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OPTIMAL SCALING OF GENERALIZED AND POLYNOMIAL

EIGENVALUE PROBLEMS∗
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Abstract. Scaling is a commonly used technique for standard eigenvalue problems to improve
the sensitivity of the eigenvalues. In this paper we investigate scaling for generalized and polynomial
eigenvalue problems (PEPs) of arbitrary degree. It is shown that an optimal diagonal scaling of a
PEP with respect to an eigenvalue can be described by the ratio of its normwise and componentwise
condition number. Furthermore, the effect of linearization on optimally scaled polynomials is investi-
gated. We introduce a generalization of the diagonal scaling by Lemonnier and Van Dooren to PEPs
that is especially effective if some information about the magnitude of the wanted eigenvalues is
available and also discuss variable transformations of the type λ = αµ for PEPs of arbitrary degree.
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1. Introduction. Scaling of standard eigenvalue problems Ax = λx is a well
established technique that is implemented in the LAPACK routine xGEBAL. It goes
back to work by Osborne, Parlett and Reinsch [11, 12]. The idea is to find a diagonal
matrix D that scales the rows and columns of A ∈ Cn×n in a given norm such that

‖D−1ADei‖ = ‖e∗i D−1AD‖, i = 1, . . . , n,

where ei is the ith unit vector. This is known as balancing. LAPACK uses the 1-
norm. Balancing matrix rows and columns can often reduce the effect of rounding
errors on the computed eigenvalues. However, as Watkins demonstrated [16], there
are also cases in which balancing can lead to a catastrophic increase of the errors in
the computed eigenvalues.

For generalized eigenvalue problems (GEPs) Ax = λBx a scaling technique pro-
posed by Ward [15] is implemented in the LAPACK routine xGGBAL. Its aim is to
find diagonal matrices D1 and D2 such that the elements of D1AD2 and D1BD2 are
scaled to the same order of magnitude.

A different approach for the scaling of GEPs is proposed by Lemonnier and Van
Dooren [9]. In Section 5 we will come back to this. It is interesting to note that
the default behavior of LAPACK (and also of MATLAB) is to scale nonsymmetric
standard eigenvalue problems but not to scale GEPs.

In this paper we discuss the scaling of polynomial eigenvalue problems (PEPs) of
the form

P (λ)x := (λℓAℓ + · · ·+ λA1 + A0)x = 0, Ak ∈ C
n×n, Aℓ 6= 0, ℓ ≥ 1. (1.1)

Every λ ∈ C for which there exists a solution x ∈ C
n\{0} of P (λ)x = 0 is called an

eigenvalue of P with associated right eigenvector x. We will also need left eigenvectors
y ∈ Cn\{0} defined by y∗P (λ) = 0.
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2 T. BETCKE

In Section 2 we review the definition of condition numbers and backward errors
for the PEP (1.1). Then in Section 3 we investigate diagonal scalings of (1.1) of the
form D1P (λ)D2, where D1 and D2 are diagonal matrices in the set

Dn := {D : D ∈ C
n×n is diagonal and det(D) 6= 0}.

We show that the minimal achievable normwise condition number of an eigenvalue by
diagonal scaling of P (λ) can be bounded by its componentwise condition number. This
gives easily computable conditions on whether the condition number of eigenvalues
can be improved by scaling. The results of that section can be applied to generalized
linear and higher degree polynomial problems.

The most widely used technique to solve PEPs of degree ℓ ≥ 2 is to convert
the associated matrix polynomial into a linear pencil, the process of linearization,
and then solve the corresponding GEP. In Section 4 we investigate the difference
between scaling before or after linearizing the matrix polynomial. Then in Section
5 we introduce a heuristic scaling strategy for PEPs that generalizes the idea of
Lemonnier and Van Dooren. It is applicable to arbitrary polynomials of degree ℓ ≥ 1
and includes a weighting factor that, given some information about the magnitude
of the wanted eigenvalues, can crucially improve the normwise condition numbers of
eigenvalues after scaling.

Fan, Lin and Van Dooren [2] propose a transformation of variables of the form
λ = αµ for some parameter α for quadratic polynomials whose aim is to improve the
backward stability of numerical methods for quadratic eigenvalue problems (QEPs)
that are based on linearization. In Section 6 we extend this variable transformation
to matrix polynomials of arbitrary degree ℓ ≥ 2.

Numerical examples illustrating our scaling algorithms are presented in Section
7. We conclude with practical remarks on how to use the results in this paper.

While the scaling results in this paper apply to generalized linear and polynomial
problems they do not immediately apply to standard problems of the form Ax = λx.
Even though we can write a standard problem in the form P (λ)x = (λI−A)x = 0 there
are crucial differences to generalized problems. First of all for standard eigenvalue
problems we assume that perturbations only act on A and not on I. Furthermore, one
only allows equivalence transformations of the form D−1AD for standard eigenvalue
problems, that is I stays invariant under diagonal scaling. Only if we remove these
two restrictions do the results of this paper apply to standard eigenvalue problems.

All notation is standard. For a matrix A, we denote by |A| the matrix of absolute
values of the entries of A. Similarly, |x| for a vector x denotes the absolute values of

the entries of x. The vector of all ones is denoted by e, that is e =
[
1, 1, . . . , 1

]T
.

2. Normwise and componentwise error bounds. An important tool to mea-
sure the quality of an approximate eigenpair (x̃, λ̃) of the PEP P (λ)x = 0 is its

normwise backward error. With ∆P (λ) =
∑ℓ

k=0 λk∆Ak it is defined for the 2-norm
by

ηP (x̃, λ̃) := min{ǫ : (P (λ̃) + ∆P (λ̃))x̃ = 0, ‖∆Ak‖2 ≤ ǫ‖Ak‖2, k = 0 : ℓ}.

Tisseur [13] shows that

ηP (x̃, λ̃) =
‖r‖2

α̃‖x̃‖2
,
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where r = P (λ̃)x̃ and α̃ =
∑ℓ

k=0 |λ̃|k‖Ak‖2. The normwise backward error η(λ̃) of a

computed eigenvalue λ̃ is defined as

ηP (λ̃) = min
x∈C

n

x 6=0

ηP (x̃, λ̃).

It follows immediately [13, Lemma 3] that ηP (λ̃) = (α̃‖P (λ̃)−1‖2)−1.
The sensitivity of an eigenvalue is measured by the condition number. It relates

the forward error, that is the error in the computed eigenvalue λ̃, and the backward
error ηP (λ̃). To first order (meaning up to higher terms in the backward error) one
has

forward error ≤ backward error× condition number. (2.1)

The condition number of a simple, finite, nonzero eigenvalue λ 6= 0 is defined by

κP (λ) := lim
ǫ→0

sup
{ |∆λ|

ǫ|λ| :
(
P (λ + ∆λ) + ∆P (λ + ∆λ)

)
(x + ∆x) = 0,

‖∆Ak‖2 ≤ ǫ‖Ak‖2, k = 0 : ℓ
}
.

Let x be a right eigenvector and y be a left eigenvector associated with the eigenvalue
λ of P . Then κP (λ) is given by [13, Thm. 5]

κP (λ) =
‖y‖2‖x‖2α
|y∗P ′(λ)x||λ| , α =

ℓ∑

k=0

|λ|k‖Ak‖2. (2.2)

Backward error and condition number can also be defined in a componentwise
sense. The componentwise backward error of an eigenpair (x̃, λ̃) is

ωP (x̃, λ̃) := min
{
ǫ :

(
P (λ̃) + ∆P (λ̃)

)
x̃ = 0; |∆Ak| ≤ ǫ|Ak|, k = 0 : ℓ

}
. (2.3)

The componentwise condition number of a simple, finite, nonzero eigenvalue λ is
defined as

condP (λ) := lim
ǫ→0

sup
{ |∆λ|

ǫ|λ| :
(
P (λ + ∆λ) + ∆P (λ + ∆λ)

)
(x + ∆x) = 0,

|∆Ak| ≤ ǫ|Ak|, k = 0 : ℓ
}
. (2.4)

The following theorem gives explicit expressions for these quantitites.
Theorem 2.1. The componentwise backward error of an approximate eigenpair

(x̃, λ̃) is given by

ωP (x̃, λ̃) = max
i

|ri|
(Ã|x̃|)i

, Ã :=
ℓ∑

k=0

|λ̃|k|Ak|, (2.5)

where ri denotes the ith component of the vector P (λ̃)x̃. The componentwise condi-

tion number of a simple, finite, nonzero eigenvalue λ with associated left and right

eigenvectors y and x is given by

condP (λ) =
|y|∗A|x|

|λ||y∗P ′(λ)x| , A :=
ℓ∑

k=0

|λ|k|Ak|. (2.6)
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Proof. The proof is a slight modification of the proofs of [4, Thm. 3.1 and 3.2]
along the lines of the proof of [13, Thm. 1].

Surveys of componentwise error analysis are contained in [5, 6]. The compo-
nentwise backward error and componentwise condition number are invariant under
multiplication of P (λ) from the left and the right with nonsingular diagonal matri-
ces. In the next section we will use this property to characterize optimally scaled
eigenvalue problems.

3. Optimal scalings. In this section we introduce the notion of an optimal
scaling with respect to a certain eigenvalue and give characterizations of it.

Ultimately, we are interested in computing eigenvalues to as many digits as pos-
sible. Hence, we would like to find a scaling that leads to small forward errors. If we
assume that we use a backward stable algorithm, that is the backward error is only a
small multiple of the machine precision, then it follows from (2.1) that we can hope to
compute an eigenvalue to many digits of accuracy by finding a scaling that minimizes
the condition number.

In the following we define what we mean by a scaling of a matrix polynomial
P (λ).

Definition 3.1. Let P (λ) ∈ Cn×n be a matrix polynomial. A scaling of P (λ) is

the matrix polynomial D1P (λ)D2, where D1, D2 ∈ Dn.

It is immediately clear that the eigenvalues of a matrix polynomial P (λ) are
invariant under scaling. Furthermore, if (y, x, λ) is an eigentriplet of P (λ) with eigen-
value λ and left and right eigenvector y and x,respectively then an eigentriplet of the
scaling D1P (λ)D2 is (D−∗

1 y, D−1
2 x, λ).

The following definition defines an optimal scaling of P (λ) with respect to a given
eigenvalue λ in terms of minimizing the condition number of λ.

Definition 3.2. Let λ be a simple, finite, nonzero eigenvalue of the matrix

polynomial P (λ). We call P (λ) optimally scaled with respect to λ if

κP (λ) = inf
D1,D2∈Dn

κD1PD2
(λ).

This definition of optimal scaling depends on the eigenvalue λ. We cannot expect
that an optimal scaling for one eigenvalue also gives an optimal scaling for another
eigenvalue. The following theorem states that a PEP is almost optimally scaled with
respect to an eigenvalue λ, if the componentwise and normwise condition numbers
of λ are close to each other. Furthermore, it gives explicit expressions for scaling
matrices D1, D2 ∈ Dn that achieve an almost optimal scaling.

Theorem 3.3. Let λ be a simple, finite, nonzero eigenvalue of an n× n matrix

polynomial P (λ) with associated left and right eigenvectors y and x, respectively. Then

1√
n

condP (λ) ≤ inf
D1,D2∈Dn

κD1PD2
(λ) ≤ n condP (λ). (3.1)

Moreover, if all the entries of y and x are nonzero, then for

D1 = diag(|y|), D2 = diag(|x|).

we have

κD1PD2
(λ) ≤ n condP (λ). (3.2)
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Proof. Let A :=
∑ℓ

k=0 |λ|k|Ak| and α :=
∑ℓ

k=0 |λ|k‖Ak‖2. Using ‖|B|‖2 ≤√
n‖B‖2 for any matrix B ∈ C

n×n the lower bound follows from

condP (λ) =
|y|∗A|x|

|λ||y∗P ′(λ)x| ≤
‖y‖2‖x‖2‖A‖2
|λ||y∗P ′(λ)x| ≤

√
nα‖y‖2‖x‖2
|λ||y∗P ′(λ)x| =

√
nκP (λ)

and the fact that the componentwise condition number is invariant under diagonal
scaling. For ǫ > 0 define the vectors ỹ and x̃ by

ỹi =

{
yi, yi 6= 0
ǫ, yi = 0

x̃i =

{
xi, xi 6= 0
ǫ, xi = 0

and consider the diagonal matrices

D1 = diag(|ỹ|), D2 = diag(|x̃|).

Using ‖B‖2 ≤ e∗|B|e for any matrix B ∈ Cn×n we have

κD1PD2(λ) =
‖D−1

1 y‖2‖D−1
2 x‖2(

∑ℓ
k=0 |λ|k‖D1AkD2‖2)

|λ||y∗P ′(λ)x| ≤ n(
∑ℓ

k=0 |λ|ke∗|D1AkD2|e)
|λ||y∗P ′(λ)x|

=
n(

∑ℓ
k=0 |λ|k · |ỹ|∗ · |Ak| · |x̃|)
|λ||y∗P ′(λ)x| −→ n condP (λ) as ǫ→ 0. (3.3)

The upper bounds in (3.1) and (3.2) follow immediately.

Theorem 3.3 is restricted to finite and nonzero eigenvalues. Assume that λ = 0
is an eigenvalue. Then we have to replace relative componentwise and normwise
condition numbers by the absolute condition numbers

κ
(a)
P (λ) =

‖y‖2‖x‖2α
|y∗P ′(λ)x| , cond

(a)
P (λ) =

|y|∗A|x|
|y∗P ′(λ)x| .

With these condition numbers Theorem 3.3 is also valid for zero eigenvalues. If P (λ)
has an infinite eigenvalue the reversal rev P (λ) := λℓP (1/λ) has a zero eigenvalue
and we can apply Theorem 3.3 using absolute condition numbers to rev P (λ).

Theorem 3.3 gives us an easy way to check whether a matrix polynomial P is
nearly optimally scaled with respect to an eigenvalue λ. We only need to compute
the ratio

κP (λ)

condP (λ)
=
‖y‖2‖x‖2

∑ℓ
k=0 |λ|k‖Ak‖2

|y|∗
( ∑ℓ

k=0 |λ|k|Ak|
)
|x|

(3.4)

after computing the eigenvalues and eigenvectors. Since many eigensolvers already

return condition numbers this is only little extra effort. If κP (λ)
condP (λ) ≫ n the eigensolver

can give a warning to the user that the problem is badly scaled and that the error in
the computed eigenvalue λ is likely to become smaller by rescaling P . Furthermore,
from Theorem 3.3 it follows that a polynomial is nearly optimally scaled if the entries
of the left and right eigenvectors have equal magnitude. This motivates a heuristic
scaling algorithm, which is discussed in Section 5.
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4. Scalings and linearizations. The standard way to solve the PEP (1.1) of
degree ℓ ≥ 2 is to convert P (λ) into a linear pencil

L(λ) = λX + Y

having the same spectrum as P (λ) and then solve the eigenproblem for L. Formally,
L(λ) is a linearization if

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(ℓ−1)n

]

for some unimodular E(λ) and F (λ) [3, sect. 7.2]. For example,

C1(λ) = λ




Aℓ 0 · · · 0

0 In
. . .

...
...

. . .
. . . 0

0 · · · 0 In




+




Aℓ−1 Aℓ−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...
0 · · · −In 0


 (4.1)

is a linearization of P (λ), called the first companion form. In [10] Mackey, Mackey,
Mehl and Mehrmann identified two vector spaces of pencils that are potential lin-
earizations of P (λ). Let Λ := [λℓ−1, λℓ−2, . . . , 1]T . Then these spaces are defined
by

L1(P ) =
{
L(λ) : L(λ)(Λ⊗ In) = v ⊗ P (λ), v ∈ C

ℓ
}

,

L2(P ) =
{
L(λ) : (ΛT ⊗ In)L(λ) = ṽT ⊗ P (λ), ṽ ∈ C

ℓ
}

.

The first companion linearization belongs to L1(P ) with v = e1. Furthermore, the
pencils in L1(P ) and L2(P ) that are not linearizations form a closed nowhere dense
subset of measure zero in these spaces [10, Thm. 4.7].

Another important space of potential linearizations is given by

DL(P ) := L1(P ) ∩ L2(P ).

In [10, Thm. 5.3] it is shown that each pencil L(λ) ∈ DL(P ) is uniquely defined by a
vector v ∈ Cℓ such that

L(λ)(Λ⊗ In) = v ⊗ P (λ), (ΛT ⊗ In)L(λ) = vT ⊗ P (λ).

There is a well defined relationship between the eigenvectors of linearizations L(λ) ∈
DL(P ) and eigenvectors of P (λ), namely for finite eigenvalues λ x is a right eigenvector
of P (λ) if and only if Λ⊗x is a right eigenvector of L(λ) and y is a left eigenvector of
P (λ) if and only if Λ⊗ y is a left eigenvector of L(λ) [10, Thm. 3.8 and Thm. 3.14].

A simple observation is that scaling P (λ) leads to a scaling of L(λ) within the
same space of potential linearizations.

Lemma 4.1. Let L(λ) ∈ S(P ) with vector v, where S(P ) = L1(P ), L2(P ), or

DL(P ). Then (In⊗D1)L(λ)(In⊗D2) is in S(D1PD2) with the same vector v, where

D1, D2 ∈ Cn×n are nonsingular matrices.

Proof. The statements follow immediately from the identities

(I ⊗D1)L(λ)(I ⊗D2)(Λ⊗ In) = v ⊗D1P (λ)D2
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and

(ΛT ⊗ In)(I ⊗D1)L(λ)(I ⊗D2) = ṽT ⊗D1P (λ)D2

for matrices D1, D2 ∈ Cn×n.

Hence, if we solve a PEP by a linearization in L1(P ), L2(P ) or DL(P ) scaling of
the original polynomial P (λ) with matrices D1 and D2 is just a special scaling of the
linearization L(λ) with scaling matrices (I⊗D1) and (I⊗D2). If preserving structure
of the linearization is not an issue we can scale the linearization L(λ) directly with

diagonal scaling matrices D̃1 and D̃2 that have 2ℓn free parameters compared to the
2n free parameters in D1 and D2. The following theorem gives a worst case bound
on the ratio between the optimal condition numbers with the two different scaling
strategies (i.e. scaling and then linearizing or linearizing and then scaling).

Theorem 4.2. Let λ be a simple finite eigenvalue of P and let L(λ) ∈ DL(P )
with vector v. Then

inf
D1,D2∈Dn

κeL(λ; v; D1PD2) ≤





ℓ1/2n3/2
(

|λ|2ℓ−1
|λ|2−1

)
inf

D̃1,D̃2∈Dℓn

κD̃1LD̃2
(λ) for |λ| ≥ 1,

ℓ1/2n3/2

|λ|2(ℓ−1)

(
|λ|2ℓ−1
|λ|2−1

)
inf

D̃1,D̃2∈Dℓn

κD̃1LD̃2
(λ) for |λ| < 1,

where κeL(λ; v; D1PD2) is the condition number of λ for the linearization L̃(λ) ∈
DL(D1PD2) with vector v.

Proof. Let y and x be left and right eigenvectors of P (λ) associated with the
eigenvalue λ. Since L(λ) = λX+Y ∈ DL(P ), its left and right eigenvectors associated
with λ are Λ ⊗ y and Λ ⊗ x. Assume that y and x have no zero entries. The case
of zero entries follows by a limit process similar to that in the proof of Theorem 3.3.
Define D1 = diag(|y|) and D2 = diag(|x|). Since ‖Λ⊗ (D−1

1 y)‖2 = ‖Λ‖2‖D−1
1 y‖2 and

‖Λ⊗ (D−1
2 x)‖2 = ‖Λ‖2‖D−1

2 x‖2 we have

κeL(λ; v; D1PD2) =

‖Λ‖22‖D−1
1 y‖2‖D−1

2 x‖2(|λ|‖(I ⊗D1)X(I ⊗D2)‖2 + ‖(I ⊗D1)Y (I ⊗D2)‖2)
|λ||(Λ ⊗ y)∗X(Λ⊗ x)|

and therefore by using ‖B‖2 ≤ e∗|B|e for any B ∈ Cn×n

κeL(λ; v; D1PD2) ≤
‖Λ‖22nẽ∗(|λ||(I ⊗D1)X(I ⊗D2)|+ |(I ⊗D1)Y (I ⊗D2)|)ẽ

|λ||(Λ ⊗ y)∗X(Λ⊗ x)|

for ẽ =
[
1 . . . 1

]T ∈ Rℓn. Assume that |λ| ≥ 1. Since componentwise ẽ ≤ |Λ|⊗e =

|Λ| ⊗ e, where e =
[
1 . . . 1

]T ∈ Rn and

(|Λ| ⊗ e)∗(I ⊗D1) = |Λ⊗ y|∗, (I ⊗D2)(|Λ| ⊗ e) = |Λ ⊗ x|,

we obtain

κeL(λ; v; D1PD2) ≤ n
‖Λ‖22|Λ⊗ y|∗(|λ||X |+ |Y |)|Λ ⊗ x|

|λ||(Λ ⊗ y)∗X(Λ⊗ x)|
= n‖Λ‖22condL(λ). (4.2)

It holds that

‖Λ‖22 =

( |λ|2ℓ − 1

|λ|2 − 1

)
. (4.3)
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Furthermore, from Theorem 3.3 we know that

1√
ℓn

condL(λ) ≤ inf
D̃1,D̃2∈Dℓn

κD̃1LD̃2
(λ). (4.4)

Combining (4.2), (4.3) and (4.4) the proof for the case |λ| ≥ 1 follows. The proof for

|λ| < 1 is similar. The only essential difference is that now componentwise ẽ≤
|Λ|

|λ|ℓ−1⊗e.

Theorem 4.2 suggests that for eigenvalues that are large or small in magnitude
first linearizing and then scaling can in the worst case be significantly better than first
scaling and then linearizing. However, if we first linearize and then scale the special
structure of the linearization is lost.

How sharp are these bounds? In the following we discuss the case |λ| ≥ 1.
For the case |λ| < 1 analogous arguments can be used. Consider the QEP Q(λ) =
λ2A + λB + C, where

A =

[
−0.6 −0.1

2 0.1

]
, B =

[
1 −0.1

0.6 −0.8

]
C =

[
3 · 107 7 · 107

−1 · 108 1.6 · 108

]
(4.5)

and its linearization in DL(Q)

L(λ) = λX + Y := λ

[
A 0
0 −C

]
+

[
B C
C 0

]
,

which corresponds to the vector v =
[
1 0

]T
. One eigenvalue of this pencil is λ ≈

4.105 · 104. If we first scale Q and then linearize, this eigenvalue has the condition
number 1.2 · 109. If we first linearize the QEP and then scale the pencil L(λ) this
eigenvalue has the condition number 5.2. The ratio between the condition numbers
is in magnitude what we would expect from applying Theorem 4.2.

However, Theorem 4.2 can be a large overestimate. Assume that P (λ) is already
almost optimally scaled in the sense of Theorem 3.3, that is |y| = |x| = e for the left
and right eigenvectors y and x associated with the simple finite eigenvalue λ of P .
Let L(λ) = λX + Y be a linearization of P and let D1 and D2 be scaling matrices
for L such that |D−∗

1 ỹ| = |D−1
2 x̃| = e for the left and right eigenvectors ỹ and x̃ of L

associated with the eigenvalue λ. The ratio of the condition numbers of the eigenvalue
λ for the two pencils L and D1LD2 is given by

κL(λ)

κD1LD2(λ)
=

‖x̃‖2‖ỹ‖2
‖D−∗

1 ỹ‖2‖D−1
2 x̃‖2

|λ|‖X‖2 + ‖Y ‖2
|λ|‖D1XD2‖2 + ‖D1Y D2‖2

. (4.6)

If L(λ) ∈ DL(P ) (4.6) simplifies to

κL(λ)

κD1LD2(λ)
=

1

ℓ

( |λ|2ℓ − 1

|λ|2 − 1

) |λ|‖X‖2 + ‖Y ‖2
|λ|‖D1XD2‖2 + ‖D1Y D2‖2

since |x̃| = |ỹ| = |Λ⊗ e|. This shows that for |λ| > 1 the upper bound in Theorem 4.2
can only be attained if

|λ|‖X‖2 + ‖Y ‖2
|λ|‖D1XD2‖2 + ‖D1Y D2‖2

=: τ(λ) (4.7)
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Fig. 4.1. The function τ(λ) for a large range of values in the case of a random 2× 2 QEP and
the QEP from (4.5).

is approximately constant in the range of the eigenvalues that we are interested in.
For L(λ) ∈ DL(P ) the matrices D1 and D2 are given as

D1 = D2 =



|λ|ℓ−1I

. . .

I


 = diag(|Λ|)⊗ I.

It follows that for |λ| large enough

τ(λ) ∼ γ|λ|2−2ℓ (4.8)

for some constant γ > 0 and therefore

κL(λ)

κD1LD2(λ)
∼ γ

ℓ

in that case.
Especially, if the upper left n×n block of X is in norm comparable or larger than

the other n×n subblocks of X we expect a good agreement of the asymptotic in (4.8)
for all |λ| > 1, where γ is not much larger than 1. Only if the n× n subblocks of X
and Y are of widely varying norm it is possible that τ(λ) is approximately constant
for a large range of values of λ leading to the worst case bound in (4.2) being attained.

The situation is demonstrated in Figure 4.1. For a random 2×2 QEP τ(λ) decays
like γ|λ|−2, where γ ≈ 1. For the QEP from (4.5) the function τ(λ) is almost constant
for a long time leading to the worst case bound of Theorem 4.2 being attained in these
range of values. Then at about 104 it starts decaying like γ|λ|−2, where this time γ
is in the order of 108.

One of the most frequently used linearizations for unstructured problems is the
companion form (4.1). Unfortunately, we cannot immediately apply the previous
results to it since the companion form is not in DL(P ) but only in L1(P ). However,
we can still compare the ratio in (4.6). Consider the QEP Q(λ) = λ2A + λB + C.
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The companion linearization takes the form

C1(λ) = λ

[
A

I

]
+

[
B C
−I 0

]
.

We assume that for the left and right eigenvectors y and x associated with the eigen-
value λ of Q we have |y| = |x| = e. Furthermore, let D1 and D2 again be chosen
such that |D−∗

1 ỹ| = |D−1
2 x̃| = e, where ỹ and x̃ are the corresponding left and right

eigenvectors for the eigenvalue λ of the companion linearization C1(λ) = λX + Y .
The relationship between the eigenvectors of C1 and the eigenvectors of P associated
with a finite nonzero eigenvalue λ is given by

x̃ = Λ⊗ x, ỹ =

[
y

− 1
λ
C∗y

]
.

The formula for the left eigenvector is a consequence of [7, Theorem 3.2]. It follows
that

κC1(λ)

κD̃1C1D̃2
(λ)

=
1

2n1/2

( |λ|4 − 1

|λ|2 − 1

)1/2 (
n +

1

|λ|2 ‖C
∗y‖22

)1/2

τ(λ).

If |λ| ≫ 1 this simplifies to

κC1(λ)

κD̃1C1D̃2
(λ)
≈ 1

2
|λ|τ(λ),

which differs by a factor of |λ| from the corresponding case using a DL(P ) linearization.
Asymptotically, we have

τ(λ) ∼ γ|λ|−1, |λ| ≫ 1

for some factor γ and therefore
κC1 (λ)

κD̃1C1D̃2
(λ) ∼

γ
2 , where again we expect this asymptotic

to hold approximately for all |λ| > 1 with a value of γ that is not much larger than 1
if the n× n subblocks of X and Y do not differ too widely in norm.

5. A heuristic scaling strategy. For standard eigenvalue problems the motiva-
tion of scaling algorithms is based on the observation that in floating point arithmetic
computed eigenvalues of a matrix A are at least perturbed by an amount of the order
of ǫmach‖A‖. Hence, by reducing ‖A‖ one hopes to reduce the inaccuracies in the
computed eigenvalues.

One way of minimizing ‖A‖ is to find a nonsingular diagonal matrix D such that
the rows and columns of A are balanced in the sense that

‖D−1ADei‖ = ‖e∗i D−1AD‖, i = 1, . . . , n. (5.1)

Osborne [11] shows that if A is irreducible and ‖ · ‖ is the 2-norm in (5.1) then for
this D it holds that

‖D−1AD‖F = inf
D̂∈Dn

‖D̂−1AD̂‖F .

A routine that attempts to find a matrix D that balances the row and column norms of
A is built into LAPACK under the name xGEBAL. It uses the 1-norm in the balancing
condition (5.1). A description of the underlying algorithm is contained in [12].
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For generalized eigenvalue problems Ax = λBx Ward [15] proposes to find non-
singular diagonal scaling matrices D1 and D2 such that the elements of the scaled
matrices D1AD2 and D1BD2 would have absolute values close to unity. Then the
relative perturbations in the matrix elements caused by computational errors would
be of similar magnitude. To achieve this Ward proposes to minimize the function

n∑

i,j=1

(ri + cj + log |Aij |)2 + (ri + cj + log |Bij |)2,

where the ri and cj are the logarithms of the absolute values of the diagonal entries
of D1 and D2.

A different strategy for generalized eigenvalue problems is proposed by Lemonnier
and Van Dooren [9]. By introducing the notion of generalized normal pencils they
motivate a scaling strategy that aims to find nonsingular diagonal matrices D1 and
D2 such that

‖D1AD2ej‖22 + ‖D1BD2ej‖22 = ‖e∗i D1AD2‖22 + ‖e∗i D1BD2‖22 = 1, i, j = 1, . . . , n.
(5.2)

In this section we propose a scaling strategy for PEPs, which in the case of GEPs
is related to (5.2) but also includes an additional weighting parameter ω, which can
lead to crucial improvements in the condition numbers of the eigenvalues of a balanced
PEP.

In Theorem 3.3 we showed that a PEP is almost optimally scaled if all entries
of the left and right eigenvectors y and x are equal in absolute value. The problem
is that we usually do not have information about the eigenvectors before we start an
eigenvalue computation. Hence, we use the following heuristic strategy. Denote by
pj(λ) the jth column of P (λ) and let λ be an eigenvalue of P (λ) with right eigenvector
x, that is P (λ)x = 0. If the information of all columns of pj(λ) contributes equally
to the sum P (λ)x = 0 then we can assume that approximately

‖p1(λ)x1‖2 ≈ ‖p2(λ)x2‖2 ≈ · · · ≈ ‖pn(λ)xn‖2 ≈ 1.

The choice of 1 as normalization factor is arbitrary. Changing it would be equivalent
to changing the normalization of the eigenvector x. An analogous argument holds for
the left eigenvector y associated with λ. Hence, if all rows and columns of P (λ) have
unit norm then we hope that the left and right eigenvectors y and x will have entries
of similar magnitude. This leads to the scaling condition

‖D1P (λ)D2ei‖2 ≈ ‖e∗jD1P (λ)D2‖2 ≈ 1, i, j = 1, . . . , n (5.3)

for D1, D2 ∈ Dn.
In practice we do not know the eigenvalue λ before we scale. The best we can

hope for is that we have an estimate ω for the magnitude of the wanted eigenvalues.
Hence, in (5.3) we separate |λ| from the matrix data and obtain the modified scaling
condition

ℓ∑

k=0

ω2k‖D1AkD2ei‖22 = 1,
ℓ∑

k=0

ω2k‖e∗jD1AkD2‖22 = 1, i, j = 1, . . . , n, (5.4)

where now ω is understood as a positive weighting parameter that is chosen close
to the magnitude of the wanted eigenvalues. For the case ℓ = 1 and ω = 1 (5.4) is
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identical to the condition imposed by Lemonnier and Van Dooren. In Section 7 we
show that including the estimate ω can greatly improve the results of scaling.

In [9] Lemonnier and Van Dooren introduced a linearly convergent iteration to
obtain matrices D1 and D2 consisting of powers of 2 that approximately satisfy (5.2).
The idea in their code is to alternatively update D1 and D2 by first normalizing all

rows of
[
A B

]
and then all columns of

[
A
B

]
. The algorithm repeats this operation

until (5.2) is approximately satisfied. This iteration can easily be extended to weighted
scaling of matrix polynomials. This is done in Alg. 1. The main difference to the
Matlab code in [9] is the definition of the variable M in line 6 that now accommodates
matrix polynomials and the weighting parameter ω.

Algorithm 1 Diagonal scaling of P (λ) = λℓAℓ + · · ·+ λA1 + A0.

Require: A0, . . . , Aℓ ∈ Cn×n, ω > 0.
1: M ←∑ℓ

k=0 |λ|2k|Ak|.2, D1 ← I, D2 ← I (|Ak|.2 is entry-wise square)
2: maxiter← 5
3: for iter = 1 to maxiter do

4: emax← 0, emin← 0
5: for i = 1 to n do

6: d←∑n
j=0 M(i, j), e← −round(1

2 log2 d)

7: M(i, :)← 22e ·M(i, :), D1(i, i)← 2e ·D1(i, i)
8: emax← max(emax, e), emin← min(emin, e)
9: end for

10: for i = 1 to n do

11: d←
∑n

j=0 M(j, i), e← −round(1
2 log2 d)

12: M(:, i)← 22e ·M(:, i), D2(i, i)← 2e ·D2(i, i)
13: emax← max(emax, e), emin← min(emin, e)
14: end for

15: if emax ≤ emin + 2 then

16: BREAK

17: end if

18: end for

19: return D1, D2

If we do not have any estimate for the magnitude of the wanted eigenvalues a
possible choice is to set ω = 1 in (5.4). In that case all coefficient matrices have the
same weight in that condition.

6. Transformations of the eigenvalue parameter. In the previous sections
we investigated how diagonal scaling of P (λ) by multiplication of P (λ) with left
and right scaling matrices D1, D2 ∈ Dn can improve the condition number of the
eigenvalues. In this section we consider scaling a PEP by transforming the eigenvalue
parameter λ. This was proposed by Fan, Lin and Van Dooren for quadratics in
[2] (see also [7]). Let Q(λ) := λ2A2 + λA1 + A0. Define the quadratic polynomial

Q̃(µ) = µ2Ã2 + µÃ1 + Ã0 as

Q̃(µ) := βQ(αµ) = βµ2α2A2 + βµαA1 + βA0.

The parameters β > 0 and α > 0 are chosen such that the 2-norms of the new
coefficient matrices Ã2 := βα2A2, Ã1 := βαA1 and Ã0 := βA0 are as close to 1 as
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possible, that is, we need to solve

min
α>0,β>0

max{|βα2‖A2‖2 − 1|, |βα‖A1‖2 − 1|, |β‖A0‖2 − 1|}. (6.1)

It is shown in [2] that the unique solution of (6.1) is given by

α =

(‖A0‖2
‖A2‖2

) 1
2

, β =
2

‖A0‖2 + ‖A1‖2α
.

Hence, after scaling we have ‖Ã0‖2 = ‖Ã2‖2. The motivation behind this scaling
is that solving a QEP by applying a backward stable algorithm to solve (4.1) is
backward stable if ‖A0‖2 = ‖A1‖2 = ‖A2‖2 = 1 [13, Thm. 7]. For matrix polynomials
of arbitrary degree ℓ it is shown in [8] that with

ρ :=
maxi ‖Ai‖2

min(‖A0‖2, ‖Aℓ‖2)
≥ 1

one has

2
√

ℓ

ℓ + 1

1

ρ
≤ infv κL(λ; v; P )

κP (λ)
≤ ℓ2ρ,

where κL(λ; v; P ) is the condition number of the eigenvalue λ for the linearization
L(λ) ∈ DL(P ) with vector v. Hence, if ρ ≈ 1 then there is L(λ) ∈ DL(P ) such
that κL(λ; v; P ) ≈ κP (λ). For backward errors analogous results were shown in [7].
The aim is therefore to find a transformation of λ such that ρ is minimized. For the
transformation λ = αµ the solution is given in the following theorem.

Theorem 6.1. Let P (λ) be a matrix polynomial of degree ℓ and define

ρ(α) :=
max0≤i≤ℓ αi‖Ai‖2

min(‖A0‖2, αℓ‖Aℓ‖2)

for α > 0. The unique minimizer of ρ(α) is αopt = (‖A0‖2/‖Aℓ‖2)
1
ℓ .

Proof. The function ρ(α) is continuous. Furthermore, for α→ 0 and α→ ∞ we
have ρ(α) → ∞. Hence, there must be at least one minimium in (0,∞). Let α̃ be a
local minimizer. Now assume that ‖A0‖2 < α̃ℓ‖Aℓ‖2. Then

ρ(α) =
1

‖A0‖2
max(α‖A1‖2, . . . , αℓ‖Aℓ‖2)

in a neighborhood of α̃. But this function is strictly increasing in this neighborhood.
Hence, α̃ cannot be a minimizer. Similarly, the assumption ‖A0‖2 > α̃ℓ‖Aℓ‖2 at the
minimum leads to

ρ(α) =
1

αℓ‖Aℓ‖2
max(‖A0‖2, . . . , αℓ−1‖Aℓ−1‖2),

in a neighborhood of this minimum, which is strictly decreasing. A necessary condition
for a minimizer is therefore given as ‖A0‖2 = αℓ‖Aℓ‖2, which has the unique solution

αopt = (‖A0‖2/‖Aℓ‖2)
1
ℓ in (0,∞). Since there must be at least one minimum of ρ(α)

in (0,∞) it follows that αopt is the unique minimizer there.
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We emphasize that the variable transformation λ = αµ does not change condition
numbers or backward errors of the original polynomial problem. It only affects these
quantities for the linearization L(λ).

For the special case ℓ = 2 this leads to the same scaling as proposed by Fan, Lin
and Van Dooren. If ‖A0‖2 = ‖Aℓ‖2 then αopt = 1 and we cannot improve ρ with
the transformation λ = αµ. In that case one might consider more general Möbius
transformations of the type

P̃ (µ) := (cµ + d)ℓP

(
aµ + b

cµ + d

)
, a, b, c, d ∈ C.

However, it is still unclear how to choose the parameters a, b, c, d in order to improve
ρ for a specific matrix polynomial.

7. Numerical examples. We first present numerical experiments on sets of ran-

domly generated PEPs. The test problems are created by defining Ak := F
(k)
1 ÃkF

(k)
2 ,

where the entries of Ãk are N(0, 1) distributed random numbers and the entries of

F
(k)
1 and F

(k)
2 are jth powers of N(0, 1) distributed random numbers obtained from

the randn function in MATLAB. As j increases these matrices become more badly
scaled and ill-conditioned. This is a similar strategy to create test matrices as was
used in [9]. In our experiments we choose the parameter j = 6.

In Figure 7.1(a) we show the ratio of the normwise and componentwise eigenvalue
condition numbers of the eigenvalues for 100 quadratic eigenvalue problems of dimen-
sion n = 20. The eigenvalues range in magnitude from 10−8 to 108 and are sorted in
ascending magnitude. According to Theorem 3.3 the ratio of normwise and compo-
nentwise condition number is smaller than n (shown by the dotted line) if the problem
is almost optimally scaled for the corresponding eigenvalue. But only few eigenval-
ues satisfy this condition. Hence, we expect that scaling will improve the normwise
condition numbers of the eigenvalues in these test problems. In Figure 7.1(b) the
test problems are scaled using Alg. 1 with the fixed parameter ω = 1. Apart from
the extreme ones all eigenvalues are now almost optimally scaled. In Figure 7.1(c)
an eigenvalue dependent scaling is used, that is ω = |λ| for each eigenvalue λ. Now
all eigenvalues are almost optimally scaled. This demonstrates that having some in-
formation about the magnitude of the wanted eigenvalues can greatly improve the
results of scaling.

The source of badly scaled eigenvalue problems often lies in a nonoptimal choice
of units in the modelling process, which can lead to all coefficient matrices Ak being
badly scaled in a similar way. In that case it is not necessary to provide any kind of
weighting. This is demonstrated by the example in Figure 7.2. The left plot in that
figure shows the ratio of the normwise and componentwise condition numbers of the
eigenvalues of another set of eigenvalue problems. Again, we choose n = 20 and ℓ = 2.

However, this time the matrices F
(k)
1 and F

(k)
2 in the definition Ak := F

(k)
1 ÃkF

(k)
2 are

kept constant for all k = 0, . . . , ℓ. They only vary between different eigenvalue test
problems. The right plot in Figure 7.2 shows the ratio of normwise and componentwise
condition number after scaling using ω = 1. Now all eigenvalue condition numbers
are almost optimal.

Finally, let us consider the example of a 4th order PEP (λ4A4 + λ3A3 + λ2A2 +
λA1 + A0)x = 0 derived from the Orr-Sommerfeld equation [14]. The matrices are
created with the NLEVP benchmark collection [1]. To improve the scaling factor ρ
we substitute λ = µαopt, where αopt ≈ 8.42 · 10−4. This reduces ρ from 1.99 · 1012 to
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Fig. 7.1. (a) The ratio of the normwise and componentwise condition numbers for the eigen-
values of 100 randomly created quadratic test problems of dimension n = 20 before scaling. (b) The
same test set but now after scaling with ω = 1. (c) Eigenvalue dependent scaling with ω = |λ|.
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Fig. 7.2. In this test all coefficient matrices of an eigenvalue problem are badly scaled in a
similar way. (a) Ratio of normwise and componentwise condition condition numbers before scaling.
(b) The same ratio after scaling with ω = 1.

4.86. The ratio κP (µ)/condP(µ) for the unscaled problem is shown in Figure 7.3(a).
The x-axis denotes the absolute value |µ| of an eigenvalue µ. The horizontal line
shows the dimension n = 64 of the problem. The large eigenvalues in this problem
are far away from being optimally scaled. In Figure 7.3(b) we use Alg. 1 with the
weighting parameter ω = 1. This has almost no effect on the normwise condition
numbers of the eigenvalues. In Figure 7.3(c) we use ω = 103. Now the larger eigen-
values are almost optimally scaled while the normwise condition numbers of some of
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Fig. 7.3. Scaling of a 4th order PEP. (a) κ(µ)/cond(µ) for the unscaled PEP. (b) The same
ratio after scaling with ω = 1. (c) Scaling with ω = 103. The horizontal lines denote the dimension
n = 64 of the PEP.

the smaller eigenvalues have become worse. Hence, in this example the right choice
of the weighting parameter ω is crucial. If we want to improve the scaling of the large
eigenvalue we need to choose ω as approximately the magnitude of these values to
obtain good results. By diagonal scaling with D1 and D2 the scaling factor ρ might
increase again. In this example, after diagonal scaling using the weight ω = 103 ρ
increases to 1.8 · 105. However, we can reduce this again by another variable trans-
formation of the form µ = α̃optµ̃. From Theorem 6.1 it follows that α̃opt ≈ 13.9 and
after this variable transformation ρ reduces to 67.6. Hence, at the end the condition
numbers of the largest eigenvalues have decreased by a factor of about 105, while the
scaling factor ρ has only increased by a factor of about 10.

8. Some remarks about scaling in practice. In this concluding section we
want to give based on the results of this paper some suggestions for practical scaling
algorithms.

1. Compute κ(λ) and cond(λ) for each eigenvalue. At the moment eigensolvers
often return a normwise condition number if desired by the user. It is only little more
effort to additonally compute the ratio κ(λ)/cond(λ). From Theorem 3.3 it follows
that a polynomial is almost optimally scaled for a certain eigenvalue if κ(λ)/cond(λ) ≤
n. If this condition is violated the user may decide to rescale the eigenvalue problem
and then to recompute the eigenvalues in order to improve their accuracy.

2. Use a weighted scaling. The numerical examples in Section 7 show that the
results of scaling can be greatly improved if ω is chosen to be of the magnitude of
the wanted eigenvalues. In many applications this information is available from other
considerations. If no information about the eigenvalues is available a reasonable choice
is to set ω = 1.

3. First linearize and then scale if no special structure of the linearization is

used. The results in Section 4 show that one can obtain a smaller condition number if
one scales after linearizing the polynomial P (λ). If the eigenvalues of the linearization
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L(λ) are computed without taking any special structure of L(λ) into account this is
therefore the preferable way. However, if the eigensolver uses the special structure of
the linearization L(λ) then one should scale the original polynomial P (λ) and then
linearize in order not to destroy this structure.

4. Use a variable substitution of the type λ = αµ to reduce the scaling factor

ρ. This technique, which was introduced by Fan, Lin and Van Dooren for quadratics
and generalized in Theorem 6.1 often reduces the ratio of the condition number of
an eigenvalue λ between the linearization and the original polynomial. In practice we
would compute α using the Frobenius or an other cheaply computable norm.

The first two suggestions also apply to generalized linear eigenvalue problems and
can be easily implemented to current standard solvers for them. Further research is
needed for the effect of scaling on the backward error. Bounds on the backward error
after scaling are difficult to obtain since the computed eigenvalues change after scaling
and this change depends on the eigensolver.
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