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Abstract

We show that for symplectic group actions (not necessarignttonian), the reduced space defined
using the cylinder-valued momentum map can also be achleyedssing to any Hamiltonian cover and
then performing standard (Meyer-Marsden-Weinstein) cédn. At the same time we give a classifica-
tion of all Hamiltonian coverings of a given symplectic gpoaction. The main properties of the lifting
of a group action to a cover are studied.

Keywords: lifted group action, symplectic reduction, wmsal covering, Hamiltonian holonomy, mo-
mentum map

Introduction

There are many instances of symplectic group actions whieha Hamiltonian—ie, for which there is no
momentum map. This can occur both in applications [10] a$ agin fundamental studies of symplectic
geometry [1, 2, 5]. In such cases it is possible to define arfdgr valued momentum map” [3], and then
for example to perform symplectic reduction with respecthis map [13, 14]. An alternative approach
is to pass to the universal cover, on which the action is adwdgmiltonian, and then to perform ordinary
symplectic reduction there. The principal purpose of thislg is to relate the two procedures. In short we
show that after appropriate projection the two reducedespao-constructed are the same.

In more detail, suppose a connected Lie gr@acts on a connected manifol, and letN be a
covering ofM. Then it may not be possible to lift the action @f but there is a natural lift to universal
covers giving an action of on M. This can then be used to define an actiorGobn the given cover
N. This general construction must be well-known, but we werable to find it in the literature, and
consequently have established the main results aboutlifiedeactions in the first section. For example,
sinceN can be written as a quotient & by a subgroup of the group of deck transformations, we use
this to determine exactly which subgroup®facts trivially onN. We also determine the relation between
isotropy subgroups of thé action onM and the lifted action o, and we show that the action & is
proper, then so is the lifted action dh

In Section 2 we consider the case whétds a symplectic manifold, an@ acts symplectically on
M. We consider the covers &fl for which the action is Hamiltonian and which form the catggof
Hamiltonian covers oM. The “largest” Hamiltonian cover dfl is of course its universal covéd; we
give an explicit expression for its momentum map (Proposif.3) and we use it to define a subgroup
of the fundamental group d#l whose corresponding set of subgroups classifies the Hamaiftccovers
(Corollary 2.7). There is also‘smallest” such cover, denoted and which was first introduced in [12],
where it is called theniversal covered spaad M; we give here a different interpretation of it.

In Section 3, we consider the cylinder valued momentum mdp]dfvhere it is defined in a different
manner, and called thenoment eduit”). In Theorem 3.4 we see that reduction can be carried out in
two equivalent ways. One can either redidewith respect to the cylinder valued momentum map or,
alternatively, one can lift the action to the universal aivgM (or on any other Hamiltonian cover) and
then carry out (standard) symplectic reduction on it usisgiomentum map. The result is that the natural
projection of this reduced space (inherited from the caxgepirojection) yields the original reduced space;
that is, both reduction schemes are equivalent.
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1 Lifting group actions to covering spaces

1.1 The category of covering spaces

We begin by recalling a few facts about covering spaces. Mdilie details can be found in any intro-
ductory book on Algebraic Topology, for example Hatcher [6§t (M,z) be a connected manifold with

a chosen base poigg, and letqy : (M,io) — (M, z9) be the universal covering. We realize the universal
cover as the set of homotopy classes of pathd iwith base pointy. For definiteness, we take the base
point in M to be the homotopy clasg 8f the trivial loop atzg. Throughout, ‘homotopic paths’ will mean
homotopy with fixed end-points, and all paths will be parairet byt € [0, 1].

Any coverpy : (N,yo) — (M, o) has the same universal co\ét, %) as(M, z), and the covering map
an : (M, %) — (N,yo) can be constructed as follows: L2&M and letz(t) be a representative path i,
s0z(0) = z. By the path lifting property of the covering maR, z(t) can be lifted uniquely to a patft)
in (N,yo). Thengn(2) = y(1).

Let ¢ be the category of all covers @1, z). The morphisms are the covering maps. Since any element
(N,yo) € € also shareM as universal cover, it sits in a diagram,

(M, 20) 2 (N,yo) 2% (M, z0).

Note that with this notation for the covering maps, the ivap> M can be written both agy and aspy;-

Itis well-known that this category is isomorphic to the catey of subgroups of the fundamental group
m(M,z) of M, where the morphisms are the inclusion homomorphisms ajreuips. The isomorphism
is defined as follows. Lepy : (N,yo) — (M,2) be a cover. Theiiy := pn.(Tu(N,Yo0)) is the required
subgroup ofr := 14 (M, 7). 'y consists of the homotopy classes of closed pathiirgg) whose lift to
(N,yo) is also closed, and the number of sheets of the coveminig equal to the indek : 'y. Note that

sinceM is simply connected; g is trivial.

The inverse of this isomorphism can be defined using deckfivamations. Lef = 1 (M, 7). Then
I is the fibre ofqy overzy, and it acts orM by deck transformations defined via the homotopy product:
if ye I andZe M thenyx Z gives the action off onZ Then giveny < I', defineN = M /"1, and put
Yo = 2. Then from the long exact sequence of homotopy, it folloved th(N,yo) ~ I'1. Furthermore,
if My <2< T then there is a well-defined morphism (covering mpp)Ny — N, whereN; = M/Fj,
obtained from noting that arfy;-orbit is contained in a unigues-orbit, so we puip(l12) =Nz

Let (Ng,y1) be a cover of(M,z) with groupl;, and letl; = yr1y 1 be a subgroup conjugate to
s (wherey e ). ThenN; = M/T 3 is diffeomorphic toN;, but the base point is noy, = 2Z. The
diffeomorphism is simply induced from the diffeomorphigm"y- Z of M, which does not in general map

y1toys.
If 1< (normal subgroup), then the cov@t, y:) is said to be amormal cover

Let us emphasize here that we view= 1y (M, z) both as a group acting v by deck transformations,
and as a discrete subsetM{—the fibre overy. In particular, fory e I,

In other wordszg is the identity element ifi.

1.2 Lifting the group action

Now let G be a connected Lie group acting on the connected manifioldnd letpy : (N,yo) — (M, )
be a covering. To define the lifted action bipwe first describe the lift td1 and then show it induces an
action onN, using the coveringy : M — N.
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The action ofG onM does not in general lift to an action 6fon M but of the universal cove®, which
is also defined using homotopy classes of paths, with base tha identity elemeng. The covering map
is denotedyg : G — G. So if §is represented by a patift) thenqe(g) = g(1). The product structure in
G is given by pointwise multiplication of paths: @ is represented by a path(t) andd, by ga(t), then
0102 is represented by the path- g1 (t)ga(t).

Definition 1.1 Letg € G be represented by a padft) (with g(0) =€), andZe M be represented by a path
Z(t) (with z(0) = zp). Then we defing-Zto bey'e M, wherey’is the homotopy class represented by the
patht — g(t) - z(t). Itis readily checked that the homotopy class of this patiedels only on the homotopy
classegyandZ

With this definition for the action of on M, it is clear that the following diagram commutes:
GXxM — MxM
! ! (1.2)
GxM — MxM

where the vertical arrows ag; x gqv andgu x gu respectively, and the horizontal arrows are the group
actions. In particular,

¥y=0-2 — y=g0-z (1.3)
where forZ'e M we denote its projection th by z, and similarly with elements o. Note for future
reference that it follows immediately from (1.3) that thetispy subgroups satisfy

geG; — geG, (1.4)

Remark 1.2 A second approach to defining the actior®6n M is as follows. The action & gives rise

to an ‘action’ of the Lie algebrg. That is, to eacly € g there is associated a vector fig€Jg on M; these
are the so-called generating vector fields of@action. LetN — M be any covering. The covering map is
a local diffeomorphism, so the vector fielelg can be lifted to vector field& onN. Because this covering
map is a local diffeomorphism, this gives rise to an ‘actioij onN. Now g is the Lie algebra of a unique
simply connected Lie grou@. To see that the vector fields dhare complete, so defining an action®f
one needs to compare the local actiongvbandN. It is not hard to see that the two definitions of actions
of G are equivalent.

Lemma 1.3 Let gt) be a path in G with ¢0) = e, and #t) a path in M with Z0) = zy and 1) = z;. Then
the following three homotopy classes coincide:

g(t)-2t), [9(t) -z *[9(1) - 2(t)], z(t)*[g(t) -z,

wherex is the homotopy product of paths.

Proof. Denote the three curves layt), b(t) andc(t) respectively. So for example,
(2t) if t € [0,3]
o= {9(2t—1>~21 ifte(31]"
A homotopy between andb can be given by
: _ <A
At.s) = g((1+9)t)-2(1—-)t) ift I
g(1)-z((14+9st—-ys) ift>

Then,A(t,0) = a(t) andA(t, 1) = b(t). Itis readily checked th&i(t,s) is continuous. A similar homotopy
can be defined betweerandc. O

Recall thatl := ™ (M, z) acts onM by deck transformations; that is, givgre I andZ'c M then
y-Z:=yxZ This action is transitive on fibres of the covering ntgp Furthermore, the fibrq,\jll(zo) is the
I"-orbit of the constant loogy"Which we identify withl", see equation (1.1).
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Proposition 1.4 The action ofG onM commutes with the deck transformations. Furthermoregfuh
g € (G, e) the homotopy class(y) - o lies in the centre ofy (M, 7).

Proof. Letge G, de I andZe M with qu(2) =y € M. We want to show thag- (3-2) = 3-(q-2). By
Lemma 1.3 (applied witly = 8« 2), we have

g:-(8-2) =[3+7Z«[g-y,
while again by Lemma 1.3 (how with= 2),
0-(9-2) =32+ (G-y)l-
The result follows from the associativity of the homotopgghuct of paths.

Now letg € Ty (G, e) andd € I'. We want to show thdfj- Zp) « & = 8 [§- Z], wherez; is the constant
loop atx. By Lemma 1.30x[§-Z0] =§- 0= [ Z] * O (sinceg(1) = €), as required. |

As a particular example, this leads to the following welbiam result

Corollary 1.5 (G, e) lies in the centre 06. So the following is a central extension:

1-m(Ge—G62c-1 (1.5)
Proof.  This follows by applying the proposition to the left actioh®@on itself. |

Now we are in a position to define the action@bn an arbitrary covefN, yo) of (M, ). As in §1.1,

let "'y = pn« (T (N, yo)) <. So,N ~ M/FN. That s, a pointirN is al"y-orbit of points inM.
Definition 1.6 TheG-action onN is defined simply by

g- er = FN(g- 2)

This is well-defined as the actions 6fand I commute, by Proposition 1.4. It is clear too that the
analogues of (1.2), (1.3), and (1.4) hold wiXhin place ofM.

Proposition 1.7 Let py : (N,yo) — (M, 2) be a covering map. Thé&-orbits on N are the connected
components of the inverse images undegiopthe orbits on M. More precisely, ifey pﬁl(z) CN thené-y

is the connected component qﬁ()G -z) containing y. In particular if the G-orbits in M are closed oo
are theG-orbits in N.

Proof. LetZ c M be any submanifold. Thed' := p,gl(Z) is a submanifold oN and the projection
pnlz 1 Z' — Z is a covering, and i is closed so too iZ'. Moreover, ifZ is G-invariant (hences-
invariant), then by the equivariance pf so isZ’, and ifZ is a single orbit, the@’ is a discrete union of
orbits: discrete becaug®, is a covering. Sinc& is connected, the orbits are the connected components
of Z'. O

1.3 The kernel of the lifted action

Letg e (G, e) be represented by a paift), with g(1) = e. The pathy(t) - zp is an element ofy (M, zp).
Moreover, homotopic loops i® give rise to homotopic loops i, so this induces a well-defined homo-
morphism

az, 1 (G, e) — (M, 2).
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In short, ifg € Tu(G,e) and7 is the trivial homotopy class ab, thena, (g) = g- 2. It follows from
Proposition 1.4 that image;,,) C z(m(M,z)) (the centre oft).

Note that, ifzy is a fixed point for th&s-action thersy, is trivial (that is,vg € G, az(0) = 2o, the trivial
loop inTy (M, 7).

Proposition 1.8 (i) K := kerag, is independent of the choice @f, and acts trivially orM and hence on
every cover of M.

(i) If (N,yo) is a cover of(M,z), with associated subgroupy of Ty (M,z), then K := a;ol(I'N) is
independent of the choice of base poigntryN, and acts trivially on N.

(i) If G acts effectively on M then\G= G/KN acts effectively on N.

Note that since the domain e, is (G, e) which is in the centre o6, it follows thatKy is a normal
subgroup ofG. And with the notation of the propositioK, = Ky sincerl ; is trivial. We will write

G :=G/K (1.6)

for the group acting oM.

A particular case is where the action®bnM has a fixed point. Iig is such a fixed point thes,, = 0
andK = m (G, e) so the action oMM lifts to an action ofG on M, and hence on any other covér More
generally this is true if any (and hence eveBprbit in M is contractible irM, since in that case tag, is
trivial.

Proof. (i) Letn be any path fronz to z,. Thenn induces an isomorphism. : Tu. (M, 20) — T (M, 7)),
by n.(y) = n~1xyx*n. With this notationaiO =4 08z, SO both have the same kernel. TKaacts trivially
onM follows from the definition of,: letZ€ M andg € K, theng- 2= §- (2 * 2) = a, (@) * 2= Z (using
Lemma 1.3).

(i) The argumentis similar to part (i). Lgf € N, letz, = pn(yp) € M and letn be any path fronyg to y;,
with 1) its projection toM. The result follows from the fact that the following diagraommutes:

T[l(Gae)
n.
m(M,2z) m(M,z)
PN PN
N«

m(N,yo) ——— Ta(N,yp)

Writing N = M/FN, if ge a;ol(I'N) theng € KI'y and,glMyz ¢ F'ynKZ = T'yZ so @ acts trivially (using
Proposition 1.4 and part (i)).

(iii) Supposg € G acts trivially onN, so for ally € N, §-y=y. Projecting tdM, this implies thag(1)-z=z
(forallze M) sog(1) € NzxemGz = {e}. Thusg € m(G,e).

To prove the statement, we first consider the ¢dseM. If § ¢ K thenay, () # Z € 1 (M, ). Since
™ (M, z) acts effectively (by deck transformations) on the fih,rjé(zo) ~1m(M,2) C M it follows that
az (0) acts non-trivially, which is in contradiction with the assption thatg acts trivially.

Now supposdj € G acts trivially onN. We havegly 2y = 'y 2, so thatg € T'yK = a;ol(FN) as
required. O
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1.4 Isotropy subgroups

Fix yo € N and letg € éyo, the isotropy subgroup &b for the G action onN. It follows thatgg(9) € Gy,
wherezg = pn(Yo), sinced-y =y = g-z=z ConsequentlyGy, is a subgroup of\z := qgl(Gzo).
Restricting the exact sequence (1.5), we have

1—(G,e) — Agy — Gy — 1. (1.7)

The group\, consists of those homotopy classes of pagthswith g(0) = eandg(1) € G. Itfollows that
g(t) - o is a closed loop, so determines a well-defined elememt (¥, zy). That is, the homomorphism
az, described above extends naturally to a homomorphism

az, 1 N\zy — Tu(M, 20).

In contrast toag,, this homomorphisnioesdepend orrg. Let Ly, be the kernel of this homomorphism
(which obviously containK), andL y y,) := 5251(FN) (which containKy).

Recall thatGy = G/KN from Proposition 1.8.

Proposition 1.9 The isotropy subgroups for the lifted actions are as follows

(i) atZ for theG-action onM it is Gz, = Lz, and for G itis Gy, = Lz, /K

(i) atyp for theG-action on N it is@yO =~ LNy, and consequentlyGn )y, = L(n,y,)/Kn-

Proof. We just prove (ii) as (i) is a special case. lgat Gbe represented by a paift). Theng-yo = Yo
impliesg(1) € Gy,; that is,g € Az. Usingyo = 'nZ, we haveg- 'nZy = M'nZg and this is equivalent to
g-Z0€TnZ=Tn (asin (1.1)); that isaz(Q) € ', so we are done. O

Corollary 1.10 If the G-action on M is free, then so is thg@ction on N.

Proof.  SinceGy, is trivial, we have/\;; = Ty (G, e) and hencey, = az, and thud (v y,) = Kn, S0(Gn)y,
is trivial. ]

To identify the isotropy subgroups, /K or L(n,y,)/Kn with subgroups of the isotropy subgroGg,
we define a homomorphism

Yz, © Gy — cokelay) (1.8)
g +— §-z mod imagé¢ay,) '
whereg is any lift of g. We takeright cosets, sg modH = Hg

The homomorphisny,, is well defined, for given any two lift§, andg» of g € G,, definefy € (G, e)
to be the homotopy product of the paf(t) and the reverse path gf(t) (which goes frong to €):

(t) = g1(2t) fort € [0,
D=1 ga(2—-2t) forte(3,1]
Thengy % = (Go- %) * (G2 %) € imageay,). (82 20), as required.

The homomorphisrag, induces a morphism between two short exact sequences vike t@wo rows
of the following commutative diagram:
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where the first row consists of the kernels of the vertical borarphisms.
Proposition 1.11 (i). There is an exact sequence
0—-K—Lly— Gy Yo, cokerag,) — cokelaz,) — 0 (1.9)
where the homomorphisty, : G,, — cokeaz,) is defined above (1.8). Consequently,
(ii). G, = kerdz, which is a subgroup of &

(iii). (Gn)y, is isomorphictop;ol(l'N mod imagéay,)).

Since imagéa;,) is not in general normal imy (M, zp), coke(ag,) here is just the set of right cosets of
imagea;,) in (M, Z); and exactness at cokeg,) means only that the map cokey,) — coker(az,) is
surjective (which is obvious a&, is an extension o). The first part of the proposition would be an
instance of the snake lemma, but for the fact that the groapsdre not all abelian.

Proof. (i) We show exactness at each ‘node’ in turn (the proof istjust of the snake lemma):

¢ Exactness & is clear, for the homomorphismi is the restrictioma{G, e) — Az, which is injective.

e Suppos¥ € Ly, is such thapg(¢) = e € G,. Thenl € (G, e) (by definition). And since € L, it
follows thatay, (¢) = a5 (¢) = 1. Sol € K, as required for exactnesslaj.

o Now suppos@ € G, is such thatp,(g) = 1, i.e., such tha- z € imag€a,,) for someg € pgl(g) C
Az, Then3h e (G, e) such thaf-z=h-z Now consides = h~1ge G. Clearly,pc(c) = ps(h~) ps(@) =
Pc(9) =g s00 € A\z,. Moreovera,, (0) = ag, (ﬁ)*la_zo(@) =1em(M,z). Thatis,o € L,, andps(0) =g,
s0g € pc(Lz) as required.

e Exactness at cokfy,). Write j : cokerag,) — cokefaz). Letye ker(j) C Tu(M,2). Theny e
imageay, ), so3g € A\, such thay = a5, (7). Thenpg(§) = g € Gz, andyi,,(g) =y as required.

¢ Exactness at cokfay, ). As already stated above, this is just the fact thats an extension odi,.

(i) kery, = imagédL,, — Gz)] ~ L, /K which is(G')z, by Proposition 1.9.

(iii) If we replacemy (M, z) by A := (M, 2)/I'y in the bottom row of the diagram above, ti‘ﬂ#zgz
(G, e) — A has kernel equal tén = a;, 1(T'y) anda : Az, — A has kernel equal thyy,. The proof
follows now in the same way as the proof of (ii). O

Notice firstly that the connected component of the ider@8y of G, is contained in kep,. To see
this it is enough to takg to be a path contained entirely @, . Secondly, notice that

_imageay,)
~ imaggay,)

so that for a given isotropy subgro@,, the larger the difference between the imagea,pfinda,, the
smaller the isotropy subgroug.

imageyy,)

Remark 1.12 The argument in the second part of the proof of Propositidncan only be applied to
elements of imag@y,) if & € F := Fix(Gg, M), so thatg(1) - = &. This means that imaga,,) merely
centralizes the image af (F, ) in Tw (M, 20).
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Theorem 1.13 Let N be a cover of M, and suppose the G-action on M is effeatideproper. Then the
Gn-action on N is also proper.

Proof. SinceG acts properly oM there is aG-invariant Riemannian metric od. This metric can be
lifted by the covering map to one dd. Since the covering map is equivariant, it follows that tifited
metric is alsoGy-invariant.

To show that action is proper, we need to show that the actamdg : Gy x N — N x N is closed and
has compact fibres. The fib@gl(x,y) ={(g,y) € Gny x N | g-x=}. Ifthis is non-empty, anti-x =y
thenCDﬁl(x,y) ~ h(Gn)x, which is compact since th@-action is proper, using Proposition 1.11.

To see that the action map is closed, consider a sequeneg in Gy x N for which (gi - X, %) con-
verges tay,z). Then of course; — z. We claim thag; - z—y. This is because,

d(gi-zy) <d(gi-zgi-x)+d(gi-x,Y)=d(zx)+d(g-X.Y),

whered is theGy-invariant metric orN defined above. Both terms on the right tend to 0 sodbgt z,y) —
0 as required.

Now, by Proposition 1.7 th&y-orbits inN are closed and hence there isggp Gy withy = g-z That
is, gi-z— g-z Consequenthyg;(Gn)z — 9(Gn)zin Gn/(Gn)z. By taking a slice to the prop€6y )-action
on G, this can be rewritten agh; — g in Gy, for some sequendeg € (Gn)z. Since(Gy); is compact(h;)
has a convergent subsequentg— h. Theng;, — gh~1. It follows therefore thatgi,, x,) — (gh™t,2)
and®dy(gh™,2) = (y,2). i

Remark 1.14 There is an alternative argument for proving this theorerfoliews. Any invariant (Rie-
mannian) metric oM lifts to an invariant metric oN. By a standard result, the grou@N) of isometries
of N acts properly oN (see [15, problem 26, p.31] and [4, p.106], although neitiver a detailed proof).
Since the action 0By is by isometries, it follows from the monomorphigin Gy — | (N) that the action
of Gy is proper. The argument we give is more direct, using therogstructure of the action.

2 Hamiltonian coverings

For the remainder of the paper, we assume the manifoisl endowed with a symplectic forw and the
Lie groupG acts by symplectomorphisms. Notice that any cquer N — M of M is also symplectic with
form wy 1= pyw and that, moreover, the lifted action Gf (or Gy) on N is also symplectic. It follows
that the category of all symplectic coverings(df, w) coincides with the category of all coveringsidt
Furthermore, the deck transformationsMrare also symplectic.

Symplectic Lie group actions are linked at a very fundanidatel with the existence ahomentum
maps Let g be the Lie algebra o6 andg* its dual. We recall that a momentum map M — g* for
the symplectidG-action on(M, w) is defined by the condition that its componedits= (J,&), & € g, are
Hamiltonian functions for the infinitesimal generator \@dteldséy (m) := % |t:0 expt - m. The existence
of a momentum map for the action is by no means guaranteedveowt could be that the lifted action to
a cover has this feature. For example, if the cover is simphnected (as iM), the action necessarily has

a momentum map associated. This remark leads us to the fojalefinitions.

Definition 2.1 Let (M, 7z, w) be a connected pointed symplectic manifold endowed withcsinraof the
connected Lie grou@®. We say that the smooth coveripg : (N,yo) — (M, Z) of (M, zy) is aHamiltonian

coveringof (M, 7z, w) if N is connected and the lifted action 6f(or Gy) on (N,wy) has a momentum
mapJn : N — g* associated.

If the G-action onM is already Hamiltonian, then every cover is naturally a Hamian cover, so the
interesting case is where the symplectic actiorvbis not Hamiltonian.

The connectedness hypothesidassumed in the previous definition implies that any two maoman



Symplectic Group Actions and Covering Spaces

maps of theGy-action onN differ by a constant element igi. We will assume thaly is chosen so that
JIn(Yo) = 0. (This choice should perhaps be denalgg,, but we will refrain from the temptation!)

Definition 2.2 Let (M, 7y, w) be a connected pointed symplectic manifold & Lie group acting sym-
plectically thereon. Lef) be the category whose objects @) are the pairs

(pn 2 (N,yo,0n) — (M, Z0,), IN),

where py a Hamiltonian covering ofM,z,w) andJy : N — g* is the momentum map for the lifted
G- (or Gn-) action onN satisfyingJn(yo) = 0, and whose morphisms Mg¥) are the smooth maps:
(N1,y1,01) — (N2,y2,0) that satisfy the following properties:

(i) pis asymplectic covering map

(i) pis é—equivariant

(iii) the following diagram commutes:

VN

(N1,y1) (N2,y2)

N

We will refer to$ as the category dflamiltonian coveringsf (M, zy, w).

It should be clear that the ingredieistg andJy are both uniquely determined Iy : (N, yo) — (M, 2p)
(given the symplectic form oM), so$) is in fact a (full) subcategory of the category of all covgsrof
M, 2).

The category of the Hamiltonian coverings of a symplectiaiiedd acted upon symplectically by a
Lie algebra was studied in [12]. We will now use the developtaén Section 1 to recover those results
in the context of group actions. The study that we carry otihé@following paragraphs sheds light on the
universal covered spaédetroduced in [12] and additionally will be of much use in 8en 3 where we will
spell out in detail the interplay between Hamiltonian cavgs and symplectic reduction.

2.1 The momentum map on the universal cover

We now start by giving an expression for the momentum mapcéstsa to theG-action on the universal
coverM of M. As far as this momentum map is concerned, it does not métter consider thes or the

G’ action (see (1.6)) since both have the same Lie algebra anchd@mentum map depends only on the
infinitesimal part of the action. Recall that tiéu map¥ : M — Z2(g) is defined by

Y(2) (&, n) = w(z) (Em(2),Nm(2)). (2.1)
for&,n e g.

Proposition 2.3 Let (M,w) be a connected symplectic manifold acted upon symplelgmbglthe con-
nected Lie group G. Then, tf@-action on(M = gyw) has a momentum map associatedM — g*
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that can be expressed as follows: realeas the set of homotopy classes of paths in M with base point
2. LetXe M and Xt) an element in the homotopy classThen, for any, € g

1
0.8 = [ € lig,0) = [ 6x0) (Emlx0), X0) dt. @2)

o,
If Xem(M,2)andy e M thenx+y € M and
I&HY) = IF) + ). 2.3)

The non-equivariance cocyats : G — g* of J is given by

1
(02(9).8) = [ Wizo)(&, no dt, (2.4)

for any & € g, g € G, and dt) a curve in the homotopy class gf where&; = Adgy)-1€ and ne =
(TeLgm)*lg(t), andW¥ is the Chu map defined in (2.1) above.

Momentum maps are only defined up to a constant; the one if iRrrmalized to vanish on the
trivial homotopy clasg at zp. The expression (2.2) is very similar to the one in [9] for thementum
map of the action of a group on the fundamental groupoid of a sympleciiananifold.

Proof.  Let o :=ig,w. Since this 1-form orM is closed, it follows that/ x*a depends only on the
homotopy class (indeed homology classkpthat is,J(X) is well-defined by (2.2).

To show that thad is a momentum map for th@-action onM, we use the Poincaré Lemma on the
closed formo. Cover the image of(t) in M by contractible well-chained open sets (opeMip Uy, ...,Up,
with x(0) = zp € U1 andx(1) € Un. We can enumerate these sets consecutively along the x{tjvand
letzy = x(t;) € UjNUj, 1 lie on the curve, angy = x(0) (as always) and, = x(1).

On eachJ; we can writea = d@; for some functionp; (in fact a local momentum fofy). Then on
UiNUj, W,j :== @ — @; is constant.

Now, with | = [0,1] andl; = [tj,tj11] we have

. . n-1
/| xa-y /| X401 = 3 (@(Z+1) ~ 01(21)) = () — u(a0) = 3 isa (2.5)
’ J J J j=

The covering mamy : M — M, % +— x(1) identifies the tangent spadgVl with TyyM. Letve =M
arbitrary ands = Tgqu (V). Thus, differentiating (2.5) atin the directiornv € T:M gives

a( @) 9 = (1)) = X)) = ) = 08 ),

as required.
The identity (2.3) follows from a straightforward verifigat. _
We conclude by computing the non-equivariance cocggleBy definition, for anyg € G andg € g

03(@) = I(G-%) — Ad; I(®).

for anyX € M. TakeX = % and use (2.2). The formula far; then follows by recalling thal(z) =0 and
that theG-action onM is symplectic. ]

Remark 2.4 If the Chu map vanishes at one point, then cledriy coadjoint-equivariant. This happens if
there is an isotropic orbit iM (and hence ifM).

10
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2.2 The Hamiltonian holonomy and Hamiltonian coverings

Definition 2.5 Let (M,zy,w) be a connected pointed symplectic manifold with sympleatiton of the
connected Lie grouf. LetJ : M — g* be the momentum map defined in Proposition 2.3. Fiamiltonian
holonomy# of the G-action on(M, w) is defined as# = J(I'), and for an arbitrary symplectic cover
pn : N — M, the homonomy group isn := J(M'n), wherell = (M, z) andlNy = (pN)*(nl(N,yo)) (as
in 81).

Proposition 2.6 The symplectic covenp: (N,Yo) — (M, 2p) is Hamiltonian if and only if#y = 0.

Proof. If the G-action onN is Hamiltonian, then the momentum map is well-defined. Theans that
if yis any closed loop ilN, thenJ(y) = 0, wherey € T4 (M, zp) is the image undefpy ). of the homotopy
class ofy. Conversely, if#fy = 0 then the mag : M — g* descends to a maj : M/FN — g%, and as
described in 81N ~ M/I'y. O

Let us emphasize that gy : (N,yo) — (M, 2) is a Hamiltonian cover, then the momentum niagp:
N — g* is defined uniquely by the following diagram.
~ J ¥
——_— g
o | |- (2.6)

In N
— 8

As we pointed out in Section 1, the subgroups of the fundaahgmnoupl” = (M, zy) classify the
covers ofM. In a similar vein, the following result shows that the suhgrs of the subgrouipg of I play
the same rdle with respect to the Hamiltonian covers of yingdecticG-manifold (M, w).

Define,
Fo:=37"1(0)Nay'(20) C Ta(M, 7). (2.7)

Corollary 2.7 The symplectic covernya (N,Yo) — (M, 2) is Hamiltonian if and only ifl y < 'g. Conse-
quently,$y is isomorphic to the category of subgroupslef

Recall that the categorg(I") of subgroups of a group is the category whose objects are the sub-
groups, and whose morphisms are the inclusions of one supgnto another. We have therefore shown
that$ ~ S(Ip). Explicitly, the isomorphism is given by

H — 6(Mo)

(Pn: (NJYo) — (M,20), In)  — T = (pn)s(Ta(N,Yo)). (2.8)

2.3 The universal Hamiltonian covering and covered spaces

As it was shown in the previous section, the Hamiltonian ciogss of a symplecti€&-manifold (M, w) are
characterized by the subgroupdef:= J*l(O) N1 (M, 2).

The covering associated to the smallest possible subgtbapis, the trivial group, is obviously the
simply connected universal coverityof M. It is easy to check that this object satisfies in the categjory
of Hamiltonian coverings, the same universality propdrat it satisfies in the general category of covering
spaces, that ig,p : M — M,J) € Ob($) and for any other Hamiltonian coverirign : N — M,Jy) of
(M, w) there exists a morphisoy : (M, @) — (N, wy) in Mor($). Moreover, any other element in Ob)
that has this universality property is isomorphid f; : M — M, J) (we have suppressed the dependence
on base pointgy, Yo, Zy in this discussion; if they are included the morphisms bezanique—see Remark
2.9 below).

11
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A major difference between the general category of covespares and the category of Hamiltonian
coverings arises when we look at the covering associatetietdiggest possible subgroup 6§, that
is, [ itself. Unlike the situation found for general coveringhere the biggest possible subgroup that
one considers is the fundamental gréuand it is associated to the trivial (identity) covering, tovering
associated tbg is non-trivial (unlesd/ is already Hamiltonian) and has an interesting univegspfibperty
that is “dual” to the one exhibited by the universal coverimbis special object ih was first investigated
in the context of Lie algebra actions in [12] where it is defiress the holonomy bundle of g-valued
connection. We return to that approach below, but first gigdefanition of this space more in keeping with
the topological approach used so far in this paper.

DefineM := M/I'o. Because of the following resuM is called theuniversal covered spac¥ (M, w).
Recall from §1.1 that a covering — M is said to be normal i\ is a normal subgroup df. Sincel g is
the kernel of a homomorphism— s/, it follows thatM is a normal covering of1. By Proposition 1.8,
the groupG ;= G/a;ol(l'o) acts effectively oM.

Proposition 2.8 M is a Hamiltonian normal covering of M with the universal peoty that for any given
Hamiltonian covering R : N — M of M there is a Hamiltonian coveringy : N — M.

Proof.  Since we have shown th&t~ &(Ip), this property oMM in § follows from the corresponding
property ofl g in &(Ip); namely that for every subgrouip of I'g there is an inclusiofi; — [p. O

Remark 2.9 (M, %) and (M, %) are initial and final objects in the category of Hamiltoniasvers of
(M, 79) with base points; this of course corresponds to the factlttsatdl o are initial and final objects in
the categons(Ip).

2.4 The connection inM x g* and a model for the universal covered space

The universal covered spaﬁawas introduced in [12] (though there it is denotddl using a connection
in M x g* proposed in [3]. Here we briefly review that definition, andwstthat it is equivalent to the one
given above.

Let (M,w) be a connected paracompact symplectic manifold an@ le¢ a connected Lie group that
acts symplectically oM. Take the Cartesian produdtx g* and letrt: M x g* — M be the projection onto
M. Considemtas the bundle map of the trivial principal fiber bun@\é x g*,M, 1t g*) that hagg*,+) as
Abelian structure group. The grodg", +) acts onM x g* byv- (z W) := (z u—v). Leta € Q1(M x g*; g*)
be the connection one-form defined by

(@(zW)(v2,V),€) = (igy W)(2)(v2) — (v, &), (2.9)

where(z,)) € M x g*, (Vz,v) € T,M x g*, (-,-) denotes the natural pairing betwegrandg, andgy is the
infinitesimal generator vector field associated to g.

The connectiont is flat. For(z,0) € M x g*, letM’ := (M x g*)(20,0) be the holonomy bundle through
(20,0) and let# (zp,0) be the holonomy group af with reference pointzp,0) (which is an Abelian zero
dimensional Lie subgroup af* by the flatness of); in other wordsM’ is the maximal integral leaf of
the horizontal distribution associated dothat contains the pointz,0) and it is hence endowed with a
natural initial submanifold structure with respectMox g*. See for example Kobayashi and Nomizu [7]
for standard definitions and properties of flat connectionsteolonomy bundles.

The principal bundléM’,M, p, 7 ) == (M',M, Tl g+)(20.0): # (20,0)) is a reduction of the principal
bundle(M x g*,M, 1, g*). A straightforward verification shows thaf (z,0) coincides with the Hamilto-
nian holonomyx introduced in Definition 2.5. In this sense, the momentum thald — g* establishes a
relationship between the deck transformation groups ofitiieersal covering oM and of the holonomy
bundlep: M’ — M. Moreover, the holonomy bundM’ can be expressed usid@gs

M’ = {(am (%), J(%)) | X€ M}. (2.10)

12
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This expression allows one to easily check mﬁ‘[ M, p, # ) is actually a Hamiltonian covering & with
the symplectic formy := p*w. TheGy -action onM’ is symplectic and is induced by ti@action onM’
given by

g- (X = (9-%,3(g-%) = (9-x,05(9) +Ady-1J(X)), (2.11)

where(x, ) € M/, g = Pg(0), andX is such thatpg(X) = x, andJ(X) = 1. The Gy -action onM’ has a
momentum mag : M’ — g* given byj(x, NIETE

Proposition 2.10 The universal covered spaté= M/I’o is diffeomorphic tdvi’.

Proof. The required diffeomorphism is implemented by the map

©: M/Tg — M’
X — (x(1),I(X)).

This map is well defined since by (2.3), the smooth rlap — M’ given by X — (x(1),J(X)) is T
invariant and hence it drops to the smooth naprhe mapd is an immersion since for ang € TyM such
that 0= T8 - vy = (T; o Vi, Txd ~vi), we have thallypy; - vx = 0 and hencey = 0, necessarily. Given
thatlg is a discrete group, the projectidh — M/Fo is a local diffeomorphism and hen&eis also an
immersion. Addiditonally, by (2.10), the map is also surjective. We conclude by showing tiats
injective. LetX,y € M be such tha®([x]) = ©([y]). This implies that

x(1) =y(1) andthat J(X)=J(). (2.12)

The first equality in (2.12) implies that+y € T;(M, z), wherey is the homotopy class associated to the
reverse patly of y. Moreover, by the second equality in (2.12), it is easy tackhthatJ(X+y) = 0, and
hencex+y € INg. Since(X+Yy) xy = X we can conclude thadk] = [y], as required. Consequent®,being a
smooth bijective immersion, it is necessarily a diffeonfosm. A straightforward verification shows that
© € Mor($), which concludes the proof. m|

3 Symplectic reduction and Hamiltonian coverings

Symplectic reduction is a well studied process that prbssrhow to construct symplectic quotients out of
the orbit spaces associated to the symplectic symmetreegiven symplectic manifold. Even thoughiit is
known how to carry this out for fully general symplectic acts [13], the implementation of this procedure
is particularly convenient in the presence of a standard emom map, that is, when the Hamiltonian
holonomy is trivial (this is the so called symplectic or Mdes-Weinstein reduction [8]). Unlike the situa-
tion encountered in the general case with a non-trivial Htamian holonomy, the existence of a standard
momentum map implies the existence of a unique canonicabgtic reduced space. In the light of this
remark the notion of Hamiltonian covering appears as amasting and useful object for reduction. More
specifically, one may ask whether, given a symplectic aatiora symplectic manifold with non-trivial
holonomy and with respect to which we want to reduce, we clifilthe action to a Hamiltonian covering,
perform reduction there with respect to a standard momemtam, and then project down the resulting
space. How would this compare with the potentially compédaeduction in the original manifold? The
main result in this section shows that indeed both processkkexactly the same result.

Before we start with the presentation of this result we ersjigasome points related to the actions
introduced in Section 1. Lé¥l be a manifold acted upon by the connected Lie gr@umdpy : N — M a
covering. In this section we will be interested in orbit spaobtained out of th&-action onM and of the
G andGy-actions orlN. Since by Proposition 1.8 the subgragigp C G acts trivially onN, the orbit spaces
associated to th& andGy-actions onN coincide. Another point is that singg; : G — Gis a covering

map then the derivativespg : g — g is a Lie algebra isomorphism and hence, for grqu andE €gsuch
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thatpg(9) = gandTepg (&) =& B
TePg (Adgﬁ) = Adg¢. (3.1)

In the pages that follow we will tacitly identify with g. Moreover, since we will make no distinction
betweerg andg, we will sometimes write (3.1) as A = Adg&. The same applies to the coveripg, :

Gn = G/KN — G and to the corresponding Lie algebra isomorphigims,, : gn — g. It follows that the
isotropy subgroups for the coadjoint action satisfy

Gu=p5"(G),

and similarly for(Gn ).

3.1 The cylinder valued momentum map

Recall the definition of the holonomy of a symplectic actidrGoon M given in Definition 2.5: namely,
# =J(I), where as alway$, = (M, zy). Using this definition, equation (2.3) can be expressed iynga
thatJ is equivariant with respect 6 acting as deck transformations bhand as translations by elements
of # ong*. It follows thatJ descends to another map with valuegiri# . However, in general this is a
difficult object to use as/ is not necessarily alosedsubgroup ofg*. To circumvent this, we proceed as
follows.

Let# be the closure off in g Sinces is a closed subgroup @§*,+), the quotienC := g*/ﬁ is a
cylinder (that is, it is isomorphic to the Abelian Lie groRf x T° for somea,b € N). LetTc : g* — g* /#
be the projection. Defink : M — C to be the map that makes the following diagram commutative:

M _J, g
qu lm (3.2)
M —~— Cc=g"/u

In other wordsK is defined byK (z) = Tc(J(2)), whereZ'e M is any path with endpoirt We will refer

toK: M — g*/ﬁ as acylinder valued momentum magsociated to the symplectg&action on(M, w).
This object was introduced in [3] in a slightly different nmer under the name 6fmoment ©duit”.

Any other choice of Hamiltonian cover in place Mf would render the same Hamiltonian holonomy
group# and the same cylinder valued momentum map. If one choseaetiffbase poirty € M in place
of z5 the holonomy group would remain the same, but the cylindereecamomentum map would possibly
differ from K by a constant ig* /(.

Elementary properties. The cylinder valued momentum map is a strict generalizatiothe standard
(Kostant-Souriau) momentum map since tBeaction has a standard momentum map if and only if the
holonomy group# is trivial. In such a case the cylinder valued momentum maa s&andard mo-
mentum map. The cylinder valued momentum map satisfies Mogtfheorem; that is, for ang-
invariant functiorh € C*(M)©, the flowR, of its associated Hamiltonian vector field satisfies the identity

K ohR = K|pomr)- Additionally, using the diagram (3.2) and identifyifigv andT;M via Tz:qu, one has
that for anyv, € T,M, T,K (v;) = Tymc(v), wherep=J(2) € g* andv = T3J(v) € g*.

ConsequentlyT;K (v;) = 0 is equivalent tolzJ(v,) € Lie(s) C #, or equivalentlyi,,w € Lie(# ), S0
that

kerT,K = [(Lie(ﬁ)) . z} w.

Here Lig(#/) C g* is the Lie algebra of/, and Lig# )° its annihilator ing, and the upper index denotes
thew-orthogonal complement of the set in question. The notatiomfor any subspacec g has the usual
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meaning: namely the vector subspacagfl formed by evaluating all infinitesimal generatayg at the
pointze M for all n € ¢. Furthermore, rangd;K ) = Tumc ((g2)°) (the Bifurcation Lemma).

Equivariance properties of the cylinder valued momentum ma. There is aG-action ong*/# with
respect to which the cylinder valued momentum map-isquivariant. This action is constructed by notic-
ing first that sinces is connected it follows (see [13]) that the Hamiltonian oy 7 is pointwise fixed
by the coadjoint action, that is, ,gdlh = h, for anyg € G and anyh € 5. Hence, the coadjoint action on

g* descends to a well defined actiam* on g*/? defined so that for ang € G, ﬂd;l oTe =T, oAd;,l.
With this in mind, we defin@x : Gx M — g*/# by

0k (9,2 :=K(g-2) — ,qd;,lK (2).

SinceM is connected by hypothesis, it can be shown@hatloes not depend on the point M and hence
it defines a mawg : G — g*/# which is a group valued one-cocycle: for agyh € G, it satisfies the
equalityok (gh) = ok (9) + ﬂds,loK (h). This guarantees that the map

©: Gxg'/#H — gt /H
@meW) — adi.(re(Ww)+ox(9),
defines a-action ong*/ﬁ with respect to which the cylinder valued momentum raig G-equivariant;

that is, for anyg € G, ze M, we have
K(9-2) = ©4(K(2)).

We will refertook : G — g*/? as thenon-equivariance one-cocyatd the cylinder valued momentum
mapK :M — g*/# and to® as theaffine G-actioron g*/# induced byok . The infinitesimal generators
of the affineG-action ong*/# are given by the expression

&y (W) = —Ture (V@) (E,-)), (3.3)

for any€ € g, whereK (z) = (), andW : M — Z?(g) is the Chu map defined in (2.1).

The non-equivariance cocycles : G— g*andok : G — g*/; are related by
Tic © 03 = Ok © Pg. (3.4)

Proposition 3.1 If the action of G has an isotropic orbit then the cylinderwadl momentum map for this
action can be chosen coadjoint equivariant.

Proof.  This follows from Remark 2.4. Lety € M be a point in the isotropic orbit and construct a
universal coverindVl of M by taking homotopies of curves with a fixed endpoint starang,. LetJ:

M — g* be the momentum map for th@-action onM introduced in Proposition 2.3. Since ti&orbit
containingz is isotropic, the integrand in (2.4) is identically zero @mehcecs; = 0 (see Remark 2.4).
Therefore by (3.4) the non-equivariance cocymkesatisfiesok o pg = Tc o gy = 0. ]

Remark 3.2 For any Hamiltonian coveringy : N — M of (M, w) there exists a momentum mag : N —
g* for theG (and alsdGn) action onN such thatly o gy = J andoy,, = a3. ConsequentlyiicoJn = K o pn.
Here the magmjy : M — N is theG-equivariant covering such that o gy = Pyi-

3.2 Reduction

The following result establishes a crucial relationshimeen the deck transformations groumief: M —
M, thatis,I" := 1y (M, ) and the deck transformations groupffM — M, that is# .
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Proposition 3.3 Let G be a connected Lie group acting symplectically on thgsgctic manifoldM, zp, w)

with Hamiltonian holonomys and letJ : M — M be the momentum map for the lifted action (&, Z)
defined in Proposition 2.3. Then, for anyy*

am(@ i+ 2)) = am(3 (W), (3.5)

with gu : M — M the projection. More generally, for any Hamiltonian coey p : (N,yo) — (M, 29)
of (M, zp,w), letJy : N — g* be the momentum map for they@ction on N that satisfies the properties
mentioned in Remark 3.2. Then, for ang g*

PN(INt(H+20)) = Pu N (W) (3.6)
Proof.  Sincegu (J 1 (H+ #)) = Uyesr am(I~2(1+V)), it suffices to show that
am(3H(H+V)) = am(3 (W), foranyv € 7. (3.7)
LetZe J-(p), and lety € I be such tha(y) = v. Then the deck transformatian-> y«Z on M provides
a diffeomorphism oM which mapsJ—1(p) to J=X(u+v), sinced(y=2) = J(y) + J(2) (Proposition 2.3).
However,qu (v 2) = Zso that indeedyv (3~ (W) = g (I (1+V)) for anyv € 4.
In order to prove (3.6) lejy : M — N be theG-equivariant covering such thak o gy = Pyi- This
equality and the surjectivity ady imply that for any seA C N, pn(A) = py; o q,gl(A). Now, the relations

Inogy =3 and (3.5) imply thapy (o " (I (k- #0)) = Py (o (9 () and hencn(y*(k+ 7)) =
pn(Int (W), as required. O

The final result shows that reduction behaves well with reisjoethe lifting of the action to any Hamil-
tonian cover. More explicitly, we show that in order to casnt reduction one can either stay in the original
manifold and use the in general cylinder valued momentumanape can lift the action to a Hamiltonian
cover, perform ordinary Marsden-Weinstein reduction ¢hend then project the resulting quotient. The
two strategies yield the same result. Notice that unlesbkl&miltonian holonomy of the actiar is closed
in g*, the reduced spaces obtained via the cylinder valued mamemtap are in general not symplectic
but Poisson manifolds [13].

Theorem 3.4 Let G be a Lie group acting symplectically on the symplectamifiold (M, w) and p :

(N,yo) — (M, z9) a Hamiltonian covering. Lely : N — g* be the momentum map for tBe(or Gy) action
on N that satisfies the properties mentioned in Remark 3.2n,Ttor any pe g* and for [y = () €

g*/?, the covering map : N — M induces a natural projection o J,Ql(u)/(GN)u = ng(p)/éu —
K*l([u])/GM. The subgroup$Gy), and G, are the isotropies of pu anfl] with respect to the affine

actions of Gy and G ong* andg*/ﬁ using the non-equivariance cocyclesXf andK, respectively.

If the G-action on M is free and proper then bat* (1) /(Gn )y andK*l([u])/GM are Poisson mani-
folds and p is a Poisson surjective submersion. If, additionally, trentiltonian holonomy is closed in
g5, then\],gl(p)/(G,\,)Ll andK*l([u])/GM are symplectic manifolds and, s a symplectic covering map.

Proof.  If y € J1(1) then pn(y) € K~1([W]), since by hypothesidy andK were chosen such that
Tcodn =Ko pn. LetP, : Iyt (W) — K~ (1)) be the restriction opy to Jy*(1). Letd € G, andg = pg().
Given that

9-[M = ad (W) +ok(9) = Te(Ady1H) +Tc(0s(F))
Te(Adg i+ 05y (9) = Te(@-1) = Te(W) = [,

we conclude thag € Gy. This remark, as well as tké—equivariance ot imply theéu-equivariance of

P, Which allows us to drop this map onf : Iy (W) /(Gn)u = I (W) /Gy — K~X([W)/Gyy. It remains
to be shown thap,, is surjective. We will prove that by showing thay is surjective. First of all notice that

KY([1) = pn(IN R+ #0). (3.8)
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Indeed, lez € K~([]) andZ'c N such thaz = py(2). Then sincac(i) = K (pn(2)) = Te(In(Z)) there
existsv € # such thatly(2) = u+v and hence € py(Jy*(1+V)). Conversely, iz pn (I (H+#))
then there existg € J(1+v) for somev € # such thaz = py(2). ConsequentlyK (2) = K (pn(2)) =
Tec(In(Z)) = Te(p+v) = Te(1). Now, by Proposition 3.3

K™2([W) = PR R+ 20)) = POt () = Punt (1),

as required.

The last statement in the theorem is a consequence of thiaéadty Corollary 1.10 and Theorem 1.13,
if the G-action onM is free and proper, then so is tk@-action onN and hence botdy*(1)/(Gn)u
and K*l([u])/GM are regular quotient manifolds. The results in [13] guararthat these two spaces
are endowed with natural projected Poisson structuresraigsitforward diagram chasing shows tipat
preserves these two Poisson structures. Additionally, i§ closed ing*, the results in [13] guarantee that
K*l([u])/GM is a symplectic manifold of the same dimensiodg&() /(Gn),. Itis easy to check that in
that situation the map,, is a symplectic covering map. |
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