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Abstract
We study associative multiplications in semi-simple associative algebras over
C compatible with the usual one. An interesting class of such multiplications
is related to the affine Dynkin diagrams of Ã2k−1, D̃k, Ẽ6, Ẽ7, and Ẽ8-type.
In this paper we investigate in detail the multiplications of the Ã2k−1-type and
integrable matrix ODEs and PDEs generated by them.

PACS numbers: 02.30.Sv, 02.30.Ik, 02.30.Fn
Mathematics Subject Classification: 17B80, 17B63, 32L81, 14H70

1. Introduction

In the papers [1–4] different applications of the notion of compatible Lie brackets to the
integrability theory have been considered. Various odd examples of compatible Lie structures
have been presented in [1, 2, 5].

A pair of compatible associative multiplications is more rigid algebraic structure than a
pair of compatible Lie brackets and therefore there is a chance to construct more developed
theory and some series of important examples of such multiplications.

In [6] we have studied multiplications compatible with the matrix multiplication or, in
other words, linear deformations of the matrix product. It turns out that these deformations of
the matrix algebra are in one-to-one correspondence with representations of certain algebraic
structures, which we call M-structures. The case of direct sum of several matrix algebras
corresponds to representations of the so-called PM-structures (see [6]).

The main result of [6] is a description of an important class of M and PM-structures.
The classification of these structures naturally leads to the Cartan matrices of affine Dynkin
diagrams of the Ã2k−1, D̃k, Ẽ6, Ẽ7, and Ẽ8-type.

In this paper, we investigate integrable equations related to the affine Dynkin diagrams
of Ã-type in details. By integrability we mean that these equations possess usual properties
of integrable systems. Namely, we present Lax representations for these equations. The Lax
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representations yield first integrals and commuting flows and can be used for constructing the
general solution. Moreover, our equations are bi-Hamiltonian models [16], but we do not
discuss it in this paper (see conclusion). Recall some results of the papers [1, 4, 6] adopted
for our goals. For simplicity we formulate these results for the matrix algebra Matn but all of
them remain to be true for any semi-simple associative algebra.

A multiplication ◦ defined on the vector space Matn of all n × n matrices is said to be
compatible with the matrix multiplication if the product

X • Y = XY + λX ◦ Y (1.1)

is associative for any constant λ.
Since the matrix algebra is rigid, the multiplication (1.1) is isomorphic to the matrix

multiplication for almost all values of the parameter λ. This means that there exists a formal
series of the form

Sλ = 1 + Rλ + O(λ2), (1.2)

with the coefficients being linear operators on Matn, such that

Sλ(X)Sλ(Y ) = Sλ(XY + λX ◦ Y ). (1.3)

It follows from this formula that the multiplication ◦ is given by

X ◦ Y = R(X)Y + XR(Y ) − R(XY). (1.4)

The series Sλ is defined up to a transformation Sλ → TλSλT
−1
λ , where Tλ is an arbitrary

element of Matn of the form Tλ = 1 + tλ + O(λ2). This leads to the transformation

R → R + adt , (1.5)

which does not change the multiplication (1.4).
In the matrix case it is convenient to write down the operator R in the form

R(x) = a1xb1 + · · · + apxbp + cx, ai, b
i, c ∈ Matn (1.6)

with p being smallest possible.
A general construction from [4] establishes a relationship between pairs of compatible

associative multiplications and integrable top-like systems. Let ◦ be a multiplication (1.4)
compatible with the matrix product. Consider the following matrix differential equation:

dx

dt
= [R(x) + R∗(x), x], (1.7)

where ∗ stands for the adjoint operator with respect to the bi-linear form trace (xy).

This means that, if Q is a linear operator in Matn, then Q∗ is defined by the equation
trace (Q(x)y) = trace(xQ∗(y)) for all x, y ∈ Matn. In particular,

R∗(x) = b1xa1 + · · · + bpxap + xc.

Equation (1.7) is a particular case of equation (6.9) from the paper [4] (set u = v =
0, w = x in (6.9)). According to the results of [4] (section 6.1), equation (1.7) possesses the
Lax representation

dL

dt
= [A,L],

where

L = (
S−1

λ

)∗
(x), A = 1

λ
Sλ(x). (1.8)
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To make these formulae constructive, we should find Sλ and S−1
λ in a closed form, i.e. as

analytic operator-valued functions. As usual, the integrals of motion for (1.7) are given by
coefficients of different powers of λ in trace(Lk), k = 1, 2 . . . .

The simplest example of a multiplication compatible with the matrix product corresponds
to the Dynkin diagram Ã1. This multiplication ◦ is given by x ◦ y = xcy, where c is an
arbitrary matrix. In this case we have

R(x) = cx, Sλ(x) = (1 + λc)x, L = x(1 + λc)−1.

The Lax equation is equivalent to the well-known integrable matrix equation

dx

dt
= x2c − cx2. (1.9)

The simplest integrals for (1.9) are given by Hk,0 = trace(xk). Moreover, the L-operator
produces an infinite set of homogeneous integrals Hi,j , where i and j are degrees with respect
to x and c. For example,

H1,1 = trace(xc), H2,1 = trace(x2c), H2,2 = trace(2c2x2 + cxcx). (1.10)

Equation (1.9) is Hamiltonian one with respect to the standard matrix linear Poisson bracket
given by the Hamiltonian operator adx and Hamiltonian function H2,1. Indeed, (1.9) can be
rewritten in the form (1.7) as xt = [x, xc + cx].

Matrix equations of arbitrary size like (1.9) are important because of possibility of making
different reductions. For the most trivial reduction one may regard x as a block matrix. In
this case (1.9) becomes a system of several matrix equations for the block entries of x. Under
reduction xT = −x, cT = c (1.9) is a commuting flow for the n-dimensional Euler equation
[7–9]. Another reduction of (1.9) was mentioned in [9]. Let x and c in (1.9) be represented
by matrices of the form

x =




0 u1 0 0 · 0
0 0 u2 0 · 0
· · · · · ·
0 0 0 0 · uN−1

uN 0 0 0 · 0


 , c =




0 0 0 · 0 JN

J1 0 0 · 0 0
0 J2 0 · 0 0
· · · · · ·
0 0 0 · JN−1 0


 ,

(1.11)

where uk and Jk are block matrices (of any dimension). It follows from equation (1.9) that uk

satisfy the non-Abelian Volterra equation

d

dt
uk = uk ◦ uk+1 ◦ Jk+1 − Jk−1 ◦ uk−1 ◦ uk, k ∈ ZN.

Integrable equation (1.9) contains one arbitrary constant matrix c. Such equations have
been systematically investigated in [9]. In sections 1, 2 we present a series of integrable
matrix equations, which depend on two constant matrices related by certain algebraic relations
providing the integrability. In section 3 these results are generalized to the case of several
matrix unknowns. Skew-symmetric reductions as well as reductions of (1.11)-type are
available for our matrix ODEs.

Different applications of compatible associative multiplications are related to integrable
deformations of the principle GL(n)-chiral model (see [1]). Let ◦ be associative multiplication
compatible with the Matn⊕Matn product, Sλ be the series (1.2) with the property (1.3). Define
operators T1, T2 on Matn by means of the following decompositions:

Sλ(u, 0) = (u, 0) + λ(·, T1(u)) + O(λ2), Sλ(0, v) = (0, v) + λ(T2(v), ·) + O(λ2).

(1.12)
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Then the following hyperbolic system

ut = [u, T2(v)], vτ = [v, T1(u)], u, v ∈ Matn (1.13)

possesses a zero-curvature representation [L,M] = 0, where

L = d

dy
+

1

λ
Sλ(u, 0), M = d

dx
+

1

λ
Sλ(0, v).

If T1 = T2 = 1, then (1.13) is just the principle chiral model [10]. In section 3 we describe a
class of integrable models (1.13) related to PM-structures of the Ã2k−1-type.

2. Associative product of the Ã3-type

The M-structure related to Ã3 (see [6] ) is defined by two arbitrary constant matrices A and B
such that

A2 = B2 = 1. (2.1)

The corresponding associative multiplication is given by (1.4), where

R(x) = AxB + BAx. (2.2)

This structure leads to the following integrable matrix equation

xt = [x, BxA + AxB + xBA + BAx]. (2.3)

The Lax representation (1.8) for (2.3) is given by the following explicit formulae for Sλ and
S−1

λ :

Sλ(x) = 1 − q

2
BxB +

1 + q

2
x + λ(AxB + BAx),

S−1
λ (x) = 1

q
(1 + λK)−1

(q − 1

2
BxB +

1 + q

2
x + λ(ABx − AxB)

)
,

where q = √
1 − 4λ2,K = AB + BA. Note that both A and B commute with K.

The canonical form (2.2) for the operator R with respect to transformations (1.5) is
homogeneous in A and B that gives rise to short expressions for Sλ and S−1

λ irrationally
depending on λ. A different form

R̄(x) = AxB + BAx + Bx − xB (2.4)

provides the simplest form of the operator (1.2) with the property (1.3):

S̄λ(x) = x + λR̄(x) (2.5)

but the expression for S̄−1
λ is more complicated:

S̄−1
λ (x) = 1

4λ2 − 1
(1 + λK)−1(λ(AxB + Bx + BAx) + 2λ2(BxB + BAxB + Ax)

− (λ + 2λ2K)xB − (1 + λK − 2λ2)x).

The corresponding Lax operators (1.8) are rational in λ.
The simplest linear and quadratic first integrals for (2.3) generated by the L-operator are

given by

H1,1 = trace[x(AB + BA)], H1,2 = trace[x(ABAB + BABA)],

H2,1 = trace[BAx2 + AxBx],

and

H2,2 = trace[2BABAx2 + 2ABAxBx + 2BABxAx + ABxABx + BAxBAx].
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Remark. Equation (2.3) is the simplest example of matrix integrable equation with constant
matrices related by constraints. If we assume that A,B, x are block matrices of the form

A =
(

1 0
0 −1

)
, B =

(
P 1 + P

1 − P −P

)
, x =

(
x1,1 x1,2

x2,1 x2,2

)
,

then we obtain an integrable ODE with one arbitrary constant matrix P and four matrix
unknowns xi,j . Furthermore, assuming that P is a scalar matrix, we obtain an integrable
matrix ODE with constant coefficients.

Equation (2.3) admits the following skew-symmetric reduction:

xT = −x, B = AT . (2.6)

Different integrable so(n)-models provided by reduction (2.6) are in one-to-one
correspondence with equivalence classes with respect to the SO(n) gauge action of n × n

matrices A such that A2 = 1. For the real matrix A, a canonical form for such equivalence
class can be chosen as

A =
(

1p T

0 −1n−p

)
. (2.7)

Here 1s stands for the unity s × s matrix and T = (tij ), where tij = δijαi . This canonical form
is defined by the discrete natural parameter p and continuous parameters α1, . . . , αr , where
p � n/2, r = min(p, n − p). A different canonical form for A will be given in the next
section.

For example, in the case n = 4 the equivalence classes with p = 2 and p = 1 give rise
to the Steklov and the Poincare integrable models [11, 12], correspondingly. Thus, whereas
(1.9) is a matrix version of the so(4) Schottky–Manakov top [7, 13], equation (2.3)–(2.7) with
p = [n/2] and p = 1 can be regarded as so(n) generalizations for the so(4) Steklov and
Poincare models (for different generalization see [14, 15]).

3. Associative products of the Ã2k−1-type. Case of one matrix variable

Let A,B,C ∈ Matn be matrices that satisfy the following set of relations:

Ak = Bk = 1, (3.1)

BiAj = ε−j − 1

ε−i−j − 1
Ai+j +

εi − 1

εi+j − 1
Bi+j , i + j �= 0 mod k, (3.2)

BiAk−i = 1 + (εi − 1)C, (3.3)

where ε = exp(2π i/k). It follows from results of [6] that formula (1.4) with

R(x) =
k−1∑
i=1

1

εi − 1
Ak−ixBi + Cx,

defines the associative multiplication ◦ compatible with the standard matrix product in Matn.

According to [6] this multiplication corresponds to the affine Dynkin diagram of the Ã2k−1-
type.

Let T be any matrix such that T k − 1 is invertible and

AT = εT A. (3.4)

Then

B = (εT − 1)(T − 1)−1A, C = T (T − 1)−1 (3.5)

satisfy identities (3.1)–(3.3). This is a convenient way to resolve this system of identities.
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Proposition 1. The operator Sλ with the property (1.3) is defined by

Sλ(x) =
k−1∑
i=0

PixBi, Pi = λ

εiµ − 1
(µT − 1)(T − 1)−1Ak−i , (3.6)

where

µ =
(

2 + (k + 1)λ

2 − (k − 1)λ

)1/k

.

The inverse operator is given by the formula

S−1
λ (x) =

k−1∑
i=0

QixBi, Qi = (µk − 1)2

λk2µk−1(µ − εi)
(εk−iT − 1)(εk−iµT − 1)−1Ak−i . (3.7)

The corresponding Lax operator (1.8) is given by

L(x) =
k−1∑
i=0

BixQi. (3.8)

Remark. If we take operator R in the following equivalent but different form

R̄(x) =
k−1∑
i=1

1

εi − 1
(Ak−i − 1)xBi +

(
C +

k−1∑
i=1

1

εi − 1
Bi

)
x,

then the operator Sλ has the simplest form (2.5), but the formula for S−1
λ (x) is more

complicated.

Using proposition 1, one can calculate the integrals of motion for equation (1.7) as
coefficients of trace(Lk), k = 1, 2 . . .. For example, the simplest quadratic integral is given
by

H = trace(xR(x)).

Equation (1.7) can be written in the Hamiltonian form as
dx

dt
= [x, grad H ].

The skew-symmetric reduction is given by

B = (At )−1, C = ε

1 − ε
(AtA − 1),

where A should satisfy the following additional constraint

(AtA − ε−1)A(AtA − 1) = ε(AtA − 1)A(AtA − ε−1).

It turns out that

A = √
z1ek,1 +

k∑
i=2

√
ziei−1,i , (3.9)

where zj+1 = f (zj ),

f (z) = 1

1 + ε − εz
,

defines a skew-symmetric reduction with one arbitrary parameter z1. In particular, for k = 2
we have

A =
(

0 α

α−1 0

)
,

where α is an arbitrary parameter.
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Remark. Any block-diagonal matrix with blocks (of different side) of the form (3.9) also
provides a non-trivial skew-symmetric reduction. If we take p blocks of the size 1 and the
remaining blocks of the size 2, we get a canonical form for matrix A equivalent but different
from (2.7).

4. Associative products of the Ã2k−1-type. Case of m matrix variables

In this section we consider associative multiplications compatible with the product in
the direct sum of m copies of Matn. We use the notation x = (x1, . . . , xm), where
x1, . . . , xm ∈ Matn, for x ∈ (Matn)

m. The standard multiplication in (Matn)
m is given

by the formula xy = (x1y1, . . . , xmym). Using results obtained in [6], the following statement
can be proved.

Proposition 2. Let T ,B be matrices such that

Bk = 1, BT = εT B.

Fix generic numbers λ1, . . . λm, t1, . . . , tm ∈ C such that T k − λk
α are invertible for all

α = 1, . . . , m. Then formula (1.4) with

R(x) = (R1(x), . . . , Rm(x)),

Rα(x) =
∑

(i,β)�=(0,α)

tβ

εiλβ − λα

· T − λα

ε−iT − λβ

B−ixβBi +


 tα

T − λα

−
∑

(i,β) �=(0,α)

εi tβ

εiλβ − λα


 xα

defines the following associative product compatible with the standard product in (Matn)
m :

x ◦ y = ((x ◦ y)1, . . . , (x ◦ y)m),

where

(x ◦ y)α =
∑

(i,β)�=(0,α)

tβ

εiλβ − λα

(
T − λα

ε−iT − λβ

B−ixβBiyα + xα

T − λα

ε−iT − λβ

B−iyβBi

− T − λα

ε−iT − λβ

B−ixβyβBi

)
+ tαxα

1

T − λα

yα −
∑

(i,β) �=(0,α)

εi tβ

εiλβ − λα

xαyα.

Remark. The formulae from section 2 after elimination of matrices Ai , C via (3.5) coincides
with the corresponding formulae from proposition 2 with m = 1.

Proposition 3. For the multiplication from proposition 2 the operator (1.2) with the property
(1.3) is given by

Sλ(x) = (S1(x), . . . , Sm(x)),

where

Sα(x) =
∑
i,β

λtβ(T − µα)

(εiλβ − µα)(ε−iT − λβ)
B−ixβBi.

The Lax operator (1.8) is defined by the formulae

L(x) = (L1(x), . . . , Lm(x)),

where

Lα(x) = −
∑
i,β

∏
s

(
λk

α − µk
s

)(
λk

s − µk
β

)
k2λk−1

α µk−1
β (λα − εiµβ)

∏
s �=α

(
λk

α − λk
s

) ∏
s �=β

(
µk

β − µk
s

)
×Bixβ

T − λα

tαλ(ε−iT − µβ)
B−i .
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Here µα = µα(λ) are algebraic functions in λ such that µα(0) = λα and

∑
γ

tγ λk−1
γ

λk
γ − µk

α

= 1

kλ
, α = 1, . . . , m.

Remark. In some sense, the Lax operator constructed in proposition 3 is a multi-pole analogue
of operator (3.8).

To find the explicit form of integrable equations related to this Lax operator, one needs
several first coefficients of the Taylor expansions of Sλ and L. We have

µα = λα − tαλ − tα


k − 1

2
· tα

λα

+ k
∑
γ �=α

tγ λk−1
γ

λk
γ − λk

α


 λ2 + O(λ3),

Sα(x) = xα +


 tα

T − λα

− k − 1

2
· tα

λα

− k
∑
γ �=α

tγ λk−1
γ

λk
γ − λk

α


 xαλ

+
∑

(i,β)�=(0,α)

tβ(T − λα)

(εiλβ − λα)(ε−iT − λβ)
B−ixβBiλ + O(λ2),

Lα(x) = xα − xα


 tα

T − λα

− k − 1

2
· tα

λα

− k
∑
γ �=α

tγ λk−1
γ

λk
γ − λk

α


 λ

−
∑

(i,β)�=(0,α)

Bixβ

tβ(T − λα)

(εiλβ − λα)(ε−iT − λβ)
B−iλ + O(λ2).

The integrable system (1.7) has the form

dxα

dt
=

[
tα

T − λα

xα + xα

tα

T − λα

+
∑

(i,β)�=(0,α)

(
tβ(T − λα)

(εiλβ − λα)(ε−iT − λβ)
B−ixβBi

+ Bixβ

tβ(T − λα)

(εiλβ − λα)(ε−iT − λβ)
B−i

)
, xα

]
.

It can be written in the Hamiltonian form as
dx

dt
= [x, grad H ],

where H = ∑
α trace(xαRα(x)).

Remark. All these constructions including the integrable system are valid for the case k = 1
also. In this case B = 1, ε = 1 and T is an arbitrary matrix. If also m = 1, then the system is
equivalent to (1.9).

Another application of propositions 2, 3 in the case m = 2 is the integrable PDE (1.13).
To write down this system explicitly, we need to find the operators T1 and T2 defined by (1.12).
The asymptotic formula for Sλ given above yields

T1(x) =
∑

i

t1(T − λ2)

(εiλ1 − λ2)(ε−iT − λ1)
B−ixBi,
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T2(x) =
∑

i

t2(T − λ1)

(εiλ2 − λ1)(ε−iT − λ2)
B−ixBi.

5. Conclusion

In this paper we have described representations of M and PM-structures related to the affine
Dynkin diagrams of the Ã2k−1-type and have presented Lax operators for the corresponding
matrix top-like systems. Actually, these systems are bi-Hamiltonian models [16]. We
are planning to describe the Hamiltonian properties of these systems in a separate paper.
Besides of that representations of PM-structures related to the affine Dynkin diagrams of the
D̃k, Ẽ6, Ẽ7, Ẽ8-types and the corresponding integrable models should be described explicitly.
A systematic investigation of reductions of matrix models constructed in this paper seems to
be an interesting problem. In this paper we have also considered integrable PDEs of the chiral
model type related to PM-structures with m = 2. Compatible associative multiplications
described by M and PM-structures can be used for the construction of integrable PDEs of the
Landau-Lifshitz type in accordance with results of [17].
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