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SUMMARY

It is shown that a variable grouping containing a logarithmic time-dependent factor
is required for the development of a coordinate-perturbation expansion which
realistically describes the spatially varying thermal-runaway process. The resulting
solution is in good agreement with careful numerical computations. It describes a
self-focussing temperature growth, the form and behaviour of which are remarkably
independent of both the conditions leading to thermal runaway and the topology of
the thermal-runaway region. The detailed solution also reveals an underlying struc-
ture in the temperature development, in which a strongly supercritical thermal
runaway (where the relative effects of conduction are initially small) is found to be
very much like a less strongly supercritical, but more highly-developed, thermal
runaway. In this development the local rate of self-heating accelerates dramatically
while, in comparison, the conductive impediment to the temperature growth di-
minishes towards zero. Attempts to develop a solution using a variable grouping
without the logarithmic factor are shown to produce results which are unsuitable for
describing inhomogeneous thermal runaway.

Some numerically computed results are presented, detailing the Ignition Kernel
formed as a result of supercritical thermal runaway in a fixed-temperature symmetric
container,

1. Introduction

THE essential nature of spatially varying thermal runaway can be studied
using the equation

¢ =V2¢+A(r, t)e?, 1

where ¢ asymptotically represents the temperature in a large-activation-
energy, small-reactant-depletion model. The function A represents the effect
on the reaction rate of the mixture of chemical species and may be taken to
be a known, possibly uniform, regular function of space and time.
Assuming that ¢ is not homogeneous in space, the most vital property of
equation (1) is the possible development of a rapidly accelerating growth in
temperature, concentrated about a point, line or surface. Figure 1 provides
an illustration of this. Such behaviour arises when conditions are suitably

1 Present address: School of Mathematics, University of Bristol, University Walk, Bristol BS8
1T™™W

[Q. J1 Mech. appl. Math., Vol. 38, Pt. 3, 1985]
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supercritical; factors impeding the growth of ¢, such as heat losses through
the walls of a containing vessel (1, 2) or ‘starvation’ of the reaction by the
diffusive dilution of a reactant (3), are insufficient to counterbalance the
Arrhenius exponential dependence of the reaction rate on ¢. In fact ¢
becomes singular, approaching infinity at an ‘induction position’ r; as ¢
approaches an ‘induction time’ ;.

The asymptotic representation of the temperature by ¢, of course, breaks
down at this stage; equation (1) does not model the consumption of
chemical species which becomes more significant as ¢ grows large. In the
early stages, however, equation (1) is a good representation which can be
used to reveal important aspects of the basic nature of the thermal-runaway
process. The full thermal development will be the subject of a subsequent
paper (4).

As ¢ increases, the distribution of temperature around its sharply rising
peak value becomes more-and-more localized, with the most vigorously
increasing reaction intensities occupying a correspondingly shrinking region
of space as the induction time is approached. A ‘kernel’ of self-igniting
reactants is formed. The natural way of approaching this problem analyti-
cally is to develop a coordinate-perturbation solution using a suitable
variable grouping to represent this spatial concentration of the effects of the
reaction. Efforts have been made in this direction (5, 6) by using a variable
grouping which differs significantly from the one which is found to be
necessary in the following analysis. For the sake of clarity a distinction
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between these approaches will be made by referring to the former as
characterizing a ‘Hot Spot’ (the term used in (5, 6)) while the description
‘Ignition Kernel’ (as in (7)) will be used in conjunction with the analysis
developed here. The terms, of course, refer to exactly the same phenome-
non which both approaches are intended to model.

It is demonstrated that the required Ignition-Kernel variable grouping
takes the form

r_rl

" (-0 a-In(4-0p’

p 2

where a is open to choice and may be ‘weakly’ time dependent. This
contrasts with the Hot-Spot variable grouping in which the logarithmic
factor is absent. It is found that non-trivial solutions obtained using the
Hot-Spot grouping are either singular at the induction position or vary too
rapidly in space to be capable of being matched with temperature develop-
ments in relatively cooler regions. In analysing an equation related in type to
equation (1), but with a quadratic rather than exponential reaction-rate
term, Lacey (8) mentions that the Hot-Spot grouping appears to lead to no
suitable solution. Solutions obtained using the Ignition-Kernel grouping (2)
are found to agree well with careful numerical solutions of equation (1).
Matching with thermai behaviour ‘outside’ the Ignition Kernel, in regions
relatively much cooler than the hottest temperature at some stage, is
achieved through an intermediate expansion.

In order to simplify the problem while retaining some generality it is
convenient to use the following form of equation (1):

¢ = ¢,,+$ &, +A(r, t)e? 3)

where

0, for variation in only one Cartesian dimension,
n=41, for cylindrical symmetry,
2, for spherical symmetry.

In cases for which thermal runaway occurs, it may be taken that an
induction position r; and an induction time f; exist such that

o(r, tl).= @™, 4

For simplicity it may also, quite generally, be assumed that the scalings of r
and t are suitably normalized to make

A, ) =1. ()
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2. Variable grouping characterizing thermal runaway

A range of variable groupings can be conveniently examined by means of
the scaling function o(£) introduced in the following definitions:

£=—In (tx - t),

LA
T e e ®OF ©
q)(g’ 7]) = d) - f

It is found that, at its peak value, ¢ grows essentially like the parameter £ as
t — t; so that, with o chosen correctly, the dependent variable ® introduced
above can be expected to be primarily a non-trivial order-one function of n
in the thermal-runaway region. In terms of ¢ and 7, ® satisfies the equation

nle¢c}

——r,+[e‘50']ﬁn <I>,,}+)\e"> )

& +1 +g (1 —g)cb,1 = o"l{d)m +
(where - signifies ordinary differentiation with respect to the appropriate
independent variable). This equation can be used to examine the influence
of the choice of the scaling function ¢ on the possible forms of asymptotic
behaviour of ® as a function of ¢ and 7.

The case of o being asymptotically small as £ tends to infinity can be
dismissed since, with ¢ of order one as anticipated, this would emph-size
the conductive terms (on the right-hand side) of equation (7) whereas the
essential nature of the thermal runaway lies with the exponential depen-
dence of the reaction rate on ®. The cooling effect of conduction cannot be
overwhelmingly dominant in the process. If ¢ is of order one, the definition
of m amounts to the definition of the Hot-Spot variable grouping. This is
examined in the next section.

If, on the other hand, o is asymptotically large as £ grows large, then it
may be possible to develop an asymptotic expansion for @, as ¢t tends to ¢, in
the form

O~ Dy(n)+...+ 07D (7). 8)

Any terms of order strictly between one and o~ will not be considered in
this section, the purpose of which is primarily to demonstrate the feasibility
of such an asymptotic solution for a suitable choice of o. The form that this
choice must take is also demonstrated. A fuller development of the expan-
sion is given in section 4.

To first order, equation (7) shows that ¥, should satisfy the equation

1+indy=e®™,

so that
®o=~-In[1+4n?] 9
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where, by hypothesis, ®, has its non-trivial solution and where, for simplic-
ity, the constant of integration k, in the solution ®,= —In[1+21kn?], has
been set to unity by exploiting a degree of freedom afforded by the choice of
o in the definition of 1. Proceeding to the term of order o™}, equations (7)
to (9) give the following equation for @, :

2 1.2
q>,,—<1+’l)2ci> _1;"’+[ ]*" 1_“:1"2, (10)
where
"1={0’ n#0,
n, =0,
and

(oT*= E“_‘i; G (é).

The notation [ * will have the same meaning throughout this paper. The
parameter n; distinguishes between the three different possible topologies of
the induction position r = r.. When n; is zero the induction position repre-
sents a surface, which can be flat, cylindrical or spherical depending on the
value of n. When n; is unity it represents a line, and when n; has the value
two it represents a single point. Solving for &, gives

“"’:%ﬂﬂﬂnz[wnst.—[dl*m(l +in?)]+
ey 317 n’

Although @, is continuous, if 1—[dJ* does not vanish then the last term
in the solution (11) for @, has a singular second derivative with respect to 7.
This would make the term of order o2 in the expansion for ® singular at
mn =0, thereby invalidating the expansion. Thus o must satisfy the condition

[e*=1, 12)
from which it can be deduced that
o(£)=£+0(8) (13)

as £ — oo, apart from the multiplication by an arbitrary constant which was
implicity set to unity by the choice of the solution (9) for @,.

Although the o(£) term in (13) is open to choice, its effect on the resulting
scaling for 7 in the definition (6) is asymptotically small as £ — =. Essen-
tially the same variable grouping therefore arises and can be seen to
correspond to the Ignition-Kernel grouping p defined in (2), provided only
that « is small compared with |in (t; — )| as t tends to ¢,.
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3. Consideration of the Hot-Spot variable grouping
With ¢ defined as unity,  takes on the form of the Hot-Spot variable
grouping

r_rl

= , 14
STl s

and if ¢ is assumed to behave in accordance with the asymptotic form
¢~ —In(t;—t)+g(s), 15)

then it can be seen that g(s) should satisfy the nonlinear second-order
ordinary differential equation,

g+(%’—§)g+es—1=o. (16)

Indeed, if g satisfied this equation, then in those cases for which A(7, t)=1
with r; = 0 when n >0, equation (15) would provide an exact special solution
to equation (3) for ¢.

There has, as yet, been no specific mention of boundary or initial
conditions except to assume that supercritical conditions have somehow
given rise to inhomogeneous thermal runaway. Although initial conditions
suitable for solving (15) and (16) could always be manufactured by defining,
say,

¢(r,0)=—1In :,+g(' ﬁ"), (17)
i

it remains to be seen whether or not solutions of the form of equation (15)
can have genuine physical relevance, either asymptotically or exactly. In the
context of a self-induced supercritical thermal-runaway process two general
conditions would need to be met by the function g. First, since ¢ is a smooth
continuous function of r at all times before the induction time ¢, it follows
that g must be a non-singular function of s. Secondly, as the induction time
is approached the behaviour of ¢ in cooler regions (left behind by the most
strongly reacting region as it shrinks towards r;) is unremarakable. It must
therefore be possible to match the Hot-Spot solution (15) with a Taylor-
series solution for ¢ of the form

¢ -~ ¢(Y, tl)_ (tI - t)¢t(ry tl) +£(tl - t)2¢"(", tI) (18)

as t—t;. Each of the functions &(r, t;), ¢.(r, t;), etc. is a well-defined
function of r, singular only at the induction position r=r, with ¢,(r, t;),
¢é.(r, 1), etc. obtainable from ¢(r, t;) by successive time differentiation of
equation (3).

It should be noted that this analysis is concerned specifically with spatially
varying thermal rinaway so that the trivial solution g =0 is excluded from
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consideration. This case would represent a completely uniform spatial
distribution of tempterature, and has been well investigated by Kassoy (9).

There are two possible forms of asymptotic behaviour for g as |s| grows
large:

— + A _ A
g=—lns2+A—2 Zn; e (1_6 2n,2+e )+O(s‘6),
s 2s
(19)
o 2(1+ny) 2(3+ny) el
—_nRp2_¢ 1 T
g="B Isl“"'[1+ 52 (1+ s? )]+O(lsl7+"')'

When B is non-zero, the latter asymptotic form shows g approaching — at
an extremely rapid rate as |s| grows large. With r fixed and not equal to r,
the solution for ¢ expressed in terms of r and ¢ would also then decrease
rapidly towards —o as ¢ tends to f,. No matching is then possible with the
asymptotic form (18) which requires ¢ to remain finite in this limit and so,
apart from the trivial case (B=0), this form of behaviour cannot be
considered to have any physical relevance. The first of the asymptotic forms
(19) matches perfectly with the asymptotic form (18) provided that, as r
tends to r,

o(r,t)~—In ('_'1)2+Aa
2_2n[+eA
("”1)2 ’

6 - 2"1 + CA
(r_r])z (bl(r) tl)’ J

& (r, 1)~ 4 (20)

¢"(T, tI) -~

and so on.

It now needs to be seen whether or not any suitably behaved solutions
exist. The evidence of a numerical investigation towards this end indicates
that no solution of equation (16) can be found to meet all the conditions
necessary for physical meaningfulness in the present context. In order to
reach this conclusion two families of numerical solutions of (16) were
examined: first, those continuous solutions which satisfy the symmetric
condition ¢(0)=0; and secondly, those solutions which adopt the logarith-
mic asymptotic behaviour (19), as |s| — .

Higher derivatives of equation (16) were used as the basis of the numeri-
cal scheme: given g(s) and g(s), derivatives of g up to d®g/ds® were
evaluated directly and used to step the values of g and ¢ backwards or
forwards using a Taylor-series expression. Backward differencing, which
might have introduced stiffness (and hence numerical instability) into the
method was thus avoided, and step sizes were limited so as to maintain a
high degree of accuracy. This was checked by examining the convergence of
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the scheme with reductions in step sizes. The results given below were all
calculated to considerably better than graphical accuracy.

Non-singular solutions in the cylindrically and spherically symmetric cases
(n; equal to 1 or 2) must always satisfy the symmetric condition g(0)=0. In
the case of local variation in only one Cartesian dimension (n, = 0) it seems
reasonable to expect that, if any suitable solution is to exist, it should be
possible to find at least one which satisfies the symmetric condition. For this
reason, solutions of equation (16) were obtained by ‘shooting’ from s =0,
with ¢(0) =0 and with g(0) taking selected values. The advantage of using
the shooting method is that every case is, effectively, an initial-value
problem with a unique solution. There is not, therefore, the possiblity that
each family of solutions obtained might represent only one branch of the
general family of solutions.

The solutions sketched in Fig. 2, as examples, all show signs of |g|
growing rapidly in the exponential manner, rather than growing gently as it
would do in satisfying the logarithmic asymptotic form. Indeed by proceed-
ing to large enough values of s, the value of the matching constant B of the
asymptotic form (19), could be determined in every case. Figure 3 shows the
resulting variation found for B as a function of g(0), with the arbitrary
convention that B is given the same sign as g(0). Interestingly, with this sign
convention, B appears to be a smooth function of g(0) in the neighbourhood
of the origin g(0)=0.

FiG. 2. Numerical solutions for g satisfying the symmetric condition g(0) =0
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Fic. 3. Exponential matching constant B as a function of g(0) with g(0)=0

If g were to adopt its logarithmic asymptotic form for some non-trivial
value g; of g(0), then the corresponding value of B would be zero: and, if
the family of functions g were to vary continuously with g(0), then one
would expect the computed values of B to tend towards zero as g(0) tended
to g;. In Fig. 3 the only stage at which B can be seen to tend to zero is the
trivial limit g(0) = 0, which leads to the trivial solution g=0. Hence there is
nothing in these curves to indicate that a value of g(0) for which the solution
would adopt the logarithmic asymptotic form could be found.

One is led to conclude that no symmetric solutions suitable for describing
" inhomogeneous thermal runaway can be found. In the cases of cylindrical
and spherical symmetry it can be deduced that any solutions which do adopt
the logarithmic asymptotic form must be singular at s =0. In the case of
local variation in only one Cartesian dimension there still remains the
possibility that, with g(0) non-zero, g might be non-singular, non-symmetric
and still able to adopt the logarithmic asymptotic form both as s — +o and
s — —o,

Figure 4 illustrates the behaviour of solutions which satisfy the logarithmic
form (19), for large positive values of s. These were obtained using the
shooting method by starting at sufficiently large values of s (with g(s) and
¢(s) determined initially by the asymptotic form (19),) and shooting back-
wards. As expected, the cylindrically and spherically symmetric solutions are
singular at s=0. In the one-dimensional case (n; =0), with g behaving
logarithmically as s — +o, the solutions obtained all have g(0) negative and
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Fi1G. 4. Numerical solutions for g behaving logarithmically for large values
of s

g possessing a positive maximum value for a negative value of s. The
dot-dashed line of Fig. 4 shows the path of the position of this maximum
value. As s grows large and negative the solutions sketched all clearly show
signs of adopting the exponential asymptotic form (19), and hence still
failing to match with any asymptotic behaviour of g of the form (18).
Simply changing the sign of s covers the case of solutions behaving
logarithmically as s — —o. The question of finding a solution which behaves
logarithmically both as s — + and s — —» must therefore depend on being
able to find two solutions possessing the logarithmic asymptotic form as
s — + with the same value of g at s =0 but with slopes of opposite sign.
Thus at least one solution must be found with positive slope at s =0. And,
since g — — as § — +o, the intermediate value theorem shows that this
solution must possess a maximum value for a positive value of s. In all cases
only one maximum value was encountered, and for the range of curves
reliably represented in Fig. 4 these maxima clearly occur only for negative
values of s. Figure 5 shows the path of the position of the maximum near the
origin for large values of the matching constant A. As A grows the
maximum position moves towards the origin, but there is no indication that
the maximum position might swap over to a positive value of s for any value
of A. Indeed, if this were to happen continuously the intermediate value
theorem would require at least one solution to have its maximum at s =0.
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Fic. 5. Path of the maximum value of g as A increases (one-dimensional
case, n; =0)

This solution would be symmetric (g(0)=0) and it has already been seen
that such solutions do not behave logarithmically as |s| — . Evidently no
non-singular solution of (16) which does not adopt the exponential rather
than logarithmic asymptotic form at any stage can be found to exist. Hence,
according to the criteria identified between equations (17) and (20), there
appears to be no physically meaningful Hot-Spot solution.

Practical attempts presented by other authors (5, 6, 10) to use the
Hot-Spot variable grouping to model thermal runaway all concentrate on
the case in which n; = 0, with large values of A in the logarithmic asymptotic
form (19),. As can be seen from Fig. 4, with the curve for A =4 being small,
it is possible in such cases to miss the essential point that g(0) is non-zero
and so to assume, by symmetry, that matching with the expansion (18)
would be possible for both positive and negative values of s. One is subtly
encouraged in this assumption by the seductive neatness of the matching
process which would occur with the logarithmic asymptotic behaviour of g.

The spatial discretizations used by (5, 6) in numerically solving a version
of equation (3) are acknowledged to become inadequate as localized thermal
runaway sets in. These solutions therefore fail to be accurate enough at a
critical stage which might otherwise have been useful for testing the assump-
tions of the Hot-Spot analysis. One test, for instance, could have been made
by comparing the computed values of the second derivative ¢,, at the peak
value of ¢ with those predicted by the asymptotic form (15). The definition
(14) of the Hot-Spot variable grouping shows that, if the Hot-Spot expan-
sion were to be valid, one should expect |, |oeax tO grow in proportion to
(t; —t)"" as t tends to t;. Numerically more accurate solutions of equation (3)
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were obtained as described below. They, in fact, showed || cqx tending to
grow in proportion to [(t;—1) |In (t; —¢t)]] " as illustrated in Fig. 6. This sort
of behaviour is entirely consistent with the analysis based on the Ignition-
Kernel variable grouping (see equations (46)).

Equation (3) was solved numerically by following the time development of
temperature at fixed, uniformly-distributed, spatial points. To do this ¢, and
successively ¢,, and ¢,,,, were calculated at each point using equation (3) and
time derivatives of equation (3), with eighth-order polynomial-fitting for-
mulae (centrally based over nine points) used for estimating the relevant
spatial derivatives. Using one order of backward differencing for increased
accuracy, time-stepping was then performed by means of a Taylor series in
¢. Step sizes were limited so as to maintain a given degree of accuracy, as
well as to prevent numerical instability. ‘Ghost’ points were used to impose
boundary conditions, such as condition (50); below.

As thermal runaway proceeds the concentration of the growth of ¢ about
a maximum value leads to reduced accuracy in the estimates of the spatial
derivatives in this region. A formula, based on the eighth-order coeflicient in
the polynomial fitting, was used to estimate this loss of accuracy at every
stage. As soon as it exceeded a given small level, mid-point interpolation
was used to add points to the discretization, thereby improving the resolu-
tion before substantial numerical errors could be accrued. The problem of
progressively adding unlimited numbers of points as the temperature con-
tinues to rise was overcome by ignoring temperatures colder than the peak
temperature by a given ‘cold-boundary’ level at which the temperature was
allowed to grow linearly. Results proved to remain accurate for quite
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moderate choices of cold-boundary level. The balance of accuracy in time-
stepping, level of point addition and cold-boundary level was optimized to
maintain a high degree of accuracy in all cases calculated.

4. Ignition-Kernel coordinate-perturbation solution
a. Derivation
With o defined as £ or —In (;—t), the variable grouping n of equation
(6), takes on a form of the Ignition-Kernel variable grouping:
r-rn r-rn

TP (G-t in (-0

Because of the small difference between this definition and the more general
one of equation (2) the symbol 7, rather than p, will be retained to
distinguish this particular variable grouping. Its relationship to the more
general form will be considered in section 5. Since ¢ grows primarily as
—In (¢, —¢t), it is convenient to make a transformation to W such that

(21)

w=*"

=ef™®, 22
el (22)
One should then expect W to behave in a non-trivial order-one fashion as a
function of 1 and & It satisfies the partial differential equation

W; +%"an +A(r+[&e ¢ Bn, (y—e7%)
n[ge ¢} w?2

r+[ée ¢ Bn W"_Wn] (23)

=W+ g‘l[g W, +W,_ +
in which, conveniently, only one nonlinear term appears. As far as possible
it is proposed to solve for W as a coordinate-perturbation expansion of the
form

W~ Wl(n)+'Y62(§)W2(n)+---+'Yk(g)wk(n) (24)

as £ — o with n fixed, using only the assumption that for all orders k, Wy (n)
is a non-singular non-trivial function of .
This immediately gives, to first order,

%nwl + 1 = er
whence
W,=1+¢,n?4. (25)

In the absence of boundary conditions the integration constant ¢, cannot be
determined at this stage. But this need not hinder an examination of higher
orders in the expansion with ¢, being left arbitrary for the time being.
Concerning the second order, all that can be said initially about v, is that it



374 J. W. DOLD

must be in the range

O =y «1. (26)
Since the possibility of having

YA&)» ¢ 27

cannot be ruled out it will be assumed, for the present, that this is in fact the
case. The second-order terms must then satisfy

My, = (1 + [ﬁ]*) W,. (28)
2 Y2

where the notation [ J* has the same meaning as in equation (10). The case
of [¥./v,]* being infinite can be discounted as this would lead to a trivial
result. It can then be shown that condition (26) can only be satisfied if
[v2/v2]* is zero. Thus (28) gives

W, = C2"72/4- (29)
Proceeding to third order and assuming, conditionally, that
£ < y(E) < 7o(€) (30)

(note that the prime denotes the conditional nature of this assumption),
gives

InWi=wj,
whence

Wi =cin’/4 (31)

where, to satisfy condition (26), the conditions that [¥4/v4]* and [y./v5]*
must be zero, have been used. Since W} is identical in form to W,, it follows
that vy, could be redefined in the manner

CI
Y2= ¥h+— V5. (32)
Co N
By repeating the process, if necessary, any term whose order is in the range
(30) can be made redundant. Assuming that such a judicious choice of vy,
has been made, one is free to define

ya=¢1 (33)

Again it follows from condition (26) that [£y,]* must be zero. Only the
first-order term in the expansion then contributes to the equation satisfied
by Wi

n T LT\ £
—W—W=W+(—+—)W——
202 T T g T2/ w,
2
&G (e, m\_ m_ ., mn4
=—+|\—+-jas-d—m=
2 (n 2)“2 “T¥emia’
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giving
¢, [1+n n*/16 n?/4
W,=2 2[—‘{ 1y +(1—cy—212
=217 512 T Txemzat AT TS n7a
2 1+
=i [estin (Lt o)) -~ +
2 2
n n
+(1-c)ey =1 (——) 4
1-ciey 4 n 1+017l2/4 (34)

Since, by hypothesis, the thermal runaway is spatially varying, ¢, cannot
have the value zero. Thus, unless ¢, has the value unity, the final term in the
expression for W, will have a singular second derivative. As argued follow-
ing equation (11) this would contribute a singular effect to the term of order
¢7? via equation (23). This is clearly unacceptable since there are no
singularities in the development of ¢ before the induction time is reached. It
follows that

¢ =1 (35)

It may be noted that the term thus eliminated from the solution for W,
arises from a pole of order n~! under the integral sign of the integral
expression (34). This, in turn, arises from the term of order 1 in a
power-series expansion of the right-hand side of the differential equation.
Condition (35) could thus have been deduced directly from the differential
equation for Wj; by eliminating the order n? term. It can also be seen that
this elimination can only be carried out, non-trivially, because of the
nonlinear term WZ/W of equation (23), whose effect is to introduce a
quadratic dependence on ¢, into the differential equation for W,.

The first-order term in the expansion is thus fully determined by applying
a smoothness condition to the term of order ¢~!. No additional boundary
condition has been necessary. In this way higher-order effects can be seen to
bring the nonlinearity of the problem into operation in enforcing a uniquely
defined form for the growth of ¢ in the Ignition Kernel, at least to first
order.

Proceeding further with the analysis in the same way, the following
fourth- and fifth-order results can be obtained:

‘Y4=‘YZ/§’
with .. .
N i 2 ny M\ &y 1* 2W, W, W12W2
—W—W=W+(—+—)W—[—]W— +
y Ve 4 2 n 2 2 s 2 w, le
1+n ( [5’5’2]*) "12 n* 3+2ﬂ2/4}
= —(1+|22] |—+——T7—=1; 36
Cz{ 2\ ) a6 Wanay (36)
and

Ys= §_27
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with

M . Y2 |* * y
‘Ws—Ws=W3—[§2(Yz‘[§_h] ﬁ)] Wo+ W3+
2 Y2 3 :
nr M\ 2W1W3 w12w3
=+ ) Wa— +
( ) W, W2

1+m n’/4 ]
C2 (1+n?4)

o e 2] 2) 3
+( 2 31 B2 v, 1 E C2 4+
4+ 3+20%4
';]—6“'(#2/4)2[63+ln(1+n2/4)]
n* 2-7%4  S5+m %16
16(1+7%4)* 2 1+79%4°

[03— 1+In(1+7%4)—

(37

Eliminating the coefficients of 12 from these equations, as required, leads to

the conditions
Y *
([ e,
Y2

[T et

The latter condition rules out the possible trivial solution for c, in the
former condition which therefore shows that [&y,/v,]* must have the value
—1. Using the degree of freedom inherent in the definition of vy, to define a
value for c,, the latter condition now becomes, for instance,

(38)

(e p)] -
3 ’ (39)
Cy = %(5 + n,).
As a result it can be deduced that vy, has the form
In
y= (40)

where

wi@)= o(‘%‘)

This result for y, can easily be refined a step further by proceeding to
sixth order. For this it can be shown that one may take

Yo = ‘Y?g = 5_1(1%4' u)z,
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giving
¢ ( )]* Wi 2W W, W, Wiwg
~We= [In W2 w1 w2 w3
§3 ( ‘L)]‘ 5+n1 1 )5+n1'n2
- +=) + —+
(%g“g 2 1+in2) 2 4
5+n5\2 42+}-q’
+( 2 ) 16 1+1n2’ “1
which leads to the condition
3 * 54n
g (e 5)] +25 o @)
from which it can be shown that, as £ tends to infinity,
S+ n;In?
p 20 gf . (43)

Since w is asymptotically smaller than £ the result of considering six
orders in the expansion has thus been to produce an expansion for W
accurate to the third order, namely,

Ol Ing5+nn?
W"1+4+g 7 4
_(n? 1+n,} In?
+¢& 1{7[03+ln(1+n2/4)]— > +O( 525). (44)

The pattern may be continued to yet higher orders, with progressive
refinements of the gauge function y, emerging in the process. In fact,
beyond the third order, every application of the condition of smoothness
involves the limiting value of an ‘expression containing the derivative of vy,
with respect to £ and thereby serves only to refine the asymptotic estimate
of v,. No further conditions, such as equation (35), emerge to determine the
third-order constant of integration cj, or any other higher-order constants,
which can thus be seen to serve as parametric constants of the expansion,
acquiring values appropriate to the particular thermal-runaway situation.

b. Properties
Using the transformation (22) the Ignition-Kernel expansion for ¢, to
third order, can bc_written as
lﬂ_§5+"1 4"7
2 1+in?

& {1;"' 1i’; ~[a;-In(1+ n2)1}+o(]€f) (45)

¢=¢-In(1+in")-
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where
a;=—-¥1+n)—cs.

It is a remarkable consequence of the nonlinearity of the problem that,
being uniquely determined, the first two orders in the Ignition-Kernel
expansion are independent of the conditions leading up to thermal runaway.
Of course, the very existence of thermal runaway, and the vital induction
parameters r; and ¢, are far from being independent.

A further notable aspect of the Ignition-Kernel expansion is its relative
independence of the three different possible topologies of the thermal-
runaway region, denoted by the values of n; defined in equation (10).
Whether the thermal runaway is localized about a point, a line or a surface,
the shape of the temperature profile is identical to first order. The reason for
this lies, most directly, with the nonlinear term of equation (34). Just as the
only nonlinear term, Wﬁ/ W, of equation (23) arises solely from the transfor-
mation of the term consisting of the second spatial derivative of ¢ (which is
independent of n) in equation (3), this term is also independent of n. This in
turn is a consequence of the exponential nature of the nonlinearity of
equation (3), which is encapsulated in the transformation (22).

In fact the relative importance of conduction, through which the effect of
the topology is felt, can be seen to decrease to asymptotically small values as
£ increases. Using (45) to evaluate the conduction- and reaction-rate terms
of equation (3) in the Ignition-Kernel region gives, to first order,

noo e+ D+ —1Dn*4
¢rv + r ¢r g 2(1 +iﬂ2)2 > (46)
€
o€

respectively. Thus the ratio of the conduction- to the reaction-rate terms can
be seen to fall off like £* as the Ignition Kernel develops. This behaviour is
consistent with the numerical findings aiready discussed and presented in
Fig. 6.

The reduction in the importance of conductive effects reflects the role of
the logarithmic factor in the definition of 7. Relatively speaking, the
temperature profile spreads out spatially or, rather, the spatial aspects are
not as rapidly concentrated as the temporal aspects.

5. Generalization of the solution
The more general Ignition-Kernel variable grouping p(r, t; @), presented
in equation (2), can be written in the form
p ot m
(e} [N+’

(47)
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where e ¢=(t,—t)/e” or {=a+¢ In effect this uses the parameter a to
normalize the Ignition-Kernel variable grouping such that when { and p are
both of order one, t;—t and (r— r;)? are both of order e°. In terms of p and {
the third-order asymptotic solution (45) for ¢ takes on the form

—a }p 1n{5+n, 1p?
1 1
+C_1[+Tnl 11@21”(“1 2)]+O( 425) (48)

It can be seen from this that a suitable choice for « can be made to remove
the constant a; from the expansion for ¢ + « to third order, absorbing the
influence of a; into the definition of p. A uniquely defined third-order form
for ¢ +a in terms of p and ¢ can thus be obtained.
An appropriate choice of a is to define a({) simply as the constant af,
giving
1.2
d+a;=¢{—-In(1+3p 2)—ln—€5+"‘ 3P

2 1+3p?
-1 1 nl %p
+¢ 2 1+h sIn(1+3pd) [+ O , (49)
where
2=(r—r,)2/e°7 e—c_tl_t
et T

(Note that if a(f) were chosen to equal a;—%(5+n;)In ¢, then the term
containing In ¢ could also have been eliminated from equation (48).) This
asymptotic form indicates that when ¢ is of order one ¢ is within order one
of —a;. At this stage ¢,, ¢,, and e?® all have similar orders of magnitude,
namely e~ Thus —q; represents a value of ¢ near which thermal conduc-
tive effects would be of significant importance in hindering the growth of ¢.
The expansion (49) is not asymptotically valid at this stage, but becomes a
more accurate representation as ¢ increases. Broadly speaking, —a; repre-
sents a threshold value of ¢ in relation to which the thermal-runaway
process takes off in earnest.

Assuming that ¢(r, t) has order-one initial or boundary conditions, a; can
thus be interpreted as some measure of the degree of supercriticality of the
problem; for highly supercritical situations a; can be expected to be large.
This is strongly borne out by numerical results presented in the next section,
where «; is found to increase rapidly as conditions become more
supercritical.

The advantage of absorbing a; into the definitions of p and ¢ now
becomes clear. Since its third-order part is proportional to a,/¢, when a; is
large the asymptotic form (45) can only be expected to be accurate for very
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large values of £ or ¢. The result of removing «; from the asymptotic form
into the definition of the variable grouping is to produce a more uniformly
accurate expansion, regardless of the value of ;. Indeed, since { grows
primarily like ¢ +«a; this asymptotic form is likely to be accurate over a
wider range of values of ¢ for greater values of ay.

A more universal underlying structure in the thermal-runaway process is
also revealed: examining the expansion (49) it can be seen that the be-
haviour of ¢ when «; is large is very much like its behaviour when ¢ is large
and a; is not large. That is, a strongly supercritical thermal runaway is
similar to a less strongly supercritical, but more highly-developed, thermal
runaway.

6. Results for a fixed-temperature container

Thermal runaway in a symmetric container of constant temperature may
be modelled using equation (3) with the conditions

¢(a,)=0, A(r0)=1, (50)

where a represents the size of the container, which may be slab-shaped,
cylindrical or spherical, for n equal to 0, 1 or 2 respectively. This formula-
tion can be identified with the more classical Frank-Kamanetskii formula-
tion (1), in which A is uniformly defined to take the value of the Frank-
Kamanetskii parameter 8 with ¢(1, t)=0. The two formulations correspond
if r and t are rescaled so that r' = r/8}, t' = ¢/§ and if a is defined to take the
value 8%, If a exceeds a critical value a. where

0-937, n=0,
aa={~/2, n=1, (51)
1-823, n=2,

then no steady-state solution of equation (3) under condition (50) can be
found: thermal runaway must ultimately occur.

In the manner described at the end of section 3, the time development of
¢, starting with the constant initial value

¢(r,0)=0 (52)

and keebing condition (50) satisfied, was obtained numerically for each
value of n. The results for t; (sketched as 1/t?) and «; are shown in Figs 7
and 8. As anticipated, ¢ increases with increasing supercriticality, starting

at the values,
—2-68, n
a =4-1-94, n
n

-1-73,

0,
1, (53)
2

’

for a very close to a.
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Fi1G. 7. Induction times ¢ for supercritical symmetric containers

g

As a increases beyond the value 3, the values of a; can be seen to
increase dramatically. In these circumstances the effects of conduction from
the walls of the containing vessel over unit time (the time, very nearly, in
which thermal runaway now occurs) introduce only a small spatial variation
near the peak value of ¢. This would correspond to a; being large in
equation (49). For much of its early development ¢ is almost homogeneous

a
10+
5 -
0-937 1-414 1-823
: j
N ! L q
! i

Fic. 8. Thermal runaway constants a; for supercritical symmetric
containers
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(2:5/a)"et
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Fic. 9. Thermal runaway constants a; for large containers

in the neighbourhood of r=0. It is found empirically from the numerical
results that, as a grows large, the values of a; can be characterized in the
form

2.5\ 1-4, n=0,
a,z(—) e x{1-3, n=1, (54)
a 14, n=2

for large values of a, as shown in Fig. 9.

Also as a grows large, the values of t; approach unity, this being the
adiabatic homogeneous induction time (9). Being a measure of departure
from homogeneity, one should expect a; to be related to the difference
t;,— 1. This is so, as sketched in Fig. 10, in which it can be seen that t; varies
like

t=~1+(1+n)a;ix0-4 (55)
for large values of «;. For near critical values of a the induction times are

large and can be seen from Fig. 7 to vary like (a —a.) .

7. Behaviour outside the Ignition Kernel

In order to examine the behaviour of ¢ at positions close to the induction
position r=r;, but not tending towards it as the induction time is ap-
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Fic. 10. Relation between induction times ¢; and thermal runaway con-
stants «; for large containers

proached, it is convenient to introduce a ‘large’ parameter X', and make the
following rescalings of r and ¢:

_t—'tl
_ea, ,

e X =—¢¢

(56)
r—r
XeXP=[le*Pp=—".
2u[X'e ™ E=[Le™ Fo ="
In terms of x and 7’ it can be seen that ¢ satisfies the partial differential
equation

n-2[XenXp

L ¢
r+2[X e X Px 7*

Tax

b ]“e‘”“‘*”- (57)

ot

When £ is within order one of X', 7' will be of order one, and order-one
values of p will correspond to order-one values of x. At this stage any
solution for ¢ in terms of x and ' must match with the asymptotic solution
(49) for ¢ in terms of p and {. By simply substituting for p and { in equation
(49) and checking that the result is indeed an asymptotic solution of
equation (57), it is readily seen that the required asymptotic solution for ¢
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in the limit as X’ tends to infinity with x and 7’ fixed takes the form

InX'5+n x?
¢+a=X—In(x*-7)— < 2 Ixz—'r'
1+ 2 > ¢
+X—1[—2ﬂ—ﬁln(x2—f)]+ O(]-n)(—,z) (58)

This solution extends the Ignition-Kernel solution (48) for ¢ in two ways.
First, it describes the behaviour of ¢ in regions left outside the Ignition
Kernel at some stage as it shrinks towards r;. Secondly, the solution is valid
beyond the induction time f; for non-zero values of x. Barring any other
causes of breakdown, such as the passage of deflagration flames or signific-
ant effects due to thermal expansion, asymptotic breakdown would ulti-
mately occur close to the line of singularity represented by

T =x2 (59)

The solution (58) is derived with x taking the role of an independent
variable while X' behaves as a large parametric constant in equation (57)
and the definitions (56). The result is still valid, however, if it is considered
to be in terms of a constant value of x, say x =1, with X" allowed to vary as
a function of r, representing, for large values of X', a coordinate-
perturbation expansion of r about r. In this way the solution can be
expressed in the form

In X5+
b+a=X-In(1-r)-2X3rm 1 ,

X 2 1-7
1+n 1 n’ X
ox el
o ——na-0|+0(5F), (60
where
r-n_2X4 oty T
e X e eX’

and where the primes of X’ and ' have been dropped because of the
difference between these definitions and the definitions (56). In particular, at
the induction time (r = 0), this gives the temperature profile

5+mInX 1+n 2X
¢(r, t1)+a1=X_ 2 X + 2XI+O(1nX2 )

3+mlnhew 1+n; (I_uzlnw
1

+ + , 1
2 he 2hoe n2w) 61

=lnfonw]-

where o =4e™/(r—r;)?. The result expressed in terms of w follows from
substituting for X in terms of r. By considering only order-one terms
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or greater, ¢(r, ;) has the following asymptotic form:

8, )=n |22

Figure 11 presents a comparison of the asymptotic solution (61) with
solutions for ¢(r, t;) obtained under the conditions described in the previous
section, for the case in which a = 3. The horizontal line would be the form of
the Hot-Spot asymptotic solution (20) for the case when n=0, having
A =4-5 (from (6)). The dotted line is the first-order asymptotic solution
(62).

These results demonstrate that, by means of the intermediate expansion
(60), the Ignition-Kernel solution does match, as it must do, with a solution
for ¢ of the form (18). It is interesting to compare the asymptotic result (62)

]+ o(1). (62)

é(r,t;)—In(d*/r?)

{a=3} 7,

""""" 1st order
---3rd order

2 1 04 107 10710710y
0 1 2 3
In(1+1n(a?/r®)

Fic. 11. Asymptotic and numerical temperature profiles at the induction
time I
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with equation (20) which would have been the corresponding result consis-
tent with a valid Hot-Spot solution. As with all the results obtained in the
Ignition-Kernel analysis, the asymptotic form (62) for ¢ is uniquely deter-
mined to first order.

Finally, the line of singularity of equation (60), beyond or within a
neighbourhood of which no finite solution for ¢ is possible, is now given by

T=1,
or
_ (’_’1)2
= ht
(r— ’1)2 41In[4/(r— ’1)2]
=f+ 2 /{ln[ =) ]+a,+o(l)}. (63)

Although deflagration and thermal-expansion effects (arising from a fuller
consideration of the combustion processes than is possible with equation (1))
may invalidate equation (60) before these times are reached, this result does
reveal a constraint on the time available for such effects to emerge before
the thermal-runaway process itself would drive the reaction towards its
completion. A fuller elaboration of this point, with its implications for the
nature of the ignition process, will be made in a subsequent paper (4).

8. Condusions

As spatially varying thermal runaway develops it takes on a well-defined
form:

_‘('-_f)] , 64)

~— —t+
¢ ln[t’ f a—In(t;,—1)

which is remarkably independent of both the conditions leading to thermal
runaway and the topology of the thermal-runaway region. The asymptotic
expansion, describing this development, is found to agree well with careful
numerical solutions of the governing equation. It also reveals in its deri-
vation the manner in which the nonlinearity of the problem and the effect
of conduction conspire to impose such a well-defined form on the rapidly
rising temperature profile.

An underlying structure in the thermal-runaway process is revealed, in
which a strongly supercritical thermal runaway (where the relative effects of
conduction are initially small) is found to be very much like a less strongly
supercritical, but more highly-developed, thermal runaway. This develop-
ment is characterized by the progressive diminution towards zero of the
relative effect of conduction compared with the reaction rate near the peak
temperature value; locally, the rate of self-heating accelerates dramatically
while, in comparison, the conductive impediment to the temperature growth
diminishes.
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