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COMPUTING THE POLAR DECOMPOSITION—WITH APPLICATIONS*

NICHOLAS J. HIGHAMT

Abstract. A quadratically convergent Newton method for computing the polar decomposition of a
full-rank matrix is presented and analysed. Acceleration parameters are introduced so as to enhance the

initial rate of convergence and it is shown how reliable estimates of the optimal parameters may be computed
in practice.

To add to the known best approximation property of the unitary polar factor, the Hermitian polar
factor H of a nonsingular Hermitian matrix A is shown to be a good positive definite approximation to A

and ¥(A+ H) is shown to be a best Hermitian positive semi-definite approximation to A. Perturbation
bounds for the polar factors are derived.

Applications of the polar decomposition to factor analysis, acrospace computations and optimisation

are outlined; and a new method is derived for computing the square root of a symmetric positive definite
matrix.

Key words. polar decomposition, singular value decomposition, Newton’s method, matrix square root

AMS(MOS) subject classifications. 65F25, 65F30, 65F35

1. Introduction. The polar decomposition is a generalisation to matrices of the
familiar complex number representation z=re", r=0.

THEOREM 1.1. Polar Decomposition. Let A€ C™™", m = n. Then there exists a matrix
UeC™ " and a unique Hermitian positive semi-definite matrix H e C"*" such that

A=UH, U*U=I,.

If rank (A) = n then H is positive definite and U is uniquely determined. ,

The decomposition is well known and can be found in many textbooks, for
example, [13], [16], [27]. An early reference is [1].

It is well known that the polar factor U possesses a best approximation property
(see § 2.2). Less attention has been paid in the literature to the Hermitian polar factor
H. We derive some interesting properties of H which show that when A is nonsingular
and Hermitian, H is a good Hermitian positive definite approximation to A and
3(A+ H) is a best Hermitian positive semi-definite approximation to A.

In view of the properties possessed by the polar factors of a matrix, techniques
for computing the polar decomposition are of interest. While U and H can be obtained
via the singular value decomposition (see § 3.1), this approach is not always the most
efficient (if A= U, as explained in § 6.2) or the most convenient (a library routine for
computing the singular value decomposition might not be available, on a micro-
computer, for example).

In § 3 we present and analyse a Newton method for computing the polar decompo-
sition which involves only matrix additions and matrix inversions. The method is
shown to be quadratically convergent. Acceleration parameters are introduced so as
to enhance the initial rate of convergence and it is shown how reliable estimates of
the optimal parameters may be computed in practice. The stability of the method is

considered in § 4. In § 5 the relationship of the method to two well-known iterations
is described.

* Received by the editors March 13, 1985. This work was carried out with the support of a SERC
Research Studentship.
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In § 6 we describe applications of the polar decomposition to factor analysis,
aerospace computations and optimisation. We show how our algorithm may be
employed in these applications and compare it with other methods in use currently.
A new method for computing the square root of a symmetric positive definite matrix
is derived.

2. Properties of the polar decomposition.

2.1. Elementary properties. We begin by noting the close relationship of the polar
decomposition to the singular value decomposition. Let A C™*", m=n, have the
singular value decomposition [16, p. 16]

(2.1) A= P(i) Q*,

where PeC™ ™ and Qe C™ " are unitary and

2=diag(0',,a'2,--~,a,,), O1Z0, = =0, =0.
Partitioning
P=[Pl’ 112], P’lkP1=In,

it follows that A has the polar decomposition A= UH, where
(2.2) U=PQ%,
(2.3) H = QXQ*

Conversely, given the polar decomposition A= UH € C"*", from a spectral decomposi-
tion H=QXQ* (Q*Q=1I) one can construct the singular value decomposition A =
(UQ)ZQ*.

Several interesting properties of the polar decomposition are displayed in Lemma
2.1. Our notation is as follows. For A C"*"A(A) and o(A) denote, respectively, the
set of eigenvalues and the set of singular values of A, and k,(A) = 0,/ 0, is the 2-norm
condition number. C"/? denotes the unique Hermitian positive semi-definite square
root of the Hermitian positive semi-definite matrix C [20], [27]. A is normal if
A*A = AA* [16, p. 193].

LEMMA 2.1. Let A€ C™ " have the polar decomposition A= UH. Then

(i) H=(A*A)">

(i) A(H)=0o(H)=0(A).

(iii) wo(H) = K,(A).

(iv) A is normal if and only if UH = HU.

Proof. (i)-(iii) are immediate. For (iv) see [13, p. 276].

2.2. The unitary polar factor. Our interest in the polar decomposition stems from
a best approximation property possessed by the unitary factor. The following result
displays this property; it is the generalisation to complex matrices of a result in [16,
p. 425] (see also [9], [15], [17], [26], [31]). The Frobenius matrix norm is defined by

| Al F = (trace (A*A))">
THEOREM 2.2. Let A, Be C™*" and let B*Ae C™ " have the polar decomposition
B*A= UH.
Then for any unitary Z € C"™",
(2.4) lA-BU|r=||A-BZ|r=||A+BU|.
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25) |4+ BUIE= 3 (0(AV£20,(B*A) +,(B)).

An important special case of Theorem 2.2 is obtained by taking m=n and B= 1.
COROLLARY 2.3. Let Ae C"™" have the polar decomposition

A= UH.
Then for any unitary Z € C™*",

1/2

n 1/2 n
(£ @@-17)" =1a-vir=ia-zis=ia+ vl =( £ @ar+17)

Thus if distance is measured in the Frobenius norm, the nearest unitary matrix
to AeC"*" is the unitary factor in the polar decomposition of A; and the furthest
unitary matrix from A is minus this unitary factor. This result was established by Fan
and Hoffman [12] for any unitarily invariant norm (thus it is valid for the 2-norm). It
is not hard to show that Corollary 2.3 remains true when Ae C™ " with m> n (this
does not follow immediately from Theorem 2.2).

2.3. The Hermitian polar factor. As well as yielding a closest unitary matrix, the
polar decomposition provides information about nearby Hermitian positive (semi-)
definite matrices.

Let Ae C"*" be Hermitian with at least one negative eigenvalue and consider the
problem of finding a small-normed perturbation E = E* such that A+ E is positive
semi-definite. Define, for any Hermitian B,

(2.6) 8(B) =min {|| E||,: B+ E is Hermitian positive semi-definite}.

From the Courant-Fischer minimax theory [16, p.269], any admissible E in the
definition of 8(A) must satisfy
0=A(A+E)=A,(A)+A(E),
where A,(-)=---=A,(). Thus
(2.7) IEl = [0(E) 2 A(E) 2 —Aa(A).
We now find a perturbation E for which this lower bound is attained. Let A have the
spectral decomposition

(2.8) A=ZANZ*=Y \zz¥, Z*Z =1
i=1

For
Ep=_ z Aizizi'k

it A;<0

(or E=-A,I) it is easily seen that A+ E, is singular and Hermitian positive semi-
definite, with || E,||,=—A,. It follows from (2.6) and (2.7) that

(2.9) 8(A)=-1,(A) (1,(A)<0).
Now observe, from (2.8), that A has the polar decomposition A= UH, where
(2.10) U = Z diag (sign (A;))Z*, H = Z diag (|A,]) Z*.

It follows that
(2.11) p=%(H—A).
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Thus 3(A+ H)=A+E, is a nearest Hermitian positive semi-definite matrix to A in
the 2-norm. This is a special case of a result obtained by Halmos [18] that applies to
general non-Hermitian linear operators A.

We summarise our findings in the following lemma.
LEMMA 2.4. Let Ae C"*" be Hermitian, with the polar decomposition A= UH. Then
(i) 8(A)=max {0, -1,(A)}=3|A-H]|,.

(ii) 32(A+ H) is a best Hermitian positive semi-definite approximation to A in the
2-norm.

(iii) For any Hermitian positive (semi-) definite X € C"*",
lA-H[,=2|A-X],.

(iv) H and A have a common set of eigenvectors.

The lemma shows that from the polar decomposition of a Hermitian matrix A we
can obtain not only a best Hermitian positive semi-definite approximation to A,
3(A+ H),butalso, if A is nonsingular, a good Hermitian positive definite approximation

to A, H itself. In § 6.3 we give an example of how the positive definite approximation
may be utilised.

2.4. Perturbation bounds for the polar factors. It is of interest both for theoretical
and for practical purposes (see § 4) to determine bounds for the changes induced in
the polar factors of a matrix by perturbations in the matrix. The following theorem
provides such bounds.

THEOREM 2.5. Let A€ C™ " be nonsingular, with the polar decomposition A= UH.
If e = ||AA||¢/||A||F satisfies k(A)e <1 then A+ AA has the polar decomposition

A+AA=(U+AU)(H+AH),
where

lAH|
IH | -
laU| -
1Ull

Proof. Let E=(1/¢)AA. Then A+ tE is nonsingular for 0=t = ¢. Thus A+ ¢E has
the polar decomposition

(2.12) A+tE=U(t)H(t), 0=t=e¢,

=V2 e+ 0(&?),

=(1+v2)kr(A)e + O(&?).

where H(t) is positive definite. We prove the theorem under the assumption that U(?)
and H(t) are twice continuously differentiable functions of ¢; a rather similar but
longer proof which does not require this assumption may be found in [22].

From (2.12),

H(t)*=(A+tE)*(A+tE),
which gives, on differentiating [16, p. 4] and setting ¢t =0,
HH(0)+ H(0)H = A*E + E*A.
Since A = UH, this can be written as
(2.13) HH(0)+ H(0)H = HF + F*H,
where

F=U*E.
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Let H have the spectral decomposition
H=ZAZ*, Z*Z =1
Performing a similarity transformation on (2.13) using Z gives

AH+HA=AF+F*A,
where

A=2*H(0)Z=(k), F=2*FZ=(},.
This equation has the solution

- _ Myt .

hy=—"% f;k’, 1=ij=n
At A

Using the Cauchy-Schwarz inequality,

AT+A7

2 =
|hljl (A +)‘)2

LGP EP = AP AP,
from which it follows that
| Al =2 F.
Thus
(2.14) IHOr =11 =V2I Fll- =VZI Fllr = V2| E|l -
A Taylor expansion gives
H+AH=H(g)=H(0)+eH(0)+ O(e%)= H+eH(0)+ O(¢?),

so that

[AH|r= | HO)|r+ O(e*) =V2 &| E|| r + O(&?).

The required bound is obtained by dividing throughout by |H||r = ||A||r and using
IEllF= Al
Now write (2.12) in the form U(t)=(A+tE)H(t)™" and differentiate, to obtain

U(t)=EH(t)"' = (A+tE)H() 'H(t)H(1)™".
Setting ¢t =0 gives
U(0)=EH'-AH'H(0)H '=(E-UH(0))H ",
and so, using (2.14),
I1UOr=A+VDIEIeIH |r=A+VDIE| | A7k
From the Taylor series for U(t),
IAUle=U(e) = UO)[[r=¢||U0)||r+ O(e?)
=(1+V2)e||E|| | A7 ||+ O(e?)
=(1+v2)ekp(A)+ O(?),
which gives the required bound, since |AU||¢/|U||r=||AU||r/vVn=||AU||r. O

3. Computing the polar decomposition.
3.1. Using the singular value decomposition. Our constructive derivation of the
polar decomposition in § 2 suggests the following computational procedure:
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(1) compute the singular value decomposition (2.1), forming only the first n
columns P, of P,

(2) form U and H according to (2.2) and (2.3).
This method requires (when A is real) approximately 7mn+11/3n> flops to compute
P,, 3 and Q, if we use the Golub-Reinsch SVD algorithm [16, p. 175], plus mn? flops
to form U and n*/2 flops to form H (see [16, p.32] for a discussion of the term
“flop”). Since the SVD algorithm is numerically stable and is readily available in

library routines such as LINPACK [11] this SVD approach has much to recommend
it.

We now develop an alternative method for computing the polar decomposition
which does not require the use of sophisticated library routines and which, in certain
circumstances (see §6.2), is computationally much less expensive than the SVD
technique. The method applies to nonsingular square matrices. If A€ C™*" with m>n
and rank (A) = n then we can first compute a QR factorisation [16, p. 146] A= QR
(where Q € C™*" has orthonormal columns and R is upper triangular and nonsingular)

and then apply the method to R. The polar decomposition of A is given in terms of
that of R by

A= QR = Q(UrHg)=(QUgr)Hgr = UH.

3.2. A Newton method. Consider the iteration (the real matrix version of which
is discussed in [3], [4], [5], [6], [28])

(3.1a) Xo=AeC™", nonsingular,
(3‘1b) Xk+1 =%(Xk+X;*)’ k =0a 1, 2’ Y

where X * denotes (X;')*. We claim that the sequence { X} converges quadratically
to the unitary polar factor in A’s polar decomposition. To prove this we make use of
the singular value decomposition

A= P3Q* (P*P=Q*Q=1,)

= UH,
where

(3.2) U=PQ*  H=Q3Q*
Define

(3.3) D, = P*X,Q.

Then from (3.1) we obtain

(3.4a) D,=%,

(3.4b) Dy, =3(Di+ Di¥).

Since D,€R"*" is diagonal with positive diagonal elements it follows by induction
that the sequence {D,} is defined and that

(3.5) D, =diag (d{?)eR™", d{¥>o0.
Accordingly, (3.4) represents n uncoupled scalar iterations
d(iO) =0,
1=i=n,

1 1
d§k+l)=5<d$k)+d—gk—)),
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which we recognise as Newton iterations for the square root of 1 with starting values
the singular values of A.

Simple manipulations yield the relations (cf. [19, p. 84], [21])

1
(3.6) d$k+1)—l=m(d§k)—l)2, 1=i=n,
V-1 raP -1y’ =\
(3.7) = == (Z==) =42, 1sisa
d& 01 \d®1 o1

Since A is nonsingular |7;| <1 for each i It follows that d{*’—1 as k- for each i
that is, Dy~ I, or equivalently, from (3.3) and (3.2)

lim X, = U.

k-0
To analyse the rate of convergence we write (3.6) in the form
Dy —1 =%(Dk - I)D;l(Dk -1
and pre- and post-multiply by P and Q*, respectively, to obtain, from (3.2) and (3.3)
X —U =%(Xk - U)XEI(Xk -U).
Furthermore, using (3.2), (3.3) and (3.7),

"(Xk+1+ U)“I(Xkﬂ - U)"2= "Q(Dk+1 + I)—IP*P(DkH - I)Q*uz
= |(Disr+ 1) (Disr = D

4% —1\?
=max |~ ) = max »n; .
1=i=n dﬁk)+1 g, M

Note from (3.3) and (3.5) that d{*, - - -, d'® are the singular values of X,. We have
proved the following.

THEOREM 3.1. Let A€ C"™" be nonsingular and consider iteration (3.1). Each iterate
X, is nonsingular,

lim X, =U

k->00

where U is the unitary factor in the polar decomposition of A, and

1,
(3.8) §||Xk1||2||Xk—U"§,
ai( X)) -1]\°
(3.9) | X1 = Ul =4 1 X+ U "2(5;‘;2‘.. (,-,.Ex',jﬂ ) ’
cri(A)—-l 2k+1
(3.10) | X1+ Ullz(lr;a; (A F1 ) .

3.3. Accelerating convergence. The quadratic convergence of iteration (3.1) ensures
rapid convergence in the final stages of the iteration: (3.8) implies that the number of
correct significant figures will approximately be doubled on each step. Initially,
however, the speed of convergence can be inordinately slow, as can be seen by
considering A = al, for large |a/|, in (3.1) and (3.10).

We are led to the idea of scaling the matrix A, or more generally, scaling the
current iterate at the start of each step, with the aim of hastening the onset of the
ultimate phase of rapid convergence.
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Consider the scaling X - %X\, ¥« > 0. From (3.1b) we have
1 1 __
Xier1 = Xier1(v) = E(Yka +'_Xk*)
Yk

(thus vy, can be regarded as an acceleration parameter), and from (3.9)

(3.11) ”Xk+1(')’k)— U"2§ I X1 (i) + U"20"('Yk)2’
where
) M_(Z@-_ll
6c(v)=max | Xo+1|

A natural choice for vy, is the value 'yﬁ,';,)t which minimises 6,(y). A straightforward
argument shows that

(3.12) Yo = (X o (X)) ™2,
(k) =K2(Xk)l/2“1
(313) ok(')'opt) Kz(Xk)1/2+1'

One can show that for X,.; = Xi+1(v55),

<_1. 1/2 ___L_..
KZ(Xk+1)=2(K2(Xk) +K2(Xk)‘/2)
(3.14)

= K2(Xk)1/2.

If this acceleration technique is used at each stage of iteration (3.1) then from (3.11),
(3.13) and (3.14) we have, by induction (cf. (3.10))
k(A) 1)

(3.15) [ Xi+1 = Ull2 = | Xiesa + UIIz(;f(‘;)‘ﬁW_ﬁ

The effectiveness of the acceleration procedure is illustrated by the example
A=diag (1,24 3% - - -, 25%); with the convergence criterion || X, — U||, = 107° the unac-
celerated iteration requires twenty-two iterations, while the accelerated version requires
only seven.

3.4. The practical algorithm. It is not feasible to compute 'yﬁ,'l‘,)t exactly at each
stage, since this would require computation of the extremal singular values of X, but
a good approximation to 'yf,',‘,)t can be computed at negligible cost.

Taking A= X,, X' in the inequalities [16, p. 15]
o1(A) = | AL =V]AlL Al = V] Al.,
and defining

a =V Xl Xilo,  Be=VIX NI X s

k Bk
'Yist) =\
Qe

we find, from (3.12), that

k k 1/4_(k
174 'YS)p)t§- ‘ygst) =n" 'Yf)p)t’
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Making suitable modifications to the derivation of (3.15) one can show that if the

acceleration parameter estimates y') are used in the first k stages of iteration (3.1)
then (cf. (3.15))

Vn k(A -1
(3-16) ||Xk+1 - U"2é "Xk+l + U||2( 2( .

Vi ky(A)YF T 1

This bound suggests that in the initial stages of iteration (3.1) the estimates ¥ will
be almost as effective as the exact values yf,’,‘,{.

We have found empirically that once the error || X, — U |, is sufficiently small—less
than 1072, say—it is advantageous to revert to the original, unaccelerated form of
iteration (3.1) so as to secure the desirable quadratic convergence.

Incorporating the acceleration parameter estimates y'¥) into iteration (3.1) we
have the following.

ALGoriTHM PoLAR. Given a nonsingular matrix A € C"*" this algorithm computes
the polar decomposition A= UH.
1) Xo=A; k:=—-1.
(2) Repeat
k=k+1
Y= X!
If “close to convergence” then
Y= 1
else e
a =V X Xillos  Bie= VI Vil Yiello
Vi =V Bi/ ar
Xiv1= %(Yka +l Yf)
Ye
Until converged.
(3) U= Xin
H,=U*A
H =3(H,+ H¥) (to ensure that the computed H is Hermitian).
Cost: (for real A) (s+1)n> flops, where s iterations are required for convergence.

In step (3) of the algorithm we could implicitly force H to be Hermitian by
computing only the upper triangular part of U*A; the given technique is preferred
for reasons discussed in § 4.

A suitable convergence test to apply in step (2) of Algorithm Polar is
(3-17) "Xk+1_Xk||1§8n”Xk"1,
where 8,,, depending on n, is a small multiple of the machine unit roundoff u [16, p. 33].

4. Backward error analysis. Consider the SVD approach to computing the polar
decomposition, described in § 3.1. Using the backward error analysis for the Golub-

Reirlsch SVD algorithm [16, p. 174] one can show that the computed polar factors of
A, U and H, satisfy

U=V+AU, |AU|,=¢,
H=K+AH, H*=H |AH|,=¢|K]s,
VK=A+AA, |AA|=¢|Als,

where V is unitary, K is Hermitian positive semi-definite (certainly positive definite
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if k,(A)<1/¢) and ¢ is a small multiple of the machine precision u. Thus U and A
are relatively close to the true polar factors of a matrix “near” to A. This result is the
best that can be expected of any method for computing the polar decomposition in
finite precision arithmetic.

We have been unable to prove a corresponding stability result for Algorithm Polar.

Instead we derive an a posteriori test for stability of the computed polar factors U
and H.

Under mild assumptions one can show that with the convergence test (3.17) U
satisfies

U=V+AU, V*V=I |AU|,=8,+0(52).
Algorithm Polar computes
=0*A, H=YH,+HY),

where, for simplicity, we ignore the rounding errors incurred in the computation of
H, and H (these lead to extra terms of order || A||, , which do not affect the conclusion
below). Defining

we have
VA = V(H,— G)= V(V*+AU*)A— VG = A+AA,
where
|AA],= 8,|All.+ | Gl + O(87).

This result is comparable with the result for the SVD method if (changing to the
one-norm)

(4.13) Op = g,
(4.1b) Gl = 8.llAll,
(4.1¢) Ais positive definite.

Thus, in particular, ||G||, must be sufficiently small, that is, H, must be sufficiently
close to being Hermitian. These conditions are eas11¥ tested; one can test (4.1c) by
attempting to compute a Choleski decomposition of H. Note that evaluation of (4 lb)
is computationally much less expensive than the alternative of comparing ||A— UH|,
with 8, All;.

Once the above tests have been performed, the accuracy of the computed polar
factors (that is, the forward error) can be estimated with the aid of Theorem 2.5. The

condition numbers «;(A), ko(A) can be formed at no extra cost during the first step
of Algorithm Polar.

5. Relation to matrix sign and square root iterations. In this section we show how

iteration (3.1) is related to iterations for the matrix sign function and the matrix square
root.

For a diagonalisable matrix A= ZDZ ™', D = diag (d;), Re d; # 0, the sign function
is given by [10], [30]

sign (A) = Z diag (sign (Re d;))Z~".
An iterative method for computing sign (A) is [10], [30]
(5.1) Sk+1=3(Sc+ Sx1), So=A.
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This iteration is essentially Newton’s method for a square root of I, with starting matrix
A (see [21]). We observe that iteration (3.1) implicitly performs this “sign iteration”
on the matrix X of singular values: see (3.4) and (3.5). In fact, iteration (3.1) may be
derived by applying the sign iteration to the Hermitian matrix

0 A*
w= (A 0 )
whose eigenvalues are plus and minus the singular values of A.

Our analysis of the convergence of iteration (3.1), and of the acceleration para-
meters {vy}, applies with suitable modifications to the sign iteration (5.1); cf. [23],
[24], [25], [30].

Consider now the iteration

(5.2) Yi+1=3(Ye+ Yi'B), Y,=B,

for a square root of Be C™*". In [21] this iteration is shown to be numerically unstable
in the sense that a small perturbation in the kth iterate can lead to perturbations in
succeeding iterates which grow unboundedly.

It can be shown that the sequence {X,} from iteration (3.1) is related to the
sequence { Y.} generated by (5.2) with B=A*A according to

X’]':AE Yk-

Thus iteration (3.1) implicitly carries out iteration (5.2) on B= A*A, without ever
forming A*A. The techniques of [21] can be used to show that iteration (3.1) does not
suffer from the numerical instability which impairs iteration (5.2).

6. Applications.

6.1. Factor analysis [17], [31]. In psychometrics the “Orthogonal Procrustes”
problem consists of finding an orthogonal matrix Q e R"*" which most nearly trans-
forms a given matrix BeR™" into a given matrix A € R™*", according to the criterion
that the sum of squares of the residual matrix A — BQ is minimised [17], [31] (see also
[91, [32]). Theorem 2.2 shows that a solution to this problem is Q = U where BTA = UH
is a polar decomposition. If A and B have full rank then B"A is nonsingular and U
may be computed by Algorithm Polar; if either A or B is rank-deficient then U may
be computed via a singular value decomposition of BTA, as described in § 3.1 (see
also [16, p. 426]).

6.2. Aerospace computations [2]-[7], [9], [28], [32]. In aerospace systems an
important role is played by the direction cosine matrix (DCM)—an orthogonal matrix
D eR*? which transforms vectors from one coordinate system to another. Errors
incurred in computation of the DCM result in a loss of orthogonality; an intuitively
appealing way in which to restore orthogonality is to replace the computed DCM »)
by the nearest orthogonal matrix, that is, by the orthogonal polar factor of D (see
Corollary 2.3).

A key feature of this application is that Dis relatively close to being orthogonal:
typically || D-U || = <.1[2],[3],[4]. From (3.8) we can expect iteration (3.1) to converge
within four iterations, for a tolerance ;= 107" in (3.17). Of course if U is not required
to full machine accuracy then there is no need to iterate to convergence—just one or
two iterations may yield a sufficiently accurate approximation to U.

For matrices that are as close to orthogonality as D above, computation of U
from Algorithm Polar will require at most 4n> flops, making this method particularly
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attractive, since the singular value decomposition approach described in § 3.1 still
requires approximately 12n° flops.

We now compare Algorithm Polar with two other iterative techniques which have
been proposed for computing the orthogonal polar factor of a nearly-orthogonal matrix.

Bjorck and Bowie [7] derive a family of iterative methods with orders of conver-
gence 2,3, - - - by employing a binomial expansion for the matrix square root in the
expression U=AH "= A(A*A)""? (see Lemma 2.1(i)). Their quadratically conver-
gent method is

(613) X0=A,
(6.1b) Q=1-X¥X,,

§ N "1 k=0,1,2,--.
(6.1¢c) Xicr1=Xi(I+3Q1),

One step of this iteration costs 3n°/2 flops (for AeR™"); in comparison iteration
(3.1) requires only n® flops per step. Also, while iteration (3.1) converges for any
nonsingular A, a practical condition for the convergence of iteration (6.1) is [7]

0<o(A)<V3, 1=i=n
The following iteration is proposed in [2]:
(6.2a) Xo=AeR™",
(6.2b) Xis1= X —3( X ATX, — A), k=0,1,2,---.

It is shown in [3], [5], [28] that iteration (6.2) is locally, linearly convergent to the
orthogonal polar factor of A. Evaluation of iteration (6.2) requires 2n> flops per step.
Because of its linear convergence and its computational cost, this iteration is decidedly
unattractive in comparison with iteration (3.1).

We appreciate that flop counts are not necessarily a fair means for comparing
competing algorithms. In fact, because iterations (3.1), (6.1) and (6.2) use only matrix
multiplications, inversions and additions, the flops involved in these iterations may be
significantly cheaper than those in the Golub-Reinsch SVD algorithm, particularly on
the new special computer architectures.

6.3. Optimisation. Newton’s method for the minimisation of F(x), F:R"->R,
requires at each stage computation of a search direction p, from

Gipr = — 8k,
where g, =VF(x,) is the gradient vector and

*F
G = (axi ax; (xk))

is the (symmetric) Hessian matrix. Difficulties occur when G is not positive definite
since py, if defined, need not be a descent direction [14, p. 107]. We suggest that in
this situation one replaces G, by its polar factor H. H is positive definite (assuming
Gy is nonsingular) and it has the properties listed in Lemmas 2.1 and 2.4. H may be
computed using Algorithm Polar at a cost of (s/2+1)n> flops, if advantage is taken
of the symmetry of the iterates (for example the LINPACK routine SSIDI [11] may
be used to compute the matrix inverses). The equation Hp, = —g; may be solved in
n*/6 flops by use of the Choleski decomposition.

In [14] several techniques are described for modifying G to give a related positive
definite matrix. One of these consists of computing a spectral decomposition
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Gi.=ZAZ* and replacing G, by G, = Z|A|Z*; from (2.10) we recognize Gy as the
polar factor H of G,. This approach yields the same matrix as our suggestion, at a
cost of about 6n> flops [16, p. 282].

6.4. Matrix square root [8], [10], [20], [21], [25]. A new method for computing
the symmetric positive definite square root A'/? of a symmetric positive definite matrix
A is obtained from the observation that if

A=LL", LT=UH
are Choleski and polar decompositions respectively, then (see Lemma 2.1(i)) H = A"2,

ALGORITHM RooOT. Given a symmetric positive definite matrix AeR"™" this
algorithm computes A2,

(1) Compute the Choleski decomposition A= LL" [16, p. 89].

(2) Compute the Hermitian polar factor H = A"? of L” using Algorithm Polar.
Cost: (s —¢)n® flops, where s iterations of Algorithm Polar are required for convergence
(taking into account the triangularity of L).

Note that since we are applying Algorithm Polar to L”, the quantity k,(A) in the
bound (3.16) is replaced by «,(LT) = k,(A)">

Algorithm Root is an attractive, numerically stable alternative (see § 5) to the
iterations in [10], [21], [25] for the case where A is symmetric positive definite.

7. Numerical examples. In this section we present some test results which illustrate
the performance of Algorithm Polar. The computations were performed using
MATLAB [29] in double precision on a VAX 11/780 computer; the unit roundoft
u=2"%=139x107"".

We used the convergence test (3.17) with 8, =4u for n=25 and 85,=8u. Once
the criterion || X; — X _,||; =.01 was satisfied X+, Xy+2, * * - Were computed using the
unaccelerated iteration (y; =1, j> k).

In the first test real matrices A of order n =35, 10, 25, 50 were generated according
to A= UX VT where 2 =diag(0;) is a matrix of singular values (o; =1, i%, i* or 2)
and U, V are random orthogonal matrices (different for each A), obtained from the
QR decomposition of a matrix with elements from the uniform distribution on [0, 1].
The results are summarised in Table 7.1. The quantity

IH, - HE|,
BERR, =
26n "Alll

is the backward error measure derived in § 4 (see (4.1b)) and must be of order one
for the algorithm to have performed in a stable manner. For every matrix in this test
the computed Hermitian polar factor H was positive definite.

TABLE 7.1
Number of iterations.
n=>5 10 25 50
o =i 6 7 8 8
g, =i 7 7 10 9
o =i* 8 8 10 10
o; =2 7 8 9 10
max BERR,, 38 .55 2.1 2.8
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The second test compares Algorithm Polar with iterations (6.1) and (6.2) (using
the same convergence test, (3.17), for each iteration). The parametrised matrix

a 0 -1
A(a)=l 0 1 0
-1 0 0

is orthogonal for @ = 0. The results are displayed in Table 7.2.

TABLE 7.2
Number of iterations.
a Algorithm Polar Iteration (6.1) Iteration (6.2)
.001 4 4 5
.01 4 4 8
1 5 5 13
1 6 10 76
2 7 diverged diverged

8. Conclusions. From the test results of § 7 and the theory of § 3 we draw several
conclusions about Algorithm Polar.

The acceleration parameter estimates are very effective. Convergence to a tolerance
8,=107" (see (3.17)) is usually obtained within ten iterations, the computational cost
of one iteration being approximately n’ flops.

In applications where A is nearly orthogonal (see § 6.2) Algorithm Polar is an
attractive alternative to iterations (6.1) and (6.2)—it is guaranteed to converge (within
four or five iterations, typically) and it will usually be computationally the least
expensive of the three methods.

We have not proved that Algorithm Polar is stable, that is, that the computed
polar factors are relatively close to the true polar factors of a matrix near to A. The
tests (4.1) provide an inexpensive means of monitoring the stability of Algorithm Polar.
Algorithm Polar has performed stably in all our numerical tests, producing, in every
case, computed polar factors which are just as acceptable as those furnished by the
SVD approach.
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