ty
er

The Universi
of Manchest

MANCHESTER

1824

Flame propagation in a nonuniform mixture:
analysis of a slowly varying triple flame

Dold, J W

1989

MIMS EPrint: 2007.87

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097


http://eprints.maths.manchester.ac.uk/

COMBUSTION AND FLAME 76: 71-88 (1989)

1

Flame Propagation in a Nonuniform Mixture: Analysis of a Slowly
Varying Triple Flame

J. W. DOLD

School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, England

For flames propagating through a nonuniform medium a three-flame structure is described. This consists of a fuel-
rich premixed flame, a fuel-lean premixed flame, and, starting where these flames meet, a diffusion flame. Such
formations have been observed experimentally and probably occur as laminar flamelets in turbulent diffusion flames.
A low-heat-release model for such flame structures is developed and solutions are obtained in the limit of slowly
varying premixed flames. Under these conditions, it is shown that the Triple-Flame propagation speed depends on the
transverse mixture fraction gradient and is bounded above by the maximum adiabatic laminar flame speed of the

system.

INTRODUCTION

The adiabatic laminar flame speed in a uniform
medium is strongly dependent on reactant concen-
trations, and any premixed flame leaves in its
wake a uniform residue of combustion products
plus an unburned fraction of the rich species. If the
medium is nonuniform, the flame speed varies
from point to point and the residual unburnt
species changes from fuel to oxidant across a
stoichiometric boundary. Because the flame speed
tends to be greatest at or near any stoichiometric
boundary, the flame also tends to surge ahead
along the path of this boundary. Away from the
boundary, the flames propagate progressively
more slowly as they enter regions of weakening
mixture strength, whereas in the hot unburned
residues of the premixed combustion, fuel and
oxidant meet to form a diffusion flame.

Thus three distinct flames can be identified: a
fuel-rich premixed flame, leaving unburned fuel
behind it; a fuel-lean flame, leaving oxidant; and a
diffusion flame along the stoichiometric boundary,
beginning where all three flames meet. The
leading region of this propagating combustion
front may suitably be described as a Triple-Flame
Copyright © 1989 by The Combustion Institute
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[1]. Such flames have been observed experimen-
tally [2, 3], as shown in Fig. 1, and, as transient
laminar flamelets, they probably play a role in the
combustion of turbulent diffusion flames, where
extinction, diffusive mixing, and subsequent
reignition of pockets of gas may occur [4]. To date
there has been little theoretical work which models
this type of flame structure.

In studying steady diffusion flames, Lifian and
Crespo considered a fuel and oxidant which mix
and react after leaving the end of a splitter plate
[5]. They assumed that upstream conduction and
diffusion could be neglected. This rules out the
possibility of upstream flame propagation, so that
substantial burning could only begin through some
kind of thermal-runaway ignition process. Subse-
quent combustion takes the form of transversely
propagating premixed flames (which slow down
and ultimately extinguish through propagating into
regions of weakening mixture ratio) and a diffu-
sion flame that is created as one of these flames
crosses a stoichiometric boundary.

With the possible exception of the detailed
flame shape near stoichiometry [6], this picture is
reasonable provided that the splitter plate itself
does not initiate the combustion and provided that

0010-2180/89/$03.50
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Fig. 1. Triple flame propagating in a nonuniform medium. British Crown Copyright:
Reproduced from ref. 2 by kind permission of H. Phillips, Health and Safety Executive,
Buxton, U.K.)

the flow speed of the gases exceeds the maximum
adiabatic laminar flame speed. For slower flow
speeds, upstream conduction and diffusion cannot
be neglected; the first onset of substantial combus-
tion in the gases leaving the splitter plate must
primarily maintain itself through some kind of
upstream flame propagation.

A key factor in determining the structure and
propagation speed of a triple flame is the trans-
verse gradient of the mixture fraction that it
encounters. For very small gradients, the front of
the triple flame is almost flat as it meets an almost
uniform medium; the flame then propagates at
very nearly the maximum adiabatic laminar flame
speed. For increased gradients, the curvature of
the front of the flame increases. This reduces the
effectiveness of conduction in preheating the gases
and so tends to lower the triple flame propagation
speed. On the other hand, as observed by Phillips
[2], thermal expansion effects behind the curved

flame front can modify the flow field ahead of the
flame to produce an increase in propagation speed.

For yet larger gradients, the notion of a triple
flame begins to fail. For example, with a diffusion
flame behind a spiitter plate, combustion may
begin very close to the plate although probably not
quite at the plate [7, 8]. The opportunity for
premixing is then so limited that the first onset of
combustion may meet such a large transverse
mixture gradient that any premixed flames, effec-
tively, merge into the leading end of the diffusion
flame. It may be more appropriate to refer to this
limiting form of flame structure as a triple point
rather than a triple flame [1].

Because it remains stationary, the triple point
still retains the property of propagating forwards
relative to the oncoming stream of reactants, as it
initiates a diffusion flame in its wake. However,
the very close proximity of the splitter plate can
provide some flame anchoring [8] so that upstream
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propagation is not entirely attributable to upstream
heat conduction. Indeed, the anchoring may even
make it possible for the splitter plate to stabilize a
triple point in flow speeds greater than the
maximum adiabatic laminar flame speed. In the
absence of any form of anchoring, it is not certain
that a flame could propagate without distinct
premixed flames to initiate the combustion.

A triple-flame structure is therefore possible
over some range of transverse gradient of the
mixture fracture. In this article a start is made
towards modeling this interesting flame structure.
As a first step, a simplifying linearization of the
convective and conductive-diffusive effects is
made by taking the limit of low heat release,
giving a nearly constant density model. A large
activation energy dependence of the Arrhenius
reaction rate on temperature is retained by consid-
ering the Zel’dovich number to be large. It is then
found that the premixed flames can be considered
to be slowly varying if the transverse gradient of
the mixture fraction (on the length scale of a
typical preheat zone thickness) is small compared
with the inverse of the Zel’dovich number.

Realistically, flames do engender significant
changes in density. However, it is useful to
consider this simplest form of analysis first before
proceeding to consider larger temperature in-
creases for which thermal expansion would be
more significant. The results still provide a quali-
tatively valuable description of the nature of triple
flames. In cases where the premixed flames are
slowly varying, it becomes fairly straightforward
to obtain solutions that describe the triple flame at
one practically important limit of its parameter
space, namely the limit at which the propagation
speed is close to the maximum adiabatic laminar
flame speed. It is also instructive to derive this
model from conditions that, at a later stage, can be
used to study other aspects of triple flames.

MODEL

Equations and Nondimensionalization
We consider, for simplicity, the one-step reaction

VFF+ l’xX_’VpP, (1)
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in which pr fuel molecules and vy oxidant mole-
cules produce »p product molecules. Fuel and
oxidant streams are taken to be originally sepa-
rated, containing mass fractions Y, and Yy,
respectively, of fuel and oxidant. We use this to
rescale the mass fractions by defining y, =
Y,/Yso for 0 = F or X so that yr and yy vary
between 0 and 1. Adopting conventions of unit
Lewis number, constant specific heat Cp, and low
Mach numbers, we consider systems for which a
single conserved scalar, which we take to be the
mixture fraction Z of fuel, may be used [9]:

7 < Yp YXO—YX>/< YFO YXO )
= + + ,
VF Wp Vx WX 143 WF Vx WX
@

where W, is the molecular weight of the species o.
The mixture fraction satisfies the evolution equa-
tion (for unit Lewis number),

p@-vyz=v - <L VZ) , 3
Cr

where the superscript ~ denotes a dimensional
quantity, ¢ is the density, # the fluid velocity, and
X the thermal conductivity.

The normalized mass fractions yr and yx are
then given in terms of Z and the absolute tempera-
ture T as follows:

: (T-To)Cp veWr

Yr= =
] QvpWp  Yro
and
T—To)Cp vxW.
yX=l—Z-—( 0)CprvxWx @

OvpWp  Yxo

where T, is the initial (and, we assume, equal)
absolute temperature of the fuel and oxidant
streams and @ is the heat of reaction. An upper
bound T; for T is arrived at when both yr and yx
are zero, so that

- dve W, W, W.
TS=TO+QVP P/(VF F+Vx x>’
épTo YFO YXO

when Z takes its stoichiometric value Z = S,

&)
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where
S=YrovxWx/(Yeovx Wx+ YxoveWr). ©)

It is natural to nondimensionalize T such that
TT.=1- (1 - T)a, where a = (T, — To)/
T.. Thus T varies between 1 at its hottest value
and 0 well ahead of any flames. This gives the
normalized mass fractions as

yx=1-Z—(1-S)T.
)

The nondimensional temperature 7 satisfies the
evolution equation

yr=2Z-8T and

a@-NT
- X ~ AQVPWP »
=V | =VT )+ ———=— (pyrY, F
(CP ) aCoT, (AYrYro)
- ) B B(1-T)
X (pyx Yxo)'* exp [; I—al—T)
®
where 8 is the Zel’dovich number, 8 = aF/

(RT,), which we assume to be large, £ is the
activation energy of the reaction, R is the univer-
sal gas constant, and A is a preexponential factor
which we take to be constant.

We now consider these equations in the broad
context of a flow of reactants with diffusive
mixing of species governed by Egs. 3 and 7 and
temperature behavior governed by Eq. 8. For a
flame propagating steadily in a nonuniform me-
dium this corresponds to choosing a reference
frame in which the flame position is fixed. It is
appropriate to nond’ nensionalize velocity against
the upstream blowing velocity ¥ (which we shall
take to be uniform), and lengths against a conduc-
tion-diffusion length scale:

r="Fr( I761’5.9/;-\5)’
and N/X, e))

u=a/V,
p=p/ps
where g; and A, are the density and thermal

conductivity determined at the temperature upper
bound 7, and at ambient pressure. This gives

p(u - V)Z=V - (\VZ)
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and

V[pu - V)T-V - (A\VT)]

g(1-T) ]

=B(Boyr) F(Boyx) * exp [_ 1-a(1-T)

(10)
where

2 VzaB C~P2 fsﬁsz
A NOvpWp
X (B/6s) "FH xYpo "FYxo "¢ eE/RTy),

It can be seen that V varies in direct proportion to
V so that increased values of V represent greater
blowing velocities. Density p and velocity u
satisfy the continuity equation and the low-Mach-
number version of the ideal gas law

V - (pu)=0
and

[1-(1-Ta]p=1 (11)
(assuming constant average molecular weight).
We also may consider thermal conductivity to be a
function of absolute temperature, A = A[1 — (1
— T)al.

Low Heat Release

If we now consider the limit of low heat release,
the dependence of these equations on o can be
neglected to first order. Density p and conductivity
A\ become unity to first order, and the velocity u
stays constant with magnitude anity. We may
choose coordinates so that the flow is directed
solely along the x axis. Equations 10 then simplify
to

Z,=V2Z
and

V2[T,-V2T]=8R, (12)
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where
R={BIZ-ST}'F{B1-Z—-(1-8)T]}’x
x e~ 8(1-T),

To determine the controlling properties of the
triple flame it is only necessary to consider Z in
the region of its stoichiometric value S. The local
adiabatic laminar flame speed outside of this range
is relatively small, so that the premixed-flame
paths are easily described, as was done by Lifidn
and Crespo [5] and Dold and Clarke [10]. In this
article we also restrict attention to small transverse
gradients of Z in the region of its stoichiometric
value S. Under these circumstances it is feasible to
approximate Z locally in the manner
Z=S+By/B+ O(B?*/8Y), (13)
where B = BZ,; and Z,, is the small transverse
gradient of Z at the leading end of a triple flame.
Also, the origin and orientation of the y axis are
normalized so that the stoichiometric boundary
lies along the line ¥ = 0 (at least locally) and so
that we can assume B > 0.

It may be noted that Z = S + By/f is an exact
solution of Eq. 12a, which, physically, would
require very specific boundary conditions such as
having fixed mixture fractions provided at two
parallel plates situated at some positive and nega-
tive values of y. The asymptotic form (Eq. 13)
arises if Z has nonzero second derivatives, as
would more generally be the case. For example,
where a splitter plate forces the boundary condi-
tions Z(— o0,y < y) =0,Z(—00,y > y) = 1,
and Z,(x < Xxp, yo) = 0, the solution of Eq. 12a
takes the form Z = 1/2erfc(—») [8], where v is a
parabolic coordinate satisfying v = 1/2(y — y,)/
Vx—Xxo+v? In this case, Eq. 13 provides a
suitable asymptotic form for Z when x — x, =
0(82/B?).

Boundary conditions require that ‘‘ahead’’ of
any premixed flames the temperature T ap-
proaches its upstream value of zero. It is assumed
that the slow chemical reaction in the gases well
ahead of the flame does not have time to signifi-
cantly alter the upstream temperature before a
flame is reached. Despite a being small, we also
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consider the Zel’dovich number to be large
enough to justify using the limit 8 — oo in setting
up first-order asymptotic solutions for 7.

STRUCTURE OF SLOWLY VARYING
PREMIXED FLAMES

The analysis of the premixed flames is considera-
bly simplified if they can be considered to be
“‘slowly varying.”’ This effectively permits both
the preheat and reaction zones of the flames to be
analyzed as parabolic rather than elliptic problems
(as in Eq. 12). The analysis will be seen to be
justified provided that the parameter B is small,
that is, Z,, < B~!. The distinguished limit for
which Z,; = O(8~!) will be studied separately.

Use of Flame-Following Coordinates

Let us assume that the reaction zone of the
premixed flames lies along the path x = X () so
that a flame slope can be identified as ¢ = dX/dy.
It is convenient to change coordinates to a set of
orthogonal coordinates » and ¢ that follow the
flame path as shown schematically in Fig. 2.
Perhaps the simplest way to construct such a
coordinate system is to make use of a complex
mapping in the form
x+iy=f(¢+in). (14)

It is convenient to build two main features into
this transformation. First, in order that the flame
path will be given by 4 = 0 in the transformed
plane, the function f should involve a rotation
through an angle of cos~!(¢/y), where, for
brevity, we have written ¢ for V(1 +¢2). Sec-
ondly, the thickness of the preheat zone of the
combined fuel-rich and fuel-lean premixed flames
(measured on the scale of x and y) will be seen to
increase as ¥ as | ¢ | increases (see Eq. 12). Thus if
7 is to provide an appropriate coordinate with
which to describe the preheat zone, then f should
also involve a local scale magnification by a factor
of order ¢ near the flame. Both of these features
are reproduced if the function fis defined such that
f0)=X@©) and

S E)=d@E)+i 15)
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Fig. 2. Structure of a triple flame propagating from right to left, showing the reaction zone
(RZ), preheat zone (PZ), diffusion flame (DF), and the transformation to coordinates (1, &)

which follow the flame path.

on the flame pathn = Qor £ + in = £. Asin this
boundary condition for f, the flame slope will be
considered to be a function of the coordinate that
changes along the flame path, namely ¢ = ¢(£).
This definition also sets ¢ to zero where the flame
meets the stoichiometric boundary at y = 0.

The transformation (14) can only be applied if f
can be evaluated for nonzero values of 7. One way
of doing this is to use Eq. 15 to obtain the Taylor
series expansions for f and for f:

S (E+in)

nz ” n4 »n ..
=<¢—Z¢ +Z!'¢ + >

. 7’
+1(1+n¢ TR +>

=p+iw, (16)

and

x+iy=X()+it

2 4
n ’ n " .
-<”I+E!‘¢ —4—!¢' + - >

3 5
. LN M-
+l<’l]¢—'§¢ +§¢ +"'>.

In terms of p and w (the real and imaginary parts
of '), Eqs 12 and 13 lead to the following
equation for temperature:

pTe=wT,+ Ty + T+ (p2 + 0 BR/ V2,
where we take

®R=[1-T)SB+ByIr[(1-T)1-S)8-Byl's
X e fU-D), amn
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Reaction Zone

To model the reaction zone we rescale Z, T, and 5
in order to highlight the region in which the
reaction is most significant, namely when 7 = 1
— 0(8~!). Accordingly we define Z — S = z/8
= By/B,1 — T =T/B, and o = x/B so that, to
first order, Egs. 17 lead to

P~ ¥2V2[ST +2]7 [(1 - ST —z)* e T,
giving

sz ~ 2¢2 V—2
r 1 4
x| (Sy+ayra-Sy-z1rer ay,
Ip(2)

(18)
with

z z
I'y(2z) = max {rg ) —g} .

The latter result is obtained using the condition
that the temperature slope I', must tend to zero as
I’ approaches its burned value T, (at which the
reaction ceases). In particular, as x becomes large
the gradient I', approaches the finite value

T (1 < x < B)~yQ((z)/V
~ =Ty B! <1 <1), (19a)
with

Q=2 r (Sy+2)F[(1-S)y—z]"* e~ dy.
Tp(2)

b
(19b)

The function @ is important in providing the
matching condition (Eq. 19a), which helps to
determine the temperature variation in the preheat
zone. A second matching requirement for the
preheat zone is that the temperature T should tend
to a maximum value of 1 — O(8~!) as 9 tends to
Zero.

The integral in Eq. 19 is easily evaluated for
integral values of »r and »x. For example, for the
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two-body and three-body reactions, vr = vy = 1
and vr = 2 with vy = 1, respectively, Q2(z; vg,
vy) becomes

Q%(z; 1, 1)

_y {[25(1 -8)+z]e ¥0-9: 220
a 28(1-S)—z]e¥S : z<0

and

Q%(z; 2, 1)

Z2
652(1-8)+4Sz+
[ ( ) Y4 1—5]

=2 Xe #0-9:2>0 (20)
[6S%(1—S)—28z]e¥S : z<0.

Sketches of these functions for various values of S
are shown in Fig. 3. Because Eq. 19 is invariant
under the transformation S = 1 — S’, vz = » %
vx = v, and 7 = —z’, the three-body reaction
vrp = 1 with vy = 2 is given by Eq. 20, with §
replaced by 1 — S and with the sign of z reversed
on the right-hand side. These sketches and appro-
priate differentiation of Eq. 20 reveal that Q and
d/dz are continuous functions of z. Further
differentiation shows that d>Q/dz? is also continu-
ous while d°Q/dz? can be discontinuous at z = 0.
We will therefore proceed on the assumption that
Q is C? continuous at z = 0 and C* continuous
everywhere else.

We also define ) as the maximum value of
which is found at z = zo(S; vr, vx), where, in the
cases shown in Eq. 20,

(1-8)(1-28):8=<1/2

S; 1, )=
% ) {—S(ZS—I):SZI/Z

and

20(8; 2, 1)

(1-8){[(25-1)2+25(2-38)]'”2
-(25-1)} : §=<2/3 (21
-S(35-2):8=2/3.
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It will be seen that the second derivative of 2 at the
maximum value, which we denote by Q' , is of
fundamental importance in determining the effect
of flame curvature on the propagation speed of a
slowly varying triple flame. Appropriate differen-
tiation of Eq. 20 leads to

20,

4]
-2+ e %/1-9: §<1/2
= [ (I—S)z]

[—2—20/S%]ew/S : §=1/2

0-4 -

J. W. DOLD

and

G0y

4 2
[—2(35—1)— D%
-5 (1-5)°
Xe~w/1-9:9<2/3
[—2(3S—1)—22,/S]e%’S : §=2/3.
(22)

As illustrated in Fig. 4, Q) is nonzero and
negative for all permitted values of S.

op

-2

0 2

Fig. 3.a. The function Q(z; 1, 1) for S = 1/32, 1/8, 1/2, 7/8, and 31/32. The dotted line

follows the path of the maximum value of Q.
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Q
A

1.2 1 ..

on

0-6 -
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or

j// ‘
o T v T T T T
-2 0 2

4

Fig. 3.b. M(z; 2, 1) {as in (a)] for § = 1/24, 1/6, 2/3, 11/12, and 47/48.

Slowly Varying Preheat Zone

In the preheat zone, where T is taken to be strictly
less than 1, the reaction-rate term of Eq. 17
becomes exponentially small (and so can be
neglected) if 8 is large. Nevertheless, still being
elliptic in nature, Eq. 17 is not readily solved.
However, it can be noted that if derivatives with
respect to £ could also be neglected, then the
equation would reduce to a relatively simple
parabolic differential form. In order to exploit this
property, we rescale £ such that

r=B§. (23)

Recalling that z is defined simply as z = By, it can
be noted from the transformation Eq. 16 that 7 is
exactly equal to the value of z at positions on the
flame path n = 0. Thus, remembering that the
matching condition Eq. 19a varies on the scale of
z, it may be anticipated that ¢ and T will vary on
the scale of 7. This being so, Eq. 23 shows that
derivatives with respect to £ will only be small if B
is small.

Hence, for small values of B, Eq. 17 takes the
following form to order B? in the preheat zone

BoT,=(1+B1$)T,+ T,,+ B2T, + O(B3),
29
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where ¢ denotes the derivative of ¢ with respect to
7. In order to determine the basic structure and
behavior of triple flames in their slowly varying
limit, we will now solve this equation asymptoti-
cally to order B as B — 0. To first order, Eq. 24
has the solution 7 ~ e~ " under the conditions that
T — 0 ahead of the flamesand 7~ 1 — O(8~1)
asn —~ O and 3 — oo. Substituting this result back
into Eq. 24 leads to the second-order solution

T=[1-B(g+n%*/2)éle "+ O(B?) 25)

under the same boundary conditions. This solution
shows the effect of flame curvature in that an
increasing flame slope (that is, ¢ > 0) leads to a
reduction in temperature in the preheat zone.

-Qd’

J. W. DOLD

Shape and Velocity of Premixed Flames

If we now use the solution (Eq. 25) and condition
(Eq. 19a) to match the temperature gradient T,
between the preheat and reaction zones, it is found
that ¢ must satisfy the asymptotic differential
equation

do (1+¢%)2Q(z)

B —=

2
7 % 1+ O(B?), (26)

where we have replaced d¢/dr by d¢/dz because
7 is equal to z on the flame path (or asymptotically
equal to z in the matching region). For a proper
description of a triple flame propagating from
right to left, the flame path X( y) must possess a
leading point that may be considered to initiate the

Fig. 4. Values of the second-derivatives at the peak, @7 (1, 1) and Q; (2, 1) (the asymmetric

curve).



SLOWLY VARYING TRIPLE FLAME

combustion. On either side of this initiating point
the premixed flames will tend to trail behind. This
can only happen continuously if the flame slope ¢
changes sign at the leading end of the flame, with
+¢ > O for large values of +y or +z. This
apparently trivial condition is all that is needed to
asymptotically solve Eq. 26 for the structure and
propagation speed of the leading premixed flames.

Outer Asymptotic Solution

With a little rearranging, Eq. 26 can be written in
the form

2 d¢

¢2=§ [I+ZB d—z+O(B2)] -1. 27

nonnegative, but since ¢ must also be equal to zero
at least at one point (if ¢ is to change sign
continuously), it follows that the minimum value
of ¢> must be precisely zero. Applying this
condition to Eq. 27 leads to the first-order
expression

¢~ #0(2) = sign(z — 20)(Qo?/Q* - 1)1/2,
with

V~Q, (28)
which shows that dé/dz = V(|2 |/Q) + O(z

= Zp) near Z = Zo. Using this to set the minimum
value of ¢2 to zero at the second order gives

¢ ~sign(z—2z1) {( v/Q)? [1 -2B

X sign(z — zq)

Q();Q,/W] _ 1} 172 ,

2

(29a)
with

V~P~0—-B(S| 07 2, (29b)

81

where z; is the position of the minimum value of
the quantity enclosed in the brackets { } of Eq.
(29a) and V is defined so that the value of the
minimum is exactly zero. It can be seen that z; =
2 + O(B).

Inner Asymptotic Solution

Equation 29a does not always give sensible results
near the leading end of the triple flame. For
instance, with » = vy = 1and S = 1/2 the term
in the brackets { } has two equal minima so that ¢
cannot be uniquely defined in a neighborhood of z
= Zo. This reflects a singular nature in the above
asymptotic analysis which can be associated with
the fact that the first-order differential Eq. 27 is
reduced to an algebraic equation at each asymp-
totic order. This is a typical feature of many
singular asymptotic problems. An inner region
near z = 2o, in which the use of the first derivative
may be retained at each asymptotic order, can be
identified by defining the new variable { = (z -
20)/~/B. Equation 26 then becomes

VB _(+enyravots O(B?),

i 30

in which we may take @ ~ Q4[1 — BQ,¢? +
BVB®%:¢® + O(BY)] with 20, = —Q7 /0y and
6Q; = Q7 /9. Since Q" is not always continuous
at z = 0, it should be noted that the value of Q;
may change substantially if and when { crosses the
value {, = — z/+/B. This fact becomes especially
significant for order one values of {, [when 25 =
O(VB)). If this change happens for nonzero values
of {, the values of Qy and , will also need to be
varied by amounts of order BvB and \/-E, respec-
tively, to maintain the accuracy of the series
expression for 2. However, such changes are not
significant in the orders of asymptotic analysis
presented below, for which  and ©, may actually
be considered to remain uniformly constant.

As before, Eq. 30 has the first-order solution
(Eq. 28). To second order we define

¢~ do(2o+ $V/B) + B (§)
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and
V~Qy(1 - BV, + B\/BV) 31)

which leads to the following asymptotic form of

Eq. 30

d
BB [ﬂ— N2, + V- ma‘/Z/Qz]

d¢
=B[V;—-V20,]+ O(B?). (32)
To order B this shows that
V,=\/292=(|90” |/9Qp) 172 33)

which agrees with Eq. 29b for V. At the order
BvB the solution for ¢, takes the form

¢r=er I 7 o Ay, — 0,270, d

(34

which satisfies the matching requirement from Eq.
29 that ¢, must be bounded as { — oo. In those
cases for which @, remains constant for order one
values of {, this result will only allow ¢, to remain
bounded as { =+ — oo if ¥, = 0. The solution for
¢, then simply reduces to the constant value ¢; =
-0/Q, = Q7 /(3Q) for order one values of ¢.
It may be noted that the outer solution (Eq. 29) is
well behaved under these circumstances and so it
is not surprising that the inner solution simply
reproduces the inner limit of the outer solution.

In cases for which the leading position of the
triple flame z, is of order /B, the value of Q3 may
be different on either side of the order one position
¢ = &. In these circumstances the solution of Eq.
34 becomes either

&, =SV Y\ x (2/Qy)V4/2

Q,*
Xerfe[{(Q,/2) V4] - —
2,
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or
¢ =8> Vi {Vz\/;(Z/Qz)'/“/Z
+ -
X erfe[£(Q;/2) /4] - 97 87
)
xXe~ fozm} _QL_ (35)
2,

for { = {or & < &, respectively, where erfc is
the complimentary error function. The terms Q3+
and Q;~ denote the values of ; in the two
respective regions. In order for ¢, to remain
bounded for negative values of ¢, the term within
the brackets { } of the latter result must approach
zero as { — — oo, This leads to the expression for
W,

Q3+ - 93_ 2
Vy= (@21 2 e i2Vm7,
\/_

36

W (36)
In the cases for which @ was evaluated above, it
turns out that Q” (z; 2, 1) is continuous in z so that
Vs is uniformly zero if vp = 2 with vx = 1. In the
case for which vr = »x = 1, Q" is discontinuous;
using the appropriate values, {; = 1 and 3% =
—Q,- = 4/3, the order BVB contribution to the
triple flame propagation speed becomes
V,=8/[2143/x]e~% /5D, 37
which is clearly only significant for values of zo of
order VB.

Sample Numerical Solution

Equation 26 may also be solved numerically. It
may be noted from the asymptotic analysis above
that the flame slope ¢ must satisfy two distinct
boundary conditions for large positive or negative
values of z:

lim ¢VQ/V==1.

7t

(39%)
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0-1

——

0-2

Fig. 5. Numerically calculated flame speed V shown as the ratio (1 — V)/Bforyer = vy = 1
with § = 1/2. The dashed and dotted lines are the asymptotic results to order B and BVE,

respectively.

This also amounts to the physical requirement that
well behind the front of the triple flame, slow
premixed flames should propagate transversely
with dX/dy asymptotically equal to the flow speed
divided by the laminar flame speed. In general,
because Eq. 26 is only a first-order nonlinear
equation in ¢, these two conditions cannot both be
satisfied for arbitrary values of B and V. How-
ever, the two conditions may both be satisfied if B
and V satisfy a particular relationship V' = V(B)
for a given function Q. Equations 31, 33, and 36
give the asymptotic representation of this relation-
ship to order BVB.

Let us consider the simple symmetric example,
ve=vx=1,with§ = 1/2, forwhich Q2 = (1 +
2|z|) exp (—2|z|). Because of symmetry we need
only use the condition 38 as z = + oo, with the
additional condition that ¢(0) = 0. With the
O(B?) term removed, a numerical analysis of Eq.
26 was carried out. By using a shooting method

that began with values of ¢ given by the asymp-
totic relation ¢ ~ +'V/Q for large enough values
of z, the unique value of ¢(0) could be accurately
calculated for any choice of values of B and V
(remembering that B should be small for the
slowly varying analysis to be justifiable). Those
values of V and B that could be found to give ¢(0)
= 0 then determine the correct relationship V(B)
between the triple-flame propagation speed and
transverse mixture gradient, to order B2

Results of this analysis are presented in Fig. 5,
which shows the relationship between the ratio (1
— V')/B and B for fairly small values of B. It may
be noted that Q; = 1 in the example considered.
The dashed line is the second-order result from
Eq. 33 using the fact that @ = -2, while the
dotted line is the third-order result obtained using
Eq. 37. It can be seen that the numerically
computed relationship V(B) closely follows the
asymptotic relationship to the order of BvVB.
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Figure 6 shows some examples of the asymp-
totic triple-flame structures to first and second
orders with B set equal to 0+ 1. The positions of the
leading points of the various solutions have been

selected so as to keep the curves reasonably

separated. In Fig. 7 we show the second-order
contributions to ¢/, calculated using Eq. 29a. As
mentioned earlier, the outer solution 29a fails in
the case vp = vy = 1 with § = 1/2, so that the
curve for this case has been drawn in two parts for
Z < 0 and z > 0 using the third-order inner

J. W. DOLD

solution for ¥ in place of V. The dotted line is the
corresponding numerical result. The triple-flame
path shown in Fig. 6 for this case was calculated
using the numerical solution that can be seen to
bridge the gap between the two separate parts of
the outer solution.

With the same value of B, Fig. 8 shows the
relevant first-, second- and third-order flame
speeds as functions of S, using the example
solutions 20 for . As expected, the effect of the
curvature of the premixed flames near their

Fig. 6.a. Second-order premixed flame paths of the triple flame for ¥y = vy = 1 with B =
0-1 and with values of S as in Fig. 3. The dotted lines are the first-order results.
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Fig. 6.b. Flame paths as in (a) for »- = 2 and vy = 1.

leading end is to reduce the triple-flame propaga-
tion speed. The influence of the order BVEB
contribution (shown dotted) is seen to only be
relevant over the limited range of values of S that
produce order VB values of z,. The upper bound
(o for V corresponds to the maximum value of the
adiabatic laminar flame speed for unifofm mix-
tures that the system could achieve. Indeed, as B
— 0 it is clear that the mixture strength in the
region of z = 2, tends towards a uniform value
which would sustain exactly this flame speed.

DIFFUSION FLAME

Behind the leading premixed flames, the reaction-
zone solutions (Egs. 18) show the temperature T
approaching the limiting value,

T~1-8"1Tu(2), 39
which has a discontinuous derivative at the stoi-

chiometric boundary z = 0; for z > 0, yy is
asymptotically zero, and for z < 0, yr is asymp-
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(¢ - ¢0)/V1+¢g

4

1+0:4

op

Fig. 7.a.

Fig. 7. a) and b) Second-order contributions to /1 + ¢ corresponding to the flame paths
shown in Fig. 6. The datted curve is the numerical solution for the case withyr = vy = land §
= 1/2.
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(¢ - da)/V1ved

o

Fig. 7.b.

totically zero. This is the now classical outer
solution of a Burke-Schumann diffusion flame,
the analysis for which [9] need not be repeated
here.

CONCLUSIONS

Having developed a low-heat-release model and
obtained solutions in a ‘‘slowly varying’’ limit for
the triple flame, it has been demonstrated that a

relationship exists between the propagation veloc-
ity of a triple flame and the transverse mixture
gradient through which the flame propagates. An
asymptotic analysis of the premixed flames shows
that the propagation speed is mainly dependent on
the properties of the reaction zone near the leading
end of the triple-flame formation. Under these
conditions, the propagation velocity is bounded
above by the maximum adiabatic laminar flame
speed for the system.
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Fig. 8. Third-order flame-speeds with B = 0-1. The first-order results are shown in dashed
lines and the second-order in dotted lines. The upper set of curves applies to the case with v =
2 and »x = 1, and the lower set to vx = vy = 1.
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