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Introduction:

The evolution equation combining linear conduction and nonlinear production of heat

$: = Vi + F($) @

has been studied for some time [1-3]. In chemically reacting systems, the function F(¢), repre-
senting the rate of reaction, introduces a feedback mechanism by virtue of which a self-sustained
acceleration of the chemical reaction can arise. The process generally continues until equilibrium is
approached and the rate of reaction F finally decreases towards zero at relatively high tempera-
tures. Much of what happens subsequently depends in more detail on the way in which the reaction
runaway has taken place.

There are essentially three possibilities. In the somewhat contrived circumstance that reaction
runaway is simultaneously accompanied by external or boundary conditions which act to quench
the reaction, then an ignition of the system may be prevented altogether—in the sense that the
reaction runaway does not lead to further rapid combustion. More normally, however, some form of
ignition will ensue, and either a laminar deflagration flame or a detonation wave will be produced.
To properly describe such processes, a fuller model than equation (1) must be used, including
gasdynamic, chemical and transport effects. Such an analysis may be found in reference [4] and
will not be pursued here. It suffices to say that equations of the form of (1) play a key role in
determining the overall generation and evolufion of self-ignition.

The equation can be recast into a different form by making use of the transformation

-1
w(r, i) = W($) = /¢ % @

(for a suitable constant ¢;) in terms of which, spatially uniform solutions would take the simple
form w =1; —{. The equation for w is

2
w1:v2w_1_£vi)
pw

dF %1 dé (3)

. in which ul=wF'($) = F73 \ 20k

The latter definition is such that wide classes of the function F can be found to give constant
values of p. For example,if ¢; =co and F=ef or F=¢* with ¢ >0 and v > 1, thenitis
casily seen that =1 or g = (v —1)/v, respectively. In more general problems, it may often be
considered that the constant ¢; is chosen such that the parameter p remains at least very nearly
constant [5] over much of the evolution of ¢. At any rate, it is clear that equation (3) is relevant
to a wide variety of cases if y is taken to be a constant in the range 0 < g < 1. The problem is
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considered to be normalised such that F(¢) varies as an order one function of ¢ (when ¢ is of
order one) and that order one boundary—initial conditions are specified.

The existence of a reaction runaway then corresponds to the condition that w — 0 in a finite
time 1. If the runaway does not take place uniformly in space, then the origin may be chosen such
that

w(0,17) =0, with w(r,?)>0 foral <. (4)
The main questions that need to be asked are: what types of behaviour are possible for w as
1 — 17, and with what forms of boundary-initial conditions would they be consistent? In this
spirit, it is most natural to anticipate some manner of self-similar behaviour for w as ¢ — ;.

Exactly Self-similar Behaviour:

In the sense of Barenblatt [6], equation (3) admits only one exactly self-similar form of behaviour
which is consistent with the condition (4):

w = (11—1)};(712:). (5)

Concentrating attention on symmetric cases, so that one can define the scalar self-similarity variable

¢ = |r}/v/ir —1, the equation satisfied by the function &(¢) is
hl
B 2—£——>h':1—h
+(2-5-3 ©
where 1+ n is now the number of dimensions of symmetry. Identifying the integrating factor
¢ exp(—¢2/4) /¥ | this differential equation for & can be transformed into the integral equation

& ¢ L0 ¢ —
dh € mo—ctzal—h o
7 hifs = Cn A < e ¢/ hilx d( (7)

0
in which it has been assumed that A'(0) = 0 (the condition for non-singular symmetry) and that
£(0) =7 >0 sothat ¥, n and p parameterise the full range of possible non-singular symmetric
solutions.

The most useful interpretation of the constant v is found by recognising that it is simply the
coefficient in the rate of decrease of w at the point of symmetry: w(0) = y(iy —¢). If y =1,
then the spatially uniform solution w =4y —{ is recovered, so that y~! is a measure of the time
taken for reaction runaway to occur relative to the time for homogeneous reaction runaway. Values
in the range 7y > 1 require that w(0) decreases faster than it would do without conduction. This
is a somewhat pathological situation requiring that the decrease in w(0) be enhanced by heat
conducting inwards from some hotter region away from ¢ = 0.

The left side of equation (7) integrates to give

o In(h/7y) : op=1
IS170 y~(=fr _ p=(1=p)fu ) ®

(= in Kt

Noting that the second of these forms (for g < 1) tends to a finite upper limit as h — oo, it
becomes clear that, unless the second integral on the right side of (7) tends to zero as { — oo, then
the function w behaves as follows

B ) T R

(b =B (¢ — /v —1) 0w

as { — oo or { — {w, for positive constants B2, B'? and {oo. As a result, the limit of w as
1 — 1y 1s indeed zero at r = 0, but it is infinity for all r # 0 in the case p =1; for u < 1,
w becomes infinite at the finite boundary |r| = ({5 — 1)1/2 which moves towards r = 0 as
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1 —+1;. Applying boundary conditions which would be consistent with such behaviour (in order to
maintain these forms of self-similar solution) is more-or-less equivalent to a failed attempt to quench
the reaction runaway by increasingly rapid cooling (or, if necessary, somehow reducing the effective
size) of some container of the reactants.

In the absence of such conditions, the exactly self-similar form (5) can only be of relevance
if the second integral on the right side of (7) tends to zero as { — oo. One way of investigating
this condition is by considering the behaviour of the function B (7,4,n) defined to represent the
integral

(o
2 _ n_—¢*f4 1-h
B, _A (e ik d¢. (10)

In this, (. is interpreted as representing the position at which A({) becomes infinite, or if this
does not happen for finite values of ¢, then {, = co. Omnly where B, = 0 can the exactly
self-similar form of behaviour for w be of relevance without any artificial attempts at quenching
the reaction.

The behaviour of By, in up to four dimensions of symmetry is illustrated in figure 1. The
diagrams cover a wide range of variation of the parameters u and 7. It is clear that Be, Is zero,
as it must be, for 4 = 1; this is the case which leads to the trivial spatially-uniform solution k= 1.
For v > 1, it seems that B, decays in some exponential way as s decreases towards zero. There
is no firm indication, however, that B, will actually be zero for ¢ > 0 and 1 < v < co. This
is the range of y identified earlier as requiring somewhat abnormal behaviour, and so is not of
particular interest.

Otherwise, in dimensions of one and two (r < 1), it can be seen that B, increasesas y — 0.
Only in dimensions of three or more (n > 2), does B, actually decrease as y — 0 for some
values of p, raising the possibility that B, may actually become zero for small enough values of
v. 1t may also be noted that equation (6) possesses the degenerate solution h = £¢2/(1+n —2/p)
which can only be positive for { # 0 (as w must be, before 1 =1;) if n > 2. Based on the
existence of this solution, it has in fact been proven recently that countably infinite numbers of
exactly self-similar solutions, having k/¢? — constant as { — oo, exist in the cases, F = et for
n>2 and F=¢” for n > (v+3)/(v —1) (see review by Bebernes and Kassoy [7]). In terms of
4, this shows that infinite numbers of zeros of By, should be found for g > 4/(3 + n).

Examining the behaviour of B,, for small values of v, these zeros are indeed found. Using
¥ (#=1,2,...) to denote the successive values of y at which B(v;,u,n) =0, table 1 shows the
pattern of these zeros for g = 1. It can be seen that zeros are found for ratios of 7;y1/y; which
seem to approach a constant value as ¢ increases. In the case of spherical symmetry, figure 2 shows
the way in which the values of 9; vary with g. As g is decreased below unity, the values of ;
decrease and approach zero when u approaches the limit 4/(3 + n).

In the physically meaningful case of three dimensional symmetry, the first zero is found for
¥ equal to about 1/248. This is a very small value indeed, so that the corresponding self-similar
solution represents a case in which the reaction and diffusion terms of equation (1) are only very
slightly out of balance. Successive values of ; are reduced further by a factor of less than 102
at each stage. It follows that successive solutions are yet closer still to a reactive—diffusive balance.
The situation is reminiscent of the well-known occurrence of an infinite number of steady-state
symmetric solutions of equation (1) in dimensions of three or more (see [8,9], for example). Indeed,
for small values of 7;, the time-dependent term of (1) will be correspondingly small-—thus ensuring
that the solutions will, in fact, have almost the same structure. Table 1 shows that, while the values
of 71 are larger in cases of higher dimensional symmetry, they are nevertheless also still very small.

This property renders these exactly self-similar solutions of little practical use. Equations of the
form of (1) are normally obtained by neglecting the consumption of chemical reactants in modelling
exothermic chemistry [3]. This approximation can only be sustained for a relatively short time, the
order of magnitude of which must generally be small compared to the nondimensional activation-
energy ratio B/(RT), which is rarely greater than about 50 in value (even at room temperatures).
Since reaction runaway with this sort of self-similar behaviour should occur on a time-scale of the
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Values of

0127 and 79.

» the model is likely to become invalid long before this can happen. In effect, the

consumption of chemical reactants would prevent an exactly self-similar reaction runaway of this

type from forming.

-1

order of ]

1

1+n from 1 to 4. The ¥ axes are scaled in proportion to 2y/(1+7)

Figure 1. Perspective views of the function B, numerically calculated for dimensions
B, are plotted for y between 0.02 and 1, and for v between 0



Table 1. The first few values of ; at which the zeros of B, are found, for between
three and six dimensional symmetry with g = 1.

n 2l M 73 Vs n/re v/ va/7e
2 | 4.026 x 107 3.564 x107° 3.040 x 10~ 2.637x 10~% | 113.0 117.3 1153
3 | 1.043x1072 2.850x10"% 7.53x10"% 2.005x10°7 366 379 378
4 | 1.322x107% 5.17x107% 201x107% 7.84x1077 25.6 257 256
5 | 1.277x1072 542x107%* 234x107° 1.01x 10~° 235 232 231

A 10-° 107

T2

084 — — — — — =~ — - - - - - 2 _ ___

Figure 2. The dependence of y; on g in the spherically symmetric case. The ¥ axis
is scaled in proportion to log;q 7.

Asymptotically Self-Similar Form:

A more fruitful approach to determining the nature of reaction runaway begins by using semi-
qualitative arguments. Equation (3) contains only one nonlinear term. The reaction-rate F(¢)
has been reduced to the constant negative forcing —1 on w. At a minimum value of w the
diffusive term VZw will be positive (or at least non-negative), opposing the effects of the reaction.
The nonlinear term is zero at the minimum (where Vw must be zero), but negative elsewhere.
Moreover, this term depends inversely on the value of w, so that it should become important
as w — (. Also, because the negative forcing of this term on w increases to either side of the
minimum, its overall effect should generally be to flatten out the spatial variation of w about its
minimum, and thereby to reduce the immediate influence of the diffusive term VZw. By contrast it
may be noted that, apart from the spatially uniform case y =1, diffusive effects remain of primary
importance in any exactly self-similar description—as seen, for example, in equation (8).

The argument can be made more formal by firstly considering symmetric cases, with the func-
tion w expanded about r =0 in the manner w = a(?) + rzb(i) + r‘}c(‘i) + rsd(i) +.... Equation
(3) then requires that
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a =—1+ [2(1 + n)b]

b =— ii: +[4(3 + n)c]
., {16k 433 (11)
°TT ( pa _W) I+ )

where the final terms, in square brackets, arise because of the diffusive term VZw.

If the effect of the nonlinear term is, indeed, to diminish the importance of diffusive effects,
then it should be feasible to seck solutions in which these terms are negligible at the dominant order;
accordingly, it can be assumed that as 7 — iy, the coeflicients satisfy the asymptotic ordering:

b=o(d'), c=o(b), d=o(cd), etc. (12)
As a result,
a ~—1 = arip—1
2

Mb' ~ _i = 5o #—/4

a a—In(i; — 1)
13
X _1Gbc 4_63 - 2ﬂ+[a-—1—ln(11—1)]/(11—1) ( )

K e a2 ¢ 16 — In(t; — 1))

for constants &, 8 etc. These solutions satisfy the asymptotic ordering (12) and thus they provide
a consistent asymptotic description of the reaction runaway close o r = 0.

To first-order, the analysis shows that the reaction-runaway process can possess solutions which
behave asymptotically in the manner

2
-1 _ prifd
$~ W <1I vt a—In(i; — i)) (14)
or simply
2
1+ pri/d (15)

-1 T G —da— In(t; —1)]

regardless of the number of dimensions of symmetry. This result generalises on similar findings
(10,11] for more specific examples of the function F(¢). Equation (15) provides an asymptotically
self-similar description of the reaction runaway in terms of the self-similarity variable-grouping
o =r/\/(r = ?)[a —In(¥; —?)]. More details about this solution, including its behaviour both at
higher orders and in regions away from the hottest point, can be found in references [5,11].

The simplicity of this result also carries over into non-symmetric cases. Provided the rectan-
gular coordinates of the system are chosen to lie along appropriate major and minor axes which
characterise the reaction runaway, the series expansion for w can be taken in the form w ~
i — 1+ 22b () + ybe(t) + 2%5() + ... (in, say, three dimensions); the axes of z, y and 2
are therefore chosen so that the coefficients of zy, 2z and yz may be taken to be zero (or
asymptotically smaller than &;)—no generality is lost in doing this. In this case,

452 482 4b2
o~ 1 U 2 ! o 3
#01 PR o3 -1 and  pbs 7 -1 (16)
so that / /4 /4
b4 # b
~——t ~—_— d by~ 17
bl 041—111('11—1)) z czz—ln(‘t;—i)’ an 3 0!3—111(11—1) ( )
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ete. Tt is thus seen that the reaction runaway can take the more general leading-order form,

w p[ 224 e 224 ] )

~1
iy —1 +11—1 al—ln(11—1)+a2—ln(11—i) ozg—ln(*lf—i)

which reduces to the simpler symmetric form if all a; are either equal or infinite, with the coordinate
r appropriately defined.

Discussion:

It can therefore be seen that non-uniform reaction runaway generally tends to develop in a way
that involves a relative diminishing of the overall effects of diffusion or conduction in comparison
with the effects of the chemical reaction. Exceptions to this occur when the reaction runaway has
to compete with some externally applied cooling—this must vary in its strength so as to keep pace
with the accelerating chemical activity in the reaction kernel. In a less contrived manner, it seems
that diffusion may be able to maintain its relative importance in three (or more) dimensions in
certain cases where diffusion and reaction remain only very slightly out of balance. The stability
of self-similar descriptions of this type of runaway has not yet been analysed, but in physically
realistic examples it is very unlikely that they would be able to develop significantly before chemical
equilibrium is achieved.

The reason why diffusion adopts such a secondary role is connected with the nonlinear effects
exhibited in equation (3). In terms of the original model (1), when the reaction-rate F(¢) is
a nonlinearly increasing function of ¢, it acts to increase higher temperatures faster than lower
temperatures. This produces a tendency to progressively concentrate the growth of ¢. For example,
if diffusion were to be omitted from the model so that ¢y = F(¢), then symmetric solutions would
take the form

:’I"#j =1+ (> + Of(tr — )¢*] (19)
for some constant € > 0. Ironically, as ¢ — {7 for e # 0, this result for a model without diffusion
mimics the exactly self-similar behaviour postulated in equation (5) for the model with diffusion.
Thus this behaviour can be seen to arise solely from the nonlinearly increasing reaction rate.

On the other hand, particularly in the absence of strong enough sources or sinks at boundaries
of the system, diffusion generally acts to disperse any concentration of temperature. In equation
(19), this would amount to reducing the value of the coefficient e. This, in turn, reduces the relative
effectiveness of diffusion in the system so that € will decrease at a diminishing rate. This is precisely
the behaviour found in the arguments leading to equation (15) which also shows that e should vary
in the manner €= $u/[a —In(t; —1)].

The constant o must ultimately be dominated by the logarithm in this expression for e,
which therefore becomes remarkably independent of both the initial-boundary conditions, leading
to reaction runaway, and the number of dimensions of symmetry. However, « should generally be
large in situations where diffusion initially has only a weak effect [11]—a reaction runaway of this
type resembles a more developed reaction runaway in which diffusive effects have become weak.

It is important to bear in mind the limitations of the model (1). The value of ¢ cannot
generally grow without bound; at some stage, possibly for a fairly large value of ¢, the chemical
reaction must slow down as it approaches equilibrium. For systems satisfying an Arrhenius rate-law
(in which F(¢) ~ €*), this will happen when ¢ and —In(iy —1) are of the order of E/(RT).
If o happens to be as large as this (or larger), then it will not be completely dominated in the
expression for €. Hence « will play an important role, throughout the evolution, in determining
the size of the most vigorously reacting region.

Compressibility effects should also be borne in mind. A large enough reacting region can
develop a degree of inertial confinement of (say) hot expanding gases, leading fo a significant local
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increase in absolute pressure [12]. In the case of gases reacting at an Arrhenius rate-law, a condition
can be determined for pressure increases, accompanying the reaction runaway, to remain relatively
minor [4]:

B
A —_— 2
Ka>>a+RT (20)

in which K4 is the von Kérman number, defined as the ratio of the chemical time to the mean
molecular collision time, under locally prevailing conditions. For sound physical reasons, this ratio
has to be large [13] so that (with the possible exception of &) the inequality (20) is a comparison
between large quantities. The inequality can certainly be violated if @ becomes large enough.
Under these circumstances, a detonation rather than a laminar deflagration may be the end result
of the reaction runaway.
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