushfires are sometimes seen to develop into curved shapes,
suggesting that a linear fire-front becomes unstable. A mech-
anism for this instability can be identified if the hot plume of
the fire is considered to partially block the air-flow from be-
low, while stratification of the atmosphere restricts upward dis-
placement. Downwind of the fire this causes a speeding up of
the component of the average horizontal flow in the direction
normal to any part of the fire-front. The perturbation in the
horizontal wind that results from a perturbed shape of the fire-
front shows an increase in the flow of air into the fire at more
advanced parts of the front, normally resulting in an increased
burning rate which would therefore increase the size of the per-
turbation.

1 Introduction
Fires in the landscape (bushfires) are a common phenomenon
in many parts of the world during drier months of each year.
Significant progress has been made over many years in the un-
derstanding of the behaviour and ecological impacts of these
fires, but there remain several outstanding issues relating to ac-
tual observations (of both planned and unplanned fires) which
are not well understood.

A recent review by Pastor et al [5] gives a good account of what
has been achieved and the way in which current understand-
ing is being incorporated into technical aides for landscape fire
agencies, but it also notes that there are significant gaps in our
understanding of landscape fire dynamics. The paper by Asen-
sio and Ferragut [2] is an example of the numerical methods
required when including a description of the chemical kinetics
of the combustion, but this still leaves many issues of the dy-
namics and stability of landscape fire fronts unanswered.

Among these are the tendency for landscape fires to form a
curved front after any type of ignition and then to propagate
in a steady fashion, maintaining the curved front shape. Such a
shape may arise as a development from an instability in a linear
fire front [3]. In this article we show how an instability of this
kind can arise under suitable atmospheric conditions.

2 Flow around a bushfire
2.1 Fire-front and burning rate

Consider a bushfire in a relatively thin layer of uniform vegeta-
tion on a horizontal terrain, with the burning taking place along
a narrow front that follows a continuous path parameterised by
r = R(t,s), where r = (x,y,z) is a spatial coordinate, t is time
and s is the arclength, measuring distance along the fire-front.
The definition of s can be chosen such that unburnt material lies
to the left and burnt residue of the fire lies to the right when
facing in the direction of increasing s. Tangent and normal unit

vectors can then be identified as

ŝ = Rs, n̂ = k̂× ŝ (1)

so that the normal direction n̂ is rotated about the vertical
direction k̂ = (0,0,1) by π/2 from the tangential direction ŝ.
A burning rate at a point R(t,s) can then be defined as

µ(t,s) = R t · n̂ (2)

representing the rate of advancement of the interface into the
unburnt material. If the vegetation is completely burnt in the
fire, or at least a fixed fraction of it, then energy is released at a
rate that is proportional to µ, per unit length of the fire-front.

How the fire-front propagates must be influenced by the rate
of air flow into the fire in the immediate vicinity of the foot
of the fire where the edge of the burning vegetation is to be
found. This paper aims to provide an idealised, but reasonable,
estimate of the effect of the fire itself on this airflow into the fire,
offering a possible feedback mechanism for the development of
a straight line of fire into a more curved shape.

2.2 Effect of the fire-plume on atmospheric wind

The plume produced by the fire can be considered to present
some blockage to any incoming wind, as illustrated in Figure 1.
In the near vicinity of the fire, it can be thought of as rising
to some height (which may depend on the burning rate µ and
the velocity of the incoming wind) and thereafter confining the
wind to pass above this height. In a stably stratified atmosphere,
the average air-flow is therefore forced into a narrower layer so
that it must also increase in speed. On a scale that is large com-
pared with the height of the plume the flow can be considered
to undergo a fairly abrupt change as it passes over the fire.

Figure 1: An illustration of the blocking effect of a fire-plume with
vertical displacement of the flow restricted by a stably stratified
atmosphere. The horizontal wind speed increases by an amount
δ from its incoming value of u. The fire is taken to be moving into
unburnt vegetation on the left.
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The speed of advancement of the fire-front is generally much
slower than the wind-speed, so that the air-flow can be consid-
ered to pass over an almost stationary fire. Thus, if u denotes
the average horizontal wind-speed ahead of or above any plume,
it can be taken to satisfy the steady incompressible Euler equa-
tions

∇ ·u = 0, u ·∇ω = 0, ω = ∇×u (3)

where ω is the vorticity. Writing u = (u,v) where u is the ve-
locity in the x direction and v is in the y direction, the Euler
equations can be written as

ux + vy = 0, u(vxx + vyy) = v(uxx +uyy). (4)

These equations will be used to describe the average horizontal
flow velocity u on either side of the fire, but not in the immediate
vicinity of the fire where fairly abrupt changes in the flow must
occur, including significant vertical motion. The most simple
way of modelling these changes is to apply jump conditions
across the path r = R in the form

[[u]] = δ n̂ (5)

where [[ · ]] denotes the value on the unburnt side, of the quan-
tity between the double brackets, minus the value on the burnt
side. Thus the quantity δ represents an increase in velocity in
the normal direction n̂, as sketched in Figure 1. Continuity of
the flow requires that the tangential component of the velocity
should not change.

On smaller length-scales, of the order of the height of the plume,
changes in the average horizontal wind-speed will not be abrupt.
Results based on using (4) and (5) to calculate the local wind-
flow into the fire must be interpreted in this light, as discussed
later.

2.3 Burning rate, blockage and wind-speed

If we suppose that a perfectly linear infinitely long fire-front
is subjected to a wind-speed v̄n, blowing into it in the normal
direction from the burnt vegetation, then the burning rate µ and
the degree of increase in wind-speed δ should both depend, in
some way, on v̄n. Field observations and experiments [4] have
led to relationships of the form µ = µ(v̄n), invariably with the
burning rate being an increasing function of the wind-speed.

For given atmospheric conditions, in which (say) a thermocline
at some altitude above the fire prevents vertical displacement,
with neutral stratification below that level, one would expect the
height to which the plume rises to depend on the dimensionless
ratio of burning rate to incoming flow speed, µ/v̄n. The degree
of blockage should also depend on this dimensionless ratio and,
for a fixed degree of blockage, the jump in velocity should then
be proportional to the incoming velocity itself.

Accordingly, we can propose the general type of formulae

µ = µ(v̄n) and δ = v̄n σ(µ/v̄n) (6)

for some function σ(·), to describe the dependence of µ and δ on
the incoming wind v̄n. Because the degree of blockage should
increase as the ratio µ/v̄n increases, both of the functions µ(·)
and σ(·) are likely to be increasing functions with positive first
derivative. These can be taken to be given functions in this study
although, of course, their actual dependence on wind-speed is
a much deeper question involving the nature of the vegetation,
moisture content, heat transfer, chemical behaviour, energetics
of the burning undergrowth and atmospheric conditions at the
time.

n̂ y

x
Ȳ(t)

ε

Figure 2: Sketch of an oscillatory fire-front with amplitude of
disturbance ε.

3 Stability of a linear fire-front
If axes are chosen so that the x-axis lies parallel to a linear
fire-front then the fire can be considered to follow the path
y ≡ Ȳ (t) = µt. With an incoming wind such that u → (ū, v̄)
as y →−∞, the Euler equations and the jump conditions give
rise to the flow-field

u =

{
(ū, v̄+δ) for y > Ȳ
(ū, v̄) for y < Ȳ

(7)

in which the normal flow velocity increases by δ on crossing the
front. Such a front may be unstable to small perturbations.

3.1 Flow around a nearly linear fire-front

If, at some moment, the fire is located on the path y = Ȳ +εeikx,
where ε(t) is a small amplitude of displacement with wavenum-
ber k about the mean location Ȳ (t), the normal direction can be
written as

n̂ = (−εikeikx,1)+O(ε2) (8)

showing only the horizontal components of the vector. The rate
of advancement can be written as

µ = R t · n̂ = Ȳt + εteikx +O(ε2). (9)

The wind flow u will be disturbed by an amount of order ε

which can be determined in the limit as ε→ 0.

It is useful to write the wind velocity as an asymptotic expan-
sion, for ε� 1, in the form

u = (u0,v0)+ εeikx(u1,v1)+O(ε2) (10)

in which u0 and v0 should be piecewise constant, as in (7). By
defining η = y− Ȳ , the dependence of u1 and v1 on y can be
examined in the form

(u1,v1) = (a,b)eλη (11)

where a and b are constant. Equations (4) then give

ika+λb = 0, (λ2− k2)(v0λ+ ik u0) = 0 (12)

for which there are three eigenvalues given by λ =±|k|, repre-
senting irrotational disturbances in the incompressible flow, and
λ = −ik u0/v0 which represents the advection of any vorticity
with wavenumber k that may be generated at the fire-front. Be-
cause the horizontal flow-field must be bounded at infinity, the
perturbation to the wind-velocity can now be written as

(u1,v1) =

{
(|k|, ik)Ae−|k|η +(u0,v0)Ce−iku0η/v0 : η > 0
(|k|,−ik)Be|k|η : η < 0

for constants A, B and C. However it can be noted that the flow
of air is considered to pass over the interface; there is no mecha-
nism for the production of vorticity and so we may immediately
infer that C = 0.
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n̂

Figure 3: Illustration of the deflection of the streamlines around
a sinusoidally shaped fire-front. The horizontal air-flow into the
fire is diminished at rearward parts of the front but increased at
more advanced parts.

Using a Taylor expansion of the solutions for η > 0 and η < 0
the jump condition (5) can be written in terms of a jump condi-
tion applied at η = 0 in the form

[[(u0,v0)+(u′0 +u1,v′0 + v1)εeikx]]

= (δ0 + εeikx
δ1)(−εikeikx,1)+O(ε2)

(13)

where the primes denote differentiation with respect to η and in
which δ has been expanded to δ0 + εeikxδ1. It follows that

[[u0]] = 0 [[v0]] = δ0

[[u′0 +u1]] =−ikδ0 [[v′0 + v1]] = δ1.
(14)

The remaining conditions are given, as before, by the far-field
limit

lim
η→−∞

u = (ū, v̄). (15)

This leads to the solutions, for η > 0 and η < 0 respectively:

u =


(ū, v̄+δ0)+ εeikx

(−i
2k

,
1

2|k|

)
(k2

δ0 +δ1|k|)e−|k|η

(ū, v̄)+ εeikx
( i

2k
,

1
2|k|

)
(k2

δ0−δ1|k|)e|k|η

after ignoring contributions of order ε2. Flow-lines predicted by
this solution are illustrated in Figure 3, showing how an increase
in air-flow into the fire arises at more advanced parts of the fire-
front. In particular, this formula suggests that the normal flow
coming into the fire-front at η≈ εeikx is, to order ε

un = u− · n̂ = v̄+ εeikx ( 1
2 (|k|δ0−δ1)− ikū

)
(16)

which demonstrates an increase in wind-speed in regions where
εeikx > 0, provided δ1 is small enough, and a phase shift caused
by transverse flow.

3.2 Feedback from the wind-flow

Some careful interpretation is now needed because the model
(4) and (5) for the wind-flow is not valid very close to the fire-
front where velocity has a significant vertical component and
advection into the fire-plume is important.

Instead, we may consider some distance h upwind of the fire-
front where the model is more likely to hold; this distance
should be comparable with the height to which the plume rises.
At η≈−h+ εeikx the horizontal normal velocity is

unh = v̄+ εeikx−|k|h ( 1
2 (|k|δ0−δ1)− ikū

)
(17)

which has the same structure as (16) and gives almost the same
value at small wavenumbers but which is decreased substan-
tially at large wavenumbers (with wavelengths of the order of
the plume height).

Re( t/ )ε ε

|k|

Figure 4: Linear dependence of the growth-rate of an instabil-
ity Re(εt/ε) with the wavenumber |k|, for small wavenumbers,
provided δ′0 >−2.

It is reasonable now to consider the burning rate µ to depend
on unh. A more detailed examination of the flow in the region
around the fire and its plume, where (4) and (5) are not valid,
would have the velocity unh as an incoming flow. The wind flow
feeding air into the foot of the fire would then be proportional
to unh, at least for small wavenumbers k. At larger wavenum-
bers stronger three-dimensional effects are likely to reduce the
contribution of the perturbation below that suggested by (17)
although the trend is still likely to be the same.

At wavelengths of the order of the height of the plume, or
shorter, there are likely to be other stabilising effects not exam-
ined here. These may include transverse heat transfer through
radiation and entrainment of air into the plume. However, to
demonstrate a potential source of instability it is necessary only
to consider long wavelengths (|k|h � 1) for which un can be
used in place of unh. The effects of the instability should cer-
tainly be diminished at shorter wavelengths. Using the formu-
lae (6) we can suppose that

µ = µ(un) and δ = unσ(µ/un). (18)

at sufficiently long wavelengths, with |k|h� 1.

3.3 Conditions for instability

Substituting the formula (16) into (18) leads to the expression

µ = R t · n̂ = Ȳt + εteikx

= µ(v̄)+ εeikx ( 1
2 (|k|δ0−δ1)− ikū

)
µ′(v̄)

(19)

so that

Ȳt = µ(v̄) and εt = ε
( 1

2 (|k|δ0−δ1)− ikū
)

µ′(v̄) (20)

in which (after some algebraic manipulation) we can set

δ0 = v̄σ0 and δ1 =
|k|δ0−2ikū

2+δ′0
δ
′
0

δ
′
0 =

dδ

dun

∣∣∣
un=v̄

= σ0 +
µ′0v̄−µ0

v̄
σ
′
0

(21)

where µ0 = µ(v̄), µ′0 = µ′(v̄), σ0 = σ(µ0/v̄) and σ′0 = σ′(µ0/v̄).
As shown in (19), because the burning-rate µ gives the rate of
advancement of any front, the formula for µ can be used to de-
termine whether or not a perturbation in the shape of the fire-
front grows in size. This is made explicit in equation (20).

Taking µ′(v̄) to be positive, as it should be, equation (20) shows
that the growth-rate of a perturbation of the form εeikx depends
on the size of the real part of

( 1
2 (|k|δ0−δ1)− ikū

)
. The imagi-

nary part contributes only to the rate of transverse displacement
of the perturbation. Noting that

Re 1
2 (|k|δ0−δ1) =

|k|δ0

2+δ′0
(22)
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Figure 5: Dependence of the growth-rate on δ′0, which repre-
sents the rate of change of the flow increase δ with incoming
wind-speed, at a fixed wavenumber k. The fire-front becomes
stable if δ′0 <−2.

it can be seen that the growth (or decay) rate is proportional
to |k| at long wavelengths, as sketched in Figure 4. Generally
speaking, we would expect δ′0 to be positive, meaning that the
jump in wind speed δ across the fire-front increases as the wind-
speed increases.

However it is interesting to note that, if δ decreases (but not
too rapidly) as un increases, the growth-rate of the instability is
actually enhanced, as shown in Figure 5 at a fixed wavenum-
ber k, creating a very rapid growth-rate if δ′0 approaches −2
(provided δ′0 > −2). Under such unstable conditions, less ad-
vanced parts of the fire-front would tend to block the flow more
from behind, channeling even stronger wind-flow towards more
advanced parts of the front.

On the other hand if δ decreases sufficiently rapidly, as un in-
creases, to make δ′0 <−2 then the effect dramatically reverses,
completely stabilising a linear fire-front.

4 Discussion
The notion of blockage of the wind-flow into a fire-front in a
stably stratified atmosphere, as a result of the plume created by
the fire itself offers a relatively simple mechanism for generat-
ing an instability in the shape of the fire-front. A fuller evolution
of the fire-front could then lead towards the propagation of the
front preferentially as fingers of burning.

However, it must be noted that the model employed here for the
blockage might not be adequate in all circumstances. The for-
mulae (6) may capture the essence of blockage by a plume for
perfectly linear fronts and if such formulae were to still apply
to perturbed fronts, as assumed in (18), it is very likely that one
would find δ′0 > 0, a condition for instability at large enough
wavelengths.

But a plume consists of light hot gas rising through more dense
colder gases, possibly rising at an angle because of the wind.
Under such conditions the Rayleigh-Taylor instability would
operate tending to enhance the upward movement of the plume
in regions that rise first. This would have an effect similar to
cases in which δ′0 < 0. Ironically, as we have found, this may
serve either to enhance the instability or to stabilise a linear fire-
front under suitable conditions.

The exact nature of the full form of this interaction would need
further study, although the simple notion of blockage by a fire-
plume in a stably stratified atmosphere is relatively easily ex-
amined. Instability is predicted if the overall jump in wind-
speed across the front grows with increasing incoming air-flow

at large enough wavenumbers. The instability is even present if
the jump in wind-speed decreases, provided the decrease is not
too rapid.
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