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Flame Propagation in a Nonuniform Mixture: Analysis of a Slowly 
Varying Triple Flame 

J. W.  DOLD 

School of  Mathematics, University of  Bristol, University Walk, Bristol BS8 1TW, England 

For flames propagating through a nonuniform medium a three-flame structure is described. This consists of a fuel- 
rich premixed flame, a fuel-lean premixed flame, and, starting where these flames meet, a diffusion flame. Such 
formations have been observed experimentally and probably occur as laminar flamelets in turbulent diffusion flames. 
A low-heat-release model for such flame structures is developed and solutions are obtained in the limit of slowly 
varying premixed flames. Under these conditions, it is shown that the Triple-Flame propagation speed depends on the 
transverse mixture fraction gradient and is bounded above by the maximum adiabatic laminar flame speed of the 
system. 

I N T R O D U C T I O N  

The adiabatic laminar flame speed in a uniform 
medium is strongly dependent on reactant concen- 
trations, and any premixed flame leaves in its 
wake a uniform residue of combustion products 
plus an unburned fraction of the rich species. I f  the 
medium is nonuniform, the flame speed varies 
from point to point and the residual unburnt 
species changes from fuel to oxidant across a 
stoichiometric boundary. Because the flame speed 
tends to be greatest at or near any stoichiometric 
boundary, the flame also tends to surge ahead 
along the path of this boundary. Away from the 
boundary, the flames propagate progressively 
more slowly as they enter regions of weakening 
mixture strength, whereas in the hot unburned 
residues of the premixed combustion, fuel and 
oxidant meet to form a diffusion flame. 

Thus three distinct flames can be identified: a 
fuel-rich premixed flame, leaving unburned fuel 
behind it; a fuel-lean flame, leaving oxidant; and a 
diffusion flame along the stoichiometric boundary, 
beginning where all three flames meet. The 
leading region of this propagating combustion 
front may suitably be described as a Triple-Flame 
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[1]. Such flames have been observed experimen- 
tally [2, 3], as shown in Fig. 1, and, as transient 
laminar flamelets, they probably play a role in the 
combustion of turbulent diffusion flames, where 
extinction, diffusive mixing, and subsequent 
reignition of pockets of gas may occur [4]. To date 
there has been little theoretical work which models 
this type of flame structure. 

In studying steady diffusion flames, Lifi/m and 
Crespo considered a fuel and oxidant which mix 
and react after leaving the end of a splitter plate 
[5]. They assumed that upstream conduction and 
diffusion could be neglected. This rules out the 
possibility of upstream flame propagation, so that 
substantial burning could only begin through some 
kind of thermal-runaway ignition process. Subse- 
quent combustion takes the form of transversely 
propagating premixed flames (which slow down 
and ultimately extinguish through propagating into 
regions of weakening mixture ratio) and a diffu- 
sion flame that is created as one of these flames 
crosses a stoichiometric boundary. 

With the possible exception of the detailed 
flame shape near stoichiometry [6], this picture is 
reasonable provided that the splitter plate itself 
does not initiate the combustion and provided that 
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propagation is not entirely attributable to upstream 
heat conduction. Indeed, the anchoring may even 
make it possible for the splitter plate to stabilize a 
triple point in flow speeds greater than the 
maximum adiabatic laminar flame speed. In the 
absence of any form of anchoring, it is not certain 
that a flame could propagate without distinct 
premixed flames to initiate the combustion. 

A triple-flame structure is therefore possible 
over some range of transverse gradient of the 
mixture fracture. In this article a start is made 
towards modeling this interesting flame structure. 
As a first step, a simplifying linearization of the 
convective and conductive-diffusive effects is 
made by taking the limit of low heat release, 
giving a nearly constant density model. A large 
activation energy dependence of the Arrhenius 
reaction rate on temperature is retained by consid- 
ering the Zel'dovich number to be large. It is then 
found that the premixed flames can be considered 
to be slowly varying if the transverse gradient of 
the mixture fraction (on the length scale of a 
typical preheat zone thickness) is small compared 
with the inverse of the Zel'dovich number. 

Realistically, flames do engender significant 
changes in density. However, it is useful to 
consider this simplest form of analysis first before 
proceeding to consider larger temperature in- 
creases for which thermal expansion would be 
more significant. The results still provide a quali- 
tatively valuable description of the nature of triple 
flames. In cases where the premixed flames are 
slowly varying, it becomes fairly straightforward 
to obtain solutions that describe the triple flame at 
one practically important limit of its parameter 
space, namely the limit at which the propagation 
speed is close to the maximum adiabatic laminar 
flame speed. It is also instructive to derive this 
model from conditions that, at a later stage, can be 
used to study other aspects of triple flames. 

MODEL 

Equations and Nondimensionalization 

We consider, for simplicity, the one-step reaction 

vFF+ v x X ~  vvP, (1) 

in which VF fuel molecules and px oxidant mole- 
cules produce up product molecules. Fuel and 
oxidant streams are taken to be originally sepa- 
rated, containing mass fractions Yeo and Yxo, 
respectively, of fuel and oxidant. We use this to 
rescale the mass fractions by defining y~ = 
Y,,/Y,,o for a = F or X so that YF and Yx vary 
between 0 and 1. Adopting conventions of unit 
Lewis number, constant specific heat t~p, and low 
Math numbers, we consider systems for which a 
single conserved scalar, which we take to be the 
mixture fraction Z of fuel, may be used [9]: 

÷ + , 
~ PFWF ~PX PFWF pxWxJ 

( 2 )  

where Wo is the molecular weight of the species a. 
The mixture fraction satisfies the evolution equa- 
tion (for unit Lewis number), 

where the superscript denotes a dimensional 
quantity, ~ is the density, ti the fluid velocity, and 

the thermal conductivity. 
The normalized mass fractions YF and Yx are 

then given in terms of Z and the absolute tempera- 
ture 7 ~ as follows: 

y e = z _ ( T -  To)Cp veWp 
Qvv we  YFO 

and 

( T -  To)C,,, r xWx  
Yx = 1 - Z O.vp Wp Yxo (4) 

where 2P0 is the initial (and, we assume, equal) 
absolute temperature of the fuel and oxidant 
streams and Q is the heat of reaction. An upper 
bound 7~s for T is arrived at when both YF and Yx 
are zero, so that 

O.,.w, l/,pWp ,,xwx'  
L = ~o + - -  , (5) 

rpo + rxo / 

when Z takes its stoichiometric value Z = S, 
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where 

S= YFOlJxWx/(YFolJxWx + YXoVFWF). (6) 

It is natural to nondimensionalize 7 ~ such that 
7~/irs = I - (l - T)oe, where oe = (2F, - /~0)/ 
:~. Thus T varies between I at its hottest value 
and 0 well ahead of any flames. This gives the 

normalized mass fractions as 

y F = Z - S T  and y x  = 1 - Z - ( 1  - S ) T .  

(7) 

The nondimensional temperature T satisfies the 
evolution equation 

t~(ti • V )T  

= V " -~n V .+ (PYF YFo) 

x ( ~ Y x Y x o ) ' X  exp 1 - ~ ( i  2 ~ r ) ]  

(8) 

where /3 is the Zel'dovich number, B = ~ !  
( /~s ) ,  which we assume to be large, E is the 
activation energy of the reaction,/~ is the univer- 
sal gas constant, and A is a preexponentiai factor 
which we take to be constant. 

We now consider these equations in the broad 
context of a flow of reactants with diffusive 
mixing of species governed by Eqs. 3 and 7 and 
temperature behavior governed by Eq. 8. For a 
flame propagating steadily in a nonuniform me- 
dium this corresponds to choosing a reference 
frame in which the flame position is fixed. It is 
appropriate to nond'_aensionalize velocity against 
the upstream blowing velocity I 7 (which we shall 
take to be uniform), and lengths against a conduc- 
tion-diffusion length scale: 

u = a117, r = #( 17~t, psl  X~), 

P = P/Ps and k/L, (9) 

where :~ and X~ are the density and thermal 
conductivity determined at the temperature upper 
bound 7~ and at ambient pressure. This gives 

and 

V 2 [ p ( i l  " V ) T - V  • (kVT)] 

=O(OpyF)'r(Bpyx) "x exp [ 

where 

] 
1 - c~ (1 -  T ) J  ' 

(10) 

V2_ m 
A XsQup Wp 

x (BI~,) "~+ "x Yro- "r Yxo-"x e£/Oq~'s). 

It can be seen that V varies in direct proportion to 
I7 so that increased values of V represent greater 
blowing velocities. Density p and velocity u 
satisfy the continuity equation and the low-Mach- 
number version of the ideal gas law 

V .  (pu)=O 

and 

[1 - (1 - T ) a ] p  = 1 (11) 

(assuming constant average molecular weight). 
We also may consider thermal conductivity to be a 
function of absolute temperature, k = X[1 - (1 
- T ) c d .  

L o w  Heat Release 

If we now consider the limit of low heat release, 
the dependence of these equations on ct can be 
neglected to first order. Density p and conductivity 
X become unity to first order, and the velocity u 
stays constant with magnitude unity. We may 
choose coordinates so that the flow is directed 
solely along the x axis. Equations 10 then simplify 
to 

Z x = V 2 Z  

and 

p(U " V ) Z =  V " ()~VZ) V2[ T x -  V2 T] = I~ff~, (12) 
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where 

61 = { /SIZ-  ST]} ~F{B[1 - Z -  (1 - S) TI} ~x 

)< e - ~ ( 1  - T). 

To determine the controlling properties of the 
triple flame it is only necessary to consider Z in 
the region of its stoichiometric value S. The local 
adiabatic laminar flame speed outside of this range 
is relatively small, so that the premixed-flame 
paths are easily described, as was done by Lift,in 
and Crespo [5] and Dold and Clarke [10]. In this 
article we also restrict attention to small transverse 
gradients of Z in the region of its stoichiometric 
value S. Under these circumstances it is feasible to 
approximate Z locally in the manner 

Z = S + ~ y / ~  + 0(B2/~2) ,  (13) 

where B = BZys and Zys is the small transverse 
gradient of Z at the leading end of a triple flame. 
Also, the origin and orientation of the y axis are 
normalized so that the stoichiometric boundary 
lies along the line y = 0 (at least locally) and so 
that we can assume B > 0. 

It may be noted that Z = S + By/B is an exact 
solution of Eq. 12a, which, physically, would 
require very specific boundary conditions such as 
having fixed mixture fractions provided at two 
parallel plates situated at some positive and nega- 
tive values of y. The asymptotic form (Eq. 13) 
arises if Z has nonzero second derivatives, as 
would more generally be the case. For example, 
where a splitter plate forces the boundary condi- 
tions Z ( -  m, y < Y0) = 0, Z ( -  0% y > Yo) = 1, 
and Zy(x _< x0, Y0) = 0, the solution of Eq. 12a 
takes the form Z = l/2erfc( - v) [8], where v is a 
parabolic coordinate satisfying v = 1 /2(y  - Yo)/ 
x/X-Xo+V 2. In this case, Eq. 13 provides a 
suitable asymptotic form for Z when x - x0 = 
0(/32/B2). 

Boundary conditions require that "ahead" of 
any premixed flames the temperature T ap- 
proaches its upstream value of zero. It is assumed 
that the slow chemical reaction in the gases well 
ahead of the flame does not have time to signifi- 
cantly alter the upstream temperature before a 
flame is reached. Despite ot being small, we also 

consider the Zel'dovich number to be large 
enough to justify using the limit B ---, 0o in setting 
up first-order asymptotic solutions for T. 

STRUCTURE OF SLOWLY VARYING 
PREMIXED FLAMES 

The analysis of the premixed flames is considera- 
bly simplified if they can be considered to be 
"slowly varying." This effectively permits both 
the preheat and reaction zones of the flames to be 
analyzed as parabolic rather than elliptic problems 
(as in Eq. 12). The analysis will be seen to be 
justified provided that the parameter B is small, 
that is, Zys ,~ /3-1. The distinguished limit for 
which Zys >- O(/3 -1) will be studied separately. 

Use of Flame-Following Coordinates 

Let us assume that the reaction zone of the 
premixed flames lies along the path x = X ( y )  so 
that a flame slope can be identified as ~ = dX/dy .  
It is convenient to change coordinates to a set of 
orthogonal coordinates ~/ and ~ that follow the 
flame path as shown schematically in Fig. 2. 
Perhaps the simplest way to construct such a 
coordinate system is to make use of a complex 
mapping in the form 

x+ iy =f(~ +/7/). (14) 

It is convenient to build two main features into 
this transformation. First, in order that the flame 
path will be given by 7/ - 0 in the transformed 
plane, the function f should involve a rotation 
through an angle of cos-l($hk),  where, for 
brevity, we have written ff for 4(i+~b2). Sec- 
ondly, the thickness of the preheat zone of the 
combined fuel-rich and fuel-lean premixed flames 
(measured on the scale o f x  and y)  will be seen to 
increase as ff as I~b I increases (see Eq. 12). Thus if 
~/ is to provide an appropriate coordinate with 
which to describe the preheat zone, then f should 
also involve a local scale magnification by a factor 
of order ~ near the flame. Both of these features 
are reproduced if the functionfis defined such that 

f (0)  =X(0)  and f ' (~ )  = t#(~) + i (15) 
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Fig. 2. Structure of a triple flame propagating from right to left, showing the reaction zone 
(RZ), preheat zone (PZ), diffusion flame (DF), and the transformation to coordinates 01, ~) 
which follow the flame path. 

on the flame path 7 - 0 or ~ + i7 = ~. As in this 
boundary condition for f ,  the flame slope will  be 
considered to be a function of  the coordinate that 
changes along the flame path, namely ~ = ~(~) .  
This definition also sets ~ to zero where the flame 
meets the stoichiometric boundary at y = 0. 

The transformation (14) can only be applied i f f  
can be evaluated for nonzero values of  7. One way 
of  doing this is to use Eq. 15 to obtain the Taylor 
series expansions for f '  and for f:  

f '  (~ + i7) 

, 7/2 , ~, 71 4 ~)hw / = * - 7 . , *  + " "  

+ i  1 + 7 ~ '  --~.t ~m + " ' "  

=/z  + i~ ,  (16) 

and 

x +  iy = X ( O  + i~ 

- 7 +  

( " + i  7 ~ b - ~ .  t + " "  • 

In terms of  # and o~ (the real and imaginary parts 
of  f ' ) ,  Eqs 12 and 13 lead to the following 
equation for temperature: 

I~T~=o~T~ + T~ + rnn + (I, t2 q-co2)~(~/V 2, 

where we  take 

(R = [(1 - T)S~ + By]'~ [(1 - T)(1 - S)~ - By] "x 

x e - ~ 0  - r). (17) 
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R e a c f i o n Z o n e  

To model the reaction zone we rescale Z, T, and ~/ 
in order to highlight the region in which the 
reaction is most significant, namely when T = 1 
- 0(/3-1). Accordingly we define Z - S = z//3 
= By~~3, 1 - T = 1"//3, and 7/ = X//3 so that, to 
first order, Eqs. 17 lead to 

1'xx - 42 V-2[ s1" + z]'r [(1 - S)1' - Z]'X e - r ,  

giving 

1 ' X 2 - - 2 ~ 2  V - 2  

i 
U 

X ($7 + Z ) "  [(1 - S ) 7 - z ] ' x e  -'~ dr ,  
rb(z) 

(18) 

with 

The latter result is obtained using the condition 
that the temperature slope F x must tend to zero as 
1' approaches its burned value 1'b (at which the 
reaction ceases). In particular, as X becomes large 
the gradient 1'x approaches the finite value 

r~(1 , ,  x ,~ / 3 ) - ~ f l ( z ) / V  

- -  T~(~, /3-1 ~ ~/ .~ 1), (19a) 

with 

I" f l 2 = 2  (S7 + Z)'P [(1 - S ) 7 - z l ' x e  -'y dT. 
rb(z) 

(19b) 

The function fl is important in providing the 
matching condition (Eq. 19a), which helps to 
determine the temperature variation in the preheat 
zone. A second matching requirement for the 
preheat zone is that the temperature T should tend 
to a maximum value of  1 - O(/3-1) as ~/tends to 
z e r o .  

The integral in Eq. 19 is easily evaluated for 
integral values of  ~'r and Vx. For example,  for the 

two-body and three-body reactions, vp = Vx = 1 
and J'F = 2 with J'x = 1, respectively, fl2(z; VF, 
J'X) becomes 

fl2(z; 1, 1) 

I [ 2 S ( 1 - S ) + z ] e  -z/o-s) : z - 0  

= 2  • [ 2 8 ( 1 - S ) - z ] e  z/s : z<_O 

and 

fl2(z; 2, 1) 

= 2  • x e - z / o  -s) : z>O (20) 

[ 6 S 2 ( 1 - S ) - 2 S z ] e  z/s : z ~ 0 .  

Sketches of  these functions for various values of  S 
are shown in Fig. 3. Because Eq. 19 is invariant 

I under the transformation S --, 1 - S ' ,  vp ~ J'x, 
Px --* v '  and z ~ - z ' ,  the three-body reaction F ~ 
vF = 1 with Vx = 2 is given by Eq. 20, with S 
replaced by 1 - S and with the sign of  z reversed 
on the fight-hand side. These sketches and appro- 
priate differentiation of  Eq. 20 reveal that fl and 
df l /dz  are continuous functions of  z. Further 
differentiation shows that d2f l /dz  2 is also continu- 
ous w h i l e  d3•/dz 3 c a n  b e  discontinuous at z = 0. 
We will therefore proceed on the assumption that 
fl is C 2 continuous at z = 0 and C = continuous 
everywhere else. 

We also define ~ as the maximum value of  fl 
which is found at z = z0(S; PF, ~X), where, in the 
cases shown in Eq. 20, 

z0(S; 1, 1)= f ( 1 - S ) ( 1 - 2 S )  S<_1/2 

L - S ( 2 S -  l) : S>_1/2 

and 

zo(S; 2, 1) 

I 
" (1 - S ) { [ ( 2 S -  1) 2 + 2S(2 - 3S)] 1/2 

= - ( 2 S -  1)} : S<_2/3 

• - S ( 3 S - 2 )  : S>_2/3. 

(21) 
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It will be seen that the second derivative of fl at the 
maximum value, which we denote by fl0 ~ , is of 
fundamental importance in determining the effect 
of flame curvature on the propagation speed of a 
slowly varying triple flame. Appropriate differen- 
tiation of Eq. 20 leads to 

I [  Zo ] e_Zo/t~_s) S<l/2 
= - 2 4 (1 ------S) 2 

[- 2- zo/SE]ezo/s : S>_ 1/2 

J. W.  D O L D  

and 

 0uf 

4z0 4 Z02 ] 
- 2 ( 3 S - 1 )  I-~S (1-~)a_]  

X e  -zo/ t l - s )  : S<_2/3 
[ - 2 ( 3 S -  l)- 2Zo/S]eZo/s : S>_2/3. 

(22) 

As illustrated in Fig. 4, fl~' is nonzero and 
negative for all permitted values of S. 

~3 

°'81 

0"4 

0 
-2 0 2 

Fig. 3.a. The function fl(z; 1, 1) for S = 1/32, 1/8, 1/2, 7/8, and 31/32. The dotted line 
follows the path of the maximum value of ft. 
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Fig. 3.b. t~(z; 2, l) [as in (a)] for S = 1/24, I /6,  2/3, l l /12 ,  and 47/48. 

Z 

Slowly Varying Preheat Zone 

In the preheat zone, where Tis taken to be strictly 
less than 1, the reaction-rate term of Eq. 17 
becomes exponentially small (and so can be 
neglected) if/3 is large. Nevertheless, still being 
elliptic in nature, Eq. 17 is not readily solved. 
However, it can be noted that if derivatives with 
respect to ~ could also be neglected, then the 
equation would reduce to a relatively simple 
parabolic differential form. In order to exploit this 
property, we rescale ~ such that 

Recalling that z is defined simply as z = B y ,  it can 
be noted from the transformation Eq. 16 that r is 
exactly equal to the value of z at positions on the 
flame path 7/ - 0. Thus, remembering that the 
matching condition Eq. 19a varies on the scale of 
z, it may be anticipated that ¢~ and T will vary on 
the scale of r. This being so, Eq. 23 shows that 
derivatives with respect to ~ will only be small if B 
is small. 

Hence, for small values of B, Eq. 17 takes the 
following form to order B 2 in the preheat zone 

B¢, T, = (1 + B,ld ) T~ + T~ + B2 T~r + O(B3), 

T = B~. (23) (24) 
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where ~ denotes the derivative of ~ with respect to 
r. In order to determine the basic structure and 
behavior of triple flames in their slowly varying 
limit, we will now solve this equation asymptoti- 
cally to order B as B --* 0. To first order, Eq. 24 
has the solution T - e - "  under the conditions that 
T --* 0 ahead of the flames and T -o 1 - O(/3- l) 
as ~1 "-* 0 and 3 ~ 00. Substituting this result back 
into Eq. 24 leads to the second-order solution 

T=  [1 - B 0 /+  */2/2)$] e it /+ O(B 2) (25) 

under the same boundary conditions. This solution 
shows the effect of flame curvature in that an 
increasing flame slope (that is, 6 > 0) leads to a 
reduction in temperature in the preheat zone. 

Shape and Velocity of  Premixed Flames 

If we now use the solution (Eq. 25) and condition 
(Eq. 19a) to match the temperature gradient T~ 
between the preheat and reaction zones, it is found 
that ~ must satisfy the asymptotic differential 
equation 

d0 (1 + ¢~2) I/2fl(z) 
B - 1 + O(B2), (26) 

dz V 

where we have replaced dO~dr by ddp/dz because 
r is equal to z on the flame path (or asymptotically 
equal to z in the matching region). For a proper 
description of a triple flame propagating from 
right to left, the flame path X(y) must possess a 
leading point that may be considered to initiate the 

-~d' 

L _ _ _ _ _  I . . . . . . .  I . I  l _ _ _  . 

S 

I I 

i 

I 

0 

Fig. 4. Values of the second-derivatives at the peak, flo (1, 1) and flo (2, 1) (the asymmetric 
c u r v e ) .  

I 
I 

1 
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combustion. On either side of this initiating point 
the premixed flames will tend to trail behind. This 
can only happen continuously if the flame slope 0 
changes sign at the leading end of the flame, with 
+ ~  > 0 for large values of + y  or +z.  This 
apparently trivial condition is all that is needed to 
asymptotically solve Eq. 26 for the structure and 
propagation speed of the leading premixed flames. 

Outer Asymptotic Solution 

With a little rearranging, Eq. 26 can be written in 
the form 

dO + O(B2 ) V2 [ l + dz ] - 1 .  0 2 = ~  - 2B (27) 

nonnegative, but since 0 must also be equal to zero 
at least at one point (if ~ is to change sign 
continuously), it follows that the minimum value 
of ~2 must be precisely zero. Applying this 
condition to Eq. 27 leads to the first-order 
expression 

- 00(Z) = s ign(z-  Z 0 ) ( [ ~ 0 2 / ~ ' ~  2 - -  1)1/2 

with 

V - t o ,  (28) 

which shows that dO/dz = x/([ to" [ / to )  + O(z 
- Zo) near z = Zo. Using this to set the minimum 
value of ~2 to zero at the second order gives 

~'~0 2 ~'~ ' 1/2 

(29a~ 

with 

where Zl is the position of the minimum value of 
the quantity enclosed in the brackets { } of Eq. 
(29a) and 1~ is defined so that the value of the 
minimum is exactly zero. It can be seen that Zl = 
Zo + o(B).  

Inner Asymptotic Solution 

Equation 29a does not always give sensible results 
near the leading end of the triple flame. For 
instance, with ~'F = UX = 1 and S = 1/2 the term 
in the brackets { } has two equal minima so that 0 
cannot be uniquely defined in a neighborhood of z 
= Zo. This reflects a singular nature in the above 
asymptotic analysis which can be associated with 
the fact that the first-order differential Eq. 27 is 
reduced to an algebraic equation at each asymp- 
totic order. This is a typical feature of many 
singular asymptotic problems. An inner region 
near z = z0, in which the use of the first derivative 
may be retained at each asymptotic order, can be 
identified by defining the new variable ~" = (z - 
Zo)A/B. Equation 26 then becomes 

d 0 _ ( 1  x / ~ - ~ -  +dp2)l/2f]/V- l + O(B2), (30) 

in which we may take fl - to[1 - Bfl2~ "2 + 
B~/Bfl3~ "3 + O(B2) ]  with 2fl 2 = - - f l0n/f l0  and 
6fi3 = t o  ~/rio. Since fl " is not always continuous 
at z = 0, it should be noted that the value of r3 
may change substantially if and when ~" crosses the 
value ~'o = - Zo/x/B. This fact becomes especially 
significant for order one values of ~'0 [when Zo = 
O(x/~)]. If this change happens for nonzero values 
of ~'o, the values of to and 9,2 will also need to be 
varied by amounts of order Bx/B and x/B, respec- 
tively, to maintain the accuracy of the series 
expression for ft. However, such changes are not 
significant in the orders of asymptotic analysis 
presented below, for which to  and 9,2 may actually 
be considered to remain uniformly constant. 

As before, Eq. 30 has the first-order solution 
(Eq. 28). To second order we define 

V -  17"-flo-B(flo[ t o  " ])1/2, (29b) ~ -  0o(Zo+ ~'x/~) +B01(~') 
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and 

V- flo(l -BVm + B,,/-B V2) (31) 

which leads to the following asymptotic form of  
~ .  30 

= B[ V1 - 2x/~2] + O(B2). (32) 

To order B this shows that 

Vj = 2x/~2 = (In o I/fi0)1/2 (33) 

which agrees with Eq. 29b for V. At the order 
B,v~- the solution for ~l takes the form 

~1 = e  r2 °4~2/2 f~ e-~2 n~2/2(1:2-/jr3 2 ~ / ~ 2 )  d/j 

(34) 

which satisfies the matching requirement from Eq. 
29 that ~1 must be bounded as ~" - '  ~ .  In those 
cases for which r3 remains constant for order one 
values of  ~, this result will only allow ~1 to remain 
bounded as ~" ~ - oo if V2 = 0. The solution for 
~ then simply reduces to the constant value ¢1 -- 
- t13/n2 = f l o / ( 3 f l ~  ) for order one values of  g'. 
It may be noted that the outer solution (Eq. 29) is 
well behaved under these circumstances and so it 
is not surprising that the inner solution simply 
reproduces the inner limit of  the outer solution. 

In cases for which the leading position of  the 
triple flame z0 is of  order x/B, the value of  f13 may 
be different on either side of  the order one position 
~" = g'0. In these circumstances the solution of  Eq. 
34 becomes either 

~1 = e ~'2 n4"6~2/2 V 2 ~ ( 2 / f 1 2 ) ! / 4 / 2  

n3 + 
x effc[ ~'(fi2/2) 1/4 ] _ _ _  

n2 

or 

fbl = e ~2 °4~2/2 l V2~/-~(2/f12)l/4/2 

xerfc[~(f l2 /2)  TM] 
r3 + - f13- 

r2 

) fi3 
x e -  i'02 flx/-~2/2} (35) 

) fiE 

for ~" _> ~'0 or ~" _< ~'0, respectively, where erfc is 
the complimentary error function. The terms f13 ÷ 
and f13- denote the values of  f13 in the two 
respective regions. In order for ~bl to remain 
bounded for negative values of  ~', the term within 
the brackets { } of  the latter result must approach 
zero as g" --, - oo. This leads to the expression for 

v2, 

V2=(n2/2)l/4 n3 + - n 3 -  ~.02 a4-fi~2/2. e -  (36) 
fl2Nf~ 

In the cases for which fl was evaluated above, it 
turns out that fl ~' (z; 2, 1) is continuous in Z so that 
V2 is uniformly zero if vr = 2 with Vx = 1. In the 
case for which ve = vx = 1, fl~' is discontinuous; 
using the appropriate values, f12 = 1 and f13 + = 
- f13- = 4 /3 ,  the order B E  contribution to the 
triple flame propagation speed becomes 

V2 = 8/[21/43vc~] e -  ZO2/(B~/2), (37) 

which is clearly only significant for values of  z0 of  
order x/B. 

Sample Numerical Solution 

Equation 26 may also be solved numerically. It 
may be noted from the asymptotic analysis above 
that the flame slope ~b must satisfy two distinct 
boundary conditions for large positive or negative 
values of  z: 

lim q~ f l ~ = + l .  (38) 
Z~+ae 
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Fig. 5. Numerically calculated flame speed Vshown as the ratio (I - V)/B for vF = vx = 1 
with S = 1/2. The dashed and dotted lines are the asymptotic results to order B and B'¢~, 
respectively. 
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This also amounts to the physical requirement that 
well behind the front of the triple flame, slow 
premixed flames should propagate transversely 
with d X / d y  asymptotically equal to the flow speed 
divided by the laminar flame speed. In general, 
because Eq. 26 is only a first-order nonlinear 
equation in $, these two conditions cannot both be 
satisfied for arbitrary values of B and V. How- 
ever, the two conditions may both be satisfied if B 
and V satisfy a particular relationship V = V(B)  

for a given function fl. Equations 31, 33, and 36 
give the asymptotic representation of this relation- 
ship to order Bx/B. 

Let us consider the simple symmetric example, 
v~= Vx = 1,withS = 1/2, for which fl2 = (1 + 
21 z 1) exp ( -  21 z I). Because of symmetry we need 
only use the condition 38 as z ~ + 00, with the 
additional condition that ¢(0) = 0. With the 
O(B 2) term removed, a numerical analysis of Eq. 
26 was carried out. By using a shooting method 

that began with values of ~ given by the asymp- 
totic relation q~ - ~ for large enough values 
of z, the unique value of if(0) could be accurately 
calculated for any choice of values of B and V 
(remembering that B should be small for the 
slowly varying analysis to be justifiable). Those 
values of V and B that could be found to give ~(0) 
= 0 then determine the correct relationship V(B)  

between the triple-flame propagation speed and 
transverse mixture gradient, to order B 2. 

Results of this analysis are presented in Fig. 5, 
which shows the relationship between the ratio (1 
- V ) / B  and B for fairly small values of B. It may 
be noted that t0 = 1 in the example considered. 
The dashed line is the second-order result from 
Eq. 33 using the fact that fl o = - 2 ,  while the 
dotted line is the third-order result obtained using 
Eq. 37. It can be seen that the numerically 
computed relationship V ( B )  closely follows the 
asymptotic relationship to the order of Bx/B. 
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Figure 6 shows some examples of the asymp- 
totic triple-flame structures to first and second 
orders with B set equal to 0.1. The positions of the 
leading points of the various solutions have been 
selected so as to keep the curves reasonably 
separated. In Fig. 7 we show the second-order 
contributions to O/~k, calculated using Eq. 29a. As 
mentioned earlier, the outer solution 29a fails in 
the case vF = ~'x = 1 with S = 1/2, so that the 
curve for this case has been drawn in two parts for 
z < 0 and z > 0 using the third-order inner 

solution for V in place of I7. The dotted line is the 
corresponding numerical result. The triple-flame 
path shown in Fig. 6 for this case was calculated 
using the numerical solution that can be seen to 
bridge the gap between the two separate parts of 
the outer solution. 

With the same value of B, Fig. 8 shows the 
relevant first-, second- and third-order flame 
speeds as functions of S, using the example 
solutions 20 for ft. As expected, the effect of the 
curvature of the premixed flames near their 

/3X 
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\ 
.I .  
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7 
8 

~ 2  

13!/ 
I I I : 

-2  2 

Fig. 6.a. Second-order premixed flame paths of  the triple flame for vF = vx = 1 with B = 
0" 1 and with values of  S as in Fig. 3. The dotted lines are the first-order results. 
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Fig.  6 .b .  F lame paths as in (a) for  ~F = 2 and  Px = 1. 
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leading end is to reduce the triple-flame propaga- 
tion speed. The influence of the order B,,/B 
contribution (shown dotted) is seen to only be 
relevant over the limited range of values of S that 
produce order ,JB values of Zo. The upper bound 
fl0 for V corresponds to the maximum value of the 
adiabatic laminar flame speed for uniform mix- 
tures that the system could achieve. Indeed, as B 
- ,  0 it is clear that the mixture strength in the 
region of z = z0 tends towards a uniform value 
which would sustain exactly this flame speed. 

DIFFUSION FLAME 

Behind the leading premixed flames, the reaction- 
zone solutions (Eqs. 18) show the temperature T 
approaching the limiting value, 

T -  1 - /~ -  1Pb(Z), (39) 

which has a discontinuous derivative at the stoi* 
chiometric boundary z = 0; for z > 0, Yx is 
asymptotically zero, and for z < 0, YF is asymp- 
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Fig. 7.a. 

Fig. 7. a) and b) Second-order contributions to 0 / ~  corresponding to the flame paths 
shown in Fig. 6. The dqtted curve is the numerical solution for the case with p~ = ~x -- I and S 

= 1/2. 
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totically zero. This is the now classical outer 
solution of a Burke-Schumann diffusion flame, 
the analysis for which [9] need not be repeated 
here. 

CONCLUSIONS 

Having developed a low-heat-release model and 
obtained solutions in a "slowly varying" limit for 
the triple flame, it has been demonstrated that a 

relationship exists between the propagation veloc- 
ity of a triple flame and the transverse mixture 
gradient through which the flame propagates. An 
asymptotic analysis of the premixed flames shows 
that the propagation speed is mainly dependent on 
the properties of the reaction zone near the leading 
end of the triple-flame formation. Under these 
conditions, the propagation velocity is bounded 
above by the maximum adiabatic laminar flame 
speed for the system. 
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Fig. 8. Third-order flame-speeds with B = 0" 1. The first-order results are shown in dashed 
lines and the second-order in dotted lines. The upper set of curves applies to the case with ~r = 
2 a n d  ~ x  = 1, and the lower set to ~ = p x  = 1. 
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