

The University of Manchester

The universal equivariant genus and Krichever's formula

Buchstaber, V. M and Ray, N

2007

MIMS EPrint: 2007.101

Manchester Institute for Mathematical Sciences School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK

ISSN 1749-9097

The universal equivariant genus and Krichever's formula

V. M. Buchstaber and N. Ray

We consider smooth 2n-dimensional manifolds M, equipped with a smooth action θ of the circle S^1 . Such an M determines a normally complex S^1 -manifold (M, θ, c_{ν}) whenever an equivariant complex structure c_{ν} is chosen for the normal bundle $\nu(i)$ of some equivariant embedding $i: M \to \mathbb{C}^k$. In this situation, we use the standard action of S^1 on the unit sphere $S^{2m+1} \subset \mathbb{C}^{m+1}$ to define a 2(m+n)-dimensional smooth manifold $W_m = S^{2m+1} \times_{S^1} M$, and a k-dimensional complex vector bundle $q_m: E_m \to \mathbb{C}P^m$, where $E_m = S^{2m+1} \times_{S^1} \mathbb{C}^k$. Then i extends to an embedding $i': W_m \to E_m$, and the complex structure c_{ν} extends to a complex structure c' on the normal bundle $\nu(i')$.

The composition $p_m : W_m \xrightarrow{i'} E_m \xrightarrow{q_m} \mathbb{C}P^m$ is complex oriented in the sense of [1] and determines a complex cobordism class $\Phi_m(M, \theta, c_\nu) \in U^{-2n}(\mathbb{C}P^m)$. The standard embedding $\iota_m : \mathbb{C}P^m \to \mathbb{C}P^{m+1}$ acts by $\iota_m^* \Phi_{m+1} = \Phi_m$, hence the inverse sequence $(\Phi_m(M, \theta, c_\nu) : m \ge 0)$ defines an element of $\lim_{i \to \infty} U^{-2n}(\mathbb{C}P^m) \simeq U^{-2n}(\mathbb{C}P^\infty)$. We write this element as $\Phi(M, \theta, c_\nu)$ and call it the *universal* S^1 -equivariant genus of (M, θ, c_ν) . The genus Φ was used to deduce fundamental results on Hirzebruch genera of S^1 -manifolds in [2] and [3]. An analogue of Φ for a compact Lie group has been studied by several authors since the 1960s (see [4] and [1]).

The ring $U^*(\mathbb{C}P^{\infty})$ is isomorphic to the algebra $\Omega^*[[u]]$ of formal power series over $\Omega^* = U^*(pt)$, where u is the cobordism class of the inverse sequence $(\iota_m : m \ge 0)$. So our initial aim is to construct stably complex manifolds $G_j(M)$ of dimension 2(n+j) such that $\Phi(M, \theta, c_{\nu}) = \sum_{j=0}^{\infty} [G_j(M)] u^j$. Clearly, $G_0 = M$ with the stably complex structure c_{ν} .

We consider $(S^3)^j = \{(y_1, z_1; \ldots; y_j, z_j) \in \mathbb{C}^{2j} : |y_i|^2 + |z_i|^2 = 1, 1 \leq i \leq j\}$, on which the torus T^j acts freely by $t \cdot (y_1, z_1; \ldots; y_j, z_j) \in \mathbb{C}^{2j} : |y_i|^2 + |z_i|^2 = 1, 1 \leq i \leq j\}$, on which the torus T^j acts freely by $t \cdot (y_1, z_1; \ldots; y_j, z_j) = (t_1y_1, t_1^{-1}z_1; \ldots; t_jy_j, t_{j-1}^{-1}t_j^{-1}z_j)$ for all $t = (t_1, \ldots, t_j)$. The quotient manifold $B_j = (S^3)^j/T^j$ is a j-fold iterated S^2 -sphere bundle over $B_0 = pt$ and admits complex line bundles η_1, \ldots, η_j such that $E(\eta_i) = (S^3)^j \times_{T^j} \mathbb{C}$ via the action $t \cdot z = t_i^{-1}z$ for $z \in \mathbb{C}$. For j > 0, the isomorphism $\tau(B_j) \oplus \mathbb{C}^j \cong (\overline{\eta}_1 \oplus \eta_1) \oplus$ $\cdots \oplus (\overline{\eta}_j \oplus \eta_{j-1}\eta_j)$ defines a stably complex structure c_j^β such that $B_j = \partial D_j$, where D_j is the associated 3-disc bundle, hence $[B_j] = 0$ for j > 0.

Theorem 1. For every $j \ge 0$ the manifold $G_j(M)$ is given by the quotient $(S^3)^j \times_{T^j} M$, where T^j acts on M by $t \cdot x = \theta(t_j^{-1}) \cdot x$. The stably complex structure c(j) on $G_j(M)$ is induced from the fibration $M \to G_j(M) \to B_j$.

The proof combines 1.7 in [1] with the fact (Proposition 2.2 in [5]) that the classifying maps for the bundles η_j over B_j represent a basis for $U_*(\mathbb{C}P^{\infty})$ that is dual to the basis $\{u^k : k = 0, 1, 2, ...\}$ in $U^*(\mathbb{C}P^{\infty})$.

Remark 2. Our $G_j(M^{2n})$ are clearly complex bordant to the non-connected manifolds $\gamma^j(M^{2n})$ of Theorem 6.3 in [6]. Therefore, we deduce that the completion map of the homotopical bordism ring $MU_*^{S_1}$ at its augmentation ideal (see Ch. 27 in [7]) restricts to Φ on geometrical classes. Also, the $G_j(M^{2n})$ are diffeomorphic to the manifolds $M^{2(n+j)}$ of [8], so c(j) induces a stably complex structure on the latter.

We interpret M as a tangentially stably complex S^1 -manifold (M, θ, c_τ) whenever a complex vector bundle $\xi \to M$ and an isomorphism

$$c_{\tau} \colon \tau(M) \oplus \mathbb{C}^{l-n} \to \xi \tag{1}$$

AMS 2000 Mathematics Subject Classification. Primary 55N22; Secondary 57R85. DOI 10.1070/RM2007v062n01ABEH004385.

are chosen, where $\tau(M)$ is the stable tangent bundle, in such a way that the composition

$$\rho(t): \xi \xrightarrow{c_{\tau}^{-1}} \tau(M) \oplus \mathbb{C}^{l-n} \xrightarrow{d\theta(t) \oplus I} \tau(M) \oplus \mathbb{C}^{l-n} \xrightarrow{c_{\tau}} \xi, \qquad t \in S^{1},$$
(2)

is a complex transformation for any $t \in S^1$, where $d\theta(t)$ is the differential of the action by $\theta(t)$. Hence, (2) corresponds to a representation $\rho: S^1 \to \operatorname{Hom}_{\mathbb{C}}(\xi,\xi)$. Up to natural equivalence, the structure (M, θ, c_{τ}) determines (M, θ, c_{ν}) , and we may define $\Phi(M, \theta, c_{\tau})$ to be the $\Phi(M, \theta, c_{\nu})$ associated with the corresponding structure c_{ν} . On the other hand, c_{ν} may not determine an equivariant c_{τ} ([7], Ch. 28).

Let $x \in M$ be an isolated fixed point of the action θ . Then the associated representation $\rho_x \colon S^1 \to GL(l, \mathbb{C})$ decomposes the fibre $\xi_x \cong \mathbb{C}^l$ as $\mathbb{C}^n \oplus \mathbb{C}^{l-n}$, where ρ_x acts (without trivial summands) as $\rho_{x,1} \oplus \cdots \oplus \rho_{x,n}$ on \mathbb{C}^n and trivially on \mathbb{C}^{l-n} . Here $\rho_{x,j}$ is the one-dimensional representation of weight $\omega_{x,j}$, that is, it acts by $\rho_{x,j}(t)v = t^{\omega_{x,j}}v$. To each isolated fixed point x we may therefore assign a sequence $\omega_x = (\omega_{x,1}, \ldots, \omega_{x,n})$ of weights. Moreover, the isomorphism $c_{x,\tau}$ in (1) induces an *orientation* of the tangent space τ_x , which allows us to define $\sigma(x)$ as the sign of the determinant of the linear map

$$\tau_x(M) \xrightarrow{I \oplus 0} \tau_x(M) \oplus \mathbb{C}^{l-n} \xrightarrow{c_{\tau,x}} \xi_x \cong \mathbb{C}^n \oplus \mathbb{C}^{l-n} \xrightarrow{\pi} \mathbb{C}^n,$$

where π is the projection onto the first summand. The sign is important in toric topology [9].

Example 3. The S^1 -manifold $(B_1 = S^2, \theta, c_1^{\partial})$, where $\theta(t)[z_1 : z_2] = [tz_1 : z_2]$, has fixed points $x_1 = [1, 0]$ and $x_2 = [0, 1]$ with weights $\omega_{x_1, 1} = \omega_{x_2, 1} = 1$ and signs $\sigma(x_1) = -\sigma(x_2) = 1$.

Now let $\{[q](u) \in \Omega^*[[u]] : q \in \mathbb{Z}\}$ denote the power system of the formal group f(u, v) for complex cobordism (see [10]). The *q*-series $[q](u) = qu \mod(u^2)$ is defined uniquely by [0](u) = 0 and [q](u) = f(u, [q-1](u)) for all $q \in \mathbb{Z}$.

Theorem 4. If the action θ has a finite set X of isolated fixed points, then

$$\Phi(M,\theta,c_{\tau}) = \sum_{x \in X} \sigma(x) \prod_{i=1}^{n} \frac{1}{[\omega_{x,i}](u)}$$
(3)

holds in $U^{-2n}(\mathbb{C}P^{\infty})$.

The proof combines Proposition 3.8 in [1] with the construction of $\sigma(x)$ above.

Remark 5. If the S¹-manifold M is almost complex, then we may take l = n in (1). Then $\sigma(x) = 1$ for all $x \in X$, and (3) reduces to Krichever's formula ((2.7) in [2]).

We may reformulate Theorems 1 and 4 for effective actions of the torus T^k on any 2n-dimensional manifold with $k \leq n$.

Bibliography

- [1] D. Quillen, Adv. Math. 7:1 (1971), 29–56.
- [2] И. М. Кричевер, Изб. АН СССР. Сер. матем. 38:6 (1974), 1289–1304; English transl., I. M. Krichever, Math. USSR Izv. 8 (1974), 1271–1285.
- [3] И. М. Кричевер, Матем. заметки 47:2 (1990), 34–45; English transl., I. M. Krichever, Math. Notes 47:2 (1990), 132–142.
- [4] T. tom Dieck, *Topology* **9**:4 (1970), 345–358.
- [5] N. Ray, Proc. Edinb. Math. Soc. (2) 29:3 (1986), 413-422.

- [6] D. P. Sinha, Amer. J. Math. **123**:4 (2001), 577–605.
- [7] J. P. May (ed.), Equivariant homotopy and cohomology theory, CBMS Reg. Conf. Ser. Math., vol. 91, Amer. Math. Soc., Providence, RI 1996.
- [8] P. E. Conner and E. E. Floyd, *Differentiable periodic maps*, Ergeb. Math. Grenzgeb., vol. 33, Springer-Verlag, Berlin–Göttingen–Heidelberg 1964.
- [9] V. M. Buchstaber, T. E. Panov, and N. Ray, Mosc. Math. J. 7:2 (2007), 219–242.
- [10] С. П. Новиков, Изв. АН СССР. Сер. матем. 31:4 (1967), 855–951; English transl., S. P. Novikov, Math. USSR Izv. 1:4 (1967), 827–913.

V.M. Buchstaber

Steklov Mathematical Institute, RAS *E-mail*: buchstab@mi.ras.ru Presented by S. P. Novikov Received 07/DEC/06 Translated by THE AUTHORS

N. Ray

School of Mathematics, University of Manchester, England *E-mail*: njge@ma.man.ac.uk

180