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Abstract

This paper presents an evaluation of the use of Primal Dual Meth-
ods for efficiently regularizing the electric impedance tomography (EIT)
problem with the Total Variation (TV) functional.
The Total Variation functional is assuming an important role in the
regularization of inverse problems thanks to its ability to preserve dis-
continuities in reconstructed profiles. This property is desirable in
many fields of application of EIT imaging, such as the medical and the
industrial, where inter-organ boundaries, in the first case, and inter-
phase boundaries, in the latter case, present step changes in electrical
properties which are difficult to be reconstructed with traditional reg-
ularization methods, as they tend to smooth the reconstructed image.
Though desirable, the TV functional leads to the formulation of the in-
verse problem as a minimization of a non-differentiable function which
cannot be efficiently solved with traditional optimization techniques
such as the Newton Method. In this paper we demonstrate the use of
Primal Dual - Interior Point Methods (PD-IPM) as a framework for
TV regularized inversion.

This paper introduces the smoothing properties of the traditional
quadratic regularization algorithms, the discontinuity preserving prop-
erties of the TV functional are then outlined. The paper follows intro-
ducing the general PD-IPM framework and its application to inverse
problems. Specifically 2D and 3D results from the application of TV
regularization to the EIT inverse problem are presented and analyzed.
Trough practical examples the discontinuity preserving capabilities of
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the method are shown, and compared to quadratic regularization re-
sults.

Keywords: Electrical Impedance Tomography, EIT, Regularization, Total
Variation, TV, Primal Dual Interior Point Methods

1 Introduction

Electrical Impedance Tomography (EIT) uses surface electrodes to make
measurements from which an image of the conductivity distribution within
some medium is calculated. The inverse conductivity problem is ill-posed
[2]; consequently regularization techniques have been adopted in order to
stabilize the inversion. Most common regularization methods impose (ex-
plicitly or implicitly) a penalty on non-smooth regions in a reconstructed
image. Such methods confer stability to the reconstruction process, but
limit the capability of describing sharp variations in the sought parameter.

One technique to permit image regularization without imposing smooth-
ing is the Total Variation (TV) formulation of regularization. The Total
Variation functional is assuming an important role in the regularization
of inverse problems belonging to many disciplines, thanks to its ability to
preserve discontinuities in the reconstructed profiles. Application of non-
smooth reconstruction techniques is important for medical and process imag-
ing applications of EIT, as they involve discontinuous profiles. Qualitative
and quantitative benefits can be expected in these fields.

We outline the properties of the TV functional in the next section, to
motivate its use as a regularization penalty term and to understand the nu-
merical difficulties associated with it. The use of the TV functional leads
in fact to the formulation of the inverse problem as a minimization of a
non–differentiable function. Application of traditional minimization tech-
niques (Steepest Descent Method, Newton Method) has proven to be in-
efficient [1][23]. Recent developments in non-smooth optimization (Primal
Dual–Interior Point Methods) have brought the means of dealing with the
minimization problem efficiently. The performance of this algorithm with
respect to traditional smooth algorithms is the subject of this paper.

2 Methods

This paper introduces the PD-IPM algorithm as follows. In the Methods
section we describe the traditional family of EIT reconstruction algorithms
used in our research, describe the TV functional and its PD-IPM imple-
mentation for EIT, and describe the evaluation procedure. In the Results
section we describe the effectiveness of the TV functional compared to the
quadratic regularized inverse. In the Discussion section we consider some
additional observations of this work.
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2.1 Static Image Reconstruction

We consider static EIT imaging where the goal of the algorithm is to recover
the absolute conductivity of the medium under analysis. The technique
requires a forward operator F on the conductivity vector, σ, which calculates
V = F (σ), the simulated voltages at the boundary. The reconstruction is
commonly stabilized using regularization; the inversion is stated as:

σ̂rec = arg min
σ

1

2
‖F (σ) − Vmeas‖

2 + αG(σ) (1)

where Vmeas is the vector of the measured voltages F (σ) the forward model
prediction, G(σ) the regularization functional, α is a hyperparameter con-
trolling the level of applied regularization and the norm || · || is the 2-norm.

2.2 Quadratic Solution

The functional G(σ) is often assumed to be of the form:

G (σ) = ‖L (σ − σ
∗)‖2 (2)

where L is an appropriate regularization matrix and σ
∗ a prior estimate of

the conductivity distribution. In the literature there are several choices for
the matrix L, for example the identity matrix [3], a positive diagonal matrix
[5], approximations of first and second order differential operators [4], and
the inverse of a Gaussian matrix [6]. Algorithms of this class fall into general
framework expressed by equations (1) and (2), that is:

σ̂rec = arg min
σ

1

2
‖F (σ) − Vmeas‖

2 + α ‖L (σ − σ
∗)‖2 (3)

The framework expressed by eq (3) can be called quadratic regularization
since the 2-norm is used. A norm guarantees that the functional is always
non-negative, as a penalty term should be, and more important, the resulting
functional is differentiable, leading to an easier solution of the minimization
problem. Quadratic regularization, because of its simple differentiability,
has been the common framework for solving several inverse problems, and
particularly for EIT [3],[5],[4],[2],[7],[8].

The optimization problem (3) can be solved by replacing F (σ) with
its linear approximation for a small change about an initial conductivity
distribution σ0

F (σ) ≈ F (σ0) + J(σ − σ0) (4)

where J is the Jacobian matrix of F (σ) calculated at the initial conductivity
estimate σ0. The function to be minimized (1) with regularizing penalty
term (2) becomes a quadratic function when F is replaced by its linear
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approximation (4). Defining δσ = σ − σ0 and δV = F (σ0) − Vmeas, the
solution to the linearized regularization problem is given by

δσ = (JTJ + αLTL)−1
JT δV + αLTL(σ − σref ) (5)

Equation 5 is solved iteratively with σi+1 = σi + δσ
The drawback is that, regardless of the choice of L, the technique cannot

reconstruct step changes, smooth solutions are favoured.

2.3 Total Variation Functional

There are situations in almost every field of application of EIT where the
imaged conductivity has discontinuities. In the medical field an example is
that of the inter organ boundaries where each organ has its own electrical
properties. In archaeology a buried wall will give rise to a sudden step in
conductivity, and in process tomography a multiphasic fluid will give rise to
discontinuities at each phase interface. It is therefore important to be able
to reconstruct these situations correctly, even though such conductivities
are difficult to deal with using traditional algorithms. Several approaches
have been investigated in order to overcome these limitations. Often they
can be considered a way to introduce prior information. An example is
anisotropic regularization [7][8] where the structure of the expected sudden
changes is assumed to be roughly known. The smoothness constraints are
relaxed therefore in the direction normal to the discontinuities. In this way
the algorithm better describes rapid variations in the object, however prior
structural information needs to be known in order to adopt such methods.

Many regularization matrices are discrete representations of differential
operators and are used in conjunction with the 2–norm. A different approach
is represented by the choice of the total variation functional, which is still
a differential operator but leads to a ℓ1 regularization. The total variation
(TV) of a conductivity image is defined as:

TV (σ) =

∫

Ω

|∇σ|dΩ (6)

where Ω is the region to be imaged.
The TV functional was first employed by Rudin, Osher, and Fatemi [13]

for regularizing the restoration of noisy images. The technique is particu-
larly effective for recovering “blocky” images, and has become well known
to the image restoration community [14]. The effectiveness of the method
in recovering discontinuous images can be understood by examining the fol-
lowing one dimensional situation.
Suppose that the two points A and B of figure 1 are connected by a path.
Three possible functions f(x) connecting them are shown. As the functions
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are monotonically increasing, the TV of each is:

TV (f) =

B
∫

A

f ′ (x) dx = f (B) − f (A) (7)

which is the same value for each function. TV treats f1, f2 and f3 in the
same way and when used as a penalty term in a Tikhonov regularized inverse
problem, will not bias the result towards a smooth solution. On the other
hand, the ℓ2 norm assumes different values for f1,f2 and f3. When used as a
penalty term the ℓ2 norm will bias the solution towards smoother functions,
for which the ℓ2 norm assumes smaller values. In the cited example f3 is
inadmissible as a quadratic solution since its ℓ2 norm is infinity. With the use
of TV as a regularization penalty term a much broader class of functions
are therefore allowed to be the solution of the inverse problem, including
functions with discontinuities. Another way to understand the differences
with other techniques is to consider the discretized version of equation (6).
Suppose that the conductivity is described by piecewise constant elements,
the TV of the a 2D image can be expressed as the sum of the TV of each of
the k edges, with each edge weighted by its length:

TV (σ) =
∑

k

lk
∣

∣

σm(k) − σn(k)

∣

∣ (8)

where lk is the length of the kth edge in the mesh, m(k) and n(k) are the
indices of the two elements on opposite sides of the kth edge, and the index k
ranges over all the edges. Equation (8) can be expressed in terms of matrices
as:

TV (σ) =
∑

k

|Lkσ| (9)

where L is a sparse matrix, with one row per each edge in the mesh. Every
row Lk has two non zero elements in the columns m(k) and n (k) : Lk =
[0, ..., 0, lk , 0, ..., 0,−lk , 0...0]. TV regularization is therefore of the ℓ1 kind:
it is a sum of absolute values, in this case a sum of vector lengths. The
absolute value guarantees the positivity of the penalty function but unfor-
tunately results in non–differentiability in the points where σm(k) = σn(k).
The numerical problem thus needs to be addressed properly. However, the
important gain is that the ℓ1 regularization does not penalize discontinuities.

2.3.1 Solving TV - Early Approaches.

Two different approaches were proposed for application of TV to EIT, the
first by Dobson and Santosa [1] and the second by Somersalo et al. [10]
and Kolehmainen [11]. Dobson and Santosa replace the absolute value func-
tion in the neighbourhood of zero by a polynomial to obtain continuously
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differentiable function upon which steepest descent is then used to perform
the minimization. Their approach is suitable for the linearized problem but
suffers from poor numerical efficiency. Somersalo and Kolehmainen success-
fully applied Markov Chain Monte Carlo (MCMC) methods to solve the TV
regularized inverse problem. The advantage in applying MCMC methods
over deterministic methods is that they do not suffer from the numerical
problems involved with non-differentiability of the TV functional; they do
not require ad hoc techniques. Probabilistic methods, such as MCMC, of-
fer central estimates and error bars by sampling the posterior probability
density of the sought parameters (therefore differentiability is not required).
The sampling process involves a substantial computational effort, often the
inverse problem is linearized in order to speed up the sampling. What is re-
quired is an efficient method for deterministic Tikhonov style regularization,
to calculate a non-linear TV regularized inversion in a short time.

Examination of the literature shows that a variety of deterministic nu-
merical methods have been used for the regularization of image de-noising
and restoration problems with the TV functional (a good review is offered
by Vogel in [15]). The numerical efficiency and stability are the main issues
to be addressed. Use of ad hoc techniques is common, given the poor per-
formance of traditional algorithms. Most of the deterministic methods draw
from ongoing research in optimization, as TV minimization belongs to the
important classes of problems known as “Minimization of sum of norms”
[16] [21] [18] and “Linear ℓ1 problems” [19] [20].

Recent developments in operations research [21] have provided new classes
of methods to deal efficiently with the problems of minimising the sum of ab-
solute values. Chan, Golub and Mulet [22] have drawn from these advances
and investigated the problem of restoring images with Primal Dual-Interior
Point Methods (PD-IPM). The formulation of the image restoration problem
is very similar to the EIT reconstruction problem, and results can be easily
exploited. In the next section we summarize some results from Andersen,
Christiansen, Conn and Overton [21] that are at the base of the method
proposed by Chan [22] in image restoration applications, and of the method
we propose for EIT.

2.4 Duality Theory for the Minimization of Sums of Norms

Problem

The minimization of the term TV (σ) =
∑

k

|Lkσ|, can be thought to be a

Minimization of Sum of Norms problem (MSN) as
∑

k

|Lkσ| =
∑

k

‖Lkσ‖,

and in this case important results for MSN problems can be applied.
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The most general way of expressing the MSN problem is

min
y

n
∑

i=1

‖Aiy− ci‖ (10)

with y ∈ R
m; ci ∈ R

d and Ai ∈ R
d×m, which is equivalent to

(P ) min
y

{

n
∑

i=1

‖zi‖ : Aiy + zi = ci, i = 1, . . . , n

}

(11)

with zi ∈ R
d. We call (11) primal problem, and we label it (P). An equivalent

problem to (P), which is called dual, and which is a maximization problem,
can be obtained in the following way

min
y:Aiy+zi=ci

n
∑

i=1

‖zi‖ = min
y:Aiy+zi=ci

max
xi:‖xi‖≤1

n
∑

i=1

xT
i zi

= max
xi:‖xi‖≤1

min
y:Aiy+zi=ci

n
∑

i=1

xT
i zi

= max
xi:‖xi‖≤1

min
y∈Rm

(

n
∑

i=1

cT
i xi − yT

n
∑

i=1

AT
i xi

)

= max
xi

{

n
∑

i=1

cT
i xi : ‖xi‖ ≤ 1;

n
∑

i=1

AT
i xi = 0

}

(12)

where the first equality follows from Cauchy–Schwartz, the second from min–

max theory [21] [26], the third trivially, and the fourth because if
n
∑

i=1
AT

i xi

is not zero, the minimised value would be −∞. The dual problem of (P) is
therefore

(D) max
xi

{

n
∑

i=1

cT
i xi : ‖xi‖ ≤ 1;

n
∑

i=1

AT
i xi = 0, i = 1, . . . , n

}

(13)

and the variables y are called primal variables and the variables xi ∈ R
d

dual variables. The problems (P) and (D) are therefore equivalent. The
concept of duality and the relation between primal and dual optimal points
can be formalised defining the primal feasible region as

Y =
{

(y, z) ∈ R
m × R

dn : Ay + z = c
}

(14)

and the dual feasible region as

X =
{

x ∈ R
dn : AT x = 0; ‖xi‖ ≤ 1, i = 1, . . . , n

}

(15)
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where x is obtained by stacking the vectors xi. Andersen et al. [21] have
shown that for feasible points (y, z) ∈ Y, x ∈ X

n
∑

i=1

‖zi‖ −

n
∑

i=1

cT
i xi > 0 (16)

and that for optimal points (y∗, z∗) ∈ Y, x∗ ∈ X

n
∑

i=1

‖z∗i ‖ −
n
∑

i=1

cT
i x∗

i = 0 (17)

In words: for feasible points the term
n
∑

i=1
‖zi‖ is an upper bound to

n
∑

i=1
cT

i xi and vice-versa. The difference
n
∑

i=1
‖zi‖ −

n
∑

i=1
cT

i xi =
n
∑

i=1
(‖zi‖ −

xT
i zi) is called the primal–dual gap; it is positive except at an optimal point

where it vanishes. The primal–dual gap can be zero if and only if, for each
i = 1, . . . , n , either ‖zi‖ is zero or xi = zi/‖zi‖. This can be expressed
conveniently in a form called complementary condition

zi − ‖zi‖xi = 0, i = 1, . . . , n (18)

The complementary condition encapsulates therefore the optimality of both
(P) and (D). An important class of algorithms called Primal Dual Interior
Point Methods (PD–IPM) is based on the observation that (18) with the
feasibility conditions (14) and (15) captures completely the optimality of
both problems. The framework for a PD–IPM algorithm for MSN problem
works by enforcing the three following conditions (primal feasibility, dual
feasibility, complementary)

Ay + z = c (19a)

ATx = 0 (19b)

zi − ‖zi‖xi = 0 (19c)

The Newton Method cannot be applied in a straightforward manner to (19)
as the complementary condition is not differentiable for ‖zi‖ = 0. Andersen
et al. [21] suggest replacing it with the so called centering condition

zi − (‖zi‖
2 + β2)

1

2 xi = 0, i = 1, . . . , n (20)

where β is a small positive scalar parameter. Even if at first sight the
centring condition is very similar to the smooth approximations that are
generally used, where TV (σ) is approximated with

∑

k

√

‖Lkσ‖2 + β, it has

different implications in this context. Particularly, it was shown in [17] that
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the centring condition is the complementary condition of the following pair
of smooth optimization problems

(Pβ) min

{

n
∑

i=1

(‖zi‖
2 + β2)

1

2 : (y, z) ∈ Y

}

(Dβ) min

{

cTx + β

n
∑

i=1

(1 − ‖xi‖
2)

1

2 : x ∈ X

} (21)

The problem Pβ and Dβ are a primal dual pair. Specifically, Dβ has the
solution (y(β), z(β)) and Pβ has the solution x(β), all satisfying (19a), (19b),
(20).

Introducing the perturbation β in the complementary condition for the
original pair of problems is therefore equivalent to smoothing the norms in

(P) and introducing a cost into (D). Particularly the cost function
n
∑

i=1
(1 −

‖xi‖
2)

1

2 can be understood to keep the dual solution away from its bound-
ary (‖xi‖ = 1), from which the name of centring condition for (20), and
of interior point method for the algorithm. The concept of keeping iterates
away from the boundary of feasible regions originates from interior point
methods for linear programming (LP) [27]. In LP optimal points are known
to lie on vertices of the feasible set; traditional algorithms, such as the sim-
plex method, exploited this by working on the frontier of the feasible region
and examining vertices to find the solution. This approach changed in the
mid 80s with Karmarkar’s [28] introduction of interior point methods, which
work by following a smoother path inside the feasible region called a cen-
tral path (identified by a centering condition), and possibly making larger
steps at each iteration. In MSN the central path is defined by the solutions
(y(β), z(β), x(β)) of Pβ, Dβ for β > 0, β → 0. Using these results Ander-
sen et al. realised an efficient PD–IPM algorithm that works maintaining
feasibility conditions (19a), (19b) and applies the centering condition (20)
with a centering parameter β which is reduced during iterations, following
the central path to the optimal point.

In the next Section we describe the application of the PD-IPM framework
to TV regularized linear inverse problems.

2.5 Duality for Tikhonov Regularized Inverse Problems

In inverse problems, with linear forward operators, the discretized TV reg-
ularized inverse problem, can be formulated as

(P ) min
x

1

2
‖Ax − b‖2 + α

∑

k

|Lkx| (22)

where L, as in (9), is a discretization of the gradient operator. We will label
it as the primal problem (P ). The dual problem, can be derived noting, as
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for the MSN problem, that

|Lkx| = ||Lkx|| = max
y:‖y‖≤1

y Lkx (23)

By applying (23) to (P ), the dual problem (D) is obtained as follows [23]

(D) max
y:‖yi‖≤1

min
x

1

2
‖Ax− b‖2 + αyT Lx (24)

The optimization problem

min
x

1

2
‖Ax− b‖2 + αyT Lx (25)

has an optimal point defined by the first order conditions

AT (Ax − b) + αLTx = 0 (26)

the dual problem can be written therefore as

(D) max
y : ‖yi‖ ≤ 1

AT (Ax− b) + αLTx = 0

1

2
‖Ax− b‖2 + αyT Lx (27)

The primal–dual gap for (P ) and (D) is therefore:

1

2
‖Ax − b‖2 + α

∑

k

|Lkx| −
1

2
‖Ax − b‖2 − αyT Lx =

α

(

∑

k

|Lkx| − yT Lx

) (28)

The complementary condition, which nulls the primal–dual gap, for (22)
and (27) is therefore:

∑

k

|Lkx| − yT Lx = 0 (29)

which with the dual feasibility ‖yi‖ ≤ 1 is equivalent to requiring that

Lix − yi‖Lix‖ = 0 i = 1, . . . , n (30)

The PD-IPM framework for the TV regularized inverse problem can thus
be written as

‖yi‖ ≤ 1 i = 1, . . . , n (31)

AT (Ax− b) + αLT x = 0 (32)

Lix − yi‖Lix‖ = 0 i = 1, . . . , n (33)

It is not possible to apply the Newton method directly to (31),(32),(33) as
(33) is not differentiable for Lix = 0. A centering condition has to be applied
[21] [23], obtaining a smooth pair of optimization problems (Pβ) and (Dβ)
and a central path parameterised by β. This is done by replacing Lix by

(‖Lix‖
2 + β)

1
2 in (33).
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2.6 PD-IPM for EIT

The PD-IPM algorithm described in section (2.5) was developed by Chan
et al. [22] for inverse problems with linear forward operators. We next
describe a numerical implementation of the PD-IPM algorithm, based on
[23], to calculate the non-linear solution to

σrec = arg min
σ

1

2
‖F (σ) − Vmeas‖

2 + αTV (σ) (34)

With a similar notation as used in Section 2.1. This is recognized as equation
(1) with G(σ) = TV (σ). The system of non-linear equations that defines
the PD-IPM method for (34) can be written as

‖yi‖ ≤ 1
JT (F (σ) − Vmeas)

Lσ − Ey = 0

+ αLT
σ = 0 (35)

with E a diagonal matrix defined by E = diag

(

√

‖Liσ‖2 + β

)

and J the

Jacobian of the forward operator F (σ). Newton’s method can be applied to
solve (35) obtaining the following system for the updates δσ and δy of the
primal and dual variables

[

JTJ αLT

KL −E

] [

δσ
δy

]

= −

[

JT (F (σ) − Vmeas) + αLTy

Lσ − Ey

]

(36)

with

K = diag

(

1 −
yiLiσ

E(i, i)

)

(37)

equation (36) can be solved as follows

[

JTJ+αLTE−1hL
]

δσ = −
[

JT (F (σ) − Vmeas) + αLTE−1Lσ

]

(38)

δy = −y + E−1Lσ + EKLδσ (39)

Equations (38) and (39) can therefore be applied iteratively to solve the
non-linear inversion (34). The iterative procedure must be initialized which
is done by setting y0 = 0. Thus in the first iteration (38) is solved as

δσ = (JT J + αLTL)−1(JT (F (σ) − Vmeas) (40)

and δy = E−1Lσ + EKLδσ. This is recognizable as the first step of the
2–norm regularized inverse of equation (3).
Some care must be taken on the dual variable update, to maintain dual
feasibility. A traditional line search procedure with feasibility checks is not
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suitable as the dual update direction is not guaranteed to be an ascent
direction for the modified dual objective function (Dβ).

The simplest way to compute the update is called the scaling rule [21]
which is defined to work as follows

y(k+1) = ϕ∗
(

y(k) + δy(k)
)

(41)

where ϕ∗ is a scalar value such that

ϕ∗ = sup
{

ϕ : ϕ
∥

∥

∥
yi

(k) + δyi
(k)
∥

∥

∥
≤ 1, i = 1, . . . , n

}

(42)

An alternative way is to calculate the exact step length to the boundary,
applying what is called the step length rule [21]

y(k+1) = y(k) + min (1, ϕ∗) δy(k) (43)

where ϕ∗ is a scalar value such that

ϕ∗ = sup
{

ϕ :
∥

∥

∥
yi

(k) + ϕδyi
(k)
∥

∥

∥
≤ 1, i = 1, . . . , n

}

(44)

In the context of EIT, and in tomography in general, the computation in-
volved in calculating the exact step length to the boundary of the dual
feasibility region is negligible compared to the whole algorithm iteration.
It is convenient therefore to adopt the exact update, which in our exper-
iments resulted in a better convergence. The scaling rule has the further
disadvantage of always placing y on the boundary of the feasible region,
which prevents the algorithm from following the central path. Concerning
the updates on the primal variable, the update direction δσ is a descent
direction for (Pβ) therefore a line search procedure could be appropriate. In
our numerical experiments we have found that for relatively small contrasts
(e.g. 3:1) the primal line search procedure is not needed, as the steps are
unitary. For larger contrasts a line search on the primal variable guarantees
the stability of the algorithm.

3 Evaluation Procedure

A reconstruction algorithm that formulates the inverse problem as in equa-
tion (34) and solves it as in equations (38) and (39) was developed in the
MATLAB environment. The method proposed by Chan et al. [14] to solve
equation (35) assumes the forward operator to be linear. The reconstruc-
tions that we present in this section of the paper are fully non-linear, the
algorithm is shown to work on the cases we used as tests, but we do not
provide a proof of convergence.

Evaluation was performed by comparing the performance of the TV PD-
IPM algorithm with that of the quadratic algorithm equation (3). In equa-
tion (3) L = RHPF where RHPF is the Gaussian spatial high pass filter
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originally described in [6]. 2D Simulated data were computed on a 1024
element circular mesh using the two phantoms shown in figures 3(a) and
3(b).

Phantom A is a single “blocky” contrast with a conductivity of 0.90,
phantom B consists of 2 “blocky” contrasts with conductivities of 0.90 and
1.10. Background conductivity was set at 1.0. 15 sets of reconstructions
were made for each phantom and for each algorithm (TV regularization
and ℓ2 Gaussian regularization) with increasing amounts of simulated noise
added. The 16 electrode adjacent protocol was used [6]. 2D reconstructions
were performed on a 576 element circular mesh, not matching the mesh used
for forward computations, in order to avoid what is referred as an inverse
crime [24].

4 Results

4.1 Phantom 1

Figure 4(a) and 4(b) shows that after the first iterative step the TV and the
quadratic solutions are similar. The resolution, in terms of blur radius, is
slightly better for the TV solution, however visual inspection of figures 4(a)
and 4(b) shows that the TV solution has more noise. Blur Radius (BR) is
defined as a measure of the resolution: BR =

√

Az/A0 where A0 is the area
of the entire 2D medium and Az is the area of the reconstructed contrast
containing half the magnitude of the reconstructed image [6]. BR calculates
the area fraction of the elements that contain 50% of the total image ampli-
tude. We call this the half amplitude (HA) set.
The convergence behaviour of the two algorithms is illustrated in Figure 5 in
which Residual Error, Total Variation, and Resolution are plotted against
iteration number. Both the L2 and L1 solutions show steady decrease in
Residual Error over the first 4 iterations. By the 5th iteration both solu-
tions have converged in this measure.
3D visualizations of selected TV solutions are shown in Figure 7. The char-
acteristic blocky structures of a TV solution start to emerge by the 3rd

iteration as shown in Figure 7 and by the profile plots of figure 6. Visibly
detectable improvements in the TV solution are impossible to detect after
the 8th iteration with no appreciable changes in the total variation or in
the reconstructed images. The profile plots of figure (6) show that the TV
algorithm is able to reconstruct the profile of phantom almost exactly in the
noise free case. Although the residual error of the L2 solution decreases over
the first 4 iterations the Resolution, shown in Figure 5(c), has peaked by
the 5th iteration. Although not shown, the resulting L2 images are visually
similar. Figure 5(c) indicates that the resolution measure of Blur Radius is
not a good indicator of TV image quality since the TV and visual images
steadily improve while the Blur Radius decrease for the first 3 iterations
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then increase until it has stabilized by the 8th iteration.

4.2 Noise Effects

Noise was added to the simulated data in 15 increments from 0 to a max-
imum standard deviation of 3% of the signal. Good images, such as those
in figures 8(a) and 8(b) were produced by both algorithms for noise levels
smaller than 0.6%. AWGN up to 1.0% produced TV images that by the 7th

iteration were recognizable but had large noise artefacts.
TV reconstructions of data with more than 1.5% noise, such as figure illus-
trated in 9(b), were dominated by noise artefacts. The quadratic algorithm
was more robust to noise with the best reconstructions occurring with the
first step of the algorithm. As more iterations were used the quadratic re-
constructions became corrupted by noise. However, the first step of the
quadratic algorithm produced a relative good image quality with noise as
high as 2.5%, see Figure 9(a).

4.3 Phantom 2

With low noise, the TV algorithm is able to recover a single blocky contrast
almost exactly. With two contrasts the TV algorithm provides a reasonable
reconstruction however it is unable to recover the profile as accurately as it
does in the phantom A case. Figure 10 shows the profiles for the TV and
L2 algorithms while figures 11(a) and 11(b) show reconstructions from both
algorithms for the 8th iteration.

4.4 Parameters

The PD-IPM method has two tuneable parameters β and λ. The value of
β has a large effect on convergence. Too large a value of β (greater than
10−6) prevented convergence. to the desired “blocky” solution; the solution
stabilized but showed smoothed features that were not consistent with the
edges obtained with smaller values of β. Ultimately it was determined that
the quickest convergence occurred when β was initialized to a small value
(we used 10−12) and left unchanged. This was the method used in the results
shown in this paper.

With an iterative algorithm multiple values of the regularization hyper-
parameter, λ, could be used for each iteration. In this work, for the TV
algorithm, a different value was used for λ0, in the initialization step (40)
and for λi in the iterative steps (38). λ0 was selected using the BestRes
method described in [25]. BestRes is an algorithm for objectively calcu-
lating the hyperparameter for linearized one-step EIT image reconstruction
algorithms. This method suggests selecting a hyperparameter that results
in a reconstruction that has maximum resolution for an impulse contrast.
The PD-IPM algorithm did not show to be strongly sensitive to the value of
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λ0. We varied the value of λ0 three orders of magnitude above and one order
of magnitude below λBR without appreciably changing the TV solution at
convergence or the rate of convergence.

Although the initial hyperparameter, λ0, was always selected using Best
Res several numerical experiments were performed to determine the effect
of the iterative hyperparameter, λi, on algorithm performance. Although
λi could be changed at each iteration, in the reconstructions shown in this
manuscript λi was maintained constant, thus λi = λi+1. Figure 12 shows the
results of running the algorithm to convergence six times with a different
value λi for each run. It is obvious from the figure that the algorithm
is sensitive to the value of λi; too small a value of λi prevents a “blocky”
solution, too large a value of λi will allow blocky reconstructions but suppress
the amplitude. The BestRes method was originally used to calculate λi

however the method was unable to find a good value for λi. Best results
were obtained by the ad hoc visual inspection of figures such as figure 12
for various values of λi. Further work is required to develop an objective
method to select λi.
The original PD-IPM methods includes updating the Jacobian matrix at
each iteration. In our work numerical experiments this did not result always
in a significant improvement in reconstructed images. We adopted therefore
the arrangement of not updating the Jacobian at each single iteration. This
provides a reduction in the reconstruction computational time.

As an additional numerical experiment, we evaluated the use of the same
regularization matrix L as for TV regularization, (equation 9), with the
quadratic algorithm (3). Although reconstructions from the first step were
identical to TV reconstructions, the quadratic solutions rapidly degraded,
producing noisy reconstructions that were dominated by noise artefacts after
the 10th iteration. The TV prior is not recommended for use with the
quadratic algorithm.

4.5 Preliminary testing in 3D

The generality of the PD-IPM scheme allows its use for the 3D EIT re-
constructions. The method was expected to work equally well in three di-
mensions, and to be easily extended to this case. To validate this a single
experiment with the simulated tank of figure (13) was performed. The tank
has 315 nodes, 1104 elements, 32 electrodes and is constructed of 4 identical
layers of tetrahedrons. A single contrast in the shape of a crescent was used
to generate simulated data. Although an inverse crime we reconstructed
the data on the same mesh, as the aim was simply of demonstrating that
the PD-IPM framework could be used for TV
The convergence of the PD-IPM algorithm is shown in figure 14. Conver-
gence occurred rapidly with a reasonable image appearing in the first iter-
ation and convergence being achieved by the 8th iteration - there was was
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no appreciable improvement in the image or change in the error norm after
the 8th iteration. Figure 15 shows slices taken at the five layer boundaries
(including top and bottom tank surfaces) of the simulated tank. Figure 15
shows reconstructed conductivities after the first iteration, Figure 16 shows
reconstructed conductivities after 8 iterations.
The results were not as good as the results obtained from the 2D numerical
experiments. This may be attributable to poor quality of the 3D model
in terms of number of mesh elements. More work is required in order to
properly evaluate the performance of PD-IPM in 3D.

5 Discussion and Conclusion

Practical results of the TV regularization and the efficiency of PD-IPM
method are of interest in process and medical imaging. In this work we have
demonstrated a practical implementation of a TV regularized reconstruction
algorithm for EIT, and compared its performance to a traditional L2 regu-
larized reconstruction algorithm. Currently, TV regularized reconstruction
are considerably more expensive to calculate than quadratic reconstructions,
however the TV PD-IMP algorithm is able to compute non-smooth recon-
structions in the presence of moderate noise, and it is therefore of practical
use.

The typical number of iterations required by the TV PD-IPM algorithm
for convergence, and thus for being able to show sharp profile in the recon-
structed images, is in the order of 10 iterations. The quadratic algorithm
produces good, albeit smooth, solutions in 1 to 3 steps. Thus there is a
clear speed advantage in using the quadratic regularization. On a 1.8GHz
AMD Turion 64 with 1GB ram, one step of the quadratic algorithm took
0.78 seconds for the 576 element 2D mesh, while one step of the PD-IPM
algorithm took 0.86 seconds. Thus the TV solution at convergence takes
about 9 seconds to calculate compared to the 1 to 2 seconds needed by the
quadratic solution. The absolute difference in the computational times is
obviously much more significative in 3D.

In our experiments we have found that the quadratic algorithm is slightly
more robust to noise however both algorithms produce useful reconstructions
at realistic noise levels. We feel that we will need to carry further work in
better understanding the convergence behaviour of the PD-IPM algorithm,
as to possibly reduce the number of iterations that this algorithm typically
requires in order to converge, and thus to make it more competitive in terms
of computational requirements. Application of the proposed method in 3D
settings must be studied in more detail, with dense meshes and a number
of inverse parameters representative of real applications.
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Figure 1: Two points A and B can be connected by several paths. All of
them have the same TV.
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PD-IPM Algorithm

ψ(σ) = 1
2‖F (σ0) − Vmeas‖ + αTV (σ)

find a homogeneous σ0 to minimise ‖F (σ0) − Vmeas‖;
initialise dual variable x to zero;

initialise primal variable σ with one step of traditional quadratic

regularized inversion;

set initial β;
k=0;

while (termination condition not met)

δVk = (F (σk) − Vmeas);
Jk = J(σk);
Ek = diag (

√

‖Li σk‖2 + β);

Kk = diag (1 − yi Liσ

Ek(i,i) );

δσk = −[JTJ + αLTE−1
k KkL]−1 JT

k δVk + αLTE−1
k Lσk;

δyk = yk +E−1
k Lσk + E−1

k KkLδσk;
λσ = argmin ψ(σk + λσ δσk);
λx = max{λy : ‖yi + λyδyi‖ ≤ 1, i = 1, . . . , n};
if a reduction of primal objective function has been achieved

σk+1 = σk + λσ δσk;
yk+1 = yk + min(1, λy) δyk;
decrease β by a factor βreduction;
decrease βreduction;

else

increase β;
end if else

k=k+1; evaluate termination condition;

end while

Figure 2: Pseudo code for the PD–IPM algorithm with continuation on β,
line search on σ and dual steplength rule on y.
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(a) Phantom A (b) Phantom B

Figure 3: 2D Phantom contrasts on a 1024 element mesh, used to generate
simulated data using 16 electrode adjacent current injection protocol.

(a) First step, TV solution.
BRTV = 0.3741

(b) First step, L
2 solution.

BRL2 = 0.3643

Figure 4: Black bordered triangles are elements of the HA set. No noise
added.
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Figure 5: Convergence Behaviour of Algorithms. No Noise added.
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Iteration 1

(a)

Iteration 2

(b)

Iteration 3

(c)
Iteration 4

(d)

Iteration 5

phantom

TV
L2

(e)

Iteration 6

(f)
Iteration 7

(g)

Iteration 8

(h)

Iteration 9

(i)

Figure 6: Profile plots of the originating contrast, TV, and L2 reconstruc-
tions. No Noise added. Profiles are vertical slices through the middle of the
reconstructed image.
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(a) i=1 (b) i=2 (c) i=3

(d) i=4 (e) i=5 (f) i=7

Figure 7: TV reconstructions of Phantom A at increasing iterations. Verti-
cal axis is absolute conductivity. Normalized to 0. No Noise added.

(a) TV solution at 7th iteration. (b) L
2 solution at 7th iteration.

Figure 8: Reconstructions of Phantom A with 0.6% AWGN.
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(a) L
2 solution with 2.5%

AWGN, first step. Noisy but
useful reconstruction.

(b) TV solution with 1.5%
AWGN, first step. Noise
dominated solution.

Figure 9: Reconstructions of Phantom A.

Iteration 8

phantom

L1
L2

Figure 10: Phantom B profiles.

(a) TV solution at 8th itera-
tion

(b) L
2 solution at 8th itera-

tion

Figure 11: Reconstructions of Phantom B with 2.5% AWGN.
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λ = 10−9 λ = 10−8 λ = 10−7

λ = 10−6 λ = 10−5 λ = 10−4

Figure 12: Profiles of TV solutions at the 7th iteration (convergence). Show-
ing effect of using different λi values in equation (38). Dotted line is gener-
ating contrast, solid line is TV solution. λi ∈ [10−9, 10−4]

Figure 13: Four layer tank used for 3D reconstructions. Red patches are the
32 electrodes in 2 layers. Phantom contrast are the blue elements which are
only in the second layer (between z=1 and z=2).
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Figure 14: Convergence of 3D PD-IPM algorithm.

(a) z=0 (bottom) (b) z=1 (c) z=2 (d) z=3 (e) z=4 (top)

Figure 15: Slices of 3D reconstructions for Iteration 1. No noise added.

(a) z=0 (bottom) (b) z=1 (c) z=2 (d) z=3 (e) z=4 (top)

Figure 16: Slices of 3D reconstructions for Iteration 8. No noise added.
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