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Abstract

We consider the problem of induction over languages containing binary
relations and outline a way of interpreting and constructing a class of
probability functions on the sentences of such a language. Some principles
of inductive reasoning satisfied by these probability functions are discussed,
leading in turn to a representation theorem for a more general class of
probability functions satisfying these principles.

Introduction

Despite the expectation expressed by Kemeny in his paper [23] written in 1954
Inductive Logic, based as in the early work of Johnson [19], Carnap [1], [2] et al on
symmetry principles, appears up to this time to have been, with the exception of
Krauss’s [24] and early work of Hoover [17], almost wholly concerned with unary
languages and induction for unary predicates (see, for example, the summary
paper [12]1). However in everyday life inductive reasoning is certainly not entirely
limited to just unary languages. We on occasions seem to make inductions from
knowledge in which binary relations, or perhaps even relations of greater arity,
are present. For example a gardener, Adam say, has noticed that certain apple
trees have the ability to pollinate other apple trees, even to self pollinate. It

∗Supported by a UK Engineering and Physical Sciences Research Council (EPSRC) Research
Studentship.

1Apparently largely unbeknown to the Inductive Logic community there has however been
a substantial development beyond the unary in the area of Probability Theory, in particular
in proving de Finetti style theorems for what are known there as ‘jointly exchangeable arrays’.
We refer the reader to [20], [21].
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does not take much to suppose that if Adam has noticed that apple variety
A is generally a good pollinator and variety B easily pollinated that he might
recommend planting them together even though he had no prior experience of
the efficacy of their cultivation in direct proximity.

Our plan in this note is to make some initial observations on the ‘problem of
induction’, i.e. what measure of belief to assign to unknown events on the basis
of past experience, in the case of purely binary predicate languages.

We shall start by considering some properties we might expect of such a
measure. We shall then suggest a putative explanation of what it means for a
binary relation to hold between two individuals and show that a consequence
of this assumption, Spectrum Exchangeability, implies these expected properties
as well as being an attractive, and apparently widely generalizable, property in
its own right. We shall then go on to derive a characterization of a subclass of
probability functions satisfying Spectrum Exchangeability.

Throughout we shall work with languages L for predicate logic with (just) the
constant symbols a1, a2, a3, . . . and finitely many predicate symbols, but without
function symbols or equality. Our intended interpretation here is that these con-
stants exhaust the universe. Let FL denote the formulae of L, SL the sentences of
L (i.e. closed formulae) and QFFL/QFSL the quantifier free formulae/sentences
of L.

A map w : SL 7−→ [0, 1] is a probability function on L if it satisfies that for
all θ, φ, ∃xψ(x) ∈ SL :

(P1) If � θ then w(θ) = 1.

(P2) If � ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).

(P3) w(∃xψ(x)) = limm→∞w(
∨m

i=1 ψ(ai)).

Throughout w, v, possibly with with various annotations, will denote probability
functions (on the ‘obvious’ languages) and, for the purposes of motivation, we
shall be thinking of probabilities in the sense of de Finetti as subjective degrees
of belief2.

Given a probability function w on L we define, as usual, a corresponding two
place conditional probability function on SL× SL, denoted by w(.|.), to be such
that

w(θ|φ) =
w(θ ∧ φ)

w(φ)

2Despite motivating the principles we introduce by appealing to (hopefully) shared intu-
itions we would not wish to claim anything more of this paper than that it gives a number of
mathematical results of the form ‘if you accept this then that is a mathematical consequence’.
In particular we will not get into the mine field of specifying further what sort of probability,
rationality, truth we are supposed to be dealing with. It is up to the reader to decide whether
the ‘this’ is relevant to their personal angle on the so called problem of induction.
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whenever θ, φ ∈ SL and w(φ) > 0. We shall take w(θ|φ) to be unspecified when
w(φ) = 0. All the elementary properties and conventions concerning probability
and conditional probability functions will be assumed (see for example [32]).

One somewhat less elementary result which it will be useful to note is the the-
orem of Gaifman (see [10], where in fact the axioms (P1-3) were first formulated)
that any probability function defined on QFSL (i.e. satisfying (P1) and (P2) for
θ, φ ∈ QFSL) extends uniquely to a probability function on L. In this sense then
we can largely limit our considerations to probability functions defined just on
QFSL. Furthermore, in that case w(θ) is determined by its values on the state
descriptions, that is sentences of the form

∧

j

∧

b1,...,brj
∈{at1

,...,atm}

±Qj(b1, . . . , brj
),

where the rj-ary predicates Qj and the constants at1 , . . . , atm include all those
predicates and constants appearing in θ. (For more details within our current
notation see [32], and for extensions to richer languages see [11], [34]).

In particular if L is a unary language, that is all the predicates appearing in
L are unary, then w is determined by its values on the sentences of the form

p
∧

i=1

αhi
(ai)

where 1 ≤ p ∈ N and the αh(x) run through the atoms with respect to the set
P1, . . . , Pn of unary predicates from L, that is the 2n formulae of the form

n
∧

j=1

P
ǫj

j (x)

where the ǫj ∈ {0, 1} and P 1 = P, P 0 = ¬P .

Similarly if L is a binary language then w is determined by its values on the
sentences

p
∧

i,j=1

βrij
(ai, aj)

where the βr(x, y) run through the atoms with respect to the set R1, . . . , Rm of
binary predicates from L, that is the 2m formulae of the form

m
∧

j=1

R
ǫj

j (x, y).

In what follows n and m will, as far as possible, be fixed in their roles as the
number of unary/binary predicates in the unary/binary language under consid-
eration.
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Within this framework the basic ‘problem of induction’ is what belief should
be given to a sentence θ solely on the basis of knowledge φ? Here ‘should’ is
intended as an appeal for justification rather than implying that there is some
unique correct answer. In other words, interpreting this according to the ‘received
view’ (see [9]), we wish to somehow justify a value for w(θ|φ) for w a probability
function corresponding to some agent’s beliefs. However since this is determined
by w(θ ∧ φ) and w(φ) (assuming w(φ) 6= 03) this question really reduces to
justifying a particular choice of a probability function w on L in the absence of
any further knowledge. As we have already noted this in turn reduces to the
problem of justifying probability values for state descriptions alone, a fact that
we shall assume without further mention in what follows.

It is crucially important here to emphasize the condition in the absence of
any further knowledge because the persistent failure within the area of uncertain
reasoning to grasp this point has resulted in much misunderstanding and missed
opportunity. Examples such as Goodman’s Grue Paradox, [13] (or [35] for a sur-
vey) which rely on considerable additional background knowledge are irrelevant
as far as the above question is concerned4 except in as far as one feels that the
same consequence would be justified even without the additional background in-
formation. This clearly is not the case in the Grue Paradox where one’s prior
knowledge that the color in emeralds does not change over time but that the
calender year we are in does is germane to the ‘induction’, see for example [22].
Indeed without this prior knowledge there would simply be no justification for
treating green and grue in any way differently.

Of course one may object that as far as ‘applied philosophy’ is concerned this
requirement of total evidence is a very limiting one which in practice is almost
never fulfilled5, and by the same score should make our own real world, moti-
vating, examples, such as Adam’s apples, worthless as far as we are concerned!
Nevertheless with some practice we do seem to be able to imagine, share intu-
itions about, and on occasions see real world approximations to, such a state of
pure ignorance, a state where logic alone is all we have to generate probabilities

3For a detailed consideration of the case when w(φ) = 0 see [6].
4In §45B of [1] Carnap is at pains to point out this absence of further knowledge requirement,

or as he calls it requirement of total evidence, and again in [4] as his Principle of Total Evidence.
Notwithstanding his appeal to this principle in his defence in [4] to the Grue Paradox (see [14],
also [15], [22]) he subsequently seems to abandon it in [5], instead stepping into the semantic
minefield of classifying the ‘inductive projectibility’, or otherwise, of real world unary predicates.
One can only assume that Carnap came to side with Goodman’s view in [15] (see [18]) that the
requirement of total evidence in its widest sense was just too demanding a condition to put on a
system which he intended to be generally and practically applicable in the real world. Whatever
his reasons the Grue Paradox subsequently had a major influence on Carnap and philosophers in
general and seem to have been an important contributing factor in the widespread abandonment
of the program we are advocating here of studying induction via normative principles in a highly
formal and idealized setting.

5Except perhaps in the world of expert systems and artificial agents.
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on a formal language devoid of any intended interpretations. This very fact sug-
gests to us that it is well worth exploring this situation, just as in Mathematics
one might study the Theory of Infinite Sets, and this is the viewpoint we shall
adopt in this paper.

Returning to the above ‘problem of induction’ there are certain further prop-
erties that it would seem very reasonable to demand of such a probability function
given that the assumed state of ignorance gives no cause to treat any of the con-
stants differently from any other, nor any two predicate symbols of the same
arity, nor even a predicate and its negation. This leads to us limiting ourselves
throughout to probability functions w on languages L satisfying:

The Constant Exchangeability Principle (Ex)6

For θ, θ′ ∈ QFSL, if θ′ is obtained from θ by replacing, respectively, the (distinct)
constant symbols ai1 , ai2 , . . . , aim occurring in θ by the (distinct) constant symbols
ak1

, ak2
, . . . , akm

then w(θ) = w(θ′).

The Predicate Exchangeability Principle (Px)

For θ, θ′ ∈ QFSL, if θ′ is obtained from θ by replacing, respectively, the (distinct)
predicate symbols Qj1, Qj2 , . . . , Qjm

occurring in θ by the (distinct) predicate
symbols Qs1

, Qs2
, . . . , Qsm

of equal arity then w(θ) = w(θ′).

Strong Negation Principle (SN)

For θ, θ′ ∈ SL, if Q is any predicate symbol of L and θ′ is obtained from θ by
replacing each occurrence of Q in θ by ¬Q then w(θ) = w(θ′).

While we are listing principles it will be useful to also mention:

Regularity Principle (REG)

For consistent θ ∈ QFSL, w(θ) > 0.

Thus if w satisfies REG it never dismisses a quantifier free sentence θ as
impossible (i.e. w(θ) = 0) unless it is forced to (by (P1),(P2)) because θ is
inconsistent.

6Contra to this general neglect, in the case of a language with single binary predicate this
principle was studied by Krauss in [24] where he proved in particular an interesting analogue
of de Finetti’s Representation Theorem, see [7], [8].
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Spectrum Exchangeability

From now on assume that we are working with a purely binary language7, so,
recalling the earlier notation, the atoms with respect to the (binary) predicates
R1, . . . , Rm of the language are the formulae

βr(x, y) =

m
∧

j=1

R
ǫj

j (x, y),

for r = 1, . . . , 2m. We will on occasions refer to a probability function on such a
binary language as a binary probability function (and similarly for unary).

In the case of such probability functions there are two further principles that
would seem justified, as with Ex, Px and SN8, on grounds of there being ‘no
reason to distinguish’.

The Variable Exchangeability Principle (Vx)

For θ, θ′ ∈ QFSL and 1 ≤ k ≤ m if θ′ is obtained from θ by replacing each
occurrence of Rk(ai, aj) in θ by Rk(aj , ai) for each i, j then w(θ) = w(θ′).

The Principle of Unary Conformity (UC)

For ~r ∈ {1, 2, . . . , 2m}p and fixed k,

w(

p
∧

i=1

βri
(ai, ai)) = w(

p
∧

i=1

βri
(ai, ak)) = w(

p
∧

i=1

βri
(ak, ai))

Note that the second equality in UC actually follows from Vx. To motivate
the principle UC consider the sentences formed just using R1(x, x). In this case
we would effectively be back in the situation of having a unary language. Indeed
it would be hard to argue that whatever the choice of w its restriction to this
language should not be the same as the choice which would have been adopted
on a unary language in the first place. But now for a fixed ak the same (hand
waving!) remarks would seem equally to apply to the R1(x, ak), and similarly to
the R1(ak, x). In both cases it might be argued that the restriction of w to the
sentences formed from these unary predicates should match the choice would have
been made on a unary language. Of course we still seem a long way from saying
what this choice should be, but nevertheless we can still draw the conclusion, as
expressed by UC, that these three restrictions of w should all be the same.

7All of the results we present here have corresponding versions in the case of a general
language with finitely many, not necessarily binary, relations, for details see the forthcoming
[25]. However the notation and visualization required becomes formidable without, apparently,
yielding any significantly greater insights. Largely for that reason we restrict ourselves in this
paper to a purely binary language.

8It can be shown that these principles do not follow from Ex, Px and SN
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Whilst these additional principles UC and Vx go some way to further lim-
iting the choice of w on SL in the absence of any prior knowledge it is seems
not immediately clear that they provide any particularly useful insights into the
structure of w.

An altogether different approach to understanding binary induction is to first
hazard an explanation for the nature of binary relations. Our initial example
of Adam the gardener provides one such possible explanation. For while we
have presented this as an example of a natural binary relation, ‘X pollinates Y ’,
between apple varieties there is another explanation which nowadays comes easily
comes to mind (though presumable it would not have done to Adam had he lived
in the 17th century) and which does not involve a direct binary relation between
apple varieties at all. Namely, the reason variety A is a good pollinator and
variety B is easily pollinated can be explained in terms of the (in this case genetic)
properties that A and B have as individuals. In other words the binary relation
of ‘X pollinates Y ’ is actually determined not by some magic link between X and
Y but by (unary) properties that X and Y possess in isolation. According to this
picture then, whether or not a tree of variety A will be a successful pollinator
of a tree of variety B is already determined by their individual properties even
before their paths cross.9.

Somewhat more precisely then this amounts to saying that ‘X pollinates Y ’
is really equivalent to some, possibly very long, sentence involving only unary
properties of X and Y 10. In [30] a construction based on this idea is given in
which a probability function on a unary language with finitely many predicates
is lifted to the binary language L by interpreting the binary relations Rj(x, y)
as random quantifier free sentences θ(x, y) of a (finite) unary language. Whilst
we shall return to this idea again later what is of immediate interest about this
construction as far as this paper is concerned is that investigation of the properties
of the resulting probability functions on SL reveals that they satisfy a particular
principle, the Principle of Spectrum Exchangeability, which is both natural and
seems to provide a doorway towards understanding binary (and indeed higher
arity) induction. We now explain this principle.

Given a state description for our binary language

p
∧

i,j=1

βrij
(ai, aj)

let r ∈ {1, 2, . . . , 2m}p×p be the p × p matrix with ij-th entry rij and define
the relation Ir to hold between 1 ≤ i, j ≤ p just if rhj = rhi and rjh = rih for

9Rather in the way we can, in theory, by separately studying a key and a lock determine if
they will fit without ever actually having to bring them together.

10There are at least two other positions which advocate explaining binary relations in terms
of unary properties, see [33], but neither bears any resemblance to what is being proposed here.
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1 ≤ h ≤ p. Let ¬Ir be the complement of Ir. Clearly Ir is an equivalence relation
on {1, 2, . . . , p}.

Define the spectrum of r, S(r), to be the tuple 〈|I1|, |I2|, . . . , |Iq|〉 where |I| is
the number of elements of the set I and I1, I2, . . . , Iq are the equivalence classes
of Ir arranged in non-increasing order of size.

The Spectrum Exchangeability Principle (Sx)

If o, r ∈ {1, 2, . . . , 2m}p×p have the same spectrum then

w

(

p
∧

i,j=1

βrij
(ai, aj)

)

= w

(

p
∧

i,j=1

βoij
(ai, aj)

)

.

We shall on occasions denote this left hand side expression by w(r), or by

w(~h) when w is known to satisfy Sx and S(r) = ~h).

As we shall shortly show this principle implies Vx and UC. Firstly however it
is of interest to note that the analogous property for the unary case is just the
Atom Exchangeability Principle, Ax, that for v a probability function on a unary
language with atoms α1, α2, . . . , α2n the value of v on the state description

p
∧

i=1

αhi
(ai)

is just a function of the spectrum of ~h i.e. the vector of non-zero values |{ i :
hi = j }| arranged in non-increasing order11. [For more details see for example
[16].] This observation seems to us to point to the significance of this property
and justifies us giving a name to it

Clearly the principles Px and SN (for this binary language) follow from Sx.
The principle Ex also follows since for that it is enough to check that if o ∈
{1, . . . , 2m}n×n is the result of transposing the ith and jth rows and columns in

11The principle Ax has suffered considerable criticism on the grounds that, for example, if
atoms α1, α2 are ‘close’ in the sense that they decide most of the (now unary) predicates of the
language in the same way, i.e. true or false, then the observation that α1(a1) should provide
more evidence for α2(a2) subsequently being observed than it would if α1, α2 were not close at
all. (Attempting to broaden his continuum of inductive methods to encompass such a feature
certainly occupied Carnap greatly in [3], though according to Maher, [26], [27], no attempt to
date has been entirely successful.) There can be little doubt that in our everyday lives we often
do subscribe to such a rule, since repetitions of experiences are rarely identical we really have
to if we are to use the past to guide our future actions. One obvious justification for us doing
this is that in practice most predicates are actually independent of each other, and furthermore
we are aware of it. However it does not seem to us right to say that because this is usually the
state of affairs then we should try to include that directly as a principle to be applied in the
assumed absence of any prior knowledge. Indeed examples such as that given by Miller in [29]
would seem to actively argue against taking this route.
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r ∈ {1, . . . , 2m}n×n then w(o) = w(r), and this indeed holds since S(o) = S(r).
[This situation then parallels the unary case where Ex, Px, SN all follow from
Ax.]

The main result of this section is the following theorem.

Theorem 1 Sx implies Vx and UC.

Proof We first show Vx. Suppose that r ∈ {1, 2, . . . , 2m}p×p and that

θ =

p
∧

i,j=1

βrij
(ai, aj).

Using the notation in the definition of Vx let

θ′ ≡

p
∧

i,j=1

βoij
(ai, aj),

– notice that there is a unique such state description since θ, and hence θ′,
decides Rh(ai, aj) for all 1 ≤ h ≤ m and 1 ≤ i, j ≤ p. Furthermore it is clear by
considering cases that for 1 ≤ i, j ≤ p,

Ir(i, j) ⇐⇒ Io(i, j)

so S(r) = S(o) and hence w(θ) = w(θ′) by Sx.
The result now follows for general θ as they are just equivalent to disjunctions

of such state descriptions.

To prove that UC holds we first need to introduce some notation and prove a
couple of lemmata. The purpose of these is to show that for ~q ∈ {1, 2, . . . , 2m}p

and a given spectrum ~s ∈
⋃∞

i=1(Z
+)i the number of p × p matrices with entries

from {1, 2, . . . , 2m}, spectrum ~s and kth column (or row) ~q, where 1 ≤ k ≤ p, is
the same as the number of matrices with this same spectrum and diagonal ~q. We
do this by induction on p by pairing off matrices. So in the next lemma the idea
is that r, t have been paired off at stage p and we go on to show how the matrices
extending r, t to size (p+ 1) × (p+ 1) can likewise be successfully paired off.

Lemma 2 Let r, t ∈ {1, 2, . . . , 2m}p×p, 1 ≤ q ≤ 2m. Let I be an equivalence
relation over {1, 2, . . . , p+ 1} and let

Cq(I, r) =







o ∈ {1, 2, . . . , 2m}(p+1)×(p+1) :
oij = rij for 1 ≤ i, j ≤ p,
o1(p+1) = q
Io = I







,

Dq(I, t) =







o ∈ {1, 2, . . . , 2m}(p+1)×(p+1) :
oij = tij for 1 ≤ i, j ≤ p,
o(p+1)(p+1) = q
Io = I







.
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Then if r1j = tjj for 1 ≤ j ≤ p and Ir = It,

|Cq(I, r)| = |Dq(I, t)|.

Proof. If Ir and It have identical equivalence classes, say I1, I2, . . . , Ik, then
for non-empty Cq(I, r) and Dq(I, t), I must have equivalence classes equivalent,
modulo the removal of empty sets, to one of the following three forms of partition
of {1, 2, . . . , p+ 1}:

(a) {I1, I2, . . . , Il−1, Il ∪ {p+ 1}, Il+1 . . . , Ik} for some 1 ≤ l ≤ k,

(b) {I1, I2, . . . , Ik, {p+ 1} },

(c) {J11, J12, . . . , J122m , J21, J22, . . . , J222m , . . . , Jk1, Jk2, . . . , Jk22m, {p+ 1}},

where the sets {Ji1, Ji2, . . . , Ji22m} partition Ii for 1 ≤ i ≤ k and at least one of
these is a non-trivial partition i.e. case (b) does not apply.

Suppose I is of the form (a). Then

|Cq(I, r)| =

{

0 if q 6= r1j for 1 ≤ j ≤ p such that j ∈ Il
1 otherwise.

|Dq(I, t)| =

{

0 if q 6= tjj for 1 ≤ j ≤ p such that j ∈ Il,
1 otherwise.

and since r1j = tjj for 1 ≤ j ≤ p, we obtain

|Cq(I, r)| = |Dq(I, t)|.

Suppose I is of the form (c). For o ∈ Cq(I, r) it holds by definition of Cq(I, r)
that

oij = rij for 1 ≤ i, j ≤ p,
o1(p+1) = q,

1 ≤ o(i+1)(p+1), o(p+1)j ≤ 2m for 1 ≤ i, j ≤ p.

Similarly, for o ∈ Dq(I, t) it holds that

oij = tij for 1 ≤ i, j ≤ p,
o(p+1)(p+1) = q,

1 ≤ oi(p+1), o(p+1)j ≤ 2m for 1 ≤ i, j ≤ p.

In both cases we have for 1 ≤ l ≤ k, 1 ≤ h, g ≤ 22m and i ∈ Jlh, j ∈ Jlg

〈oj(p+1), o(p+1)j〉 = 〈oi(p+1), o(p+1)i〉 if h = g,
〈oj(p+1), o(p+1)j〉 6= 〈oi(p+1), o(p+1)i〉 if h 6= g.

So, if for 1 ≤ l ≤ k there are cl non-empty Jl1, Jl2, . . . , Jl22m then we see there are

k
∏

l=1

22m!

(22m − cl)!
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distinct o ∈ Dq(I, t) since if we assume without loss of generality for each 1 ≤
l ≤ k that the non-empty Jlh for 1 ≤ h ≤ 22m are Jl1, Jl2, . . . , Jlcl

then we have
22m choices for the pair 〈oi(p+1), o(p+1)i〉 where i ∈ Jl1, then 22m−1 choices for the
pair 〈oi(p+1), o(p+1)i〉 where i ∈ Jl2, and so on, until we have 22m − cl + 1 choices
for the pair 〈oi(p+1), o(p+1)i〉 where i ∈ Jlcl

. Notice that since this is a non-trivial
partition for all these choices p+ 1 will end up in a equivalence class by itself.

Similarly the number of distinct o ∈ Cq(I, r) is also

k
∏

l=1

22m!

(22m − cl)!

for again if we assume without loss of generality for each 1 ≤ l ≤ k that the non-
empty Jlh for 1 ≤ h ≤ 22m are Jl1, Jl2, . . . , Jlcl

and that 1 ∈ J11 then this time we
have 22m choices for the pair 〈o(p+1)(p+1), o(p+1)i〉 where i ∈ J11 and 22m choices
for all other 〈oi(p+1), o(p+1)i〉 where i ∈ Jl1 for 2 ≤ l ≤ k, and continuing as before
for each 1 ≤ l ≤ k we have 22m − 1 choices for the pair 〈oi(p+1), o(p+1)i〉 where
i ∈ Jl2, and so on, until we have 22m − cl + 1 choices for the pair 〈oi(p+1), o(p+1)i〉
where i ∈ Jlcl

.

Finally suppose that (b) applies. If we follow the same path as in case (c)
everything works out fine except that for some of the choices p+1 will join one of
the old equivalences classes rather than forming a new equivalence class by itself.
In the case of r this will happen once for each each equivalence class Il for which
r1j = q for j ∈ Il, so these choices need to be removed from the grand product
obtained as in (c). Similarly in the case of o we need to remove one choice for
each equivalence class Il such that ojj = q for j ∈ Il. However since r1j = tjj for
j = 1, 2, . . . , p the number of removals will be the same in both cases so again we
have equality. �

Lemma 3 For ~q ∈ {1, 2, . . . , 2m}p and ~s ∈
⋃∞

i=1(Z
+)i let

Ak,p(~q, ~s) = {o ∈ {1, 2, . . . , 2m}p×p : S(o) = ~s, oik = qi for 1 ≤ i ≤ p}

Ak,p(~q, ~s) = {o ∈ {1, 2, . . . , 2m}p×p : S(o) = ~s, oki = qi for 1 ≤ i ≤ p}

for 1 ≤ k ≤ p and let

Bp(~q, ~s) = {o ∈ {1, 2, . . . , 2m}p×p : S(o) = ~s, oii = qi for 1 ≤ i ≤ p}.

Then
|Bp(~q, ~s)| = |Ak,p(~q, ~s)| = |Ak,p(~q, ~s)| = |Al,p(~q, ~s)|

for any 1 ≤ k, l ≤ p.

Proof. That Ak,p(~q, ~s) = Al,p(~q, ~s) for 1 ≤ k, l ≤ p is clear by transposing the
kth and lth columns and rows in the matrices in Ak,p(~q, ~s). Similarly it follows
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that Ak,p(~q, ~s) = Ak,p(~q, ~s) for 1 ≤ k ≤ p by taking the transposes of the matrices
in Ak,p(~q, ~s). So it suffices to prove that |Bp(~q, ~s)| = |A1,p(~q, ~s)|.

By Lemma 2 we can iteratively form a one to one correspondence between
the sequences r0, r1, . . . , rp such that rl ∈ {1, 2, . . . , 2m}l×l for 0 ≤ l ≤ p with the
property rl ∈ Cql

(Irl, rl−1) for 1 ≤ l ≤ p and the sequences t0, t1, . . . , tp such that
tl ∈ {1, 2, . . . , 2m}l×l for 0 ≤ l ≤ p with the property tl ∈ Dql

(Itl, tl−1) in such a
way that Irl = Itl for 1 ≤ l ≤ p. Hence, since rp determines r0, r1, . . . , rp and tp

determines t0, t1, . . . , tp we have a one to one correspondence confirming that

|{r ∈ {1, 2, . . . , 2m}p×p : r1i = qi for 1 ≤ i ≤ p, Ir = Io}|

= |{t ∈ {1, 2, . . . , 2m}p×p : tii = qi for 1 ≤ i ≤ p, It = Io}|

whenever o ∈ {1, 2, . . . , 2m}p×p. That |Bp(~q, ~s)| = |A1,p(~q, ~s)| now follows by
considering the disjoint union of our injective maps over all equivalence relations
Io for o ∈ {1, 2, . . . , 2m}p×p such that S(o) = ~s. �

Proof of Theorem 1 continued.
First let 1 ≤ k ≤ p and let w satisfy Sx, so without ambiguity we can introduce

the shorthand notation

w

(

p
∧

i,j=1

βrij
(ai, aj)

)

= w(~s)

where ~s = S(r). Then

w

(

p
∧

i=1

βqi
(ai, ak)

)

=
∑

r∈{1,2,...,2m}p×p

rik=qi for 1≤i≤p

w(r)

=
∑

~s∈
S∞

i=1
(Z+)i

|Ak,p(~q, ~s)|w(~s) (1)

and

w

(

p
∧

i=1

βqi
(ai, ai)

)

=
∑

r∈{1,2,...,2m}p×p

rii=qi for 1≤i≤p

w(r)

=
∑

~s∈
S∞

i=1
(Z+)i

|Bp(~q, ~s)|w(~s) (2)

and so w(
∧p

i=1 βqi
(ai, ak)) = w(

∧p
i=1 βqi

(ai, ai)) by Lemma 3. Similarly for each
other pair of equations in UC.

Finally for p < k the required equality follows by taking (1) and (2) with k
in place of p and summing over all choices of qp+1, qp+2, . . . , qk. �
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A Representation Theorem

In this section we shall first establish a representation theorem for a rather special
class of binary probability functions satisfying Sx and then widen its scope. First
however we need some useful notation, not least to actually describe this special
class.

Let

At
p = { 〈p1, p2, . . . , pt〉 : p1 ≥ p2 . . . ≥ pt > 0 and

∑

i

pi = p }

and
Ap =

⋃

t

At
p.

Given ~p ∈ Ap and ~q ∈ Aq let r ∈ {1, 2, . . . , 2m}p×p be such that S(r) = ~p and

define N (~p, ~q) to be

| {o ∈ {1, 2, . . . , 2m}q×q : S(o) = ~q, and oij = rij for 1 ≤ i, j ≤ p }|.

In other words N (~p, ~q) is the number of q × q matrices with spectrum ~q which
extend some particular p × p matrix r with spectrum ~p. The fact that N (~p, ~q)
is well defined, i.e. that it does not depend on the particular choice of r, is
guaranteed by the next Lemma.

Lemma 4 If r,u ∈ {1, 2, . . . , 2m}p×p are such that S(r) = S(u) = ~p then the
two sets

{ o ∈ {1, 2, . . . , 2m}q×q : S(o) = ~q, and oij = rij for 1 ≤ i, j ≤ p }

{ o ∈ {1, 2, . . . , 2m}q×q : S(o) = ~q, and oij = uij for 1 ≤ i, j ≤ p }

have the same number of elements.

We omit the proof of this Lemma because it essentially uses the analysis in
the proof of Lemma 2 to count the number of such o in the case q = p + 1 and
observe that the answer depends only on ~p, the general case following by iterating
this process.

Similarly in the unary case, given ~h ∈ { 1, 2, . . . , 2n }p with spectrum ~p let
F(~p, ~q) be

|{~g ∈ { 1, 2, . . . , 2n }q : gi = hi for 1 ≤ i ≤ p and S(~g) = ~q }|.

Again this is easily seen to depend only on ~p and not on the particular choice
of ~h.
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Lemma 5 Let s ≤ 2n. Then for some non-zero constant d(s) depending only on
the length s of the spectrum ~p,

N (∅, ~p) = d(s)F(∅, ~p)

where ∅ here denotes the 0-vector.

Proof. Consider a partition B1, B2, . . . , Bs of {1, 2, . . . , p} into non-empty sets
listed in such a way that 1 is the least element of B1 and in general the least
element of Bj is also the least element of

{1, 2, . . . , p} −
⋃

r<j

Br. (3)

Let t ∈ {1, 2, . . . , 2m}s×s have spectrum of length s (i.e. spectrum ~1s). Then
B1, B2, . . . , Bs and t uniquely determine an r ∈ {1, 2, . . . , 2m}p×p with equivalence
classes B1, B2, . . . , Bs by setting

rij = tg(i)g(j), where i ∈ Bg(i), j ∈ Bg(j).

Furthermore every matrix r ∈ {1, 2, . . . , 2m}p×p with spectrum of length s de-
termines a unique such t ∈ {1, 2, . . . , 2m}s×s and equivalence classes B1, . . . , Bs

satisfying (3). For future reference we shall refer to t, B1, . . . , Bs as the canonical
representation of r.

It follows then that for a fixed such B1, . . . , Bs the number of such r is the
number, Ts ( 6= 0), of such t.

Exactly similarly the number of ~h ∈ { 1, 2, . . . , 2n }p which yield the equiva-
lence classes B1, B2, . . . , Bs ordered as above (i.e. satisfying (3)) is the (non-zero)
number, Us, of (ordered) choices of αhmin B1

, αhminB2
, . . . , αhminBs

. Since Ts, Us de-
pend only on s summing over all such B1, B2, . . . , Bs which yield spectrum ~p gives
the result. �

Let w satisfy Sx. We say that w is ≤t-heterogeneous12 if w(~s) = 0 whenever the
length of spectrum ~s, denoted by |~s|, exceeds t. We say that w is t-heterogeneous
if in addition

lim
k→∞

∑

~k∈
S

s<t As
k

N (∅, ~k)w(~k) = 0. (4)

In other words w is t-heterogeneous if in the limit all the probability is massed
on the spectra of length exactly t. Since for spectrum ~h with k ≥

∑

hi,

w(~h) =
∑

~k∈Ak

N (~h,~k)w(~k)

12What is here being called ≤t-heterogeneous was called just t-heterogeneous in [30].
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this means that
w(~h) = lim

k→∞

∑

~k∈At
k

N (~h,~k)w(~k). (5)

In contrast to heterogeneity we say that w satisfying Sx is homogeneous if for
all s,

lim
k→∞

∑

~k∈As
k

N (∅, ~k)w(~k) = 0. (6)

Our interest in ≤t-heterogeneous probability functions arises in particular be-
cause the binary probability functions alluded to earlier which result, as described
in [30], from identifying binary relations with sentences in a language with a fixed
finite number n of unary predicates have the property of being ≤2n-heterogeneous.

We shall adopt this same notation for probability functions v on a unary lan-
guage (with n predicates as usual) satisfying Atom Exchangeability, Ax. Namely,
we shall write v(~s) for

v

(

m
∧

i=1

αhi
(ai)

)

when ~s is the spectrum, S(~h), of ~h and say that v is ≤t-heterogeneous if v(~s) = 0
whenever |~s| > t, and t-heterogeneous when in addition

lim
k→∞

∑

~k∈
S

s<t As
k

F(∅, ~k)v(~k) = 0.

Again in this case

v(~h) = lim
k→∞

∑

~k∈At
k

F(~h,~k)v(~k). (7)

We now prove a representation theorem for t-heterogeneous binary probabil-
ity functions which shows them to be closely related to t-heterogeneous unary
probability functions13.

Theorem 6 Let w be a binary t-heterogeneous probability function on a language
with m binary predicates and satisfying Sx. Let 2n ≥ t and define a function v
on a unary language with n unary predicates as follows. For ~g ∈ {1, 2, . . . , 2n}p

with S(~g) = ~h define

v

(

p
∧

i=1

αgi
(ai)

)

= v(~h) = lim
k→∞

∑

~k∈At
k

d(t)F(~h,~k)w(~k). (8)

13An alternative Representation Theorem is given in [30].



16

Then v is (more precisely, extends to) a t-heterogeneous unary probability function
satisfying Ax. Conversely if v is a t-heterogeneous unary probability function on
this language satisfying Ax and we define function w on the state descriptions of
a binary language with m predicates by

w

(

p
∧

i,j=1

βrij
(ai, aj)

)

= w(~h) = lim
k→∞

∑

~k∈At
k

d(t)−1N (~h,~k)v(~k) (9)

when r ∈ {1, 2, . . . , 2m}p×p and S(r) = ~h, then w is (more precisely, extends to) a
t-heterogeneous binary probability function satisfying Sx. Furthermore these two
operations are inverses to each other.

Proof. First assume that the limit in (8) exists. To show that v determines a
probability function satisfying Ax it is enough that

v(∅) = 1, (10)

v(~h) =
∑

~q∈Ah+1

F(~h, ~q)v(~q), (11)

where ~h ∈ Ah.
That (10) holds is clear from (5) and the definition of d(t). To show (11) it is

enough to notice that for
∑

ki > h,

F(~h,~k) =
∑

~q∈Ah+1

F(~h, ~q)F(~q,~k).

To show that the limit exists notice that for ~k ∈ At
k, ~p ∈ At

p, with k < p,

F(~k, ~p) = N (~k, ~p) (12)

and
w(~k) =

∑

~p∈At
p

N (~k, ~p)w(~p).

Hence
∑

~k∈At
k

d(t)F(~h,~k)w(~k) =
∑

~k∈At
k

∑

~p∈At
p

d(t)F(~h,~k)N (~k, ~p)w(~p)

=
∑

~k∈At
k

∑

~p∈At
p

d(t)F(~h,~k)F(~k, ~p)w(~p) by (12)

≤
∑

~p∈At
p

d(t)F(~h, ~p)w(~p)
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since for k < p, ~p ∈ At
p,

∑

~k∈At
k

F(~h,~k)F(~k, ~p) ≤ F(~h, ~p).

It follows then that the terms in the sequence defining v(~h) are increasing. They
are also bounded since

∑

~k∈At
k

d(t)F(~h,~k)w(~k) ≤
∑

~k∈At
k

d(t)F(∅, ~k)w(~k) =
∑

~k∈At
k

N (∅, ~k)w(~k) = 1.

Hence the required limit exists.
Finally v is t-heterogeneous since for ~k ∈ At

k,

F(∅, ~k)v(~k) = N (∅, ~k)w(~k),

so for s < t
∑

~k∈As
k

F(∅, ~k)v(~k) ≤ 1 −
∑

~k∈At
k

F(∅, ~k)v(~k) = 1 −
∑

~k∈At
k

N (∅, ~k)w(~k)

and because w is t-heterogeneous this right hand term tends to zero as k tends
to ∞.

In an exactly similar fashion we can show that if conversely the unary v (on
a unary language with n predicates) satisfies Ax and is t-heterogeneous then
the function w defined on the binary language with m predicates by (9) is a
well defined (i.e. the limit exists) t-heterogeneous binary probability function
satisfying Sx.

To conclude the proof we need to show that these operations are inverses to
each other. To see this notice that since

w(~p) = lim
k→∞

∑

~k∈At
k

N (~p,~k)w(~k)

for ~p ∈ Ap it is enough to show that for p < k < q

∑

~k∈At
k

d(t)−1N (~p,~k) ·







∑

~q∈At
q

d(t)F(~k, ~q)w(~q)







=
∑

~k∈At
k

N (~p,~k)w(~k). (13)

But the expression on the left hand side of (13) is just

∑

~k∈At
k

∑

~q∈At
q

N (~p,~k)F(~k, ~q)w(~q)
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and since
F(~k, ~q) = N (~k, ~q)

this gives the required equality. Showing the ‘inverse relationship’ in the other
direction is similar. �

We can to some extent generalize the above results as follows. Let w be a
binary probability function (on the language with m binary predicates as usual)
satisfying Sx. Define

γ1 = lim
k→∞

∑

~k∈A1
k

N (∅, ~k)w(~k).

Clearly this limit exists since the terms are non-increasing (and bounded below
by zero). Assuming that γ1 6= 0 define

w[1](

p
∧

i,j=1

βrij
(ati , atj )) = w[1](~h) = lim

k→∞

∑

~k∈A1
k

γ−1
1 N (~h,~k)w(~k)

where ~h = S(r). Similarly to the proof of the previous result it is straightforward
to check that provided γ1 6= 0 w[1] is a 1-heterogeneous probability function.
Assume for the moment γ1 < 1 and set

w(1) =

{

(1 − γ1)
−1(w − γ1w

[1]) if γ1 6= 0,

w if γ1 = 0.

Then w(1) is a probability function (satisfying Sx),

w = γ1w
[1] + (1 − γ1)w

(1)

(where we just take this first right hand term to be zero if γ1 = 0) and

lim
k→∞

∑

~k∈A1
k

N (∅, ~k)w(1)(~k) = 0.

In a similar fashion, with 2 in place of 1 and starting with w(1) in place of w we
can form γ2, w

[2], w(2) so that,

γ2 = lim
k→∞

∑

~k∈A2
k

N (∅, ~k)w(1)(~k).

and assuming 0 < γ2 < 1,

w(1) = γ2w
[2] + (1 − γ2)w

(2)
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with w[2] 2-heterogeneous and

lim
k→∞

∑

~k∈Ai
k
,i≤2

N (∅, ~k)w(2)(~k) = 0.

The pattern should now be clear. Continuing in this way gives the following
result.

Theorem 7 Let w be a binary probability function (on the language with m bi-
nary predicates) satisfying Sx. Then there are binary probability functions w[t]

(satisfying Sx) and constants ηt ≥ 0 for 0 ≤ t <∞ such that

w =

∞
∑

i=0

ηiw
[i],

∞
∑

i=0

ηi = 1,

w[t] is t-heterogeneous for t > 0 and w[0] is homogeneous (see (6)). Furthermore
the ηi are unique and so are the w[i] when ηi 6= 0.

We conclude this section by giving another representation theorem for the
t-heterogeneous case which provides a sort of converse to the original construc-
tion of binary probability functions alluded to in the second section of this paper
where the R1(x, y), . . . , Rm(x, y) are identified with a (uniform) random vector of
quantifier free 2-ary formulae (up to logical equivalence), ψ1(x, y), . . . , ψm(x, y),
from a unary language with n predicates. Such an identification leads from a
probability function on the unary language (satisfying Ex) to one on the binary
language satisfying Sx. In addition this probability function on the binary lan-
guage turns out to be ≤2n-heterogeneous.

What we shall now show is that all ≤2n-heterogeneous binary probability
functions arise in this way provided we only require that v satisfies Ex and replace
‘uniform’ by a possibly non-uniform distribution. In other words, make certain
vectors of 2-ary formulae from the unary language more likely than others to
represent the vector of binary predicates.

Before proceeding further however we need to explain a little more carefully
the original construction in [30]. The precise idea there is of identifying the
binary relations R1(x, y), R2(x, y), . . . , Rm(x, y) with a (uniform) random vector
of formulae of the form

∨

〈αi,αj〉∈X

(αi(x) ∧ αj(y))

where the X run through all sets of ordered pairs of atoms from the unary lan-
guage with predicates P1, . . . , Pn. Notice that every 2-ary formula from this
language is logically equivalent to such a formula for exactly one such X. This
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explains our early parenthetic ‘up to logical equivalence’. Via this identification
and a probability function v on this unary language satisfying Ex we obtain a
probability function w on the binary language satisfying Sx as

w(

p
∧

i,j=1

βrij
(aki

, akj
)) =

∑

X1,...,Xm

ρ(X1, X2, . . . , Xm)v(

p
∧

i,j=1

ψrij
( ~X)(aki

, akj
))

where ρ is just the uniform distribution (so here ρ(X1, X2, . . . , Xm) = 2−m22n

)

and ψrij
( ~X)(x, y) is just the result of replacing each Rh(x, y) in βrij

by

∨

〈α,α′〉∈Xh

(α(x) ∧ α′(y)).

The next theorem tells us that any ≤2n-heterogeneous binary probability func-
tion w satisfying Sx is of this form provided we allow that ρ may be non-uniform
and that v need only satisfy Ex.

Theorem 8 Let w be a ≤2n-heterogeneous binary probability function satisfying
Sx. Then, with the above notation, there is a probability function v on a unary
language (satisfying Ex) and a distribution ρ such that

w(

p
∧

i,j=1

βrij
(aki

, akj
)) =

∑

X1,...,Xm

ρ(X1, X2, . . . , Xm)v(

p
∧

i,j=1

ψrij
( ~X)(aki

, akj
)).

Proof. We first prove the result when w is 2n-heterogeneous. Define the 2n-
heterogeneous unary probability function v on a unary language with n predicates
(P1, . . . , Pn, as usual) according to (8), so w can be recovered from v by (9). So

for r ∈ {1, 2, . . . , 2m}p×p with spectrum ~h of length 2n,

w(r) = d(2n)−1v(~h). (14)

We shall show that the theorem holds for this v and a suitable choice of ρ.

Without loss of generality assume that the atoms with respect to P1, . . . , Pn

are enumerated as α1, α2, . . . , α2n and that for c− 1 = c1c2c3 . . . cm in binary,

βc(x, y) =

m
∧

l=1

Rcl

l (x, y).

Similarly for X1, X2, . . . , Xm a vector of sets of pairs of atoms 〈αi, αj〉 let x be
the 2n × 2n {1, 2, . . . , 2m}-matrix with

xij =

m
∑

l=1

cl2
l−1
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where

cl =

{

1 if 〈αi, αj〉 ∈ Xl,

0 otherwise.

A convenient consequence of this choice of indexing is that for r ∈ {1, 2, . . . , 2m}p×p

the term v(αg1
(a1) ∧ αg2

(a2) ∧ . . . ∧ αgp
(ap)) appears in the state description ex-

pansion of v(
∧p

i,j=1 ψrij
( ~X)(ai, aj)) just if

rij = xgigj
for i, j = 1, . . . , p. (15)

Let

ρ( ~X) =

{

| { o ∈ { 1, . . . , 2m }2n×2n

: |S(o)| = 2n } |−1 if |S(x)| = 2n,

0 otherwise.

In other words ρ( ~X) = N (∅,~12n)−1 when |S(x)| = 2n and zero otherwise, where
~12n is the vector of length 2n and all entries 1.

We shall show that for r ∈ {1, 2, . . . , 2m}p×p with spectrum ~h of length 2n,

w(r) =
∑

~X

ρ( ~X)v(

p
∧

i,j=1

ψrij
( ~X)(ai, aj)). (16)

To see this notice that if

v(αg1
(a1) ∧ αg2

(a2) ∧ . . . ∧ αgp
(ap)) (17)

appears in the state description expansion of

v(

p
∧

i,j=1

ψrij
( ~X)(ai, aj)) (18)

then 2n of the gl must be distinct, otherwise there would be i, j such that ¬Ir(i, j)
but gi = gj, which forces Ir(i, j) by (15).

Indeed by (15) we see that when ρ( ~X) 6= 0 we can re-write (17) as

v(

h1
∧

j=1

αe1
(as1j

) ∧
h2
∧

j=1

αe2
(as2j

) ∧ . . . ∧

h2n
∧

j=1

αe2n (as2nj
)) (19)

where the {sf1, sf2, . . . , sfhf
}, for f = 1, 2, . . . , 2n, are the equivalence classes of

Ir, ordered according to the canonical representation, and the e1, e2, . . . , e2n run
through the 2n different members of g1, g2, . . . , gp. For fixed e1, e2, . . . , e2n (in that

order) and ~X with ρ( ~X) 6= 0 the term (19) will appear in the expansion just if

xeiej
= rsi1sj1

for i, j = 1, 2, . . . , 2n. (20)
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Clearly there is only one ~X with this property. Altogether then, summing over
the 2n! choices for e1, e2, . . . , e2n , the coefficient of v(~h) (including ρ( ~X)) in the
state description expansion of (16) is

2n!N (∅,~12n)−1 = F(∅,~12n)/N (∅,~12n) = d(2n)−1.

Using this (16) follows from (14) in the case of r with spectrum of length 2n.

To show that it holds for general r define the probability function w′ by

w′(

p
∧

i,j=1

βrij
(ai, aj)) =

∑

~X

ρ( ~X)v(

p
∧

i,j=1

ψrij
( ~X)(ai, aj)). (21)

Then for k > p,

w′(

p
∧

i,j=1

βrij
(ai, aj)) =

∑

o∈Dk

w′(
k
∧

i,j=1

βoij
(ai, aj))

+
∑

o∈Ek

w′(

k
∧

i,j=1

βoij
(ai, aj))

where

Dk = { o ∈ { 1, 2, . . . , 2m}k×k : |S(o)| = 2n and oij = rij for i, j = 1, . . . , p },

Ek = { o ∈ { 1, 2, . . . , 2m}k×k : |S(o)| 6= 2n and oij = rij for i, j = 1, . . . , p }.

Since w and w′ agree on the arguments in the first sum and w is 2n-heterogeneous
this first sum tends to

w(

p
∧

i,j=1

βrij
(ai, aj))

as k → ∞ so

w′(

p
∧

i,j=1

βrij
(ai, aj)) ≥ w(

p
∧

i,j=1

βrij
(ai, aj)). (22)

Indeed since the sum of the right hand side of (22) over all r ∈ {1, 2, . . . , 2m}p×p

must be one we can conclude that in fact equality holds in (22), as required.

We now generalize this result to w t-heterogeneous for t < 2n. In this case the
unary probability function v given by (8) is t-heterogeneous. Let T be the set of
atoms {α1, α2, . . . , αt} and define the probability function vT to be such that it
gives zero probability to any α(aj) for α /∈ T whilst for

p
∧

i=1

αti(agi
)
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with each αti ∈ T and spectrum ~p of length q ≤ t,

t!

(t− q)!
vT

(

p
∧

i=1

αti(agi
)

)

=
2n!

(2n − q)!
v(~p).

In particular when q = t then,

(

2n

t

)

v(~p) = vT

(

p
∧

i=1

αti(agi
)

)

.

By a similar argument to the case for 2n-heterogeneous above, if we set

ρT ( ~X) =











| { o ∈ { 1, . . . , 2m }t×t : |S(o)| = t } |−1 if the Xi ⊆ T × T

and the top left t× t submatrix of x has spectrum ~1t,

0 otherwise.

then as above we obtain that the probability function w′
T defined by

w′
T (

p
∧

i,j=1

βrij
(ai, aj)) =

∑

~X

ρ( ~X)vT (

p
∧

i,j=1

ψrij
( ~X)(ai, aj)) (23)

satisfies

w′
T (r) = t!N (∅,~1t)

−1vT (~h) =
2n!

(2n − t)!
N (∅,~1t)

−1v(~h) = d(t)−1v(~h)

for r ∈ {1, 2, . . . , 2m}p×p with spectrum ~h of length t. It follows that w′
T = w.

Finally to extend the result to general ≤2n-heterogeneous w we use the rep-
resentation of w as a convex sum of t-heterogeneous probability functions,

w =
2n
∑

t=1

ηtw
[t],

choose suitable v[t] and ρ[t] on disjoint languages L[t] for each w[t], take v to be
the product measure of the v[t] on the language which is the union of the L[t] and
finally define ρ on ~X from this combined language to be

2n
∑

t=1

ηtρ
[t]

where ρ[t]( ~X) = 0 if the ~X is not in the language L[t]. �

In view of our initial attempt to explain binary relations in terms of compound
combinations of purely unary properties Theorem 8 is of interest because it says
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that in this situation where w satisfies Sx and is ≤t-heterogeneous for some t an
explanation along these lines is always possible.

Given that we are limiting ourselves now to probability functions satisfying
Sx the remaining basic case to consider is when w is homogeneous. This is the
subject of our next section.

Homogeneous binary probability functions

The previous section gave a characterization of heterogeneous binary probability
functions from which we can generate a host of examples. On the other hand one
may feel that these are rather atypical probability functions and that the main
interest lies in homogeneous probability functions w, that is when for all s > 0

lim
k→∞

∑

~k∈As
k

N (∅, ~k)w(~k) = 0.

One obvious example of such a homogeneous probability function is the com-
pletely independent, or trivial, binary probability function which simply gives
each Rk(ai, aj) probability 1/2 and treats them all as stochastically independent.
There are also non-trivial examples as the following construction shows:

For simplicity of notation take m = 1, the construction being the same but
with 1/2 replaced in the obvious places by 1/2m for general m. We first describe
a way of generating a random r ∈ {0, 1}q×q and a black/red coloring of the
a1, . . . , aq as follows. For q = 1 decide the color (one of black/red) for a1 by a
coin toss and similarly decide if r equals {0} or {1}. Now suppose q > 0 and
we have constructed our random r ∈ {0, 1}q×q and a black/red coloring of the
a1, . . . , aq. We describe how to extend r and the coloring to q + 1. First decide
the color of aq+1 by a coin toss.

If the color is decided black then (uniform) randomly pick r+ ∈ {0, 1}(q+1)×(q+1)

extending r with the property that whenever i < j ≤ q and ai, aj both have color
red then r+

i,q+1 = r+
j,q+1, r

+
q+1,i = r+

q+1,j. In other words pick r+ according to
the uniform distribution from all such extensions. Notice then that in this case
r+ does not kill any previous equivalence between i and j when ai, aj are both
colored red.

If the color is decided red and no previous ai had color red, then (uniform)
randomly extend r to r+ ∈ {0, 1}(q+1)×(q+1), in other words giving each of the
22q+1 possible extensions equal probability.

If the color is decided red and some previous ai had color red let r+ be the
unique extension of r such that Ir+

(i, q + 1).



25

Now define w(r) to be the probability that the above random construction
generates r for some coloring of a1, . . . , aq. We claim that w is the required binary
probability function.

That w defines a binary probability function which is homogeneous but non-
trivial (i.e not the completely independent solution) is clear so it is enough to
check that w satisfies Sx.

To this end suppose that r, t ∈ {0, 1}q×q have the same spectra, say their
equivalence classes are in non-increasing order of size R1, . . . , Rk, and T1, . . . , Tk

respectively, so |Rj | = |Tj | for j = 1, . . . , k. The plan now is to show that we
can pair off all possible colorings for r and t in such a way that both members
of the pairs are equally likely to be generated as above. This is clear for the
two colorings which make all of a1, . . . , aq black so consider a coloring associated
with r which makes something red. Clearly all the red ai belong to the same Ir

equivalence class, say Rj . Let it be the i1th,i2th,. . . , ihth elements of Rj that get
colored red. In this case pair this coloring with the coloring associated with t
which gives just the i1th,i2th,. . . , ihth elements of Tj color red. The point now is
that in both cases these two matrices with these colorings will be generated by
the above construction with probability

q−h
∏

i=0

2−2i−1,

which is enough to give the result.

Having demonstrated that non-trivial homogeneous binary probability func-
tions satisfying Sx do exist we now set about deriving some of their, on occasions
possibly unexpected, properties. The following result is joint with J. Landes.

Theorem 9 If w is a homogeneous binary probability function satisfying Sx then
w satisfies Regularity. More precisely if w(r) = 0 where |S(r)| = t then w is
≤(t− 1)-heterogeneous.

Proof. Let S(r) = ~s = 〈s1, s2, . . . , st〉. By taking suitable splitting extensions of
r we can obtain a k such the w(k) = 0 where S(k) = ~1k. Picking the least such
k we have that w is ≤(k − 1)-heterogeneous If k ≤ t we are done. Otherwise,
by Theorem 7 we may assume that w is actually (k − 1)-heterogeneous (and
k − 1 ≥ t). In this case let v be the unary ‘dual’ of w as in Theorem 6. Then v
is (k − 1)-heterogeneous, v(~s) = 0 and v(~1t) > 0.

By de Finetti’s Representation Theorem, for some measure µ on

Dn = { 〈x1, . . . , x2n〉 | xi ≥ 0,

2n
∑

i=1

xi = 1 },
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v(~1t) =

∫

Dn

x1x2 . . . xtdµ > ǫ > 0

for some ǫ, so
µ{ ~x ∈ Dn | x1x2 . . . xt ≥ ǫ } > 0.

Hence
µ{ ~x ∈ Dn | (x1x2 . . . xt)

s1 ≥ ǫs1 } > 0,

so
µ{ ~x ∈ Dn | x

s1

1 x
s2

2 . . . xsk

k ≥ ǫs1 } > 0,

and by de Finetti’s Theorem v(~s) > 0, contradiction. �

Before giving any more proofs we need some definitions.

The Splitting Property

The binary probability function w satisfies the Splitting Property if whenever
r ∈ { 1, 2, . . . , 2m }p×p and Ir(1, 2) then

w(r) = lim
q→∞

∑

o∈Gq

w(o),

where Gq is the set of o ∈ { 1, 2, . . . , 2m }q×q such that rij = oij for 1 ≤ i, j ≤ p
and ¬Io(1, 2).

The Non-splitting Property

The binary probability function w satisfies the Non-splitting Property if whenever
r ∈ { 1, 2, . . . , 2m }p×p and Ir(1, 2) then

w(r) > lim
q→∞

∑

o∈Gq

w(o),

where Gq is the set of o ∈ { 1, 2, . . . , 2m }q×q such that rij = oij for 1 ≤ i, j ≤ p
and ¬Io(1, 2).

Lemma 10 Let w be a homogeneous binary probability function satisfying Sx
and the Splitting Property. Then w is the completely independent (i.e. trivial)
probability function.

Proof. Suppose that
∑

i pi =
∑

i qi = p and ~p, ~q are respectively the spectra of
p,q ∈ {1, 2, . . . , 2m}p×p. It is enough to show that w(~p) = w(~q).

By (6) fix large s and then large k such that

E~p =
∑

~k∈A≥s

k

N (~p,~k)w(~k)
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is very close to w(~p) and

E~q =
∑

~k∈A≥s
k

N (~q,~k)w(~k)

is very close to w(~q). Now

E~p =
∑

r∈B(p)

w(r) +
∑

r∈C(p)

w(r)

where

B(p) = { r ∈ A≥s
k : rij = pij for i, j ≤ p and ¬Ir(i, j) for i < j ≤ p },

C(p) = { r ∈ A≥s
k : rij = pij for i, j ≤ p and r /∈ B(p)}.

Let r ∈ B(p)∩At
k where s ≤ t ≤ k, let us say that the smallest representatives

of all the equivalence classes with respect to Ir are j1, j2, . . . , jt, so in particular
ji = i for i ≤ p since r ∈ B(p). Let r̂ be the matrix resulting from r by sliding
the jith row and column to the ith row and column and keeping the other rows
and columns in the same order. So still r̂ij = pij for i, j ≤ p. Now consider a
random t× t matrix a with entries from {1, 2, . . . , 2m} agreeing with p on its top
left p× p submatrix. The proportion of such choices of a such that Ia(i, j) holds
for particular i 6= j is less than 2−2m(t−p), so the proportion such that Ia(i, j)
holds for some i 6= j is less than t22−2m(t−p), which in turn is uniformly bounded
by s22−2m(s−p) (= ǫ say). Hence

|{ r̂ : r ∈ B(p) ∩ At
k }| and |{ r̂ : r ∈ B(q) ∩ At

k }|

are the same to within this small fraction ǫ of their sum. So we can split these
sets into subsets D~p

1, D
~p
2 and D~q

1, D
~q
2 such that |D~p

1| = |D~q
1| and |D~p

2| ≤ ǫ|D~p
1|,

|D~q
2| ≤ ǫ|D~q

1|. Clearly

|{r ∈ B(p) ∩At
k : r̂ ∈ D~p

1 }| = |{r ∈ B(q) ∩ At
k : r̂ ∈ D~q

1 }| (24)

so by Sx the sums of the w(r) for r in these sets will be the same. As for the
r̂ ∈ D~p

2, summing the corresponding w(r) will yield a sum which is at most ǫ
times that obtained by summing the w(r) for r̂ ∈ D~p

1. Finally summing over the
s ≤ t ≤ k shows that

∑

r∈B(p)

w(r) and
∑

r∈B(q)

w(r)

are very close.

The proof now reduces to showing that
∑

r∈C(p)

w(r) and
∑

r∈C(q)

w(r)

are also very close. But this is true by the assumption on w. �
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Corollary 11 Let w be a non-trivial homogeneous binary probability function
satisfying Sx. Then w satisfies the Non-splitting Property.

Proof. Since w is non-trivial, by Lemma 10, for some r′ ∈ { 1, 2, . . . , 2m }p′×p′

with Ir
0(1, 2),

w(r′) > lim
q→∞

∑

o∈G′
q

w(o),

where G′
q is the set of o ∈ { 1, 2, . . . , 2m }q×q such that r′ij = oij for 1 ≤ i, j ≤ p′

and ¬Io(1, 2). Clearly we may take p′ as large as we wish here. Now let r ∈
{ 1, 2, . . . , 2m }p×p and Ir(1, 2). Then by taking p′ sufficiently large compared
with p we see that there will be some extension r′′ ∈ { 1, 2, . . . , 2m }p′×p′ of r such
that Ir′′(1, 2), S(r′) = S(r′′) and the equivalence classes of 1 with respect to both
Ir′ and Ir′′ have the same size. Then by Sx

w(r′′) > lim
q→∞

∑

o∈G′′
q

w(o),

so clearly this same strict inequality must hold for r. �

For future reference notice that 1 and 2 in this Corollary can be replace by
any other distinct i, j ≤ p.

Corollary 11 seems to us surprising because it says in effect that if any two
individuals look different in almost all possible futures according to a homoge-
neous w satisfying Sx then w must be the completely independent solution. In
other words, if w is to avoid being the completely independent solution it must
allow the real possibility that individuals that look identical today will remain
looking identical for all time.

The non-trivial homogeneous probability function constructed above of course
satisfies Non-splitting. It also satisfies the following property:

The Clustering Property

The binary probability function w satisfies the Clustering Property if whenever
t ∈ { 1, 2, . . . , 2m }p×p then there is some ǫ > 0 such that

lim
q→∞

∑

o∈Hq

w(o) > 0

where Hq is the set of o ∈ { 1, 2, . . . , 2m }q×q such that tij = oij for 1 ≤ i, j ≤ p
and |{j ≤ q : Io(1, j)}| ≥ ǫq.

Loosely speaking then, this is saying that there is a non-zero probability that
in the future at least one in any N of the individuals observed will be identical
to the the first (or any other fixed) individual observed.

As we now show this is no accident, it must hold for any non-trivial homoge-
neous w satisfying Sx.
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Theorem 12 Let w be a non-trivial homogeneous probability function satisfying
Sx. Then w satisfies the Clustering Property.

Proof. We shall first show this result for t empty (i.e. p = 0), the result for
general t following by restricting all matrices to extensions of t.

By non-splitting it follows that there is a δ > 0 such that for all q ≥ 2

∑

r∈{1,...,2m}q×q

Ir(1,2)

w(r) ≥ δ. (25)

Clearly by Ex we could replace 1,2 in this inequality by any i < j ≤ q.

Now consider the sum

∑

i<j≤q

∑

r∈{1,...,2m}q×q

¬Ir(i,j)

w(r).

For r ∈ {1, . . . , 2m}q×q with spectrum 〈s1, s2, . . . , sk〉 the term w(r) appears in this
sum once for every i < j ≤ q such that ¬Ir(i, j), in other words

∑

g<h≤k sgsh (=
ι(r), say) times. Hence

∑

i<j≤q

∑

r∈{1,...,2m}q×q

¬Ir(i,j)

w(r) =
∑

r∈{1,...,2m}q×q

ι(r)w(r). (26)

By (25) and Sx the left hand side of this equation is at most q(q− 1)(1− δ)/2 so

q(q − 1)(1 − δ)/2 ≥
∑

r∈{0,1}q×q

ι(r)w(r). (27)

We now claim that for r ∈ {1, . . . , 2m}q×q with S(r) = 〈s1, s2, . . . , sk〉,

ι(r) ≥ q(q − s1)/2. (28)

To see this notice that
∑k

i=1 s
2
i is bounded by the maximum of the real function

∑q
i=1 x

2
i subject to the constraints 0 ≤ xi ≤ s1,

∑q
i=1 xi = q. This maximum is

taken (in particular) when xi = s1 for i = 1, . . . , d, xd+1 = q − ds1 and xi = 0
otherwise, where d = p(q/s1)q. Hence

k
∑

i=1

s2
i ≤ ds2

1 + (q − ds1)
2
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and

2ι(r) =
∑

i6=j

sisj

= q2 −
∑

i

s2
i

≥ q2 − (ds2
1 + (q − ds1)

2)

= ds1(2q − (d+ 1)s1)

= (q − u)(q − (s1 − u)) where 0 ≤ u = q − ds1 ≤ s1

≥ q(q − s1).

Now suppose that for any ǫ > 0 we could find arbitrarily large q such that

∑

r∈{1,...,2m}q×q

s1/q≥ǫ

w(r) < ǫ.

Then

∑

r∈{1,...,2m}q×q

ι(r)w(r) ≥
∑

r∈{1,...,2m}q×q

s1/q<ǫ

ι(r)w(r)

≥ (1 − ǫ)q(q − ǫq)/2

= q2(1 − ǫ)2/2.

But taking ǫ sufficiently small and q sufficiently large this contradicts (27). It
follows then that for some ǫ > 0 and all q eventually

∑

r∈{1,...,2m}q×q

s1/q≥ǫ

w(r) ≥ ǫ.

But by Ex, amongst the r ∈ {1, . . . , 2m}q×q with s1/q ≥ ǫ the probability that
1 ∈ s1 is at least ǫ so overall the probability that |{j ≤ q : Ir(1, j)}| ≥ ǫq for
r ∈ {1, . . . , 2m}q×q is at least ǫ2, as required. �

Corollary 13 If w is a non-trivial binary probability function satisfying Sx then
w satisfies Non-splitting and Clustering.

Proof. These clearly hold for w t-heterogeneous and, by Corollary 11 and The-
orem 12, for non-trivial homogeneous w also. The result now follows from the
Representation Theorem 7. �
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Conclusions

In this paper we have made some tentative first steps towards understanding
induction for binary relations, a problem which has (apparently) been strangely
neglected following the successes of half a century ago of Carnap, Johnson et al
(see [1],[2],[19]) with unary relations (i.e.properties). For the most part we have
investigated probability functions on finite binary languages satisfying Spectrum
Exchangeability, Sx, a property which naturally generalizes Atom Exchangeabil-
ity for unary languages (and in turn itself generalizes in a natural way to higher
arities still, see the forthcoming [25]). We have shown that probability functions
satisfying Sx have some pleasing properties (Vx, UC, and Non-splitting and Clus-
tering in the non-trivial case) and have derived some representation results.

Many avenues for future investigations remain it seems largely unexplored.
Are there alternative principles to Sx which also have intuitive appeal in this
context? Even assuming Sx there are still numerous open questions, in particular
the fundamental question of ‘instantial relevance’, how does, or should, the past
impinge on the future? - a question which surely underlies the whole study of
inductive logic(s).

In the unary case de Finetti’s Representation Theorem provides a straight-
forward route to proving a number of ‘instantial relevance’ results and one might
look to such a result here to provide a similar service. In [24] Krauss proves a
representation theorem for exchangeable binary probability functions (i.e. sat-
isfying Ex) in the case of a language with a single binary predicate although
the corresponding corollary for instantial relevance that Krauss obtains requires
the pairs of constants witnessing previous instances to be disjoint and is therefore
apparently not applicable to cases such as the one above. Indeed because the wit-
nessing pairs are to be disjoint the direct version of instantial relevance given by
Krauss’s representation can already be obtained directly by applying de Finetti’s
theorem to a suitable, essentially unary, fragment of the language. Subsequently
Hoover [17] (see also [20], [21]) provided a possibly more user friendly representa-
tion theorem for this class of probability functions, though it currently appears to
be most useful as a source of counter examples to the sort of instantial relevance
principles one might initially have expected. Hopefully the recent formulation of
a de Finetti theorem14 for heterogeneous binary probability functions satisfying
Sx will help clarify the situation as regards such principles in that case.

A further generalization is to infinite languages, allowing infinitely many bi-
nary predicates in the language. In this paper we have limited our attention to
finite languages because this is very much a pilot study where we would wish to
keep matters as simple as possible. However we know from the unary situation

14Suggested by methods of Matúš on Bernoulli Shifts [28] and to be presented in a forthcoming
paper.
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that restricting attention to finitely many predicates can result in rather differ-
ent intuitions (and theorems), whilst of the two the assumption that there are
(potentially at least) infinitely many predicates seems closer to the real world
from which we draw our intuitions than the assumption of a fixed finite bound
thereon.
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