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1. Background

The acronym pifiss stands for Potential Incompressible Flow and Iterative
Solution Software. The contents and scope of the package are outlined in the
following sections and also illustrated with examples. pifiss supplements the
previously released ifiss software package that is described in

• Howard Elman, Alison Ramage & David Silvester, IFISS: a
Matlab toolbox for modelling incompressible flow, MIMS Eprint 2005.45,
Manchester Institute for Mathematical Sciences, The University of Manch-
ester, UK, December 2005,
http://www.manchester.ac.uk/ifiss/

and which is associated with the reference book [ESW, 2005],

• Howard Elman, David Silvester & Andrew Wathen, Finite El-
ements and Fast Iterative Solvers with Applications in Incompressible
Fluid Dynamics, Oxford University Press, 2005.

Broadly speaking, pifiss extends the functionality of ifiss to steady-state
diffusion problems with discontinuous and anisotropic coefficients, and to po-
tential flow problems (the so-called mixed formulation of steady-state diffu-
sion problems) that arise in modelling groundwater flow. The package offers
users the possibility to investigate different iterative solution techniques for
the symmetric positive definite problems that arise in the first case and for
the saddle-point systems that arise in the second. In particular, we include
state of the art preconditioning techniques based on amg (algebraic multi-
grid). The preconditioners for the saddle-point systems were developed and
discussed in the following references,

• C.E. Powell, Optimal Preconditioning for Mixed Finite Element For-
mulations of Second-Order Elliptic Problems, PhD thesis, UMIST, 2003.

• C.E. Powell & D.Silvester, Optimal Preconditioning for Raviart-
Thomas Mixed Formulation of Second-Order Elliptic Problems, SIAM
J. Matrix Anal. Appl., 25, pp. 718–738, 2003.

The amg code that is included in the toolbox was written by J. Boyle at
the University of Manchester as part of the EPSRC project EP/C000528/1.

The pifiss software is “open-source” and is written in MATLAB. To run
it you also require access to the functionality of FEMLAB or its successor,
COMSOL multiphysics.1 You can redistribute pifiss and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free

1This software is marketed by COMSOL, see http://www.comsol.com.
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Software Foundation; either version 2.1 of the License, or any later version—
for precise details, see the file readme.m. The software is distributed in the
hope that it will be useful, but without any warranty; without even the implied
warranty of merchantability or fitness for a particular purpose. See the GNU
Lesser General Public License for a definitive statement.

The software can be run under Windows, Unix and Mac architectures. The
current version, pifiss 1.0, was developed using the syntax of MATLAB 7.0
(Release 13), and FEMLAB 3.12 but it has also been extensively tested using
MATLAB 7.1 and 7.2 (Release 14) and COMSOL 3.3. (If you are not sure
which version of MATLAB or COMSOL you have running, just type ver at
the system prompt.)

2. Installation

pifiss is downloaded as the zipped tar file pifiss.tar.gz, which contains all
the individual files bundled together. After unpacking the tar file two steps
are required to set the package up:

1. The file gohome.m identifies the ‘home’ directory of the package via a
command of the form

cd(’<local directory information>/pifiss’)

(where the name pifiss has the appropriate version number appended).
You must edit this file to point to the user’s local directory. The simplest
way to do this is to type pwd in the MATLAB command window when
pifiss is the current directory and copy and paste the returned path
name into the file gohome.m

2. After starting “FEMLAB–with–MATLAB” or, (depending on the ver-
sion available) “COMSOL–with–MATLAB”, the user must run one of
the functions install unix or install pc in the pifiss home directory.
These commands initialize all Unix-dependent and Windows-dependent
files, respectively. After this has been done, pifiss is set to run in a
Unix or Windows environment without additional user intervention.

Once pifiss is installed (by performing steps 1 and 2 above), for all subse-
quent uses, the MATLAB path must include the pifiss home directory. This
requirement can be enforced by simply typing setpath in response to the
MATLAB prompt each time you begin a new pifiss session. Having run
setpath at the MATLAB prompt, simply type helpme to get started.

2Note that because the default mesh generator that is built into COMSOL’s software is
version dependent, slightly different solutions and iteration counts are to be expected when
running the test problems described below using later releases of the COMSOL software.
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3. A Model Steady-State Diffusion Problem

The focus of the pifiss package is on efficiently solving two-dimensional steady-
state diffusion problems, with discontinuous and/or anisotropic coefficients
using the so-called primal formulation (see below); or the mixed formulation
(see section 4).

The first type of problem that is addressed is: compute a scalar potential
p satisfying

−∇ · A∇p = f,

at every point ~x in a two-dimensional region Ω, where f : Ω → R is a
given “source” function and A is a symmetric positive definite 2 × 2 matrix
whose coefficients are also given functions of ~x. When supplemented with
suitable boundary conditions, for example, if p is specified at every point on
the boundary ∂Ω, then we have a well posed problem and a unique solution.

This pde problem arises in many applications in science and engineering,
including electromagnetic problems and in fluid flow modelling. The coeffi-
cient term A is a material parameter, specific to the problem at hand, and
usually represents a ‘permeability’ or ‘permittivity’ of the medium being con-
sidered. For the types of application we have in mind, this parameter can
exhibit discontinuities and/or anisotropies within Ω.

Having specified a region Ω, a discretized problem is assembled by pifiss
using linear finite element approximation on a triangular subdivision (mesh)
that is generated using FEMLAB. For example, suppose we wish to solve
the steady-state diffusion problem on a circular disk with unit radius, with
three distinct regions of permeability. The coarse mesh that is “automatically
generated” using pifiss is that illustrated in Figure 3.1. Different values of A
are then easily assigned to each subdomain, which are individually meshed.

Our primary interest is in developing fast iterative solvers for the linear
equation systems that arise from the finite element discretization. To facili-
tate this development a set of five predefined reference problems is built into
pifiss (see the Appendix for complete details of each one). Running the
driver diff testproblem enables the user to choose the desired test problem
and the degree of refinement of the spatial discretization. In addition, the
resulting linear system is solved using the MATLAB “backslash” solver and
an estimate of the energy error is computed using the residual error estimator
described in Section 1.5.2 of [ESW, 2005].

To illustrate this process, a sample pifiss session showing the solution
of one of these problems (D5, see the Appendix) is reproduced below. The
mesh that is used in this case is a uniform refinement of the subdivision in
Figure 3.1 (it is generated by subdividing every triangle into four) and the
computed finite element solution is shown in Figure 3.2. To reproduce the
session, just type diff testproblem and select the options shown.
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Figure 3.1. FEMLAB mesh associated with reference problem D5.

>> diff_testproblem

specification of reference diffusion problem.

choose specific example

1 Square domain, unit coefficients

2 Square domain, anisotropic coefficients

3 Square domain, discontinuous anisotropic coefficients

4 punched ticket domain, unit coefficients

5 circle domain, discontinuous coefficients, analytic solution

: 5

number of refinements? (default is 2) : 1

setting up P1 diffusion matrices...done

system saved in femlab_adiff.mat ...

solving linear system ... done

Galerkin system solved in 4.822e-002 seconds

plotting solution... done

computing P1 variable diffusion flux jumps... done

computing P1 interior residuals... done

computing residual error estimator...

estimated global error (in energy): 6.248754e-002



A Model Steady-State Diffusion Problem 5

Figure 3.2. Solution to the variable diffusion problem D5.

Once a discrete problem has been set up and solved in this way, the perfor-
mance of alternative preconditioned iterative solvers may be explored using
the drivers it solve and amg solve. Issuing the first command allows the
user to re-solve the system, iteratively, using Krylov subspace methods and
choose from a set of ‘standard’ preconditioners. Issuing the second command
allows the user to re-solve the system using an algebraic multigrid precondi-
tioner.

In the following session, the chosen iterative method is minres and the
preconditioner is the zero fill-in incomplete Cholesky routine built into MAT-
LAB. This solution method converges in 59 iterations, and gives the conver-
gence curve represented by the blue line in Figure 3.3. (Using an incomplete
factorization with the default drop tolerance gives much faster convergence!)

>> it_solve

discrete diffusion system ...

PCG/MINRES? 1/2 (default PCG) : 2

tolerance? (default 1e-6) :

maximum number of iterations? (default 100) :

preconditioner:

0 none

1 diagonal

2 incomplete cholesky (no fill in)
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Figure 3.3. Convergence curves using preconditioned minres.

3 incomplete cholesky with drop tolerance

default is standard incomplete cholesky :

MINRES iteration ...

convergence in 59 iterations

k log10(||r_k||/||r_0||)

0 0.0000

1 0.2041

2 0.1633

3 0.1437

.

.

57 -5.2465

58 -5.5512

59 -5.9321

Bingo!

4.4401e-001 seconds

use new (enter figno) or existing (0) figure, default is 0 : 11
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colour (b,g,r,c,m,y,k): enter 1--7 (default 1) :

The second (black) convergence curve in Figure 3.3 can be generated by
solving the problem a second time, using amg solve.

>> amg_solve

discrete diffusion system... PCG/MINRES? 1/2 (default PCG) : 2

tolerance? (default 1e-6) :

maximum number of iterations? (default 100) :

compute / load AMG data? 1/2 (default 1) :

Level 2 step 1 coarsening started

C points after 1st pass: 524

C points after 2nd pass: 714

C points after coarsening: 714

Weak positive connections exist

Strong positive connections exist

Coarsening completed (714 Coarse, 927 Fine and 96 Unconnected

points)

...

Level 9 step 1 coarsening started

C points after 1st pass: 1

C points after 2nd pass: 1

C points after coarsening: 1

Coarsening completed (1 Coarse, 1 Fine and 0 Unconnected points)

setup done.

plot AMG grid sequence? yes/no 1/2 (default no) :

PDJ/PGS smoother? 1/2 (point Gauss-Seidel) : 1

point damped Jacobi smoothing ..

MINRES iteration... convergence in 8 iterations

k log10(||r_k||/||r_0||)

0 0.0000

1 -0.0262

2 -0.7292

3 -1.6080

4 -2.3378

5 -3.2432

6 -4.0928

7 -4.7913

8 -5.7120

Bingo!

2.3632e-001 seconds
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4. Potential Flow Problems (Groundwater flow)

The problem addressed in Section 3 is often referred to as a primal problem.
We can generate a mixed formulation of the same problem by explicitly in-
troducing the vector ~u = −A∇p. This gives the reformulated problem: find
the pair (~u, p) satisfying

A−1~u + ∇p = ~0 ; (1)

∇ · ~u = f .

This problem represents the fundamental model of potential flow. The vari-
able ~u is a vector-valued function representing the velocity of the fluid, and
the scalar function p represents the pressure (or more precisely ‘head’). The
first equation above is called Darcy’s law and the second equation enforces
conservation of mass. Note that in groundwater flow modelling, it is ~u, and
not the scalar variable p, that is of primary interest. The mixed formula-
tion is the preferred formulation in this case as it is more robust when the
permeability coefficient A is discontinuous.

The boundary value problem considered is (1) posed on a two-dimensional
region Ω, together with boundary conditions on ∂Ω = ∂ΩD ∪ ∂ΩN given by

p = g on ∂ΩD,
∂~u

∂n
= 0 on ∂ΩN , (2)

where ~n is the outward-pointing normal to the boundary, and ∂~u
∂n

denotes the
directional derivative in the normal direction. The condition on ∂ΩN is called
a no penetration condition. In order to ensure a unique pressure solution, we
need to assume that the imposed pressure part of the boundary is non-trivial,
that is

∫

∂ΩD

ds 6= 0.
Having specified a region Ω, a discretized problem is assembled by pifiss

using the lowest order Raviart-Thomas approximation. This approximates
the x-component of the velocity vector by a linear function in x and the y-
component of the velocity vector by a linear function in y in such away that
the normal component of ~u is continuous across the edges of the triangulation.
The pressure variable is approximated by a constant in each triangle. Further
details of this particular finite element approximation scheme can be found in
the following references.

• Franco Brezzi & Michel Fortin, Mixed and Hybrid Finite Element
Methods, Springer-Verlag, 1991. (See, in particular, Section III.3.)

• J.E. Roberts & J.M. Thomas, Mixed and hybrid methods, in Hand-
book of Numerical Analysis, Vol II: Finite Element Methods (Part 1),
P.G. Ciarlet & J.L. Lions, Eds, North-Holland, pp. 523–633, 1991.
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There are four reference potential flow problems built into pifiss (see
Appendix for a complete list). These are accessed by running the driver
flow testproblem. A session which explores the specific problem P4 is out-
lined below. To reproduce it, simply type flow testproblem and select the
options listed. The flow domain in this case is a porous medium composed
of five different zones with distinct permeability coefficients (see Figure 4.1).
We specify a different constant for A in each one and compute the resulting
flow. The coarse mesh that is generated by FEMLAB in pifiss is shown in
Figure 4.2 and the computed flow solution is visualized in Figure 4.3.
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Figure 4.1. Geology of reference problem P4.

>> flow_testproblem

specification of reference groundwater flow problem.

choose specific example

1 square domain

2 circle domain

3 punched ticket domain

4 texas lsite domain

: 4

number of refinements? (default is 2) :
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Choose type of permeability coefficients

1 unit coefficients (A=1) default choice

2 single-valued piecewise constant coefficients

3 piecewise constant diagonal matrix coefficients

: 2

Enter value of A in each subdomain in order

A1 : 1.04

A2 : 17.2

A3 : 0.31

A4 : 2.60

A5 : 17.2

Setting up Raviart-Thomas matrices and RHS vectors ... done

Imposing essential boundary condition ... done

Plotting solutions ... done

Figure 4.2. FEMLAB mesh associated with reference problem P4.
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Streamlines of interpolated RT0 flux solution

Figure 4.3. Solution to the flow problem P4.

The driver flow testproblem solves the resulting discrete system using
a MATLAB backslash solve. Once the problem has been set up and solved
in this way, the performance of an alternative preconditioned iterative solver
may be explored using the drivers it solve and amg solve. Issuing either
of these commands allows the user to re-solve the system, iteratively, us-
ing preconditioned minres. The default preconditioner is a block-diagonal
matrix, consisting of a diagonal matrix in the 1-1 block, and a sparse Schur-
complement matrix in the 2-2 block. If the command it solve is issued, the
preconditioner is implemented ‘ideally.’ That is, the blocks of the precon-
ditioner are inverted using a backslash solve. Alternatively, by issuing the
command amg solve, the action of the inverse of the 2-2 block of the precon-
ditioner is approximated using algebraic multigrid. (Consult the references
given in section one for technical details.)

Sample output for both solution schemes is reproduced below. If the ideal
preconditioner is used (it solve), 29 iterations are required, whereas if the
amg based preconditioner is used (amg solve), 33 iterations are required.
The iteration count rises hardly at all!

>> it_solve

discrete potential flow system...

iterative solution with preconditioned MINRES

tolerance? (default 1e-6) :
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maximum number of iterations? (default 100) :

MINRES iteration phase convergence in 29 iterations

k log10(||r_k||/||r_0||)

0 0.0000

1 -0.1458

2 -0.5270

3 -1.0600

.

.

26 -5.6916

27 -5.9107

28 -5.9151

29 -6.1757

Bingo!

1.1251e+000 seconds

>> amg_solve

discrete potential flow system...

iterative solution with preconditioned MINRES

tolerance? (default 1e-6) :

maximum number of iterations? (default 100) :

AMG setup phase ...

Level 2 step 1 coarsening started

C points after 1st pass: 3209

C points after 2nd pass: 3515

C points after coarsening: 3515

Coarsening completed (3515 Coarse, 3157 Fine and 0 Unconnected

points)

....

Level 10 step 1 coarsening started

C points after 1st pass: 1

C points after 2nd pass: 1

C points after coarsening: 1

Coarsening completed (1 Coarse, 3 Fine and 0 Unconnected points)

setup phase took 3.34 seconds

PDJ/PGS smoother? 1/2 (point damped Jacobi) :

point damped Jacobi smoothing ..
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MINRES iteration phase convergence in 33 iterations

k log10(||r_k||/||r_0||)

0 0.0000

1 -0.1545

2 -0.4860

3 -1.1380

.

.

31 -5.8741

32 -5.8841

33 -6.0205

Bingo!

4.3924e+000 seconds

To circumvent the need to repeatedly type in coefficients pifiss also pro-
vides a batchmode facility via which data may be input from a pre-prepared
file rather than directly from the terminal. Sample input files for each of
the model problems are provided (located in the appropriate test problems

subdirectory); these can be easily modified by the user for a particular run.
The names of these input files must have the form “* batch.m” where “*”
begins with either “diff” or “flow” for the variable diffusion or potential
flow problem respectively. For example, typing the command

batchmode(’flowlsite’)

uses the file flowlsite batch.m to generate and solve the above reference
problem without interactive input. The results of the run are stored in the
file batchrun in the datafiles subdirectory (see below).

5. Directory structure

pifiss comprises functions which generate finite element approximations of
the steady-state diffusion problems and the potential flow problems. The
discretization aspects are associated with the functions in the following direc-
tories

• /pifiss/diffusion/

• /pifiss/potential flow/

Each of these directories has a subdirectory /test problems/. These contain
the boundary and coefficient function files associated with the reference prob-
lems described in the Appendix. The functions associated with the domain
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geometry and grid generation are independent of the problem being solved.
These functions are thus located in a separate directory:

• /pifiss/grids/

The computed solutions are visualized using the 3-D plotting functions that
are built into MATLAB and FEMLAB (or COMSOL). The functions that
call these built-in functions to generate this visual output are also located in
a separate directory:

• /pifiss/graphs/

For both types of discrete problem we provide specialized fast iterative solvers.
The associated functions are contained in the following directory:

• /pifiss/solvers/

Finally, there are three directories that are used for storing intermediate data
(for example finite element matrices and multigrid data) and plot files:

• MATLAB data (.mat) files : directory /pifiss/datafiles/

• FEMLAB structures (.mat) files : directory /pifiss/femfiles/

• plot (.ps) files : directory /pifiss/plotfiles/

6. Help facility and pifiss function glossary

Help for the package is integrated into the MATLAB help facility. The com-
mand help pifiss gives a pointer to the ifiss general help command helpme.
Typing help 〈directory name〉 lists the files in that directory that users may
want to look at more closely. In MATLAB version 7, the function names are
‘clickable’ to give additional information.

The pifiss package consists of over 70 MATLAB functions and script files,
of which the high level ones are listed below. Simply type help <file-name>

for further information on any of these. For a complete list of functions and
scripts in a specific directory type help <directory-name>.
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pifiss1.0
gohome positions command prompt at top level directory
helpme pifiss interactive help facility
pifiss returns pifiss version number
install pc sets up pifiss on non-UNIX computer
install unix sets up pifiss on UNIX computer
readme distribution information file
setpath sets pifiss search path
activemode turns off batch processing for pifiss
batchmode enables batch processing for pifiss testproblem

grids
femlab psfem convert FEMLAB mesh to pifiss format
imeshplot triangular mesh verification
p1grid linear (P1) element grid generator
square domain square domain Q2 grid generator
subint geometrically stretched subdivision generator

diffusion
circle adiff solve anisotropic problem in circular domain
cylinder adiff solve anisotropic problem in exterior domain
femlab adiff solve anisotropic problem in general domain
femp1 adiff vectorized linear anisotropic diffusion matrix
helpme diff variable diffusion problem interactive help
nonzerobc imposes Dirichlet boundary condition
p1fluxjmps adiff variable diffusion flux jumps for triangular P1 grid
p1res diff interior residuals for triangular P1 grid
specific adiff (current) problem diffusion coefficients
specific bc (current) problem boundary condition
specific rhs (current) problem forcing function
square adiff solve anisotropic problem in unit square domain
tdiffpost res P1 element residual error estimator
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potential flow
RT0 mesh info generate RT0 mesh from FEMLAB structure
circle groundwaterflow solve flow problem in circular domain
cylinder groundwaterflow solve flow problem in exterior cylinder domain
femRT0 assemble RT0 matrices and rhs vectors
femlab groundwaterflow solve flow problem in general domain
get RT0 boundary labels sets up data for natural boundary conditions
helpme flow potential flow problem interactive help
impose hom neuman bc imposes essential Neumann boundary conditions
impose sign fixes generic normal direction on edges
lsite groundwaterflow solve flow problem in lsite domain
piola transform evaluates RT0 basis functions via Piola transform
specific f (current) problem forcing function
specific flowbc (current) problem flow boundary conditions
specific g (current) problem nonzero pressure boundary
square groundwaterflow solve flow problem in square domain

solvers
a nst matrix-vector product for saddle-point system
amg smoother performs AMG smoothing step
amg smoother setup generates data for AMG smoothing step
amg solve driver for AMG iterative solution for predefined problem
helpme it iterative solvers interactive help
it solve driver for iterative solution of predefined problem
m ps ideal Powell-Silvester preconditioner
m ps amg AMG iterated Powell-Silvester preconditioner
pminres preconditioned MINRES algorithm
resplot plot residuals computed by iterative solvers

graphs
bookplot saves pifiss figure as postscript file
errplot t plots solution and error estimate on square-shaped domain
htmlplot saves pifiss figure as html file
plot RT0 flux plots RT0 velocity solution
plot RT0 pressure plots RT0 pressure solution
solplot plots nodal data on square-shaped domain
solplotc plots nodal data on long thin domain
solsurf plots solution surface on square-shaped domain
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7. Appendix: List of Test Problems

In this appendix, we give a brief description of each of the test problems in
the pifiss library, in terms of: the geometry of the domain Ω; the boundary
data; the PDE coefficients A; and the source term f . There are five ‘diffusion’
test problems labelled D1–D5 (as discussed in section 3) and four ‘potential
flow’ test problems labelled P1–P4 (as discussed in section 4). Note that
FEMLAB is not needed if one only wants to run the problems D1–D3.

Steady-state diffusion test problems

D1 Unit coefficients, square domain, unit source

This problem is posed on a unit square domain [0, 1] × [0, 1] with unit
coefficients, i.e. A = I, where I is the 2 × 2 identity matrix, with
source term f = 1 and a homogenous Dirichlet boundary condition
(p = 0 everywhere on the boundary). A sample solution is plotted in
Figure 7.4.

0
0.5

1
0

0.5
1
0

0.05

Figure 7.4. Contours and mesh plot of solution to diffusion test problem D1.

D2 Anisotropic coefficients, square domain, unit source

This problem is also posed on a unit square domain. The diffusion
coefficient in this case is anisotropic. Specifically we have:

A =

(

1 0
0 100

)

,

over the entire domain, with source term f = 1 and a homogenous
Dirichlet boundary condition. Users may select either a uniform or
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stretched finite element mesh. A sample solution is plotted in Figure 7.5.
The anisotropy coefficient (100 in this case) can be changed by editing
the file variable adiff.m .

0
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1

0

0.5

1
0

0.5

1

1.5

x 10
−3

Figure 7.5. Contours and mesh plot of solution to diffusion test problem D2.

D3 Discontinuous anisotropic coefficients, square domain, unit source

This problem is posed on the square domain, [−1, 1] × [−1, 1] with the
source term f = 1 and a homogenous Dirichlet boundary condition.
The diffusion coefficient in this case however, is both discontinuous and
anisotropic. It is given by

A =

(

Ax 0
0 Ay

)

,

where the diagonal entries of this 2 × 2 matrix are

Ax =

{

10−2 abs(y) < 0.5
1 otherwise

, Ay =

{

10−2 abs(x) < 0.5
1 otherwise

.

This results in nine distinct subdomains with jumping coefficients across
all the interfaces. A sample solution is plotted in Figure 7.6. The
anisotropy parameter (10−2 in this case) can easily be changed by editing
the file ref adiff.m .
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Figure 7.6. Contours and mesh plot of solution to diffusion test problem D3.

D4 Rectangular domain with interior circular obstacle, unit coef-

ficients, unit source

This problem is posed on the domain consisting of the rectangle [0, 2.2]×
[0, 0.41], with a small circle, of radius 0.05, centered at (0.2, 0.2) removed.
The source term is f = 1 . A homogeneous Dirichlet boundary condition
is prescribed on the circle and on the top, bottom and left exterior
boundary. The natural condition ∂p/∂x = 0 applies on the right exterior
boundary. A sample solution is plotted in Figure 7.7.

Figure 7.7. Contours and mesh plot of solution to diffusion test problem D4.
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D5 Circular domain, discontinuous coefficients, unit source

This problem is posed on a unit circle domain, centered at the ori-
gin. The source term is f = 1 and a homogeneous Dirichlet boundary
condition is prescribed on the exterior boundary. The coefficient A is
piecewise constant and is a function of the radial distance r from the
origin. We have A = βI and

β =







1

10
for 0 ≤ r < 0.3

100 for 0.3 ≤ r < 0.7
1 for 0.7 ≤ r ≤ 1.

A sample solution is plotted in Figure 3.2. This problem has an analytic
solution with p radially symmetric so that

p = α +
1

4β
(1 − r2),

where α is determined in each region to ensure continuity of p across
the interface, and satisfaction of the boundary condition when r = 1.

This concludes the range of test problems for the primal formulation of
the steady-state diffusion problem. We now describe the pifiss library of
potential flow (or ‘groundwater flow’) test problems.

Potential flow test problems

In each of the following four test problems, three options are available to
prescribe the pde coefficients:

1 unit coefficients (A=1) default choice

2 single-valued piecewise constant coefficients

3 piecewise constant diagonal matrix coefficients

For option 2, the user is prompted to enter a single value for A in each
subdomain of the geometry. This means that A is a diagonal matrix with the
same value for both diagonal entries in each subdomain. For option 3, the
user is prompted to enter, for each subdomain in order, the values Ax and Ay

where

A =

(

Ax 0
0 Ay

)

.

All three test problems below can thus be set up with unit coefficients, or
with discontinuous and/or anisotropic coefficients.
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P1 Square domain, zero source, mixed boundary conditions

Figure 7.8. Quiver plot and streamline plot of flux solution to potential flow test

problem P1, A = 1 in the outer subdomain, A = 1/1000 in the inner subdomain.

Figure 7.9. Quiver plot and streamline plot of flux solution to potential flow test

problem P1, A = 1 in the outer subdomain, A = 1000 in the inner subdomain.

The first flow problem is posed on the square [0, 1]×[0, 1] with the option
to prescribe an inner-subdomain [0.25, 0.75] × [0.25, 0.75]. The source
term is f = 0 and mixed boundary conditions are applied. Specifically,
a no-flow condition ∂~u

∂n
= 0 is imposed at the upper and lower horizontal

walls. In addition, we prescribe the conditions p = 1 at the left hand
vertical wall and p = 0 at the right hand vertical wall so that the flow
is forced from left to right across the domain. If the option to use
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an embedded square domain is used, then the entries of the coefficient
matrix A can be chosen in each subdomain, independently. Sample
solutions with discontinuous coefficients are plotted in Figures 7.8 and
7.9.

P2 Circular domain, unit source, zero boundary conditions

This problem is the mixed formulation of the steady-state diffusion prob-
lem D5. That is, we solve the potential flow problem on a circular disk
of radius one. The source term is f = 1 and we apply the homogeneous
condition p = 0 on the boundary. The circular disk is composed of three
circular subdomains (see Figure 3.1) and the user may now prescribe the
pde coefficients in the manner discussed above.

P3 Rectangular domain with interior circular obstacle, zero source,

mixed boundary conditions

This is a classical flow problem of computing the potential flow around
a cylinder. The domain is described in problem D4. A no-penetration
condition is imposed on the inner circle. The source term is f = 0
and the mixed boundary conditions from problem P1 are prescribed
to generate a flow from left to right. A sample solution is plotted in
Figure 7.10.

Figure 7.10. Quiver plot of flux solution to potential flow test problem P3, A = I.

P4 L-site domain, zero source, mixed boundary conditions

This test problem is a model of a geological site that is located in the
south-eastern United States. The L-site consists of a large fly ash dis-
posal pond that is adjacent to a river. A cross section is given in Fig-
ure 4.1 and is composed of five different types of rock. Our specification
of the problem is taken from the following article [RWB, 1999].
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• Beatrice Riviere, Mary Wheeler & Carlos Baumann, Part
II: Discontinuous Galerkin method applied to a single phase flow
in porous media, TICAM Report 99-10, Austin, 1999.
utexas.edu/reports/1999/9910.ps.gz

The source term is f = 0 and mixed boundary conditions similar to
those used in problem P1 are prescribed. That is, to obtain a flow from
left to right, we set p = 1 on the left-hand vertical boundary and p = 0
on the right-hand boundary. A no penetration condition is imposed
on all other boundary segments. The sample flow solution shown in
Figure 4.3 is obtained by specifying the material permeability values
reported in [RWB, 1999].


