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Abstract

We show that for symplectic group actions (not necessarily Hamiltonian), the reduced space defined
using the cylinder-valued momentum map can also be achievedby passing to any Hamiltonian cover and
then performing standard (Meyer-Marsden-Weinstein) reduction. At the same time we give a classifica-
tion of all Hamiltonian coverings of a given symplectic group action. The main properties of the lifting
of a group action to a cover are studied.

Keywords: lifted group action, symplectic reduction, universal covering, Hamiltonian holonomy, mo-
mentum map

Introduction

There are many instances of symplectic group actions which are not Hamiltonian—ie, for which there is no
momentum map. This can occur both in applications [10] as well as in fundamental studies of symplectic
geometry [1, 2, 5]. In such cases it is possible to define a “cylinder valued momentum map” [3], and then
for example to perform symplectic reduction with respect tothis map [13, 14]. An alternative approach
is to pass to the universal cover, on which the action is always Hamiltonian, and then to perform ordinary
symplectic reduction there. The principal purpose of this study is to relate the two procedures. In short we
show that after appropriate projection the two reduced spaces so-constructed are the same.

In more detail, suppose a connected Lie groupG acts on a connected manifoldM, and letN be a
covering ofM. Then it may not be possible to lift the action ofG, but there is a natural lift to universal
covers giving an action of̃G on M̃. This can then be used to define an action ofG̃ on the given cover
N. This general construction must be well-known, but we were unable to find it in the literature, and
consequently have established the main results about theselifted actions in the first section. For example,
sinceN can be written as a quotient of̃M by a subgroup of the group of deck transformations, we use
this to determine exactly which subgroup ofG̃ acts trivially onN. We also determine the relation between
isotropy subgroups of theG action onM and the lifted action onN, and we show that the action onM is
proper, then so is the lifted action onN.

In Section 2 we consider the case whereM is a symplectic manifold, andG acts symplectically on
M. We consider the covers ofM for which the action is Hamiltonian and which form the category of
Hamiltonian covers ofM. The “largest” Hamiltonian cover ofM is of course its universal cover̃M; we
give an explicit expression for its momentum map (Proposition 2.3) and we use it to define a subgroup
of the fundamental group ofM whose corresponding set of subgroups classifies the Hamiltonian covers
(Corollary 2.7). There is also a“smallest” such cover, denoted̂M and which was first introduced in [12],
where it is called theuniversal covered spaceof M; we give here a different interpretation of it.

In Section 3, we consider the cylinder valued momentum map of[3] (where it is defined in a different
manner, and called the“moment ŕeduit”). In Theorem 3.4 we see that reduction can be carried out in
two equivalent ways. One can either reduceM with respect to the cylinder valued momentum map or,
alternatively, one can lift the action to the universal covering M̃ (or on any other Hamiltonian cover) and
then carry out (standard) symplectic reduction on it using its momentum map. The result is that the natural
projection of this reduced space (inherited from the covering projection) yields the original reduced space;
that is, both reduction schemes are equivalent.
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1 Lifting group actions to covering spaces

1.1 The category of covering spaces

We begin by recalling a few facts about covering spaces. Manyof the details can be found in any intro-
ductory book on Algebraic Topology, for example Hatcher [6]. Let (M,z0) be a connected manifold with
a chosen base pointz0, and letqM : (M̃, z̃0) → (M,z0) be the universal covering. We realize the universal
cover as the set of homotopy classes of paths inM with base pointz0. For definiteness, we take the base
point in M̃ to be the homotopy class ˜z0 of the trivial loop atz0. Throughout, ‘homotopic paths’ will mean
homotopy with fixed end-points, and all paths will be parametrized byt ∈ [0,1].

Any coverpN : (N,y0)→ (M,z0) has the same universal cover(M̃, z̃0) as(M,z0), and the covering map
qN : (M̃, z̃0) → (N,y0) can be constructed as follows: Let ˜z∈ M̃ and letz(t) be a representative path inM,
soz(0) = z0. By the path lifting property of the covering mappN, z(t) can be lifted uniquely to a pathy(t)
in (N,y0). ThenqN(z̃) = y(1).

LetC be the category of all covers of(M,z0). The morphisms are the covering maps. Since any element
(N,y0) ∈ C also shares̃M as universal cover, it sits in a diagram,

(M̃, z̃0)
qN
−→ (N,y0)

pN−→ (M,z0).

Note that with this notation for the covering maps, the mapM̃ → M can be written both asqM and aspM̃.

It is well-known that this category is isomorphic to the category of subgroups of the fundamental group
π1(M,z0) of M, where the morphisms are the inclusion homomorphisms of subgroups. The isomorphism
is defined as follows. LetpN : (N,y0) → (M,z0) be a cover. ThenΓN := pN∗(π1(N,y0)) is the required
subgroup ofΓ := π1(M,z0). ΓN consists of the homotopy classes of closed paths in(M,z0) whose lift to
(N,y0) is also closed, and the number of sheets of the coveringpN is equal to the indexΓ : ΓN. Note that
sinceM̃ is simply connected,ΓM̃ is trivial.

The inverse of this isomorphism can be defined using deck transformations. LetΓ = π1(M,z0). Then
Γ is the fibre ofqM overz0, and it acts onM̃ by deck transformations defined via the homotopy product:
if γ ∈ Γ and z̃∈ M̃ thenγ ∗ z̃ gives the action ofγ on z̃. Then givenΓ1 < Γ, defineN = M̃/Γ1, and put
y0 = Γ1z̃0. Then from the long exact sequence of homotopy, it follows that π1(N,y0) ≃ Γ1. Furthermore,
if Γ1 < Γ2 < Γ then there is a well-defined morphism (covering map)p : N1 → N2, whereNj = M̃/Γ j ,
obtained from noting that anyΓ1-orbit is contained in a uniqueΓ2-orbit, so we putp(Γ1z̃) = Γ2z̃.

Let (N1,y1) be a cover of(M,z0) with groupΓ1, and letΓ2 = γΓ1γ−1 be a subgroup conjugate to
Γ1 (whereγ ∈ Γ). ThenN2 = M̃/Γ2 is diffeomorphic toN1, but the base point is nowy2 = Γ2z̃0. The
diffeomorphism is simply induced from the diffeomorphism ˜z 7→ γ · z̃of M̃, which does not in general map
y1 to y2.

If Γ1�Γ (normal subgroup), then the cover(N,y1) is said to be anormal cover.

Let us emphasize here that we viewΓ = π1(M,z0) both as a group acting oñM by deck transformations,
and as a discrete subset ofM̃—the fibre overz0. In particular, forγ ∈ Γ,

γ∗ z̃0 = γ (1.1)

In other words, ˜z0 is the identity element inΓ.

1.2 Lifting the group action

Now let G be a connected Lie group acting on the connected manifoldM, and letpN : (N,y0) → (M,z0)
be a covering. To define the lifted action onN, we first describe the lift tõM and then show it induces an
action onN, using the coveringqN : M̃ → N.
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The action ofG onM does not in general lift to an action ofG onM̃ but of the universal cover̃G, which
is also defined using homotopy classes of paths, with base point the identity elemente. The covering map
is denotedqG : G̃→ G. So if g̃ is represented by a pathg(t) thenqG(g̃) = g(1). The product structure in
G̃ is given by pointwise multiplication of paths: if̃g1 is represented by a pathg1(t) andg̃2 by g2(t), then
g̃1g̃2 is represented by the patht 7→ g1(t)g2(t).

Definition 1.1 Let g̃∈ G̃ be represented by a pathg(t) (with g(0) = e), andz̃∈ M̃ be represented by a path
z(t) (with z(0) = z0). Then we definẽg · z̃ to beỹ∈ M̃, where ˜y is the homotopy class represented by the
patht 7→ g(t) ·z(t). It is readily checked that the homotopy class of this path depends only on the homotopy
classes̃g andz̃.

With this definition for the action of̃G on M̃, it is clear that the following diagram commutes:

G̃× M̃ −→ M̃× M̃
↓ ↓

G×M −→ M×M
(1.2)

where the vertical arrows areqG×qM andqM ×qM respectively, and the horizontal arrows are the group
actions. In particular,

ỹ = g̃· z̃ =⇒ y = g ·z (1.3)

where forz̃∈ M̃ we denote its projection toM by z, and similarly with elements of̃G. Note for future
reference that it follows immediately from (1.3) that the isotropy subgroups satisfy

g̃∈ G̃z̃ =⇒ g∈ Gz. (1.4)

Remark 1.2 A second approach to defining the action ofG̃ on M̃ is as follows. The action ofG gives rise
to an ‘action’ of the Lie algebrag. That is, to eachξ ∈ g there is associated a vector fieldξM on M; these
are the so-called generating vector fields of theG-action. LetN →M be any covering. The covering map is
a local diffeomorphism, so the vector fieldsξM can be lifted to vector fieldsξN onN. Because this covering
map is a local diffeomorphism, this gives rise to an ‘action’of g onN. Nowg is the Lie algebra of a unique
simply connected Lie group̃G. To see that the vector fields onN are complete, so defining an action ofG̃,
one needs to compare the local actions onM andN. It is not hard to see that the two definitions of actions
of G̃ are equivalent.

Lemma 1.3 Let g(t) be a path in G with g(0) = e, and z(t) a path in M with z(0) = z0 and z(1) = z1. Then
the following three homotopy classes coincide:

g(t) ·z(t), [g(t) ·z0]∗ [g(1) ·z(t)], z(t)∗ [g(t) ·z1],

where∗ is the homotopy product of paths.

Proof. Denote the three curves bya(t),b(t) andc(t) respectively. So for example,

c(t) =

{
z(2t) if t ∈ [0, 1

2]

g(2t−1) ·z1 if t ∈ [1
2,1]

.

A homotopy betweena andb can be given by

A(t,s) =

{
g((1+s)t) ·z((1−s2)t) if t ≤ 1

1+s

g(1) ·z((1+s)t−s) if t ≥ 1
1+s

.

Then,A(t,0) = a(t) andA(t,1) = b(t). It is readily checked thatA(t,s) is continuous. A similar homotopy
can be defined betweena andc. 2

Recall thatΓ := π1(M,z0) acts onM̃ by deck transformations; that is, givenγ ∈ Γ and z̃∈ M̃ then
γ · z̃ := γ∗ z̃. This action is transitive on fibres of the covering mapqM. Furthermore, the fibreq−1

M (z0) is the
Γ-orbit of the constant loop ˜z0 which we identify withΓ, see equation (1.1).
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Proposition 1.4 The action ofG̃ onM̃ commutes with the deck transformations. Furthermore, foreach
g̃∈ π1(G,e) the homotopy class g(t) ·z0 lies in the centre ofπ1(M,z0).

Proof. Let g̃∈ G̃, δ ∈ Γ andz̃∈ M̃ with qM(z̃) = y∈ M. We want to show that̃g· (δ · z̃) = δ · (g̃ · z̃). By
Lemma 1.3 (applied withγ = δ∗ z̃), we have

g̃· (δ · z̃) = [δ∗ z̃]∗ [g̃·y],

while again by Lemma 1.3 (now withγ = z̃),

δ · (g̃· z̃) = δ∗ [z̃∗ (g̃·y)].

The result follows from the associativity of the homotopy product of paths.
Now let g̃∈ π1(G,e) andδ ∈ Γ. We want to show that[g̃ · z̃0]∗ δ = δ∗ [g̃ · z̃0], wherez̃0 is the constant

loop atx. By Lemma 1.3,δ∗ [g̃· z̃0] = g̃·δ = [g̃· z̃0]∗ δ (sinceg(1) = e), as required. 2
As a particular example, this leads to the following well-known result

Corollary 1.5 π1(G,e) lies in the centre of̃G. So the following is a central extension:

1→ π1(G,e) → G̃
qG−→ G→ 1. (1.5)

Proof. This follows by applying the proposition to the left action of G̃ on itself. 2
Now we are in a position to define the action ofG̃ on an arbitrary cover(N,y0) of (M,z0). As in §1.1,

let ΓN = pN∗(π1(N,y0)) < Γ. So,N ≃ M̃/ΓN. That is, a point inN is aΓN-orbit of points inM̃.

Definition 1.6 TheG̃-action onN is defined simply by

g̃·ΓNz̃ := ΓN(g̃· z̃).

This is well-defined as the actions of̃G andΓ commute, by Proposition 1.4. It is clear too that the
analogues of (1.2), (1.3), and (1.4) hold withN in place ofM̃.

Proposition 1.7 Let pN : (N,y0) → (M,z0) be a covering map. ThẽG-orbits on N are the connected
components of the inverse images under pN of the orbits on M. More precisely, if y∈ p−1

N (z) ⊂ N thenG̃·y
is the connected component of p−1

N (G·z) containing y. In particular if the G-orbits in M are closed, so too
are theG̃-orbits in N.

Proof. Let Z ⊂ M be any submanifold. ThenZ′ := p−1
N (Z) is a submanifold ofN and the projection

pN|Z′ : Z′ → Z is a covering, and ifZ is closed so too isZ′. Moreover, if Z is G-invariant (henceG̃-
invariant), then by the equivariance ofpN so isZ′, and if Z is a single orbit, thenZ′ is a discrete union of
orbits: discrete becausepN is a covering. SincẽG is connected, the orbits are the connected components
of Z′. 2
1.3 The kernel of the lifted action

Let g̃∈ π1(G,e) be represented by a pathg(t), with g(1) = e. The pathg(t) ·z0 is an element ofπ1(M,z0).
Moreover, homotopic loops inG give rise to homotopic loops inM, so this induces a well-defined homo-
morphism

az0 : π1(G,e) → π1(M,z0).
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In short, if g̃ ∈ π1(G,e) and z̃0 is the trivial homotopy class atz0, thenaz0(g̃) = g̃ · z̃0. It follows from
Proposition 1.4 that image(az0) ⊂ Z (π1(M,z0)) (the centre ofπ1).

Note that, ifz0 is a fixed point for theG-action thenaz0 is trivial (that is,∀g̃∈ G̃, az0(g̃) = z̃0, the trivial
loop in π1(M,z0)).

Proposition 1.8 (i) K := keraz0 is independent of the choice of z0, and acts trivially onM̃ and hence on
every cover of M.

(ii) If (N,y0) is a cover of(M,z0), with associated subgroupΓN of π1(M,z0), then KN := a−1
z0

(ΓN) is
independent of the choice of base point y0 in N, and acts trivially on N.

(iii) If G acts effectively on M then GN := G̃/KN acts effectively on N.

Note that since the domain ofaz0 is π1(G,e) which is in the centre of̃G, it follows thatKN is a normal
subgroup ofG̃. And with the notation of the proposition,K = KM̃ sinceΓM̃ is trivial. We will write

G′ := G̃/K (1.6)

for the group acting oñM.

A particular case is where the action ofG onM has a fixed point. Ifz0 is such a fixed point thenaz0 = 0
andK = π1(G,e) so the action onM lifts to an action ofG on M̃, and hence on any other coverN. More
generally this is true if any (and hence every)G-orbit in M is contractible inM, since in that case tooaz0 is
trivial.

Proof. (i) Let η be any path fromz0 to z′0. Thenη induces an isomorphismη∗ : π1(M,z0) → π1(M,z′0),
by η∗(γ) = η−1∗ γ∗η. With this notation,az′0

= η∗ ◦az0 so both have the same kernel. ThatK acts trivially

on M̃ follows from the definition ofaz0: let z̃∈ M̃ andg̃∈ K, theng̃· z̃= g̃ · (z̃0 ∗ z̃) = az0(g̃)∗ z̃= z̃ (using
Lemma 1.3).
(ii) The argument is similar to part (i). Lety′0 ∈ N, let z′0 = pN(y′0) ∈ M and letη be any path fromy0 to y′0,
with η̄ its projection toM. The result follows from the fact that the following diagramcommutes:

π1(G,e)

π1(M,z0) π1(M,z′0)

π1(N,y0) π1(N,y′0)

az0
az′0

pN∗ p′N∗

η̄∗

η∗

Writing N = M̃/ΓN, if g̃ ∈ a−1
z0

(ΓN) then g̃ ∈ KΓN and, g̃ΓNz̃⊂ ΓNKz̃ = ΓNz̃ so g̃ acts trivially (using
Proposition 1.4 and part (i)).
(iii) Supposẽg∈ G̃ acts trivially onN, so for ally∈N, g̃·y= y. Projecting toM, this implies thatg(1) ·z= z
(for all z∈ M) sog(1) ∈ ∩z∈MGz = {e}. Thusg̃∈ π1(G,e).

To prove the statement, we first consider the caseN = M̃. If g̃ 6∈ K thenaz0(g̃) 6= z̃0 ∈ π1(M,z0). Since
π1(M,z0) acts effectively (by deck transformations) on the fibreq−1

M (z0) ≃ π1(M,z0) ⊂ M̃ it follows that
az0(g̃) acts non-trivially, which is in contradiction with the assumption that̃g acts trivially.

Now supposẽg ∈ G̃ acts trivially onN. We haveg̃ΓN z̃0 = ΓN z̃0, so thatg̃ ∈ ΓNK = a−1
z0

(ΓN) as
required. 2
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1.4 Isotropy subgroups

Fix y0 ∈ N and letg̃∈ G̃y0, the isotropy subgroup aty0 for theG̃ action onN. It follows thatqG(g̃) ∈ Gz0,
wherez0 = pN(y0), since g̃ · y = y ⇒ g · z = z. Consequently,̃Gy0 is a subgroup ofΛz0 := q−1

G (Gz0).
Restricting the exact sequence (1.5), we have

1→ π1(G,e) → Λz0

qG−→ Gz0 → 1. (1.7)

The groupΛz0 consists of those homotopy classes of pathsg(t) with g(0) = eandg(1)∈Gz0. It follows that
g(t) · z0 is a closed loop, so determines a well-defined element ofπ1(M,z0). That is, the homomorphism
az0 described above extends naturally to a homomorphism

āz0 : Λz0 → π1(M,z0).

In contrast toaz0, this homomorphismdoesdepend onz0. Let Lz0 be the kernel of this homomorphism
(which obviously containsK), andL(N,y0) := ā−1

z0
(ΓN) (which containsKN).

Recall thatGN := G̃/KN from Proposition 1.8.

Proposition 1.9 The isotropy subgroups for the lifted actions are as follows:

(i) at z̃0 for theG̃-action onM̃ it is G̃z̃0 = Lz0 and for G′ it is G′
z̃0

= Lz0/K

(ii) at y0 for theG̃-action on N it isG̃y0 ≃ L(N,y0) and consequently,(GN)y0 ≃ L(N,y0)/KN.

Proof. We just prove (ii) as (i) is a special case. Letg̃∈ G̃ be represented by a pathg(t). Theng̃·y0 = y0

impliesg(1) ∈ Gz0; that is,g̃∈ Λz0. Usingy0 = ΓNz̃0, we haveg̃ ·ΓNz̃0 = ΓNz̃0 and this is equivalent to
g̃· z̃0 ∈ ΓNz̃0 = ΓN (as in (1.1)); that is, ¯az0(g̃) ∈ Γ, so we are done. 2
Corollary 1.10 If the G-action on M is free, then so is the GN-action on N.

Proof. SinceGz0 is trivial, we haveΛz0 = π1(G,e) and hence ¯az0 = az0 and thusL(N,y0) = KN, so(GN)y0

is trivial. 2
To identify the isotropy subgroupsLz0/K or L(N,y0)/KN with subgroups of the isotropy subgroupGz0

we define a homomorphism

ψz0 : Gz0 −→ coker(az0)
g 7−→ g̃·z0 mod image(az0)

(1.8)

whereg̃ is any lift of g. We takeright cosets, sog modH = Hg

The homomorphismψz0 is well defined, for given any two lifts̃g1 andg̃2 of g∈Gz, defineg̃0 ∈ π1(G,e)
to be the homotopy product of the pathg1(t) and the reverse path ofg2(t) (which goes fromg to e):

g0(t) =

{
g1(2t) for t ∈ [0, 1

2]

g2(2−2t) for t ∈ [1
2,1]

.

Theng̃1 · z̃0 = (g̃0 · z̃0)∗ (g̃2 · z̃0) ∈ image(az0).(g̃2 · z̃0), as required.

The homomorphism ¯az0 induces a morphism between two short exact sequences, the lower two rows
of the following commutative diagram:

6
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K Lz0 Gz0

π1(G,e) Λz0 Gz0

π1(M,z0) π1(M,z0) 1

az0 āz0

pG

=

where the first row consists of the kernels of the vertical homomorphisms.

Proposition 1.11 (i). There is an exact sequence

0→ K → Lz0 → Gz0

ψz0−→ coker(az0) → coker(āz0) → 0 (1.9)

where the homomorphismψz0 : Gz0 → coker(az0) is defined above (1.8). Consequently,

(ii). G′
z̃0

= kerψz0, which is a subgroup of Gz0

(iii). (GN)y0 is isomorphic toψ−1
z0

(ΓN mod image(az0)).

Since image(āz0) is not in general normal inπ1(M,z0), coker(āz0) here is just the set of right cosets of
image(āz0) in π1(M,z0); and exactness at coker(āz0) means only that the map coker(az0) → coker(āz0) is
surjective (which is obvious as ¯az0 is an extension ofaz0). The first part of the proposition would be an
instance of the snake lemma, but for the fact that the groups here are not all abelian.

Proof. (i) We show exactness at each ‘node’ in turn (the proof is justthat of the snake lemma):
• Exactness atK is clear, for the homomorphism is the restriction ofπ1(G,e) → Λz0 which is injective.
• Supposeℓ ∈ Lz0 is such thatpG(ℓ) = e∈ Gz0. Thenℓ ∈ π1(G,e) (by definition). And sinceℓ ∈ Lz0 it

follows thataz0(ℓ) = āz0(ℓ) = 1. Soℓ ∈ K, as required for exactness atLz0.
• Now supposeg∈ Gz0 is such thatψz0(g) = 1, i.e., such that̃g·z∈ image(az0) for someg̃∈ p−1

G (g)⊂

Λz0. Then∃h̃∈π1(G,e) such that̃g·z= h̃·z. Now considerσ = h̃−1g̃∈G. Clearly,pG(σ)= pG(h̃−1)pG(g̃)=

pG(g̃) = g soσ∈ Λz0. Moreover, ¯az0(σ) = āz0(h̃)−1āz0(g̃) = 1∈ π1(M,z0). That is,σ ∈ Lz0 andpG(σ) = g,
sog∈ pG(Lz0) as required.

• Exactness at coker(az0). Write j : coker(az0) → coker(āz0). Let γ ∈ ker( j) ⊂ π1(M,z0). Thenγ ∈
image(āz0), so∃g̃∈ Λz0 such thatγ = āz0(g̃). ThenpG(g̃) = g∈ Gz0, andψz0(g) = γ as required.

• Exactness at coker(āz0). As already stated above, this is just the fact that ¯az0 is an extension ofaz0.
(ii) kerψz0 = image[Lz0 → Gz0] ≃ Lz0/K which is(G′)z̃0 by Proposition 1.9.
(iii) If we replaceπ1(M,z0) by ∆ := π1(M,z0)/ΓN in the bottom row of the diagram above, thena′z0

:
π1(G,e) → ∆ has kernel equal toKN = a−z0

1(ΓN) andā′z0
: Λz0 → ∆ has kernel equal toL(N,y0). The proof

follows now in the same way as the proof of (ii). 2
Notice firstly that the connected component of the identityGo

z0
of Gz0 is contained in kerψz0. To see

this it is enough to takẽg to be a path contained entirely inGo
z0

. Secondly, notice that

image(ψz0) ≃
image(āz0)

image(az0)

so that for a given isotropy subgroupGz0, the larger the difference between the images ofaz0 andāz0, the
smaller the isotropy subgroupG′

z̃.

Remark 1.12 The argument in the second part of the proof of Proposition 1.4 can only be applied to
elements of image(āz0) if δ ∈ F := Fix(Gz0,M), so thatg(1) · δ = δ. This means that image(āz0) merely
centralizes the image ofπ1(F,z0) in π1(M,z0).

7
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Theorem 1.13 Let N be a cover of M, and suppose the G-action on M is effectiveand proper. Then the
GN-action on N is also proper.

Proof. SinceG acts properly onM there is aG-invariant Riemannian metric onM. This metric can be
lifted by the covering map to one onN. Since the covering map is equivariant, it follows that the lifted
metric is alsoGN-invariant.

To show that action is proper, we need to show that the action mapΦN : GN×N → N×N is closed and
has compact fibres. The fibreΦ−1

N (x,y) = {(g,y) ∈ GN ×N | g ·x = y}. If this is non-empty, andh ·x = y
thenΦ−1

N (x,y) ≃ h(GN)x, which is compact since theG-action is proper, using Proposition 1.11.
To see that the action map is closed, consider a sequence(gi,xi) in GN ×N for which (gi · xi ,xi) con-

verges to(y,z). Then of coursexi → z. We claim thatgi ·z→ y. This is because,

d(gi ·z,y) ≤ d(gi ·z,gi ·xi)+d(gi ·xi ,y) = d(z,xi)+d(gi ·xi ,y),

whered is theGN-invariant metric onN defined above. Both terms on the right tend to 0 so thatd(gi ·z,y)→
0 as required.

Now, by Proposition 1.7 theGN-orbits inN are closed and hence there is ang∈ GN with y = g·z. That
is,gi ·z→ g·z. Consequently,gi(GN)z→ g(GN)z in GN/(GN)z. By taking a slice to the proper(GN)z-action
onG, this can be rewritten asgihi → g in GN, for some sequencehi ∈ (GN)z. Since(GN)z is compact,(hi)
has a convergent subsequence,hik → h. Thengik → gh−1. It follows therefore that(gik ,xik) → (gh−1,z)
andΦN(gh−1,z) = (y,z). 2
Remark 1.14 There is an alternative argument for proving this theorem asfollows. Any invariant (Rie-
mannian) metric onM lifts to an invariant metric onN. By a standard result, the groupI(N) of isometries
of N acts properly onN (see [15, problem 26, p.31] and [4, p.106], although neithergive a detailed proof).
Since the action ofGN is by isometries, it follows from the monomorphismA : GN → I(N) that the action
of GN is proper. The argument we give is more direct, using the covering structure of the action.

2 Hamiltonian coverings

For the remainder of the paper, we assume the manifoldM is endowed with a symplectic formω and the
Lie groupG acts by symplectomorphisms. Notice that any coverpN : N → M of M is also symplectic with
form ωN := p∗Nω and that, moreover, the lifted action of̃G (or GN) on N is also symplectic. It follows
that the category of all symplectic coverings of(M,ω) coincides with the category of all coverings ofM.
Furthermore, the deck transformations onM̃ are also symplectic.

Symplectic Lie group actions are linked at a very fundamental level with the existence ofmomentum
maps. Let g be the Lie algebra ofG andg∗ its dual. We recall that a momentum mapJ : M → g∗ for
the symplecticG-action on(M,ω) is defined by the condition that its componentsJξ := 〈J,ξ〉, ξ ∈ g, are
Hamiltonian functions for the infinitesimal generator vector fieldsξM(m) := d

dt

∣∣
t=0 exptξ ·m. The existence

of a momentum map for the action is by no means guaranteed; however, it could be that the lifted action to
a cover has this feature. For example, if the cover is simply connected (as is̃M), the action necessarily has
a momentum map associated. This remark leads us to the following definitions.

Definition 2.1 Let (M,z0,ω) be a connected pointed symplectic manifold endowed with an action of the
connected Lie groupG. We say that the smooth coveringpN : (N,y0)→ (M,z0) of (M,z0) is aHamiltonian
coveringof (M,z0,ω) if N is connected and the lifted action of̃G (or GN) on (N,ωN) has a momentum
mapJN : N → g∗ associated.

If the G-action onM is already Hamiltonian, then every cover is naturally a Hamiltonian cover, so the
interesting case is where the symplectic action onM is not Hamiltonian.

The connectedness hypothesis onN assumed in the previous definition implies that any two momentum

8
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maps of theGN-action onN differ by a constant element ing∗. We will assume thatJN is chosen so that
JN(y0) = 0. (This choice should perhaps be denotedJ(N,y0), but we will refrain from the temptation!)

Definition 2.2 Let (M,z0,ω) be a connected pointed symplectic manifold andG a Lie group acting sym-
plectically thereon. LetH be the category whose objects Ob(H) are the pairs

(pN : (N,y0,ωN) → (M,z0,ω), JN),

where pN a Hamiltonian covering of(M,z0,ω) and JN : N → g∗ is the momentum map for the lifted
G̃- (or GN-) action onN satisfyingJN(y0) = 0, and whose morphisms Mor(H) are the smooth mapsp :
(N1,y1,ω1) → (N2,y2,ω2) that satisfy the following properties:

(i) p is a symplectic covering map

(ii) p is G̃–equivariant

(iii) the following diagram commutes:

(N1,y1) (N2,y2)

(M,z0)

g∗

����R ����	����� ����I-
pN1 pN2

JN1 JN2

p

We will refer toH as the category ofHamiltonian coveringsof (M,z0,ω).

It should be clear that the ingredientsωN andJN are both uniquely determined bypN : (N,y0)→ (M,z0)
(given the symplectic form onM), soH is in fact a (full) subcategory of the category of all coverings of
(M,z0).

The category of the Hamiltonian coverings of a symplectic manifold acted upon symplectically by a
Lie algebra was studied in [12]. We will now use the developments in Section 1 to recover those results
in the context of group actions. The study that we carry out inthe following paragraphs sheds light on the
universal covered spaceintroduced in [12] and additionally will be of much use in Section 3 where we will
spell out in detail the interplay between Hamiltonian coverings and symplectic reduction.

2.1 The momentum map on the universal cover

We now start by giving an expression for the momentum map associated to theG̃-action on the universal
coverM̃ of M. As far as this momentum map is concerned, it does not matter if we consider thẽG or the
G′ action (see (1.6)) since both have the same Lie algebra and the momentum map depends only on the
infinitesimal part of the action. Recall that theChu mapΨ : M → Z2(g) is defined by

Ψ(z)(ξ, η) := ω(z)(ξM(z), ηM(z)) . (2.1)

for ξ,η ∈ g.

Proposition 2.3 Let (M,ω) be a connected symplectic manifold acted upon symplectically by the con-
nected Lie group G. Then, thẽG-action on(M̃, ω̃ := q∗Mω) has a momentum map associatedJ : M̃ → g∗

9



Symplectic Group Actions and Covering Spaces

that can be expressed as follows: realizeM̃ as the set of homotopy classes of paths in M with base point
z0. Let x̃∈ M̃ and x(t) an element in the homotopy classx̃. Then, for anyξ ∈ g

〈J(x̃), ξ〉 =

∫

[0,1]
x∗(iξM

ω) =

∫ 1

0
ω(x(t))

(
ξM(x(t)), ẋ(t)

)
dt. (2.2)

If x̃∈ π1(M,z0) andỹ∈ M̃ thenx̃∗ ỹ∈ M̃ and

J(x̃∗ ỹ) = J(x̃)+J(ỹ). (2.3)

The non-equivariance cocycleσJ : G̃→ g∗ of J is given by

〈σJ(g̃),ξ〉 =

∫ 1

0
Ψ(z0)(ξt , ηt) dt, (2.4)

for any ξ ∈ g, g̃ ∈ G̃, and g(t) a curve in the homotopy class of̃g, whereξt = Adg(t)−1ξ and ηt =
(
TeLg(t)

)−1
ġ(t), andΨ is the Chu map defined in (2.1) above.

Momentum maps are only defined up to a constant; the one in (2.2) is normalized to vanish on the
trivial homotopy class̃z0 at z0. The expression (2.2) is very similar to the one in [9] for themomentum
map of the action of a groupG on the fundamental groupoid of a symplecticG-manifold.

Proof. Let α := iξM
ω. Since this 1-form onM is closed, it follows that

∫
x∗α depends only on the

homotopy class (indeed homology class) ofx; that is,J(x̃) is well-defined by (2.2).
To show that thatJ is a momentum map for thẽG-action onM̃, we use the Poincaré Lemma on the

closed formα. Cover the image ofx(t) in M by contractible well-chained open sets (open inM), U1, . . . ,Un,
with x(0) = z0 ∈ U1 andx(1) ∈ Un. We can enumerate these sets consecutively along the curvex(t), and
let zj = x(t j ) ∈U j ∩U j+1 lie on the curve, andz0 = x(0) (as always) andzn = x(1).

On eachU j we can writeα = dφ j for some functionφ j (in fact a local momentum forξM). Then on
Ui ∩U j , µi, j := φi −φ j is constant.

Now, with I = [0,1] andI j = [t j , t j+1] we have

∫

I
x∗α = ∑

j

∫

I j

x∗dφ j = ∑
j

(φ j(zj+1)−φ j(zj)) = φn(zn)−φ1(z0)−
n−1

∑
j=1

µj+1, j . (2.5)

The covering mapqM : M̃ → M, x̃ 7→ x(1) identifies the tangent spaceTx̃M̃ with Tx(1)M. Let ṽ∈ Tx̃M̃

arbitrary andv = T̃xqM(ṽ). Thus, differentiating (2.5) at ˜x in the directioñv∈ T̃xM̃ gives

d

(∫
x∗α

)
(ṽ) = dφn(x(1))(v) = α(x(1))(v) = ω(ξM,v) = ω̃(ξM̃, ṽ),

as required.
The identity (2.3) follows from a straightforward verification.
We conclude by computing the non-equivariance cocycleσJ. By definition, for anỹg∈ G̃ andξ ∈ g

σJ(g̃) = J(g̃· x̃)−Ad∗
g̃−1J(x̃),

for any x̃∈ M̃. Takex̃ = z̃0 and use (2.2). The formula forσJ then follows by recalling thatJ(z̃0) = 0 and
that theG-action onM is symplectic. 2
Remark 2.4 If the Chu map vanishes at one point, then clearlyJ is coadjoint-equivariant. This happens if
there is an isotropic orbit inM (and hence iñM).
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2.2 The Hamiltonian holonomy and Hamiltonian coverings

Definition 2.5 Let (M,z0,ω) be a connected pointed symplectic manifold with symplecticaction of the
connected Lie groupG. LetJ : M̃ → g∗ be the momentum map defined in Proposition 2.3. TheHamiltonian
holonomyH of the G-action on(M,ω) is defined asH = J(Γ), and for an arbitrary symplectic cover
pN : N → M, the homonomy group isHN := J(ΓN), whereΓ = π1(M,z0) andΓN = (pN)∗

(
π1(N,y0)

)
(as

in §1).

Proposition 2.6 The symplectic cover pN : (N,y0) → (M,z0) is Hamiltonian if and only ifHN = 0.

Proof. If the G̃-action onN is Hamiltonian, then the momentum map is well-defined. This means that
if γ is any closed loop inN, thenJ(γ) = 0, whereγ ∈ π1(M,z0) is the image under(pN)∗ of the homotopy
class ofγ. Conversely, ifHN = 0 then the mapJ : M̃ → g∗ descends to a mapJN : M̃/ΓN → g∗, and as
described in §1,N ≃ M̃/ΓN. 2

Let us emphasize that ifpN : (N,y0) → (M,z0) is a Hamiltonian cover, then the momentum mapJN :
N → g∗ is defined uniquely by the following diagram.

M̃
J

−−−−→ g∗

qN

y
y=

N
JN−−−−→ g∗

(2.6)

As we pointed out in Section 1, the subgroups of the fundamental groupΓ = π1(M,z0) classify the
covers ofM. In a similar vein, the following result shows that the subgroups of the subgroupΓ0 of Γ play
the same rôle with respect to the Hamiltonian covers of the symplecticG-manifold(M,ω).

Define,
Γ0 := J−1(0)∩q−1

M (z0) ⊂ π1(M,z0). (2.7)

Corollary 2.7 The symplectic cover pN : (N,y0) → (M,z0) is Hamiltonian if and only ifΓN < Γ0. Conse-
quently,H is isomorphic to the category of subgroups ofΓ0.

Recall that the categoryS(Γ) of subgroups of a groupΓ is the category whose objects are the sub-
groups, and whose morphisms are the inclusions of one subgroup into another. We have therefore shown
thatH ≃ S(Γ0). Explicitly, the isomorphism is given by

H −→ S(Γ0)(
pN : (N,y0) → (M,z0), JN

)
7−→ ΓN = (pN)∗(π1(N,y0)).

(2.8)

2.3 The universal Hamiltonian covering and covered spaces

As it was shown in the previous section, the Hamiltonian coverings of a symplecticG-manifold(M,ω) are
characterized by the subgroups ofΓ0 := J−1(0)∩π1(M,z0).

The covering associated to the smallest possible subgroup,that is, the trivial group, is obviously the
simply connected universal covering̃M of M. It is easy to check that this object satisfies in the categoryH

of Hamiltonian coverings, the same universality property that it satisfies in the general category of covering
spaces, that is,(pM̃ : M̃ → M,J) ∈ Ob(H) and for any other Hamiltonian covering(pN : N → M,JN) of

(M,ω) there exists a morphismqN : (M̃, ω̃) → (N,ωN) in Mor(H). Moreover, any other element in Ob(H)
that has this universality property is isomorphic to(pM̃ : M̃ → M,J) (we have suppressed the dependence
on base pointsz0,y0, z̃0 in this discussion; if they are included the morphisms become unique—see Remark
2.9 below).
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A major difference between the general category of coveringspaces and the category of Hamiltonian
coverings arises when we look at the covering associated to the biggest possible subgroup ofΓ0, that
is, Γ0 itself. Unlike the situation found for general coverings, where the biggest possible subgroup that
one considers is the fundamental groupΓ and it is associated to the trivial (identity) covering, thecovering
associated toΓ0 is non-trivial (unlessM is already Hamiltonian) and has an interesting universality property
that is “dual” to the one exhibited by the universal covering. This special object inH was first investigated
in the context of Lie algebra actions in [12] where it is defined as the holonomy bundle of ag∗-valued
connection. We return to that approach below, but first give adefinition of this space more in keeping with
the topological approach used so far in this paper.

DefineM̂ := M̃/Γ0. Because of the following result,̂M is called theuniversal covered spaceof (M,ω).
Recall from §1.1 that a coveringN → M is said to be normal ifΓN is a normal subgroup ofΓ. SinceΓ0 is
the kernel of a homomorphismΓ → H , it follows thatM̂ is a normal covering ofM. By Proposition 1.8,
the groupĜ := G̃/a−1

z0
(Γ0) acts effectively onM̂.

Proposition 2.8 M̂ is a Hamiltonian normal covering of M with the universal property that for any given
Hamiltonian covering pN : N → M of M there is a Hamiltonian coverinĝpN : N → M̂.

Proof. Since we have shown thatH ≃ S(Γ0), this property ofM̂ in H follows from the corresponding
property ofΓ0 in S(Γ0); namely that for every subgroupΓ1 of Γ0 there is an inclusionΓ1 →֒ Γ0. 2
Remark 2.9 (M̃, z̃0) and (M̂, ẑ0) are initial and final objects in the category of Hamiltonian covers of
(M,z0) with base points; this of course corresponds to the fact that1 andΓ0 are initial and final objects in
the categoryS(Γ0).

2.4 The connection inM×g∗ and a model for the universal covered space

The universal covered spacêM was introduced in [12] (though there it is denotedM̃) using a connection
in M×g∗ proposed in [3]. Here we briefly review that definition, and show that it is equivalent to the one
given above.

Let (M,ω) be a connected paracompact symplectic manifold and letG be a connected Lie group that
acts symplectically onM. Take the Cartesian productM×g∗ and letπ : M×g∗ → M be the projection onto
M. Considerπ as the bundle map of the trivial principal fiber bundle(M×g∗,M,π,g∗) that has(g∗,+) as
Abelian structure group. The group(g∗,+) acts onM×g∗ by ν ·(z,µ) := (z,µ−ν). Letα ∈ Ω1(M×g∗;g∗)
be the connection one-form defined by

〈α(z,µ)(vz,ν),ξ〉 := (iξM
ω)(z)(vz)−〈ν,ξ〉, (2.9)

where(z,µ) ∈ M×g∗, (vz,ν) ∈ TzM×g∗, 〈·, ·〉 denotes the natural pairing betweeng∗ andg, andξM is the
infinitesimal generator vector field associated toξ ∈ g.

The connectionα is flat. For(z0,0)∈M×g∗, letM̂′ := (M×g∗)(z0,0) be the holonomy bundle through
(z0,0) and letH (z0,0) be the holonomy group ofα with reference point(z0,0) (which is an Abelian zero
dimensional Lie subgroup ofg∗ by the flatness ofα); in other words,M̂′ is the maximal integral leaf of
the horizontal distribution associated toα that contains the point(z0,0) and it is hence endowed with a
natural initial submanifold structure with respect toM × g∗. See for example Kobayashi and Nomizu [7]
for standard definitions and properties of flat connections and holonomy bundles.

The principal bundle(M̂′,M, p̂,H ) := (M̂′,M,π|(M×g∗)(z0,0),H (z0,0)) is a reduction of the principal
bundle(M×g∗,M,π,g∗). A straightforward verification shows thatH (z0,0) coincides with the Hamilto-
nian holonomyH introduced in Definition 2.5. In this sense, the momentum mapJ : M̃ → g∗ establishes a
relationship between the deck transformation groups of theuniversal covering ofM and of the holonomy
bundlep̂ : M̂′ → M. Moreover, the holonomy bundlêM′ can be expressed usingJ as

M̂′ = {(qM(x̃),J(x̃)) | x̃∈ M̃}. (2.10)
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This expression allows one to easily check that(M̂′,M, p̂,H ) is actually a Hamiltonian covering ofM with
the symplectic form̂ω′ := p̂∗ω. TheGM̂′ -action onM̂′ is symplectic and is induced by thẽG-action onM̂′

given by
g̃· (x,µ) = (g ·x,J(g̃· x̃)) = (g ·x,σJ(g̃)+Ad∗

g−1J(x̃)), (2.11)

where(x,µ) ∈ M̂′, g = pG̃(g̃), andx̃ is such thatpM̃(x̃) = x, andJ(x̃) = µ. TheGM̂′ -action onM̂′ has a

momentum map̂J : M̂′ → g∗ given byĴ(x,µ) = µ.

Proposition 2.10 The universal covered spacêM = M̃/Γ0 is diffeomorphic toM̂′.

Proof. The required diffeomorphism is implemented by the map

Θ : M̃/Γ0 −→ M̂′

[x̃] 7−→ (x(1),J(x̃)).

This map is well defined since by (2.3), the smooth mapθ : M̃ −→ M̂′ given by x̃ 7−→ (x(1),J(x̃)) is Γ0

invariant and hence it drops to the smooth mapΘ. The mapθ is an immersion since for anyvx̃ ∈ T̃xM̃ such
that 0= T̃xθ · vx̃ =

(
T̃xpM̃ ·vx̃, T̃xJ ·vx̃

)
, we have thatT̃xpM̃ · vx̃ = 0 and hencevx̃ = 0, necessarily. Given

that Γ0 is a discrete group, the projectioñM → M̃/Γ0 is a local diffeomorphism and henceΘ is also an
immersion. Addiditonally, by (2.10), the mapΘ is also surjective. We conclude by showing thatΘ is
injective. Letx̃, ỹ∈ M̃ be such thatΘ([x̃]) = Θ([ỹ]). This implies that

x(1) = y(1) and that J(x̃) = J(ỹ). (2.12)

The first equality in (2.12) implies that̃x∗ ỹ∈ π1(M,z0), wherẽy is the homotopy class associated to the
reverse pathy of y. Moreover, by the second equality in (2.12), it is easy to check thatJ(x̃∗ ỹ) = 0, and
hencẽx∗ ỹ∈ Γ0. Since(x̃∗ ỹ)∗ ỹ = x̃ we can conclude that[x̃] = [ỹ], as required. Consequently,Θ being a
smooth bijective immersion, it is necessarily a diffeomorphism. A straightforward verification shows that
Θ ∈ Mor(H), which concludes the proof. 2
3 Symplectic reduction and Hamiltonian coverings

Symplectic reduction is a well studied process that prescribes how to construct symplectic quotients out of
the orbit spaces associated to the symplectic symmetries ofa given symplectic manifold. Even though it is
known how to carry this out for fully general symplectic actions [13], the implementation of this procedure
is particularly convenient in the presence of a standard momentum map, that is, when the Hamiltonian
holonomy is trivial (this is the so called symplectic or Marsden-Weinstein reduction [8]). Unlike the situa-
tion encountered in the general case with a non-trivial Hamiltonian holonomy, the existence of a standard
momentum map implies the existence of a unique canonical symplectic reduced space. In the light of this
remark the notion of Hamiltonian covering appears as an interesting and useful object for reduction. More
specifically, one may ask whether, given a symplectic actionon a symplectic manifold with non-trivial
holonomy and with respect to which we want to reduce, we couldlift the action to a Hamiltonian covering,
perform reduction there with respect to a standard momentummap, and then project down the resulting
space. How would this compare with the potentially complicated reduction in the original manifold? The
main result in this section shows that indeed both processesyield exactly the same result.

Before we start with the presentation of this result we emphasize some points related to the actions
introduced in Section 1. LetM be a manifold acted upon by the connected Lie groupG andpN : N → M a
covering. In this section we will be interested in orbit spaces obtained out of theG-action onM and of the
G̃ andGN-actions onN. Since by Proposition 1.8 the subgroupKN ⊂ G̃ acts trivially onN, the orbit spaces
associated to thẽG andGN-actions onN coincide. Another point is that sincepG̃ : G̃→ G is a covering

map then the derivativeT̃epG̃ : g̃→ g is a Lie algebra isomorphism and hence, for anyg̃∈ G̃ andξ̃ ∈ g̃ such
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that pG̃(g̃) = g andT̃epG̃(ξ̃) = ξ
T̃epG̃

(
Adg̃ξ̃

)
= Adgξ. (3.1)

In the pages that follow we will tacitly identifỹg with g. Moreover, since we will make no distinction
betweeñξ andξ, we will sometimes write (3.1) as Adg̃ξ̃ = Adgξ. The same applies to the coveringpGN :

GN := G̃/KN → G and to the corresponding Lie algebra isomorphismTepGN : gN → g. It follows that the
isotropy subgroups for the coadjoint action satisfy

G̃µ = p−1
G̃

(Gµ),

and similarly for(GN)µ.

3.1 The cylinder valued momentum map

Recall the definition of the holonomy of a symplectic action of G on M given in Definition 2.5: namely,
H = J(Γ), where as always,Γ = π1(M,z0). Using this definition, equation (2.3) can be expressed by saying
thatJ is equivariant with respect toΓ acting as deck transformations oñM and as translations by elements
of H on g∗. It follows thatJ descends to another map with values ing∗/H . However, in general this is a
difficult object to use asH is not necessarily aclosedsubgroup ofg∗. To circumvent this, we proceed as
follows.

LetH be the closure ofH in g∗. SinceH is a closed subgroup of(g∗,+), the quotientC := g∗/H is a
cylinder (that is, it is isomorphic to the Abelian Lie groupR

a×T
b for somea,b∈ N). LetπC : g∗ → g∗/H

be the projection. DefineK : M →C to be the map that makes the following diagram commutative:

M̃
J

−−−−→ g∗

qM

y
yπC

M
K

−−−−→ C = g∗/H

(3.2)

In other words,K is defined byK(z) = πC(J(z̃)), wherez̃∈ M̃ is any path with endpointz. We will refer
to K : M → g∗/H as acylinder valued momentum mapassociated to the symplecticG-action on(M,ω).
This object was introduced in [3] in a slightly different manner under the name of“moment ŕeduit”.

Any other choice of Hamiltonian cover in place of̃M would render the same Hamiltonian holonomy
groupH and the same cylinder valued momentum map. If one chose a different base pointz1 ∈ M in place
of z0 the holonomy group would remain the same, but the cylinder valued momentum map would possibly
differ from K by a constant ing∗/H .

Elementary properties. The cylinder valued momentum map is a strict generalizationof the standard
(Kostant-Souriau) momentum map since theG-action has a standard momentum map if and only if the
holonomy groupH is trivial. In such a case the cylinder valued momentum map isa standard mo-
mentum map. The cylinder valued momentum map satisfies Noether’s Theorem; that is, for anyG-
invariant functionh∈C∞(M)G, the flowFt of its associated Hamiltonian vector fieldXh satisfies the identity
K ◦Ft = K |Dom(Ft). Additionally, using the diagram (3.2) and identifyingTzM andTz̃M̃ via Tz̃qM, one has
that for anyvz ∈ TzM, TzK(vz) = TµπC(ν), whereµ= J(z̃) ∈ g∗ andν = Tz̃J(v) ∈ g∗.

Consequently,TzK(vz) = 0 is equivalent toTz̃J(vz) ∈ Lie(H ) ⊂ H , or equivalentlyivzω ∈ Lie(H ), so
that

kerTzK =
[(

Lie(H )
)◦

·z
]ω

.

Here Lie(H ) ⊂ g∗ is the Lie algebra ofH , and Lie(H )◦ its annihilator ing, and the upper indexω denotes
theω-orthogonal complement of the set in question. The notationk ·m for any subspacek⊂ g has the usual
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meaning: namely the vector subspace ofTzM formed by evaluating all infinitesimal generatorsηM at the
pointz∈ M for all η ∈ k. Furthermore, range(TzK) = TµπC ((gz)

◦) (the Bifurcation Lemma).

Equivariance properties of the cylinder valued momentum map. There is aG-action ong∗/H with
respect to which the cylinder valued momentum map isG-equivariant. This action is constructed by notic-
ing first that sinceG is connected it follows (see [13]) that the Hamiltonian holonomyH is pointwise fixed
by the coadjoint action, that is, Ad∗g−1h = h, for anyg∈ G and anyh∈ H . Hence, the coadjoint action on

g∗ descends to a well defined actionA d∗ ong∗/H defined so that for anyg∈ G, A d∗
g−1 ◦πC = πC ◦Ad∗

g−1.

With this in mind, we defineσK : G×M → g∗/H by

σK (g,z) := K(g ·z)−A d∗
g−1K(z).

SinceM is connected by hypothesis, it can be shown thatσK does not depend on the pointz∈ M and hence
it defines a mapσK : G → g∗/H which is a group valued one-cocycle: for anyg,h ∈ G, it satisfies the
equalityσK (gh) = σK (g)+A d∗

g−1σK (h). This guarantees that the map

Θ : G×g∗/H −→ g∗/H
(g,πC(µ)) 7−→ A d∗

g−1(πC(µ))+ σK (g),

defines aG-action ong∗/H with respect to which the cylinder valued momentum mapK is G-equivariant;
that is, for anyg∈ G, z∈ M, we have

K(g ·z) = Θg(K(z)).

We will refer to σK : G → g∗/H as thenon-equivariance one-cocycleof the cylinder valued momentum
mapK : M → g∗/H and toΘ as theaffine G-actionong∗/H induced byσK . The infinitesimal generators
of the affineG-action ong∗/H are given by the expression

ξ
g∗/H

(πC(µ)) = −TµπC (Ψ(z)(ξ, ·)) , (3.3)

for anyξ ∈ g, whereK(z) = πC(µ), andΨ : M → Z2(g) is the Chu map defined in (2.1).

The non-equivariance cocyclesσJ : G̃→ g∗ andσK : G→ g∗/H are related by

πC ◦σJ = σK ◦ pG̃. (3.4)

Proposition 3.1 If the action of G has an isotropic orbit then the cylinder valued momentum map for this
action can be chosen coadjoint equivariant.

Proof. This follows from Remark 2.4. Letz0 ∈ M be a point in the isotropic orbit and construct a
universal coveringM̃ of M by taking homotopies of curves with a fixed endpoint startingat z0. Let J :
M̃ → g∗ be the momentum map for thẽG-action onM̃ introduced in Proposition 2.3. Since theG-orbit
containingz0 is isotropic, the integrand in (2.4) is identically zero andhenceσJ = 0 (see Remark 2.4).
Therefore by (3.4) the non-equivariance cocycleσK satisfiesσK ◦ pG̃ = πC ◦σJ = 0. 2
Remark 3.2 For any Hamiltonian coveringpN : N→M of (M,ω) there exists a momentum mapJN : N →

g∗ for theG̃ (and alsoGN) action onN such thatJN◦qN = J andσJN = σJ. Consequently,πC◦JN = K ◦ pN.
Here the mapqN : M̃ → N is theG̃-equivariant covering such thatpN ◦qN = pM̃.

3.2 Reduction

The following result establishes a crucial relationship between the deck transformations group ofqM : M̃ →
M, that is,Γ := π1(M,z0) and the deck transformations group ofp̂ : M̂ → M, that isH .
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Proposition 3.3 Let G be a connected Lie group acting symplectically on the symplectic manifold(M,z0,ω)
with Hamiltonian holonomyH and letJ : M̃ → M be the momentum map for the lifted action on(M̃, z̃0)
defined in Proposition 2.3. Then, for any µ∈ g∗

qM(J−1(µ+H )) = qM(J−1(µ)), (3.5)

with qM : M̃ → M the projection. More generally, for any Hamiltonian covering pN : (N,y0) → (M,z0)
of (M,z0,ω), let JN : N → g∗ be the momentum map for the GN-action on N that satisfies the properties
mentioned in Remark 3.2. Then, for any µ∈ g∗

pN(J−1
N (µ+H )) = pN(J−1

N (µ)). (3.6)

Proof. SinceqM(J−1(µ+H )) =
⋃

ν∈H qM(J−1(µ+ ν)), it suffices to show that

qM(J−1(µ+ ν)) = qM(J−1(µ)), for anyν ∈ H . (3.7)

Let z̃∈ J−1(µ), and letγ ∈ Γ be such thatJ(γ) = ν. Then the deck transformation ˜z 7→ γ∗ z̃ on M̃ provides
a diffeomorphism ofM̃ which mapsJ−1(µ) to J−1(µ+ ν), sinceJ(γ ∗ z̃) = J(γ)+ J(z̃) (Proposition 2.3).
However,qM(γ∗ z̃) = z̃so that indeed,qM(J−1(µ)) = qM(J−1(µ+ ν)) for anyν ∈ H .

In order to prove (3.6) letqN : M̃ → N be theG̃-equivariant covering such thatpN ◦ qN = pM̃. This
equality and the surjectivity ofqN imply that for any setA⊂ N, pN(A) = pM̃ ◦q−1

N (A). Now, the relations
JN◦qN = J and (3.5) imply thatpM̃

(
q−1

N (J−1
N (µ+H ))

)
= pM̃

(
q−1

N (J−1
N (µ))

)
and hencepN(J−1

N (µ+H ))=

pN(J−1
N (µ)), as required. 2

The final result shows that reduction behaves well with respect to the lifting of the action to any Hamil-
tonian cover. More explicitly, we show that in order to carryout reduction one can either stay in the original
manifold and use the in general cylinder valued momentum mapor one can lift the action to a Hamiltonian
cover, perform ordinary Marsden-Weinstein reduction there and then project the resulting quotient. The
two strategies yield the same result. Notice that unless theHamiltonian holonomy of the actionH is closed
in g∗, the reduced spaces obtained via the cylinder valued momentum map are in general not symplectic
but Poisson manifolds [13].

Theorem 3.4 Let G be a Lie group acting symplectically on the symplectic manifold (M,ω) and pN :
(N,y0)→ (M,z0) a Hamiltonian covering. LetJN : N→ g∗ be the momentum map for thẽG (or GN) action
on N that satisfies the properties mentioned in Remark 3.2. Then, for any µ∈ g∗ and for [µ] = πC(µ) ∈

g∗/H , the covering map pN : N → M induces a natural projection pµ : J−1
N (µ)/(GN)µ = J−1

N (µ)/G̃µ →
K−1([µ])/G[µ]. The subgroups(GN)µ and G[µ] are the isotropies of µ and[µ] with respect to the affine

actions of GN and G ong∗ andg∗/H using the non-equivariance cocycles ofJN andK , respectively.

If the G-action on M is free and proper then bothJ−1
N (µ)/(GN)µ andK−1([µ])/G[µ] are Poisson mani-

folds and pµ is a Poisson surjective submersion. If, additionally, the Hamiltonian holonomyH is closed in
g∗, thenJ−1

N (µ)/(GN)µ andK−1([µ])/G[µ] are symplectic manifolds and pµ is a symplectic covering map.

Proof. If y ∈ J−1
N (µ) then pN(y) ∈ K−1([µ]), since by hypothesisJN and K were chosen such that

πC◦JN = K ◦ pN. Let pµ : J−1
N (µ)→K−1([µ]) be the restriction ofpN to J−1

N (µ). Let g̃∈ G̃µ andg= pG̃(g̃).
Given that

g · [µ] := A d∗
g−1πC(µ)+ σK(g) = πC(Ad∗

g−1µ)+ πC(σJN(g̃))

= πC(Ad∗
g̃−1µ+ σJN(g̃)) = πC(g̃ ·µ) = πC(µ) = [µ],

we conclude thatg∈ G[µ]. This remark, as well as thẽG-equivariance ofqM imply theG̃µ-equivariance of

pµ, which allows us to drop this map ontopµ : J−1
N (µ)/(GN)µ = J−1

N (µ)/G̃µ → K−1([µ])/G[µ]. It remains
to be shown thatpµ is surjective. We will prove that by showing thatpµ is surjective. First of all notice that

K−1([µ]) = pN(J−1
N (µ+H )). (3.8)
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Indeed, letz∈ K−1([µ]) andz̃∈ N such thatz= pN(z̃). Then sinceπC(µ) = K(pN(z̃)) = πC(JN(z̃)) there
existsν ∈ H such thatJN(z̃) = µ+ ν and hencez∈ pN(J−1

N (µ+ ν)). Conversely, ifz∈ pN(J−1
N (µ+H ))

then there exists ˜z∈ J−1
N (µ+ ν) for someν ∈ H such thatz= pN(z̃). Consequently,K(z) = K(pN(z̃)) =

πC(JN(z̃)) = πC(µ+ ν) = πC(µ). Now, by Proposition 3.3

K−1([µ]) = pN(J−1
N (µ+H )) = pN(J−1

N (µ)) = pµ(J
−1
N (µ)),

as required.
The last statement in the theorem is a consequence of the factthat by Corollary 1.10 and Theorem 1.13,

if the G-action onM is free and proper, then so is theGN-action onN and hence bothJ−1
N (µ)/(GN)µ

and K−1([µ])/G[µ] are regular quotient manifolds. The results in [13] guarantee that these two spaces
are endowed with natural projected Poisson structures. A straightforward diagram chasing shows thatpµ

preserves these two Poisson structures. Additionally, ifH is closed ing∗, the results in [13] guarantee that
K−1([µ])/G[µ] is a symplectic manifold of the same dimension asJ−1

N (µ)/(GN)µ. It is easy to check that in
that situation the mappµ is a symplectic covering map. 2
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References

[1] A. Alekseev, A. Malkin, and E. Meinrenken, Lie group valued momentum maps.J. Differential
Geom., 48, (1998) 445–495.

[2] Y. Benoist, Actions symplectiques de groupes compacts,Geom. Dedicata89 (2002), 181–245.

[3] M. Condevaux, P. Dazord, and P. Molino, Géométrie du moment. Travaux du Śeminaire Sud-
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