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ABSTRACT

Stochastic Modeling of Gene Regulatory Networks

by

Hitesh Mistry

Gene Regulatory Networks (GRNs) describe how chemical species within a cell in-

teract with one another, thereby governing the rates at which key genes are expressed.

This thesis is concerned with modeling a particular GRN, Arabidopsis thaliana Circa-

dian Clock, by considering three different approaches; discrete stochastic, continuous

stochastic and parameter variation. By considering these different methods we will

see if the desired behavior required from our network is robust to biological noise.

Through employing stochastic approaches we found the GRN under question is

robust to biological noise to a point; the results of our study led to a couple of

interesting questions to people within the field. When the number of molecules

involved in the reactions were reduced sufficiently the biological noise in the system

destroyed the desired circadian rhythm. To the biologists we would ask how low are

the molecule numbers involved in such reactions and to the modelers how appropriate

is it to use Michaelis-Menten type kinetics for low molecule numbers.
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CHAPTER I

Introduction

1.1 Biological Background

One of the key aspects of developmental biology is to know which genes are acti-

vated at certain times and to what extent. By knowing this an understanding of how

an organism functions can be achieved. Interactions between DNA, RNA, protein

and other smaller molecules are responsible for the regulation of gene expression. To

be able to develop a mathematical model [10] of such regulatory networks is indeed a

very difficult challenge as the pathways can be very complex: a sound understanding

of the underlying biology of the process is essential [1]. The main example under

consideration in this thesis is the modeling of the circadian clock in Ararbidopsis

thaliana. The model is a prime example of how experiments and mathematics can

be used together to help understand biological processes. A group of mathemati-

cians and biologists in Warwick University, Locke et al., have developed a system of

first-order non-linear differential equations to model the Arabidopsis Circadian Clock

[31, 32, 24], consisting of a set of genes that are responsible for maintaining rhythmic

expressions of key genes, discussed further in Chapter 3.

Before we specialize to Arabidopsis a quick review of what Francis Crick has called

the “Central Dogma” [9] is in order. The dogma holds that genetic information flows

3
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“from DNA to RNA to protein”: DNA is the store of hereditary information within a

cell and the carrier of this information from one generation to the next. These DNA

molecules are very long, unbranched polymers and encode the genetic information as

linear sequence of nucleotides. The nucleotides consist of three elements (see, e.g. [5]

for details): the sugar deoxyribose, a phosphate group and a nitrogenous base which

is one of adenine(A), cytosine (C), guanine (G) or thymine (T). DNA is a three-

dimensional structure, in which two DNA complementary polymer chains (the bases

are associated in pairs, C with G and A with T) are held together by a hydrogen

bonds. There is a sense of direction on DNA defined by the way the links in the

polymer chain fit together. Genetic information is encoded by the sequence of the

nucleotides along each chain. Think of each base—A, C, G or T—as a letter drawn

from a four letter alphabet which will spell out biological messages. Every organism

will then differ, to a certain degree if clones are ignored, because their respective

DNA molecule will consist of different sequences of nucleotides and hence will spell

out different messages.

Transcription of a DNA molecule is an intricate process, through which the cell

prepares a kind of working copy of some of its genetic information, copying the base

sequence of a segment of its DNA into an RNA molecule. RNA polymerases are the

enzymes that are required to perform transcription. They are responsible for unrav-

eling the DNA chains and copying the genetic information. For transcription to take

place, several additional ingredients are required: these help the RNA polymerase

to remain attached and to start the copying process. Firstly the RNA polymerase

must realize where on the genome to start transcription and where to finish.

There are at least three different types of RNA polymerase: each transcribes dif-

ferent RNA genes. The one that is of main interest here is RNA polymerase II; it can
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transcribe all the protein coding genes. On the DNA sequence there exist promoter

regions, sites to which the polymerase will bind, and which occur just upstream of

the start site of transcription. In these regions a number of transcription factors will

attach to then help position the RNA polymerase correctly at the promoter. The

RNA polymerase then starts the process of pulling the two DNA strands apart and

so allows the start of the transcription process: Figure 1.1 describes the process of

transcription in a simple manner.

DNA

Promoter 
Site

Transcription Factors

RNA
RNA Polymerase

Figure 1.1: Transcription: Here we can see that once the transcription factors are bound to the
promoter site the RNA Polymerase moves up the DNA strand copying the DNA to
produce RNA.

This seems to suggest that DNA transcription does not progress in a straight-

forward manner. The process stops and starts depending on whether or not the

transcription factors are in place. Additionally the presence of other small molecules

colliding with the bound transcription factors can affect the rate of transcription.

Finally, one should also consider that the numbers of molecules involved in tran-
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scription are very small: a typical plant cell may contain very few RNA polymerases.

There are several types of RNA that are produced in the cell. The RNA molecules

that are copied from the section of the DNA that correspond to the amino acid

sequence of proteins are called messenger RNA (mRNA).

The sketch above is really only correct for the relatively simple molecular biology

of prokaryotic cells—those, such as bacteria, that lack a nucleus. In eukaryotes—

cells that have a nucleus—the transcription cycle is a lot more complicated. The

RNA molecule whose production is described above is called the primary transcript,

but this initial transcript undergoes several processes before it is known as mRNA.

The primary transcript is located in the cell’s nucleus while the ribosomes, on which

protein synthesis takes place, are located in the cytoplasm. The eukaryotic cell is

thus comprised of two main compartments. The nucleus found in the center where

we usually find the chromosomes while the cytoplasm is a jelly-like substance which,

though contained within the plasma membrane or outer wall of the cell, lies outside

the nucleus. The primary transcript undergoes RNA capping and polyadenylation,

two processes that increase the stability of the mRNA molecule and aid its transport

from nucleus to cytoplasm.

RNA capping involves a guanine (G) nucleotide being attached to the front end of

the transcript (known as the 5’ end) while polyadenylation adds a special structure

to the tail of the transcript also known as the 3’ end. The 3’ end is first trimmed

by an enzyme and then a second enzyme adds on a repeated number of adenine

(A) nucleotides and is sometimes referred to as the poly(A) tail. This RNA then

decreases in size due to RNA splicing. The primary transcript contains a lot of non-

coding regions, whose function is not fully understood. Theses non-coding sequences

are known as introns, while the coding sequences are called exons. The end result
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of splicing is a much shorter RNA molecule, which contains an uninterrupted coding

sequence. After splicing a functional mRNA molecule is now able to leave the nucleus

and be translated into protein.

After transport to the cytoplasm, the mRNA molecules are eventually degraded

by the cell. The amount of protein produced by a single mRNA molecule depends,

among other things, on its lifespan in the cytoplasm. The lifespan varies depending

on what sort of cell it is produced in.

Once the mRNA molecule has left the nucleus and before it is degraded it is

available for translation: conversion of the information from one chemical language

to another. The translation is not a one-to-one correspondence between a nucleotide

in RNA and an amino acid in protein. The reason for this is that there are 20 different

amino acids and only four nucleotides. The nucleotide sequence is translated into

protein–another polymer whose basic elements are amino acids—sequence by a set

of rules, the genetic code.

The code reads out the nucleotides of an RNA molecule in groups of three so in

total there are sixty-four possible combinations of three nucleotides but only twenty

amino acids. Most of these nucleotide triplets are redundant in the sense that most

amino acids are specified by more than one triplet. Each of these triplets is known

as a codon, and each corresponds to an amino acid or to a special marker indicating

the stop-point for translation.

Transfer RNAs (tRNAs) are an adaptor molecule that binds to both the codon and

the corresponding amino acid. Accurate and rapid translation of mRNA into protein

requires a molecular machine which can travel along the mRNA chain, holding the

associated tRNA molecules in place and bonding together the associated amino acids

to form a protein chain. This machine is a very large complex consisting of more
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than fifty proteins, several RNA molecules (rRNAs) and is called the ribosome.

Amino Acids

tRNA

Ribosome
mRNA

Protein Chain

Figure 1.2: Translation

Once protein synthesis has started, a new amino acid is added to the chain in

a cycle of reactions. Translation starts with a certain codon (AUG) and a special

initiator tRNA. The translation process stops with the presence of one of several

codons (UAA, UAG, or UGA), that signal to the ribosome to stop translation. The

protein chain is then released into the cytoplasm. The RNA molecule is then released

by the ribosome ready to start another round of protein synthesis. This suggests that

translation, unlike transcription could be a linear process.

1.2 Gene Regulatory Networks

Having introduced key biological ideas in the previous section we may now intro-

duce the notion of gene regulatory networks. A gene regulatory network describes

how a collection of proteins and their corresponding mRNAs and DNA sequences
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interact within a cell.

mRNA

   Protein
Cytoplasm

 Protein
Nucleus

mRNA

   Protein
Cytoplasm

 Protein
Nucleus

Figure 1.3: Examples of autoregulatory networks

Figure (1.3) illustrates two simple autoregulatory networks. Arrows correspond

to an enhancing effect and the dots an inhibitory effect—this notation will be used

throughout this thesis. The top network in the figure is known as a positive feedback

loop while the one below as a negative feedback loop. A more complex example, the

segment polarity network, which is active during the early development of the fruit

fly Drosophila melanogaster, is illustrated in figure (1.4).

The network consists of a set of genes that are responsible for establishing certain

repeated structures–precursors of the adult insect’s segments—during early devel-

opment. A group of mathematicians and biologists at Washington University, von

Dassow et al., have developed a system of first-order non-linear differential equations

to model the segment polarity network [45, 47, 46].
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Figure 1.4: Segment Polarity Network
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The network shows how proteins activate and inhibit the production of genes

within adjacent cells. Simply put, proteins inhibit or activate the transcription pro-

cess. The ellipses correspond to mRNAs and the rectangles the proteins. The model

also includes some trans-membrane proteins: these are the proteins that pass through

a cell’s membrane and mediate communication with adjacent cells. Interactions be-

tween the following five genes have been considered in their model: EN, engrailed;

WG, wingless; HH, hedgehog; PTC, patched; CID, cubitus interruptus; CN, repres-

sor fragments of cubitus interruptus; PH, patched-hedgehog complex. The dashed

lines correspond to interactions conjectured after initial numerical experiments and

which have subsequently been verified experimentally. This figure represents the in-

teractions von Dassow et al. thought would replicate the assembly patterns of the

segment polarity genes.

Networks, like the segment polarity network, can be modeled with the use of

ODEs. The segment polarity network consists of a system of thirteen non-linear

ODEs, requiring 48 free parameters, including half-lives of the molecules, binding

rates and cooperativity coefficients. Experimental values of these parameters are

unknown and plausible ranges for these parameters—established by very crude ar-

guments about the duration of the developmental period and energetic constraints

on maximum rates of protein production—-span several orders of magnitude. A so-

lution in the sense of von Dassow et al. is a set of parameters gives rise to behavior

that is qualitatively consistent with the behavior of real cells in an embryo: their

main finding is that the regulatory network is highly robust in the sense that almost

every remotely plausible parameter value appears as part of some solution. For more

detail with regards to the biology and modeling behind this network we refer the

reader to their papers [45, 47, 46].
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Modeling gene regulation with the use of differential equations assumes that the

concentrations of molecules vary deterministically and continuously. This does not

seem to be the case, as the number of molecules is small and may vary from cell to

cell. A growing body of literature, discussed in the rest of this chapter, examines

the role of stochasticity in gene networks. Much of this work draws a distinction

between extrinsic noise and intrinsic noise. The former includes cell-to-cell varia-

tions in concentrations of such cellular components as metabolites, polymerases and

ribosomes. By contrast, intrinsic noise refers to fluctuations in the timing of cellu-

lar events within a single cell, including variations in the timing of he initiations of

transcription.

1.3 Stochasticity in Gene Expression

Considering stochasticity in gene networks is currently a very hot topic in math-

ematical biology. Stochastic models have been considered since biological processes

such as transcription usually involve small numbers of molecules. A key question is to

ask how low can we take molecule numbers without affecting the desired qualitative

behavior of the models.

The review by Kaern et al. [27] on Stochasticity in Gene Expression provides

useful insight into how stochasticity affects gene expression from a theoretical point

of view. Gene expression needs to be a robust process as it is invariably under

a lot of stress from constant environmental changes. Genetically identical cells do

vary substantially in terms of molecular content even when under the influence of

similar environmental conditions. Kaern et al. measure gene expression noise by

considering the standard deviation divided by the mean, of protein concentrations,

and noise strength as the variance divided by the mean. Describing the noise strength



13

in this way however does seem rather crude.

Kaern et al. look at stochastic models and describe circumstances under which

a stochastic model converges to a deterministic one. The two points in question are

system size and reaction speeds. By system size we mean the numbers per molecular

species in a fixed volume.

We will start with the finite number effect which examines system size. Con-

sider an eukaryotic cell in which a chemical species X is said to be in equilibrium

in the sense that the concentration of species is the same in the nucleus and in the

cytoplasm. But the nucleus is a much smaller entity than the cytoplasm. So if a

molecule left the nucleus and entered the cytoplasm, it would cause a bigger percent-

age change in nuclear concentration of X than the cytoplasmic concentration. This

change is what is known as the finite number effect. For example, if 10 molecules are

present in the nucleus and 100 in the cytoplasm, the relocation of 1 molecule from

the nucleus to the cytoplasm has a 10 percent change in nucleus concentration but

only 1 percent change in the cytoplasmic concentration. In general, let N denote the

average molecular abundance in the cytoplasm and nucleus respectively, η = σ/N

be the coefficient of variation, where σ is the standard deviation of the number of

protein molecules. A decrease in abundance results in a 1/
√

N scaling of the noise.

In a hypothetical experiment we would like to decrease system size in such a

way that it does not affect the steady state protein number; so we can see the

affect a change in system size has on the protein distribution. This can be done by

decreasing the transcription rate but increasing the translation rate in an appropriate

manner. We find a decrease in system size leads to an increase in noise which gives

a broader protein distribution. This proportional change is known as translational

bursting. Which implies we have an increase in heterogeneity i.e. cell-to-cell variation
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of protein production in genetically identical cells.

Very few of the reactant parameters, concentrations and rates have been measured.

Worse still, many are not yet experimentally accessible and those quantities that

can be measured, for example, metabolic fluxes, don’t give any real insight into

underlying chemical rates; since fluxes depend on both concentrations and rates.

That is, the experimental data provide constraints of the parameters, but do not

determine them. As we will see below, rate variation, especially in those affecting

the binding of regulatory elements, have important consequences for the strength of

stochasticity in gene expression.

The review also looks at a second point, fast reaction speeds. Fast reaction kinetics

for reversible reactions leads to a deterministic approach. Slow reaction kinetics mean

we stay in a state for a longer amount of time. For example if a promoter is in an

active state, leading to the transcription of mRNA, then more mRNA is produced

quickly. This is known as a transcription burst. If the promoter remains active long

enough, protein production will follow the state of the promoter. Which leads to a

bimodal protein distribution, where protein is produced at either a very high or a

very low rate.

Kaern et al. find that translational bursting is valid when transitions between

promoter states are quick. The biochemical processes regulating transcription initi-

ation are much faster than protein synthesis and degradation. They find this is the

main cause of gene expression noise in prokaryotic cells. Eukaryotic cells have slow

reaction kinetics in the nucleus, because all the DNA is packed tightly due to the

presence of nucleosomes. Nucleosomes package DNA into chromosomes inside the

cell’s nucleus and control gene expression.

A recent review by Paulsson [34] discusses the similarities between the vast amount



15

of stochastic models over the last 30 years for gene expression. A set of inspirational

papers were first produced in the early 1970s by David Rigney [39, 38, 37] and

Otto Berg [33] describing mRNA and protein fluctuations in cells. One of their main

findings was the discovery of translational bursting which we described earlier. Their

analytical stochastic models showed that if mRNAs are either translated or degraded

with constant probabilities leads to a widening of the protein distribution.

Over twenty years later Kepler and Elston [28] developed a model which was in

the same vein as Rigney and Bergs. Their model assumed that mRNAs are degraded

quickly and they discovered that genes which switched on and off slowly produced

large protein fluctuations, widening of the distribution of protein concentrations.

Thattai and van Oudenaarden [43] extended the model further by examining a neg-

ative feedback loop and noise propagation. They found that for an autoregulatory

protein, negative feedback effectively led to a reduction in system noise. Stochastic

models developed in recent times have been simulated numerically with the aid of the

Gillespie Algorithm [14, 15, 16, 17], which is discussed in Chapter 2. The conclusions

drawn from the numerical simulations agree well with the earlier analytical studies.

1.4 Experimental Studies of Stochasticity

Elowitz [12] examined strains of E. coli to try and discriminate between intrinsic

and extrinsic noise. Their results show that both types of noise contribute to cell-

to-cell variation in gene expression. They were able to look at protein production

with varying amounts of noise by constructing strains of E. coli where the reporter

genes, yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP), were

controlled by identical promoters and regulatory sequences.

These modified strains of E. coli produced only 3 to 6 percent as much protein as
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the wild type, because they had much lower transcription rates. Elowitz constructed

plots of normalized CFP against normalized YFP, for both the wild type and the

other strains (see figure(1.5)). Here variation along the main diagonal corresponds

to extrinsic noise and variation perpendicular to the main diagonal corresponds to

intrinsic noise.

Figure 1.5: Plot of fluorescence in two strains: (M22) quiet and (D22) noisy. Every point represents
mean flourescence intensities from one cell.

The two strains under consideration in Figure (1.5) are M22, the least noisy strain,

and D22, the noisy wild type. Each point in the figure represents mean fluorescent

intensities from one cell, over some small time interval. Note that the wild type had

a much lower transcription rate than M22.

They found both intrinsic and extrinsic noise increased by a factor of 5 in the wild

type. Figure (1.6) are plots of noise versus rate of transcription for strain M22 in

(B) and D22 in (C). The x-axis represents fluorescence levels, where the rightmost
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point was used to normalize all fluorescence intensities. ηtot, ηint and ηext represent,

respectively, total, intrinsic and extrinsic noise. Intrinsic noise increases for both

strains as transcription rate decreases, as expected. This agrees with the analytical

models proposed by Swain et al. [42] and Paulsson et al. [35], which predict an

increase in intrinsic noise as the transcription rate decreases.

Notice in Figure (panel C 1.6) that extrinsic noise behaves in a very different way

to intrinsic noise. ηint decreases monotonically however ηext exhibits a maximum

value for some intermediate rate of transcription in the wild-type. These results

suggest that cell-to-cell variability is not totally due to intrinsic noise. The take

home point is that both extrinsic and intrinsic noise together give rise to variation.

Colman-Lerner et al. [7], working with yeast cells, did a similar series of rigor-

ous experiments that suggest cell-to-cell variation comes mainly form the amount of

translational machinery available in the cytoplasm. They found that random fluc-

tuations during transcription and translation accounted for only a small amount of

cell-to-cell variation.

They looked at the response of Saccharomyces cerevisiae, (Brewer’s yeast) cell to

an α factor, a pheromone that triggers a signalling cascade whose ultimate outcome

is a decision whether to switch from normal, vegetative growth to the initiation of

mating events. They divide the signal transduction system into two subsystems.

The first, the pathway subsystem, shown in a blue box in figure (1.7), includes all the

events leading up-to, but not including, the initiation of transcription. The second

compartment, the expression subsystem, shown in a red box in figure (1.7), includes

the initiation of transcription and protein translation.

They conducted two experiments, whose results can be seen in Figure (1.8). The

first was designed to measure gene expression noise. They produced cell lines in which



18

Figure 1.6: Panel B: Noise versus transcription rate for M22. Panel C: Noise versus transcription
rate for D22 (see text for in-depth discussion).
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Figure 1.7: The mating pheromone response system.

Figure 1.8: Experimental results. Note that the x-axis in panel b should be labeled α-factor system
output and not ACT1 system output.
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fluorescent reporter genes yellow fluorescent protein (YFP) and cyan fluorescent pro-

tein (CFP) were regulated by the same α-responsive promoter. The righthand plot

in panel (1.8b) has a point for each of a large number of cells. The x-coordinate is

the intensity of CFP fluorescence while the y-coordinate is YFP intensity. If intrinsic

noise were very strong, the two fluorescent signals would be uncorrelated, even within

a single cell, and so one would expect a circular cloud of points. Instead, Colman-

Lerner see strongly correlated variation, so that, for example, cells that express CFP

strongly also express YFP strongly.

In the second experiment—designed to explore the extent of cell-to-cell variation

in the α-transduction machinery—the fluorescent reporters are under the control of

different promoters, one (controlling YFP expression) that is α-responsive and one

(governing CFP expression) that is not. The results, displayed in the right part of

panel (1.8c) are similar to those of the first experiment: expression levels within a

single cell are strongly correlated. The results from both experiments implied that

the variations in the capacity of cellular “machinery”, which includes, for example,

the RNA polymerases used during transcription as well as the ribosomal complexes

needed for translation, is the main source of cell-to-cell-variation.

The foregoing observations demonstrate that there is considerable stochasticity in

gene expression and prompt the questions; how do cells cope with fluctuating signals

at macroscopic level and what effect does this noise have on regulatory networks?

Blake et al. [4] examine noise in eukaryotic gene expression, also in Saccharomyces

cerevisiae. They developed a gene cascade with two regulatory steps to look in detail

at the way in which transcription noise propagates through a simple network.

For the experiment they looked at the expression of a gene, GAL1, whose role is

to adapt the cell’s metabolism, allowing the yeast to use the sugar galactose when its
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preferred carbon source, glucose, is unavailable. They modified the gene’s regulatory

region so that, in addition to GAL1 ’s natural regulation by galactose, the gene

can also be reversibly repressed by a reagent not normally present in cells. As in

the experiments described above, they used a fluorescent reporter (here, yEGFP—

yeast Enhanced Green Fluorescent Protein). They also constructed a stochastic

model, which took into account key transcriptional processes such as fluctuations

in mRNA production due to premature polymerase detachment and re-initiation of

translation and which also encompassed slow transitions between promotor states:

such slow activator/repressor kinetics led, as expected, to noisy, bursting responses

and prolonged bistable expression states.

1.5 Summary

In this chapter we have introduced the biological concepts needed to understand

gene regulatory networks. A very complex example of such a network was discussed

in section (1.2). But the segment polarity network is just the tip of the iceberg in

terms of complexity, gene networks can involve hundreds of genes with thousands of

unknown parameters.

We have seen, through Colman-Lerner’s experiments, that extrinsic noise is a

key player with regards to providing a reason for cell-to-cell variation for genetically

identical cells. Elowitz suggested that both intrinsic and extrinsic noise lead to

variation, suggesting there exists a correlation between the two. Blake shows that

stochasticity arising from transcription is a large contributor to cell-to-cell variation

among genetically identical cells. Furthermore they explored the propagation of

noise through a gene network with the aid of elaborate experiments. Finding that an

increase in noise in transcribing a regulatory protein led to an increase in cell-to-cell
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variability.

The reviews by Kaern and Paulsson describe the current trend to model tran-

scription events using discrete stochastic models. These models are being considered

due to the low numbers of molecules involved within interactions in the networks.

We have seen that the experimental findings agree with the analytical models as seen

in Blake. We may conclude that when modeling biological networks biological noise

due to low copy numbers needs to be considered.



CHAPTER II

Mathematical Background

In this chapter we will introduce the mathematical concepts behind modelling gene

networks deterministically [8, 41] and stochastically [44, 13, 48]. By considering a

simple example, an enzyme reaction , we will introduce Michaelis-Menten kinetics.

We will then introduce an idealized example of transcription and translation which

we will model stochastically in three ways testing for robustness. Note that con-

centrations of species will be denoted by, [], and numbers of a chemical species, Nk

where k is the species in question. All the numerical simulations throughout the

thesis were done using C++ [36, 29, 26] and the graphical representation of the data

with MATLAB [25].

2.1 Enzyme Kinetics

Enzymes are biological catalysts, proteins, that help speed up chemical reactions.

Reactions still occur without the presence of an enzyme but at a rather slower rate

known as the basal rate. The activation energy, the energy required to move from one

state to the next, is higher when no enzyme is present and lower when the appropriate

enzyme is present. Enzyme-catalyzed Reactions can become over a million times

faster! Enzymes are key building blocks of life. What exactly happens when an

enzyme and substrate come together? We can imagine an enzyme to be a ball with

23
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a piece missing on the surface. The right substrate will be able to fit in this hole

rather like a puzzle. Once bound we have an enzyme-substrate complex. From the

complex to the release of the enzyme and its product is known as the catalytic step.

The standard mathematical framework for the study of enzyme kinetics is so-called

Michaelis-Menten kinetics which we will illustrate with an example. The following

exposition owes a great deal to John Gillespe [18].

The enzyme Lactose dehydrogenase,(LDH) is a key enzyme involved in the Cori-

cycle, it is responsible for recycling lactic acid produced by skeletal muscle. Lactic

acid, also known as lactate, is transported through the blood from the muscle into

the liver where it is converted into an acid called pyruvate, this reaction is catalyzed

by LDH. Adaptations of LDH to different temperatures has been studied a great

deal over the years in a number of different species ranging from Antarctic fish to

desert lizards. One of the most interesting parameters to come out of the study

was the Michaelis constant, Km. To see what this parameter is and why it was so

interesting let us consider the following reaction, known as the Michaelis-Menten

model for enzyme catalysis.

(2.1) E + S
k1!

k−1

ES
kcat−→E + P

Where k′
is are rate constants. The binding and dissociation of the enzyme, E, to

substrate, S, is treated as a reversible reaction and is considered to be very fast. The

second step is a simple first order reaction describing the catalytic step and release

of the product, P .

Having written down our first chemical reaction, we now implement the Law of

Mass Action, which states that the rate of a chemical reaction is the product of
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the concentrations of the chemical species involved, to write down the following rate

equations.

d[ES]

dt
= [S][E]k1 − k−1[ES]− kcat[ES](2.2)

d[P ]

dt
= kcat[ES](2.3)

We will express enzyme and substrate concentrations in terms of their initial

concentrations [E0] and [S0], by using the following stoichiometric relationships

[E0] = [E] + [ES] and [S0] = [S] + [ES], such that we can eliminate [S] and [E]

from (2.2). We will now calculate the steady state, d[ES]/dt = 0, value for [ES].

d[ES]

dt
= 0

⇒ [ES] =
k1[E][S]

k−1 + kcat
(2.4)

Define,

(2.5) Km = (k−1 + kcat)/k1

then,

(2.6) [ES] =
[E][S]

Km

We know that the rate of production of [P ] is, d[P ]/dt = v = kcat[ES]. Using

stoichiometric relationships and plugging in the steady state value for [ES] we obtain

the Michaelis-Menten Equation (2.7).

v =
V [S]

Km + [S]
(2.7)

V = kcat[E0](2.8)



26

Where Km is the Michaelis constant, mentioned earlier, is a measure of the

strength of the binding between the substrate and the enzyme. A low value for

Km corresponds to strong binding and a high value for weak binding. V is known

as the maximum rate, which occurs when the concentration of the substrate is high

enough to saturate the enzyme. Figure (2.1) describes how the velocity of the reac-

tion varies with changing substrate concentrations. Notice that when the substrate

concentration is equal to Km, velocity of the reaction is equal to half the maximum

rate. If the substrate concentration was much lower than Km we can see that the

reaction behaves like a first order reaction.
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Figure 2.1: Example of Michaelis Menten Reaction

A generalization of equation (2.7) is,

(2.9) v =
V [S]n

Kn
m + [S]n

.

Where n is known as the Hill coefficient such that,
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• n > 1: Positive cooperation, once one substrate molecule binds to an enzyme

its affinity with other substrate molecules increases.

• n < 1: Negative cooperation, once one substrate molecule is bound its affinity

decreases.

• n = 1: No cooperation, the affinity doesn’t matter on whether any substrate

molecules are bound.
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Figure 2.2: Example of Michaelis Menten Reaction with enzyme cooperativity

Figure(2.2) shows what effect Hill coefficient can have on an enzyme reaction.

So as we increase n a more switch like behavior like a heaviside function occurs.

From both figures(2.1,2.2) we can see how Michaelis Menten kinetics are useful in

describing changes of states in enzyme kinetics. This ends our brief introduction to
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Michaelis-Menten and deterministic enzyme kinetics.

2.2 Stochastic Processes

In this section we will give a brief review of stochastic processes, starting with

definitions of a Wiener Process and Itô Process, leading onto the concept of Stochastic

Differential Equations. Finally at the end of the section we introduce the Euler-

Maruyama method used to solve SDEs numerically.

2.2.1 Wiener Processes and Itô process

Definition II.1. A standard Wiener Process, a stochastic process, on [0, T ] is a

random variable, W (t) which depends continuously on t ∈ [0, T ] such that:

1. W(0) = 0

2. For any 0 ≤ t1 < t2 ≤ T , the increment W (t2)−W (t1) ∼ N(0, t2 − t1)

3. All increments on non-overlapping time intervals are independent. W (t2) −

W (t1) and W (t4)−W (t3) are independent for all 0 ≤ t1 < t2 < t3 < t4 ≤ T .

From parts (2) and (1) of definition (2.2.1), choosing t2 = t and t1 = 0, we see that

W (t) ∼ N(0, t). A variable z follows a Wiener process if it satisfies the properties of

definition (2.2.1). From part (2) of definition (2.2.1) a change ∆z, during a small time

period ∆t, follows a normal distribution with mean zero and variance ∆t. The third

property implies that z follows a Markov process. A process is a Markov process if it

has the Markov property, the probability distribution of future states only depends

on the current state and not on past states.

Define a generalized Wiener process for a variable X by,

(2.10) dX = a dt + b dz
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where a and b are constants and dz follows a Wiener process. The term adt is the

mean behavior and bdz is the variability to the path followed by X. So bdz is seen as

adding noise to the deterministic equation, dX/dt = a. The amount of noise being b

times a Wiener process. For a small time interval ∆t, a change ∆X follows a normal

distribution with mean a∆t and variance b2∆t.

Note that equation (2.10) is not a differential equation as such, it simply represents

a trajectory subjected to random fluctuations. To solve such an equation we would

transform it into a P.D.E. such as the Fokker-Planck Equation, whose solution would

describe the temporal evolution of the probability distribution.

An Itô process is a generalized Wiener process where the parameters a and b are

functions of the underlying variable X and time t. The mean and variance are a(t,X)

and b(t,X)2 respectively.

2.2.2 Stochastic Differential Equations

For the deterministic case we have,

dX

dt
= f(t,X(t))(2.11)

I.C.X(0) = X0(2.12)

⇔ X(t) = X0 +

∫ t

0

f(s, X(s))ds,(2.13)

where I.C. represents the initial condition, similarly for the stochastic case,

(2.14) X(t) = X0 +

∫ t

0

f(s, X(s))ds +

∫ t

0

g(s, X(s))dW (s),

where f, g are scalar functions and X0 (I.C.) can be interpreted as an SDE.

dX = f(t,X)dt + g(t,X)dW(2.15)

I.C.X(0) = X0(2.16)
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This is an Itô SDE, if the integral is interpreted as an Itô integral. Note that dW has

mean zero and variance dt. From definition (2.2.1) we found that ∆Wk ∼
√

∆tN(0, 1)

which we can re-write as,

(2.17) dW = φ
√

dt

where φ, −∞ < φ < +∞, is a random variable drawn from the normal distribution,

whose p.d.f. is,

(2.18)
exp(−1

2φ
2)

√
2π

.

Also we find that the expected value of φ is zero and has variance equal to one. In

a small time interval (t, t + ∆t) (2.15) becomes,

(2.19) ∆X = f(t,X)∆t + g(t,X)φ
√

∆t.

This equation involves taking small approximations and assumes that the drift and

variance are still f(t,X) and g2(t,X) respectively in the small interval (t, t + ∆t).

2.2.3 Numerical Simulation of S.D.E.s

We will now look at a numerical method [29, 36] for solving the following Itô

S.D.E.

(2.20) dX = f(X, t)dt + g(X, t)dW (t) t ∈ [0, T ]

For computer simulations, a discrete time model for W (t) is obtained as follows:

Define grid: tk = k∆t, k = 0, 1, ...., N

Denote Wk = W (tk), then from part (1) of definition ⇒ W0 = 0.

Parts (2) and (3) ⇒ Wk+1 = Wk + ∆Wk, k = 0, 1, 2, ....., N − 1, where the ∆Wk
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are independent R.V.’s such that ∆Wk ∼ N(0, ∆t), or ∆Wk ∼
√

∆tN(0, 1) (this is

useful since it can be calculated by programs).

Definition II.2. Setup the following grid for the Euler-Maruyama Method :

tk = k∆t, k = 0, 1, ....., N with N∆t = T .

Xk ≡ X̃(tk): numerical solution at tk.

X(tk): exact solution at tk.

(2.21) Xk+1 −Xk = f(Xk, tk)∆t + g(Xk, tk)∆Wk

with ∆Wk ≡ Wk+1 −Wk = z
√

∆t, where z ∼ N(0, 1).

The Euler-Maruyama method is said to have strong order of convergence of a 1/2,

(2.22) E(|XN −XtN |) = O(∆t1/2).

Thus strong order of convergence is based on the mean of the error at a fixed

time.

The problems discussed throughout are stiff systems so a predictor-corrector

method is needed. We implement the explicit Euler Method first, then implement

the Euler-Maruyama method:

X̃k+1 −Xk = f(Xk, tk)∆t(2.23)

Xk+1 − X̃k+1 = f(X̃k+1, tk)∆t + g(Xk, tk)∆Wk.(2.24)

Note that Mersenne Twister was used to generate random numbers for all numer-

ical algorithms considered.
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2.3 Stochastic Modelling of Enzyme Kinetics

When we are dealing with small copy numbers of molecules, should we still be deal-

ing with concentrations or should we be dealing with actual numbers of a chemical

species? In this section we will discuss two stochastic approaches to enzyme kinetics

which are designed to deal with small and larger numbers of molecules respectively.

We will also introduce a model to discuss the effects white noise perturbations has

on parameter values, namely the transcription and translation rates.

2.3.1 Chemical Master Equation

We are going to talk about simulations that account for every particle in some

fixed volume, which is assumed small enough that it is well-mixed in the sense that

all the particles encounter each other frequently. If there are n chemical species,

denoted by Si for i = 1....n, in play we will specify the state vector, Xi, of the

system with whole numbers. Define P (X, t), be the probability that there will be

Xi of chemical species Si in a fixed volume at time t. Let us now consider a very

small time interval (t, t + dt) where at most one reaction can occur. If there are m

reactions, a1(X), ...., am(X), we will define the stoichiometric vectors v1, ...., vm to

be the result of reactions on a state vector Xi. Thus we have a possibility of m + 1

distinct states we could be in at time t that takes us to state X at (t + dt).

P (X, t + dt) = P (no states change over dt)P (X, t)(2.25)

+
m∑

j=1

P (X − vj, t)P (state change to X over dt)

From Gardiner[13] this gives us the following Chemical Master Equation.
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(2.26)
∂P (X, t)

∂t
=

m∑

j=1

aj(X − vj, t)− aj(X)P (X, t)

We will now implement the CME for the types of reactions considered earlier in

the chapter and how we can solve such equations analytically.

Uni-molecular Reaction

Figure 2.3: Random path of a unimolecular reaction

(2.27) A
k−→ B

Take a simple uni-molecular reaction (2.27). Eventually every molecule will end

up at state B, where B is a large fixed number. Figure (2.3) resembles one particular

path this chemical reaction can take. The circles represent no change in state. We

can derive the following CME for this type of reaction,
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(2.28)
∂P (A, t)

∂t
= k(A + 1)P (A + 1, t)− kAP (A, t)

We have stated B is a fixed concentration, so that the total number of molecules

at any time in the system is K = A+B, B = K−A. We now calculate the derivative

of the first moment.

∂〈B〉
∂t

=
∑

A

B
∂P

∂t
(2.29)

∂〈B〉
∂t

=
∑

A

Bk(A + 1)P (A + 1, t)− kBAP (A, t)(2.30)

=
∑

A

(K − A)k(A + 1)P (A + 1, t)− k(K − A)AP (A, t)

=
∑

A

kAP (A, t)

= k〈A〉

Where 〈〉 correspond to taking the expectation. Notice how the equation is similar

to the corresponding rate equation,

(2.31)
d[B]

dt
= k[A]

where [A] and [B] are concentrations of their respective species. If we were to look

at the steady state, ∂〈B〉
∂t = 0, we find the mean to be zero which is what you would

expect because the reaction (2.27) is unidirectional and so, eventually all of species

A would have been transformed to B. Next we consider the temporal evolution of

the second moment.
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∂〈B2〉
∂t

=
∑

A

B2∂P

∂t
(2.32)

∂〈B2〉
∂t

=
∑

A

B2k(A + 1)P (A + 1, t)− kB2AP (A, t)(2.33)

=
∑

A

(K − (A− 1))2kAP (A, t)− k(K − A)2AP (A, t)

=
∑

A

(2K − 2A + 1)kAP (A, t)

= (2K + 1)k〈A〉 − 2k〈A2〉

Now we have the rate of change of the second moment and are in a position to

look at the time-varying variance.

∂〈σ2
B〉

∂t
=

∂(〈B2〉 − 〈B〉2)
∂t

(2.34)

= (2K + 1)k〈A〉 − 2k(〈A2〉+ 〈A〉2)(2.35)

As we approach the steady state,
∂〈σ2

B〉
∂t → 0 the second moment 〈A2〉 → 0.

Simple bi-molecular reaction

We will now look at a bimolecular reaction,

(2.36) P1 + P2
k1!
k2

Z.

Figure (2.4) shows a random path a bimolecular reaction can take, again circles

as before represent no change in state. We now derive the following Chemical Master

Equation.
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Figure 2.4: Random path of a bimolecular reaction

∂P (P1, P2, Z, t)

∂t
= k1(P1 + 1)(P2 + 1)(Z − 1)P (P1 + 1, P2 + 1, Z − 1, t)(2.37)

−k1P1P2P (P1, P2, Z, t)

+k2(Z + 1)P (P1 − 1, P2 − 1, Z + 1, t)(2.38)

− k2ZP (P1, P2, Z, t)

Next we calculate the derivative of the first moment,

(2.39)
∂〈Z〉
∂t

= k1〈P1P2〉 − k2〈Z〉.

Which is again similar to its corresponding rate equation. At steady state the

mean is found to be,

(2.40) 〈Z〉 =
k1

k2
〈P1P2〉.
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Thus at the steady state we have reached a limiting value. Let us now consider

the derivative of the second moment to find an expression for the variance at steady

state.

∂〈Z2〉
∂t

= 2k1〈P1P2Z〉+ k1〈P1P2〉(2.41)

−2k2〈Z2〉+ k2〈Z〉

∂σ2
Z

∂t
= 2k1〈P1P2Z〉+ k1〈P1P2〉 − 2k2〈Z2〉(2.42)

+k2〈Z〉 − 2〈Z〉k1〈P1P2〉+ 2k2〈Z〉2

(2.43) σ2
Z =

k1

k2
〈P1P2Z〉+ 〈Z〉 − 〈Z〉2.

We now have an analytical expression for the variance, which we know is non-zero.

Again we can use moment generating functions to solve the CME.

As the reactions become more complex the CME becomes very difficult to solve

analytically since the P.D.E. which arises from using moment generating functions

gets much harder to solve. Also imagine a network involving many reactions, it

would be near impossible to look at the system analytically. But we can examine

the system numerically.

2.3.2 Gillespie Algorithm: Discrete Markov Process

We can solve the Chemical Master Equations (2.28,2.37) numerically using a

Stochastic Simulation Algorithm(SSA). One of the original algorithms developed

was that of Daniel Gillespie [14, 15] back in the 1970’s. He showed that it was pos-

sible to simulate the kind of chemical reactions discussed here using an effective and

efficient stochastic algorithm. His algorithm has been used frequently to describe
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biochemical network systems such as the ones discussed in Chapter 1 and Chapter

3. We will give a brief description and application here of the Gillespie algorithm,

for a more detailed version of the method we refer you to his papers [14, 15, 16, 17].

Gillespies Algorithm is a very straightforward idea. The algorithm works with

whole number of particles rather than concentrations. Already we can imagine this

concept to be ideal for modelling reactions with small copy numbers such as tran-

scription. The algorithm involves choosing two random numbers at each time step.

The first predicts when the next reaction will occur and the second decides which

reaction will occur.

If their exists are number of reactions, µ = 1, 2, 3, ...... We suppose that for some

very small time dt that only two species may interact at the same spot and time.

The chance of three species interacting is very unlikely. Also we assume this time

interval (t, t+dt) is so small that only one reaction can take place. Let aµ(t)dt be the

reaction probability that at a time t a reaction µ will occur in the next time interval

(t, t + dt) in a volume V . Reaction probability, aµ(t), is a product of the reaction

rate cµ and the number of possible reactions µ in volume V .

To calculate cµ we need to transform the reaction rates, ki, since we are now

dealing with molecules and not concentrations, which are assumed to be in moles

per litre. To do this we need to know the volume V and Avogadro’s number, L, the

number of molecules in a mole of substance. Introduce the parameter ω to be,

(2.44) ω = LV

as an external parameter to the system such that we can control the size of the

system.
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At time t we now know the state of the system, provided we know the reaction

rates cµ i.e. the number of molecules of each species is known. Therefore we know

aµ(t) for each reaction µ and thus a0(t), sum of all aµ(t). We can now implement

the algorithm.

• Firstly we need to find time the time τ after t when the next reaction will occur.

This is done by drawing a random number from an exponential probability

density function of rate a0.

(2.45) p(τ) = a0exp(−a0τ)

• We now choose a random number from the uniform distribution between 0 and

1, to decide which reaction at occurs at time τ . Such that if the random number

lies in the interval; (0, a1/a0 reaction 1 will occur, (a1/a0, (a1 + a2)/a0) reaction

2 occurs and so on.

• Finally we update the system after implementing the chosen reaction, which

will alter the number of species in the system. We then go back to step 1 and

continue the process for as long as we require.

We will now describe an idealized example of transcription and translation. Let

[D], [X] represent the concentrations of the DNA promoter site and a transcription

factor respectively. The following reversible reaction then describes the binding and

dissociation of the transcription factor to the DNA promoter site.

(2.46) D + X
k1!

k−1

DX

[DX] represents the concentration of the transcription factor DNA complex. The

next two reactions represent transcription of mRNA, with concentration [M ], and

translation of protein, with concentration [P ].
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DX + E
k2−→ DX + E + M(2.47)

M
k3−→ M + P(2.48)

Where [E] represents the concentration of RNA polymerase. These reactions

along with the next two, describing degradation of protein and mRNA, are considered

irreversible.

M
dm−→ ∅(2.49)

P
dp−→ ∅(2.50)

Note we will let ∅ denote the degradation of a species here and throughout the

rest of this thesis. The reactions just described can be expressed in terms of the

following rate equations.

d[DX]

dt
= k1[D][X]− k−1[DX](2.51)

d[M ]

dt
= k2[DX][E]− dm[M ](2.52)

d[P ]

dt
= k3[M ]− dp[P ](2.53)

Let us assume that the copy numbers of the chemical species in the reactions

described are very low and vary in a stochastic manner. In which case we can now

implement the Gillespie Algorithm. We initially break down the original model into

the following 6 reactions.
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D + X −→ DX(2.54)

DX −→ D + X(2.55)

DX + E −→ DX + E + M(2.56)

M −→ M + P(2.57)

M −→ ∅(2.58)

P −→ ∅(2.59)

We now need to transform the rate constants. Let us consider the forward reaction

(2.54), which is a second order reaction and by neglecting all the other reactions we

obtain the following rate equation.

(2.60)
d[DX]

dt
= k1[D][X]

To convert into molecules we multiply through by ω, (2.3.2).

d(ω[DX])

dt
= k1[D][X]ω(2.61)

dNDX

dt
= k1[D]NX(2.62)

dNDX

dt
=

k1

ω
NDNX(2.63)

Our first reaction rate c1 is simply k1/ω. For a first order reaction it is clear the

reaction rate would simply be the rate constant ki and for zeroth order reactions kiω.

We will now solve the deterministic idealized model giving a solution with which we

can compare stochastic simulations with. By choosing arbitrary parameter values,

ki’s, degradation rates, dm and dp, a suitable initial condition we can see the temporal
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evolution of the number of protein molecules which eventually reaches a steady state

in figure (2.5).
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Figure 2.5: Deterministic Solution: k1 = 1.3294, k−1 = 0.8085, k2 = 0.1445, k3 = 0.2089, dm =
0.3187, dp = 0.3505

Let us continue now with developing the discrete stochastic model. After trans-

forming all the rate constants we can then write down the following set of reaction

probabilities.

a1(t) =
k1

ω
NDNX(2.64)

a2(t) = k−1NDX(2.65)

a3(t) =
k2

ω
NDXNE(2.66)

a4(t) = k3NM(2.67)

a5(t) = dmNM(2.68)

a6(t) = dpNP(2.69)
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To decide when a reaction occurs we evaluate the following expression. Where T

corresponds to the time of the next reaction, u1 is a uniformly distributed number

and a0 the sum of all the reaction probabilities.

(2.70) T = (1/a0) log(1/u1)

We then pick a second uniformly distributed random number, u2, which tells

us which reaction takes place. We can now show the effect translational bursting,

as described in Chapter 1, has on the protein distribution in figures(2.6,2.7). The

red line corresponds to an average over a 100 realizations, blue line corresponds to a

stochastic simulation with a fixed volume, V . The histograms show how translational

bursting can effect the protein distribution. Translational bursting gives us a broader

protein distribution which implies the biological noise in the system has increased

but the average protein number remains unchanged. So our simple model is robust

with respect to translational bursting.
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Figure 2.6: Gillespie Simulations: k1 = 1.3294, k−1 = 0.8085, k2 = 0.1445, k3 = 0.2089, dm =
0.3187, dp = 0.3505

The Gillespie algorithm has one major advantage over conventional deterministic



44

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

Time (Hrs)

Pr
ot

ei
n 

(m
ol

ec
ul

es
)

300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Protein (molecules)

Fr
eq

ue
nc

y

Figure 2.7: Gillespie Simulations: k1 = 1.3294, k−1 = 0.8085, k2 = 0.01445, k3 = 2.089, dm =
0.3187, dp = 0.3505

modeling. We have seen that it is capable of modeling random reaction events at

random times. The decisions to decide when and which reaction takes place are de-

termined by rate constants and population size of each chemical species. By avoiding

discretising time the Gillespie algorithm does not waste time doing simulations when

no reaction occurs, it is able to treat time continuously.

The precision the algorithm can achieve can only work in chemical systems with

certain properties. For example it is unable to represent each molecule in the system

separately. So in a signalling pathway, like the ones we will be discussing, it cannot

trace the path of the molecule so its fate is unknown. Also it cannot associate physical

quantities to each molecule such as position and velocity, therefore it cannot simulate

diffusion.

From a biological point of view. Protein molecules change frequently in a cell, they

undergo phosphorylation to change states in signalling pathways. A protein complex

may also contain lots of sites which could be modified independently. Which is then

able to influence how the complex will participate in a reaction. So if a complex had

10 sites, 210 unique states! Each of which react in a different way.
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2.3.3 Gillespie to S.D.E.s: A continuous Markov Process

We have seen that the algorithm developed by Gillespie is a good candidate for

modeling transcription and translation, when we have low copy numbers of molecules

involved in these events. However what happens if the copy numbers of molecules are

no longer small such that the waiting time to the next reaction becomes extremely

small. Computationally using the Gillespie algorithm becomes very expensive and

an alternative approach is required.

In the discrete model of chemical reactions, described in the previous section,

the number of times that a reaction j occurs in a small time interval (t, t + τ) can

be approximated by a Poisson random variable, Pj(aj(x)τ). Where, X(t) = x, the

number of molecules in state X at time t. If aj(x)τ . 0 then we can approximate

the Poisson random variable with a Normal random variable,

Pj(aj(x)τ) ≈ N(aj(x)τ, aj(x)τ)(2.71)

= aj(x)τ +
√

aj(x)
√

τN(0, 1)(2.72)

= aj(x)τ +
√

aj(x)∆Wτ(2.73)

Thus the discrete Markov process is approximated by a continuous Markov pro-

cess, described by the following SDE of Itô form.

(2.74) dX =
M∑

j=1

vjaj(X)dt +
M∑

j=1

vj

√
aj(X)dWj(t)

Where vj is the stoichiometric vector and Wj(t) are independent Wiener processes.

Implementing this idea transforms the rate equations discussed in the previous sec-

tion into the following system of SDEs.
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dNDX =

(
k1NDNX

ω
− k−1NDX

)
dt(2.75)

+

√(
k1NDNX

ω

)
dW1 +

√
(k−1NDX)dW2(2.76)

dNM =

(
k2NDXNE

ω
− dmNM

)
dt(2.77)

+

√(
k2NDNX

ω

)
dW3 +

√
(dmNm)dW4(2.78)

dNP = (k3NM − dpNP )dt(2.79)

+
√

(k3NM)dW5 +
√

(dpNp)dW6(2.80)

We will simulate the SDEs using the Euler-Maruyama method which will again

show the effect of translational bursting in figures (2.8 , 2.9), using the same param-

eter values as in the Gillespie model described previously. In this case we notice no

real difference between either the Gillespie approach or the SDE approach. How-

ever the SDE approach is computationally far more efficient when dealing with large

number of reactions and so proves to be a good alternative to the Gillespie approach.
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Figure 2.8: SDE Simulations: k1 = 1.3294, k−1 = 0.8085, k2 = 0.1445, k3 = 0.2089, dm =
0.3187, dp = 0.3505
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Figure 2.9: SDE Simulations: k1 = 1.3294, k−1 = 0.8085, k2 = 0.01445, k3 = 2.089, dm =
0.3187, dp = 0.3505

2.3.4 Sensitivity to Parameter Variation

In this section we will consider white noise stochastic perturbations on the tran-

scription and translation rate constants, k3 and k4 respectively. The question we

will be looking to answer is whether the dynamical behavior of such a simple model,

reactions (2.46,2.47,2.48,2.49,2.50), is robust to parameter variations one might see

in such biological environments.

Let us consider stochastic perturbations of the two parameters, k3 and k4,

k3 −→ k3(1 + αW1(t))(2.81)

k4 −→ k4(1 + αW2(t))(2.82)

where α ∈ R scales the stochastic fluctuations and W (t) is a standard Wiener process.

These transformations give rise to the following system of ODE and SDEs,
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dNDX

dt
=

k1NDNX

ω
− k−1NDX(2.83)

dNM =

(
k2NDXNE

ω
− dmNM

)
dt +

(
αk2NDNX

ω

)
dW1(2.84)

dNP = (k3NM − dpNP )dt + (αk3NM)dW2(2.85)

This system was solved using the Euler-Maruyama method using the same pa-

rameter values that were used in the previous models. The results can be seen in

figures (2.10 , 2.11 , 2.12) where the blue line corresponds to a single realization

and the red line is the average taken over 100 realizations. The results suggest that

the averaged dynamical behavior of the model we have developed in this section is

robust to stochastic white noise fluctuations. To be able to really decide if this ide-

alized model of transcription and translation is truly robust to parameter variation

we would need experimental data to provide us with a more realistic value for α.
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Figure 2.10: Solution of system with α = 0.01: k1 = 1.3294, k−1 = 0.8085, k2 = 0.1445, k3 =
0.2089, dm = 0.3187, dp = 0.3505
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Figure 2.11: Solution of system with α = 0.1: k1 = 1.3294, k−1 = 0.8085, k2 = 0.1445, k3 =
0.2089, dm = 0.3187, dp = 0.3505
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Figure 2.12: Solution of system with α = 1:k1 = 1.3294, k−1 = 0.8085, k2 = 0.1445, k3 =
0.2089, dm = 0.3187, dp = 0.3505
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2.4 Summary

In this chapter we have introduced three stochastic methods that could be used

to test the robustness of gene regulatory networks. We have the Gillespie algorithm

which can be used to model situations where the copy numbers of species is very low

and so provide us with an option to modelling intrinsic fluctuations. As the reactions

become more frequent in a small time interval we are able to switch to an SDE ap-

proach which does not loose the effect of intrinsic fluctuations but is computationally

a lot more efficient. Also the SDE approach discretises time which will be useful later

on when we begin to analyze our results more rigourously. Finally we introduced a

model which could be used to examine the effects white noise perturbations can have

on key parameters. In the following Chapters we will use these mathematical tools

to examine the robustness of the circadian clock in Arabidopsis thaliana.



CHAPTER III

Arabidopsis Circadian Clock

Circadian clocks are seen throughout nature and are key to life on earth as we

see it today. Dunlap [11] discusses the history of circadian clocks and links between

clocks in different species. He proposes that circadian oscillators are all composed

of both inhibitive and promotive reactions configured into some sort of network.

So far networks have been presumed to be based on some sort of transcriptional

regulation. One could say that there are many periodic mechanisms in organisms

that display 24hr periods under the influence of external stimulus; circadian clocks

have additional constraints:

• The period must remain relatively constant over a wide range of temperatures

[40].

• The clock must be able to function in the presence of intrinsic noise.

• The circadian rhythm must be able to withstand global changes in transcription

and translation rates caused by, for example, variations in nutrition.

These considerations suggest that models of circadian clocks need to be robust. The

second point could be tested by developing a discrete stochastic model and examining

its behavior. The final point can be studied by developing a parameter variation

model, similar to one discussed in the previous Chapter.

51



52

So what role does mathematics play in this large and unpredictable biological

world? One answer maybe found in the work of Locke et al. [31, 32, 24]. They

produced a number of bio-mathematical papers establishing links between experi-

ments and computer simulations of the circadian clock in Arabadopsis thaliana, a

much-studied organism regarded as a model for the flowering plants.

In their first paper [31] Locke et al. produced a deterministic model that used only

3 genes governed by Michaelis-Menten Kinetics and sought to reproduce certain key

qualitative features of the experimental observations. This original model did not

match the in vivo experiments very well, so they returned to the theoretical model

and proposed changes, mainly the inclusion of a second loop [32]. The mammalian

and Drosophila circadian clocks are composed of two interlocking feedback loops for

transcription and translation. One may therefore draw the conclusion that the second

loop in the Arabidopsis clock is not much of a surprise. However they also found

that the putative extra gene, initially called Y, which was involved in the second

loop must have two peaks of expression in each day: a burst at dawn and then a

much broader burst again at dusk. By then going back to the experiments, they were

able to identify a possible candidate for this mysterious gene, GIGANTEA. Their

third paper [24] explores the effect temperature has on all these key genes. They

begin to examine how circadian clocks are able to maintain their 24 hour rhythm

across a wide range of temperatures despite the strong influence of temperature on

chemical reactions. These papers by Locke et al. show that the combination of raw

experimental data from biologists and the more theoretical mathematical approach

yields a deeper understanding of the circadian clock in the Arabidopsis plant.

As none of the parameters in the mathematical model are known, the mathemat-

ical problem under examination here is a kind of inverse problem. The aim is to
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choose network architectures and parameters to match the experimental findings. In

Locke et al.’s first model [31], a set of parameters could not be found to match their

experimental findings, leading to their exploration of the possibility of there being

more genes in play. The moral here is that the underlying mathematics improved ex-

perimental design, which in turn helped give a greater understanding of the networks

involved.

Currently understood circadian oscillators mainly rely on a negative feedback loop

[11]. Deterministic models for circadian rhythms [31, 32, 30] develop oscillations of

the limit cycle type, which are entrained by light/dark cycles. The papers produced

by Gonze et al. [19, 22, 20, 21, 23] consider the effects of molecular fluctuations arising

due to small number of molecules involved in transcriptional regulation. Gonze

et al. developed both deterministic and stochastic models for the Drosophila and

Neurospora circadian clocks and found that circadian rhythms persisted even with

very low copy numbers. However, they found that if they considered sufficiently

low copy numbers the circadian oscillation was overpowered by the noise so that the

periodic behaviour was destroyed.

In this chapter we will look at the original Arabidopsis clock model and examine

the effect of introducing biological noise in the same vein as Gonze et al. The

fluctuations described in Chapter 1 can have detrimental effects on cell signalling

and may corrupt circadian clocks, so models describing such biological systems need

to be robust [3, 6]. Modeling the network using Gillespie type kinetics [2], it will be

possible to see the effect molecular noise on circadian rhythm. It will be seen how

the circadian oscillations behave when the maximum numbers of mRNA and protein

molecules are of the order of only a few tens or hundreds. We finally discuss the

effects of white noise perturbations to the transcription and translation parameters.
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In perturbing these parameters, the robustness of the original deterministic model

may be ascertained.

3.1 Deterministic Model

Here we review briefly the feedback models of Locke et.al. [31, 32].

Figure 3.1: Arabidopsis Clock Network

Figure 3.1 shows the network used to model the Arabidopsis clock. mRNA’s and

proteins are represented by ovals and boxes respectively. Arrows represent a positive

effect, the dot an inhibitory effect.
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Light is known to activate the expression of LHY/CCA1 genes, so either light or

TOC1 protein are required to activate the transcription of LHY/CCA1 mRNA which

then travels into the cytoplasm, where it is translated into protein. LHY/CCA1

protein then travels into the nucleus and inhibits the production of TOC1 mRNA:

establishing a negative feedback loop. If we were to take a day which consisted of

12 hours light and 12 hours of darkness we would expect periodic expressions of

both genes. A light/dark pattern is considered to try and replicate a plant in its

natural environment. LHY/CCA1 production would peak as light became available,

inhibiting and thereby reducing the levels of TOC1. As TOC1 levels decrease, levels

of LHY/CCA1 would decrease. It maybe inferred then that LHY/CCA1 concentra-

tions should peak at dawn and then die away as the day wore on. Consequently we

would expect TOC1 levels to have a much broader peak.

A large amount of experimental data is available, providing us with approximate

values for the phase and period of the mRNA oscillations. Plants were subjected

to constant light then constant darkness (12 hours of each). Concentrations of the

protein are obtained by attaching a Luciferase reporter gene to the genes in ques-

tion. Even given the abundance of experimental data, the ubiquity of noise makes

parameter fitting a significant problem. This is a common problem when modeling

many biological systems. In response, Locke et. al. developed score functions, an

approach which considers qualitative agreements between the model and the exper-

imental data, see Chapter 4.

Locke et. al. developed a model based on a system of O.D.E.’s of the form,

(3.1)
d[x]

dt
= synthesis± transport− decay.

Synthesis, represents transcription and translation, the former modeled using Hill
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functions and the latter just a simple linear kinetics. Transport describes the trans-

port of proteins and mRNA between, nucleus and cytoplasm. Decay, is simply the

decay of proteins and mRNA modeled using Michealis-Menten kinetics.

The following equations describe the clock model in figure 3.1 developed by Locke

et. al [31].

f1(Tn, Lm) =
dLm

dt
= Light(t) +

n1T a
n

ga
1 + T a

n

− m1Lm

k1 + Lm

f2(Lc, Lm, Ln) =
dLc

dt
= p1Lm − r1Lc + r2Ln −

m2Lc

k2 + Lc

f3(Ln, Lc) =
dLn

dt
= r1Lc − r2Ln −

m3Ln

k3 + Ln

f4(Tm, Ln) =
dTm

dt
=

n2gb
2

gb
2 + Lb

n

− m4Tm

k4 + Tm

f5(Tm, Tc, Tn) =
dTc

dt
= p2Tm − r3Tc + r4Tn −

m5Tc

k5 + Tc

f6(Tn, Tc) =
dTn

dt
= r3Tc − r4Tn −

m6Tn

k6 + Tn
(3.2)

The labels L and T correspond to LHY/CCA1 and TOC respectively and the

subscripts m, n and c correspond to mRNA, nuclear protein and cytoplasmic pro-

tein concentrations respectively. Here the rate constants nk, gk parameterize tran-

scription; mk and kk, degradation; pk translation and rk transport of mRNA’s and

proteins. The Hill coefficient b was set to 2 following biological evidence suggesting

that LHY and CCA1 proteins bind as a dimer to TOC1s promoter. No experimental

evidence exists as yet for the Hill coefficient a so it was set to 1. Light(t) represents

the input of light into the system. A light sensitive protein, Pn, is known to interact

with the LHY gene promoter such that,

(3.3) Light(t) = q1PnΘlight,
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where Θlight = 1 when light is present and 0 when its not. Pn satisfies the following

equation,

(3.4) f7(Pn, Θlight) =
dPn

dt
= (1−Θlight)p3 −

m7Pn

k7 + Pn
− q2ΘlightPn,

Here the four parameter values are chosen to express light protein in a similar way

to the experiments, to give an acute, transient activation response for the expression

of LHY/CCA1. Overall there are 29 free parameters, for which only 6 have been

accounted for by the light transduction system. The remaining 23 were found after

an extensive parameter search, details of which are found in [31].

Results from Locke et al.s first model encapsulated certain aspects of the ex-

perimental data quite well, in particular periodicity and profile of the LHY peaks

seemed correct. However the model seemed to anticipate dawn, more so than the

experiment. Also the TOC1 peak in the model does not agree with the experiment,

arriving around two hours later.

Figures (3.2) and (3.3) are phase plots showing that the oscillations arising from

the model are of a periodic nature and correspond to limit-cycle behavior in the

light/dark case and a spiral fixed point in dark/dark case (black lines). In these

plots the fixed time step used in the integration was 0.005 hours and the phase

space was divided up into 100 equally sized compartments. The plots show how

long a trajectory spends in that compartment of phase-space. Note that the two

figures plotted here will be used as a comparison for similar plots obtained from the

stochastic simulations.

The data for figure (3.2) was taken from simulations in which the day was divided

into alternating periods of light and darkness, each 12 hours long. The plots involve
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data from 100 hours of simulated time, collected after integration through an initial

200 hours (to allow transients associated with entrainment to the diurnal cycle to

relax).

After 300 hours of simulated time, the pattern of illumination changed to con-

tinuous darkness for a further 300 hours of simulated time: the data displayed in

figure (3.3) comes from this “dark/dark” phase of the simulation. We will be com-

paring these phase space figures to subsequent ones obtained from the stochastic

models. Note that the parameter values used throughout this chapter were the same

set that gave Locke et al. the best qualitative fit to experiments.
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Figure 3.2: ODE simulation 3.2: 3-D and 2-D phase portraits for the 12hr light/dark cycle over
100 hour period.
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Figure 3.3: ODE simulation 3.2: 3-D and 2-D phase portraits for the continuous darkness cycle
over a 300 hour period.



61

3.2 Discrete Stochastic Model of the Arabidopsis Clock

To see the effect of molecular noise on the Arabidopsis clock, we constructed a

discrete stochastic model and used the Gillespie algorithm to simulate the model

numerically. We transformed the deterministic model into Gillespie type steps which

include non-linear kinetic functions in their probabilities. We broke down the original

model into the following elementary reactions:
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Dark −→ Pn

Pn −→ Lm + Pn

Tn −→ Lm + Tn

Lm −→ Lc + Lm

Lc −→ Ln

Ln −→ Lc

∗ −→ Tm

Tm −→ Tc + Tm

Tc −→ Tn

Tn −→ Tc

Pn −→ ∅

Pn −→ ∅

Lm −→ ∅

Ln −→ ∅

Lc −→ ∅

Tm −→ ∅

Tn −→ ∅

Tc −→ ∅

Note that light sensitive protein (Pn) is only produced in darkness and that there

are two degradation terms, representing a general steady-state degradation as well

as a stronger, light-mediated degradation process. Also note that Pi, Ti and Li are

now numbers of molecules rather than concentrations.
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We introduce the parameter ω to transform the concentrations apperaring in 3.2

into whole numbers of molecules. Having thus controlled system size, the following

reaction probabilities corresponding to the aforementioned reactions are obtained:

a1(Θlight) = p3(1−Θlight)ω

a2(Pn, Θlight) = q1PnΘlight

a3(Tn) =
n1ωTn

g1ω + Tn

a4(Lm) = p1Lm

a5(Lc) = r1Lc

a6(Ln) = r2Ln

a7(Ln) =
n2ω3g2

2

g2
2ω

2 + L2
n

a8(Tm) = p2Tm

a9(Tc) = r3Tc

a10(Tn) = r4Tn

a11(Pn) =
m7ωPn

k7ω + Pn

a12(Θlight, Pn) = q2ΘlightPn

a13(Lm) =
m1ωLm

k1ω + Lm

a14(Lc) =
m2ωLc

k2ω + Lc

a15(Ln) =
m3ωLn

k3ω + Ln

a16(Tm) =
m4ωTm

k4ω + Tm

a17(Tc) =
m5ωTc

k5ω + Tc

a18(Tn) =
m6ωTn

k6ω + Tn
(3.5)
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We chose not to decompose the Hill functions into more elementary steps due to

the findings of Gonze et al. [20], who have shown that similar results can be obtained

without breaking down the reactions further.

The following equation is the Chemical Master Equation for the Arabidopsis clock,

where P ≡ P (Lightnp, LHYm, LHYcp, LHYnp, TOC1m, TOC1cp, TOC1np).
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∂P

∂t
= a1(Θlight)P (..., LHYnp − 1, ...)− a1ΘlightP (..., LHYnp, ...)

+ a2(Lightnp, Θlight)P (..., LHYm − 1, ...)− a2(Lightnp, Θlight)P (..., LHYm, ...)

+ a3(TOC1np)P (..., LHYm − 1, ...)− a3(TOC1np)P (..., LHYm, ...)

+ a4(LHYm)P (..., LHYcp, ...)− a4(LHYm)P (..., LHYcp, ...)

+ a5(LHYcp + 1)P (..., LHYcp − 1, LHYnp + 1, ...)− a5(LHYcp)P (..., LHYcp, LHYnp, ...)

+ a6(LHYnp + 1)P (..., LHYcp + 1, LHYnp − 1, ...)− a6(LHYnp)P (..., LHYcp, LHYnp, ...)

+ a7(LHYnp)P (..., TOC1m − 1, ...)− a7(LHYnp)P (..., TOC1m, ...)

+ a8(TOC1m)P (..., TOC1cp − 1, ...)− a8(TOC1m)P (..., TOC1cp, ...)

+ a9(TOC1cp + 1)P (..., TOC1cp − 1, TOC1np + 1, ...)

− a9(TOC1cp)P (..., TOC1cp, TOC1np, ...)

+ a10(TOC1np + 1)P (..., TOC1cp + 1, TOC1np − 1, ...)

− a10(TOC1np)P (..., TOC1cp, TOC1np, ...)

+ a11(Lightnp + 1)P (..., Lightnp + 1, ...)− a11(Lightnp)P (..., Lightnp, ...)

+ a12(Θlight, Lightnp + 1)P (..., Lightnp + 1, ...)− a12(Θlight, Lightnp)P (..., Lightnp, ...)

+ a13(LHYm + 1)P (..., LHYm + 1, ...)− a13(LHYm)P (..., LHYm, ...)

+ a14(LHYcp + 1)P (..., LHYcp + 1, ...)− a14(LHYcp)P (..., LHYcp, ...)

+ a15(LHYnp + 1)P (..., LHYnp + 1, ...)− a15(LHYnp)P (..., LHYnp, ...)

+ a16(TOC1m + 1)P (..., TOC1m + 1, ...)− a16(TOC1m)P (..., TOC1m, ...)

+ a17(TOC1cp + 1)P (..., TOC1cp + 1, ...)− a17(TOC1cp)P (..., TOC1cp, ...)

+ a18(TOC1np + 1)P (..., TOC1np + 1, ...)− a18(TOC1np)P (..., TOC1np, ...)

To solve such a system analytically would indeed be a very difficult task. However
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one can examine the rate of change of the first and second moments as discussed in

Chapter 2. This calculation was performed and did not provide us with any further

insight into the model. We will now continue to look at the model from a numerical

point of view.

Figure 3.4: Gillespie simulation: Phase portrait, ω = 1000, 12 hours light/dark

Recall that in the deterministic model, circadian oscillations evolved towards a

limit cycle shown in figures (3.2 and 3.3). Let us now consider the dynamic behavior

of the discrete stochastic model in figure (3.5), where ω = 1000. This value of ω

is a realistic biological value obtained for an average plant cell. For this value of ω

the numbers of molecules for LHY mRNA, LHY cytoplasmic protein, TOC1 mRNA

and TOC1 cytoplasmic protein range from 100 to 2800. Figure (3.5) shows that the

circadian rhythm persists, as one would expect from the deterministic model. For

this value of ω, phase trajectories from realizations of the discrete process give rise to
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a density concentrated near the deterministic limit cycle: see figure 3.4. This further

indicates the robustness of the circadian oscillations in the face of molecular noise

when the maximum number of molecules is no more than a few thousand.

The histogram of periods taken over 100 consecutive cycles in figure (3.6) is very

broad, but has a maximum close to 24 hours for both LHY mRNA and TOC1 mRNA.

This is in good agreement with the deterministic case, implying the period is robust

to molecular noise.

Let us examine the frequency of passage through different areas of the phase

space, (see figure (3.7)). If we compare this with the corresponding deterministic

version (figure (3.2)) we can see that the area through which the trajectories pass is

increased as is the frequency of passing through certain areas. The most frequently

visited regions seem to be those where LHY mRNA levels are low and TOC1 mRNA

is at its peak. The corresponding time of day is within a few hours on either side of

dusk, which agrees well with the deterministic case.

After the circadian rhythm is entrained to a 12 hour light/dark cycle we subjected

the model to constant darkness for 300 hours. Figure (3.8) shows the temporal evolu-

tion of LHY mRNA, LHY cytoplasmic protein, TOC1 mRNA and TOC1 cytoplasmic

protein numbers. The score functions used to fix the parameters for the deterministic

model (see Chapter 4 for details) require that the oscillations decay under conditions

of constant darkness, but that they remain approximately periodic with a period of

around 25 hours. This does not seem to be the case with the stochastic model. We

notice the amplitude of the oscillations does not dampen over time. In fact it behaves

in a rather random manner. This is rather worrying from a modelling point of view.

If we follow a state on the trajectory of a particular stochastic spiral fixed point, the

noise in the system seems to be large enough to perturb the state onto an outlying
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Figure 3.5: Gillespie simulation: ω = 1000, 12 hours light/dark
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Figure 3.6: Gillespie simulation: ω = 1000, 12 hours light/dark

part of the spiral. This would explain why the amplitude of the oscillations does not

dampen and the change in phase. This suggests that the noise in the system is too

large.

Comparison of the stochastic phase space plot, figure (3.9), with the deterministic

one (figure (3.3)) tells a rather peculiar story. In the stochastic case, no clear areas of

phase space stand out as being as frequently visited as in the deterministic case. This

further corroborates our previous statement that the noise seems to be too large. We

expect by increasing ω, we will be able to better mimic the deterministic dynamics.

Increasing ω further in the discrete model becomes computationally very expensive.

This will be further investigated when we consider the continuous stochastic model

in the next section.

Instead, let us consider the limit of very strong stochasticity and decrease the

system size further, thus decreasing the number of molecules involved in the reactions.

In figure (3.10) ω = 100 and we are still able to make out a circadian rhythm for

numbers of molecules in the few hundreds and lower. Decrease ω further to 10

however, and the entrainment has been destroyed by molecular noise.
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Figure 3.7: Gillespie simulation :ω = 1000, 3-D and 2-D phase space for 12 hours light/dark over a
100 hour period.
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Figure 3.8: Gillespie simulation :ω = 1000, constant darkness
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Figure 3.9: Gillespie simulation:ω = 1000, 3-D and 2-D phase space for continuous darkness over a
300 hour period.
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Figure 3.10: Gillespie simulation:ω = 100, 12 hours light/dark.
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Figure 3.11: Gillespie simulation:ω = 10, 12 hours light/dark.
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In this section we have applied a well known numerical algorithm to solve a discrete

stochastic model of the Arabidopsis circadian clock. Our results show that during

the 12 hour light/dark cycle, the stochastic model retains the circadian rhythm for

sufficiently large values of the system size ω. However we were unable to observe

any sort of periodic behavior for ω = 10, i.e. for a small system. This was not the

case for Gonze et al. whose stochastic model for the circadian clock in Drosophila

still displayed circadian rhythms similar to the deterministic model for numbers of

molecules in their tens. This poses a question about whether the network has been

modeled correctly or indeed if the network itself is actually correct. Ultimately such

a question can only be settled by biologists quantifying the numbers of molecules

present. Biologically what are the lowest possible numbers of molecules we may

consider before the circadian rhythm is no longer visible?
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3.3 SDE Model Arabidopsis Clock

In the discrete stochastic model in the previous section we observed that the

circadian rhythm only appeared for moderate to large values of the system size ω.

In this section we will continue to increase ω until we begin to observe circadian

rhythms similar to the deterministic case for both light/dark and constant darkness

cases. Increasing ω is equivalent to increasing the number of molecules, which implies

that reactions are likely to occur more frequently. In Chapter 2 we discussed that if a

reaction was to occur more frequently in a small time interval then a switch to SDEs

seems appropriate. Thus we can transform our discrete model into the following

system of SDEs.

(3.6) dX =
M∑

j=1

vjaj(X)dt +
M∑

j=1

vj

√
aj(X)dWj

Here X ≡ Xi, i = 1, ..., 7 is a vector of the chemical species. We will illustrate the

notation by means of an example. X3 corresponds to Ln which satisfies the following

SDE.

(3.7)

dLn = (a5(Lc) + a6(Ln) + a15(Ln))dt +
√

a5(Lc)dW5 +
√

a6(Ln)dW6 +
√

a15LndW15.

We end up with a system of 7 SDEs which may be solved numerically. Note

that we converted the solutions back into concentrations and will be dealing with

concentrations for the rest of this Chapter.

Figures (3.12, 3.13, 3.14, 3.15) describe the temporal evolution of the concen-

trations of LHY mRNA, LHY cytoplasmic protein, TOC1 mRNA and TOC1 cy-

toplasmic protein respectively. In each of the figures, red denotes single stochastic
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Figure 3.12: SDE simulation:ω = 1000, LHY mRNA, 12 hours light/dark.
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Figure 3.13: SDE simulation:ω = 1000, LHY protein, 12 hours light/dark.
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Figure 3.14: SDE simulation:ω = 1000, TOC1 mRNA, 12 hours light/dark.
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Figure 3.15: SDE simulation:ω = 1000, TOC1 protein, 12 hours light/dark.
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realization, magenta the deterministic solution and green the average of 100 stochas-

tic realizations. The two yellow curves represent the 90 percent confidence intervals:

that is, they show the distribution the single realizations take over the 100 simu-

lations, ignoring the 5 lowest and 5 highest values at each time step. Notice that

qualitatively, the figures (3.12, 3.13, 3.14, 3.15) agree well with the discrete simula-

tions in the previous section. The average behavior for the 12 hour light/dark cycle

provides us with further evidence of the stochastic model having established a circa-

dian rhythm similar to the deterministic model in the presence of molecular noise.

We obtain similar results qualitatively to the discrete stochastic model for constant

darkness which can be seen in figures(3.16, 3.17, 3.18, 3.19). Qualitatively similar

behavior is observed in the discrete and continuous stochastic models.
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Figure 3.16: SDE simulation:ω = 1000, LHY mRNA, continuous darkness.

However, if we examine the phase space plots seen in figures (3.21, 3.20) we notice

that these do not agree well with the ones constructed for the discrete model in figures
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Figure 3.17: SDE simulation:ω = 1000, LHY protein, continuous darkness.
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Figure 3.18: SDE simulation:ω = 1000, TOC1 mRNA, continuous darkness.
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Figure 3.19: SDE simulation:ω = 1000, TOC1 protein, continuous darkness.

(3.7, 3.9). This suggests that we were ill-advised to switch to an SDE approach for

this level of system size.

We also performed Kolmogorov-Smirnov tests [29] to look for differences in the

distribution of LHY mRNA and TOC1 mRNA. That is, we fixed certain times (shown

in table 3.1) in the course of our standard light/dark simulation (alternating 12 hours

periods of light and darkness; data collected after an initial 200 hours of simulated

time) and, for each, collected values of LHY mRNA and TOC1 mRNA from each

of 1000 independent realizations of both the Gillespie and SDE simulations. We

then applied the Kolmogorov-Smirnov test to determine whether the two sorts of

simulation produced different conditional (conditioned on time) distributions.

The p-values from the Kolmogorov-Smirnov test (seen in table 3.1) show that the

two distributions obtained from the Gillespie Algorithm and from the SDE approach

have approximately a 65 percent chance of being from the same distribution for ω =
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Table 3.1: P-values obtained from performing the Kolmogorov-Smirnov test
ω = 1000 ω = 1000 ω = 100 ω = 100

Time point (hrs) LHY mRNA TOC1 mRNA LHY mRNA TOC1 mRNA
204 0.6012 0.6451 0.0096 0.0017
216 0.6138 0.7318 0.0046 0.0090
228 0.6068 0.6660 0.0095 0.0079
240 0.5962 0.7186 0.0081 0.0084
252 0.6154 0.6462 0.0028 0.0086
264 0.6038 0.6252 0.0097 0.0037
276 0.6964 0.6046 0.0034 0.0036
288 0.6153 0.6731 0.0022 0.0066
300 0.6468 0.6381 0.0028 0.0079

1000. We also computed Kolmogorov-Smirnov tests for a smaller system size, ω =

100. The p-values obtained for this system size demonstrate the two distributions

are very much different, we expect that as we increase ω to 10000 the p-values to be

much closer to one. Note that it is compuationally very expensive to increase ω in

the discrete model, so we will not be able to perform any more Kolmogorov-Smirnov

tests to see if the p-values converge to 1.

If we increase ω, we eventually see the dynamics in the constant darkness phase

mimicing the deterministic model in figures(3.22,3.23). Essentially we decrease the

amount perturbation of a particle following a stochastic limit cycle.

We have seen in this section that the system size needs to be quite large for the

stochastic model to give similar dynamical behavior in the constant darkness phase.

The continuous stochastic model also seems to give qualitatively similar behavior to

the discrete model for large values of ω as expected.
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Figure 3.20: SDE simulation:ω = 1000 12 hours light/dark phase space.
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Figure 3.21: SDE simulation:ω = 1000 continuous darkness phase space.
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Figure 3.22: SDE simulation:ω = 10000, LHY and TOC1 mRNA, constant darkness.
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Figure 3.23: SDE simulation:ω = 100000, LHY and TOC1 mRNA, continuous darkness.
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3.4 Perturbation of Parameters

In this section, we are interested in seeing if the circadian rhythm produced by

the deterministic model persists when we perturb transcription and translation rates

in a stochastic way. Biologically, this is worth investigating as transcription and

translation rates within a single cell are not constant and probably vary over time,

as discussed in the introduction of this chapter. Note from the offset that we are

now dealing with concentrations not whole numbers. We will take the transcription

and translation rates and perturb them in the following way.

nk "→ nk(1 + αWtci(t))(3.8)

pk "→ pk(1 + βWtlj(t))(3.9)

This transforms certain ODEs in the original model, into the following SDE’s,

dLm = (f1)dT + α

(
n1T a

n

ga
1 + T a

n

)
dWtc1

dLc = (f2) dT + β (p1Lm) dWtl1

dTm = (f4) dT + α

(
n2gb

2

gb
2 + Lb

n

)
dWtc2

dTc = (f5) dT + β (p2Tm) dWtl2

dPn = (f7)dT + β((1−Θlight)p3)dWtl3 ,(3.10)

thereby giving us a mixed system of non-linear SDE’s and ODE’s. Here α, β ∈ R. α

is chosen to represent intrinsic noise: fluctuations that are inherent to the system and

β is chosen to represent extrinsic noise, both of which lead to cell-to-cell variability.

Choosing suitable levels for α and β is the next step. The experimental work

of Elowitz and of Colman-Lerner discussed in Chapter 1 suggests that α & β. In
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an ideal scenario, we would have experimental observations to help decide the level

of noise to be introduced. Unfortunately as is often the case when modeling bio-

chemical systems, data is hard to come by. Without any experimental guidance we

control the noise by hand. The following figures show that very small fluctuations

in transcription and translation rates preserve the circadian rhythm seen in the de-

terministic model, figures(3.24, 3.25, 3.26, 3.27). As we increase the strength of the

perturbations we find that the dynamics for constant darkness no longer produce the

correct oscillatory behavior, figures (3.28, 3.29, 3.30, 3.31). Finally we can increase

the perturbations to a point where the noise has destroyed the circadian rhythm

completely for both the light/dark and constant dark cycles.
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Figure 3.24: α = 0.001, β = 0.01 LHY mRNA, 12 hours light/dark.
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Figure 3.25: α = 0.001, β = 0.01 TOC1 mRNA, 12 hours light/dark.
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Figure 3.26: α = 0.001, β = 0.01 LHY mRNA, constant darkness.
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Figure 3.27: α = 0.001, β = 0.01 TOC1 mRNA, constant darkness.
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Figure 3.28: α = 0.01, β = 0.1 LHY mRNA, 12 hours light/dark.
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Figure 3.29: α = 0.01, β = 0.1 TOC1 mRNA, 12 hours light/dark.
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Figure 3.30: α = 0.01, β = 0.1 LHY mRNA, constant darkness.
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Figure 3.31: α = 0.01, β = 0.1 TOC1 mRNA, constant darkness.
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Figure 3.32: α = 0.1, β = 1 LHY mRNA, 12 hours light/dark.
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Figure 3.33: α = 0.1, β = 1 TOC1 mRNA, 12 hours light/dark.
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Figure 3.34: α = 0.1, β = 1 LHY mRNA, constant darkness.
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Figure 3.35: α = 0.1, β = 1 TOC1 mRNA, constant darkness.

3.5 Summary

At the beginning of the chapter we introduced 3 constraints by which circadian

clocks must abide as stated by Dunlap [11]. By introducing molecular noise by

means of discrete and continuous stochastic models, we have been able to assess the

robustness of a model of the Arabidopsis clock.

The discrete stochastic model showed the circadian rhythm in the light/dark

cycle still persisted when the numbers of molecules in the system were no more

than a few thousand. Reducing the number of molecules to even a few hundred

renders circadian entrainment unfeasible, in contrast to models studied by Gonze et

al. When there are only a few tens of molecules in the system, the circadian rhythm is

completely destroyed by the noise. In fact we see no oscillations at all. We suggested

that this poses interesting questions to both biologists and modelers. Biologists
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should be asked to investigate how many molecules are needed to produce circadian

rhythms. They could measure the numbers of molecules, at least approximately,

by, say, quantitative flourescence: even this would be a fairly heroic measurement.

Modelers may be interested in decomposing the reactions that are here summarized

with Hill functions into simpler steps: it does not seem sensible to use Hill functions

for such small numbers of molecules.

The behaviour in constant darkness proved much less robust to stochastic per-

turbation, with agreement between stochastic and deterministic models appearing

only for very large system sizes. The model seems to be very sensitive to molecular

noise in the constant darkness phase, much more so than when forced with a 12 hour

light/dark cycle.

Dunlap also stated that circadian clocks must be robust to fluctuating transcrip-

tion and translation rates. We considered white noise perturbations of transcription

and translation rates, but without knowing how much they vary we are able to make

only the most tentative of biologically relevant comments. All the points mentioned

here suggest the Arabidopsis circadian clock is, at least under normal diurnal light

variation, robust with respect to molecular noise and parameter variation. The obser-

vations seen in the dark/dark cycles may be overlooked since nature never intended

plants to function in constant darkness.



CHAPTER IV

Stochastic Score Functions

The idea of robustness had been discussed in the previous chapter by examining

the effects molecular noise and parameter variation had on the circadian clock. Recall

that only for large system size did the desired circadian rhythm persist for both

light/dark and dark/dark cycles. Where the light/dark phrase refers to the model

being subjected to 12 hours of light then 12 hours of darkness for the first 300 hours

and that dark/dark refers to the model being plunged into continuous darkness after

300 hours of light/dark entrainment. In this chapter we assess what affect molecular

noise has on the score functions designed by Locke et al. which in essence is a

comparison with experiments. The simulations under consideration in these score

functions are the ones obtained from the SDE model of the Arabidopsis clock. This

model was used since it is easier to analyze data with discrete time-steps, 0.0005

hours. We will first explain what principles were used in designing the score functions,

before moving on to describe how we smoothed the stochastic realizations so that we

could examine the periodic behavior of LHY/CCA1 and TOC1 mRNA levels that

were observed in the previous chapter.

The score functions designed in Locke et al. [31] described how well a solution

from their model matched experimental behavior in a qualitative way rather than a
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quantitative way. The idea is that they wanted to ensure that the solutions from their

model shared certain qualitative features with observations from the experiments and

so they defined terms in the score function that make an order-one contribution for

a prescribed size of deviation from “correct” behavior. They chose this approach

due to a lack of time points in the experiments and also since the biological data

obtained from these experiments is quite noisy it seems inappropriate to compare a

model quantitatively to experimental data.

4.1 Extracting qualitative features from stochastic realizations

If we look back to the previous chapter and examine the single realizations of the

stochastic simulation; notice how its not so easy to examine the periodic behavior

with all the noise. To combat this we decided to employ a simple moving window

average filter [36] to smooth the data.

If we were to have a series of equally spaced data points fi ≡ f(ti) where i =

... − 2,−1, 0, 1, 2, .... In a simple moving window average we replace each fi by a

linear combination gi of itself and its neighbors,

(4.1) gi =
nR∑

n=−nL

cnfi+n.

Where cn = 1/(nL +nR +1), nL is the number of points taken into account earlier

then the data point i and nR number of points used after it. Note that nL = nR = 500

was fixed for all sets of data points passed through this filter.

The smoothing filter was applied to each realization obtained from the stochastic

simulation. With the smoothed data we were now able to calculate the period. To

calculate the period of an expressed gene we first need to find the average concen-

tration of that gene in the time interval under review i.e. in the light/dark phase
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we found the average expressed concentration between 200 and 300 hours. We then

noted the time points that the smoothed data crossed this average. The period was

taken to be the time taken to cross the average three times. In this time window

we could then search for the peak time of expression and its corresponding concen-

tration. We can also search for the minimum concentration and corresponding time

point. The necessity of calculating these values will become apparent in the next

section when we consider the score functions. All the concentrations used in the score

functions were averages taken 0.025 hours either side of the desired time points.

4.2 The modified cost functions

The original cost functions used in parameter searches for the deterministic model

needed to be altered to account for the stochasticity generated by the SDE’s in the

new model. The original cost functions were too harsh on individual realizations and

were softened accordingly.

The first cost function examines the summed error in the period, τ , over a

light/dark cycle over a period of 100 hours, 200 < t < 300. The notation 〈〉ld

means “average over this period”. In the original function the acceptable period dif-

ference was about 25 minutes from the desired period of 24 hours. Our cost function

does not punish period differences over 25 minutes as harshly.

(4.2) δτld
=

∑

i=L,T

〈(24− τ (m)
i )2/0.75〉ld

The second function examines the summed error in the period over the constant

darkness period, considering a time interval of 300 hours, 300 < t < 600. Substantial

biological studies, mentioned in [31], provides evidence that the free running clock

has a period greater than 24 hours, closer to 25 hours.
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(4.3) δτdd
=

∑

i=L,T

〈(25− τ (m)
i )2/f〉ld

Where f = 0.5 if τ (m)
i ≤ 25 and f = 2 if τ (m)

i > 25.

The third cost function, which is concerned with the timing of events near dawn,

(4.4) δφ =
∑

i=L,T



〈∆Φ2
i 〉ld +

(
σ[c(m)

i (tp)]ld

0.1〈c(m)
i (tp)〉ld

)2

+

(
σ[∆Φi]

15/60

)2




The first term looks at the mean difference between the time from dawn at which

the RNA levels peak from dawn, in the light/dark cycles. ∆Φi = φi − φi, where φi

is the phase from dawn, φL = 1h,φT = 11h are the target phases of LHY mRNA

and TOC1 mRNA respectively. The next two terms look at the consistency of the

oscillations. The first makes an order one contribution to the score when the peak

heights are within 10 percent of their mean, while the second requires that variations

in peak phases are no more than about 15 minutes. Here σ[]ld is the standard

deviation for cycles in light/dark.

The fourth cost function,

(4.5) δsize =
∑

i=T

(
τ0

τe

)2

checks to make sure that the oscillations do not decay too quickly after entering the

dark:dark phase. Here

τ0 = −300/log((∆c(m)
Tld

−∆c(m)
Td

)/∆c(m)
Tld

)

where ∆c(m)
i = c(m)

imax
− c(m)

imin
, gives an estimate of the rate of decay of the peak

amplitudes of the oscillations and τe = −300/log(0.75) sets the scale for an acceptable

drop in size of the TOC1 oscillations: down by a quarter over 300hs.
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The last cost function aims to constrain the qualitative form of the time course

of LHY mRNA. The first term checks to see if a sharp peak exists and requires that

LHT mRNA drops by 2/3 of its peak amplitude within 2 hours before and after

the peak. The second term checks to see if the expression has a broad minimum,

producing an O(1) contribution if the expression has increased by only 5 percent of

the level 2 hours before LHY’s peak, both 2hrs before and 2hrs after the minimum

point. The last term checks to see if the expression levels drop as we move from

light/dark to constant darkness.

δcL =
∑

i=2,−2

〈(
2/3c(m)

L (tp)

c(m)
L (tp)− c(m)

L (tp + i)

)2〉

ld

+ ...(4.6)

〈(
0.05(c(m)

L (tp − 2)− c(m)
L (tm))

c(m)
L (tm)− c(m)

L (tm + i)

)2〉

ld

+ 10

(
〈c(m)

L (tpd)〉ld
〈c(m)

L (tpl)〉ld

)4

4.3 Comparing the best parameters

Locke et al. [31] solved the original set of ODEs, described in the previous chapter,

for 106 random points generated using a variant of the Sobol Algorithm [36]. They

then calculated the score functions for all these points. Of which they took the top 50

solutions and passed them through a simulated annealing routine. For information

about the Sobol Algorithm and annealing routines we refer the reader to Locke et

al. [31] and Numerical Recipes in C++ text [36].

Figure (4.1) shows the score of the 48 annealed parameter sets obtained with the

modified score functions. Two of the 50 annealed sets of parameters were too stiff

for our numerical method and have thus been left out of this study.

In the previous chapter we found certain sizes of ω that gave us the desired

circadian behavior, ω = 1000, ω = 10000 and ω = 100000. These values will be used
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Figure 4.1: The result of comparing the scores obtained for trajectories of the deterministic model
under both the original and modified scoring schemes.
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to run stochastic simulations for the 48 parameter sets. The average score taken over

20 simulations for each parameter set will then be compared to the new deterministic

scores. As we increase system size we expect the stochastic scores to converge to the

deterministic scores in figure 4.1.
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Figure 4.2: ω = 1000, blue: stochastic scores, red: deterministic scores

Figure 4.2 shows the score values for ω = 1000 which we deemed a sensible value

in the previous section. As we expected the points are a reasonable distance from the

deterministic scores. We feel that the main reason the scores are so high is due to the

fact that in the dark/dark cycle the oscillations have not dropped sufficiently. Recall

that the fifth score function checks to see if LHY mRNA expression has dropped

sufficiently as we move from light/dark to dark/dark. Thus if expression levels have

not dropped sufficiently then it is punished by the last term in the fifth score function.

As we increase ω further, figures 4.4 and 4.4, we see that the scores converge to

the deterministic score values. This is no surprise if we recall how the numerical

simulations behaved in the previous chapter, mainly that as we increased system

size we approached the deterministic solution.
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Figure 4.3: ω = 10000, blue: stochastic scores, red: deterministic scores
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Figure 4.4: ω = 100000, blue: stochastic scores, red: deterministic scores

The story in this chapter is not so exciting as the results show that the circadian

rhythm is robust, but only for small molecular fluctuations. A further note could

be made about the distribution of score values. Mainly that the introduction of

biological noise did not significantly improve any of the score values in any significant

way. This suggests that the noise in the system has not inadvertently provided us

with a better set of parameter values.



CHAPTER V

Concluding Remarks

We have examined to what extent molecular noise affected the circadian rhythm

of the Arabidopsis thaliana circadian clock. The results were not surprising but did

pose some interesting questions to both biologists and modelers.

The initial circadian clock network was decomposed into elementary reaction steps

and then modeled numerically using a Gillespie type algorithm. We chose not to

breakdown the Hill functions into further steps as this would have increased the

number of parameters in the model. In essence we kept the Michaelis-Menten kinetics

in our reaction probabilities. From a modeling point of view this was deemed sensible,

since the numbers of molecules we are dealing with are very low and Michaelis-Menten

kinetics is more suited to dealing with much larger quantities. A further study may

involve disposing of Michaelis-Menten kinetics and indeed breaking down the Hill

functions into much more simpler reactions. Armed with this new model we may

now be able to compare and contrast the results from both types of models. This

may give us further insight into the unusual behavior seen in dark/dark cycles for

reasonable system size values that we observed.

The score functions did not provide us with any more interesting insight into the

robustness of the circadian clock with respect to biological noise. However it may be
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interesting to see if the introduction of biological noise has opened up new areas of

parameter space, in which we observe the desired circadian rhythm.

From both the discrete stochastic model and parameter variation model we can

draw on two questions with which biologists may be able to help. Firstly it would be

interesting to know the numbers of molecules involved in the chemical reactions in

the circadian clock so that we have an actual limit to how low we can take the system

size parameter in the model. Secondly some idea of how much the transcription and

translation rates vary between cells as well as an idea of what these rates depend on,

(i.e. the concentration of some nutrients within the cell), would provide us with more

details about how to model such parameters. From a mathematical point of view it

may be interesting to see how the circadian rhythm behaves when the transcription

and translation rates follow a stochastic process themselves.

In this thesis we have ascertained that the circadian clock is robust to biological

noise of various types; molecular noise due to small copy numbers and parameter

variation, due to random changes of available nutrients for example. However we did

notice that the rhythm was destroyed when the noise in both models was increased

to large levels, which is of no real surprise. We see the stochastic methods used in

this thesis as a tool to see how robust a gene regulatory network is to biological

noise, from our results we can conclude the circadian clock network under scrutiny

here is indeed robust. The next logical step would be to consider similar tests on

later models of the circadian clock in Arabidopsis thaliana.
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