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EFFICIENT ALGORITHMS FOR COMPUTING THE
CONDITION NUMBER OF A TRIDIAGONAL MATRIX*

NICHOLAS J. HIGHAMY

Abstract. Let A be a tridiagonal matrix of order n. We show that it is possible to compute ||A™"|w,
and hence cond,, (A), in O(n) operations. Several algorithms which perform this task are given and their
numerical properties are investigated.

If A is also positive definite then ||[A™"||,, can be computed as the norm of the solution to a positive
definite tridiagonal linear system whose coefficient matrix is closely related to A. We show how this
computation can be carried out in parallel with the solution of a linear system Ax = b. In particular we
describe some simple modifications to the LINPACK routine SPTSL which enable this routine to compute
cond, (A), efficiently, in addition to solving Ax = b.

Key words. matrix condition number, tridiagonal matrix, positive definite matrix, LINPACK

1. Introduction. Tridiagonal matrices

a, ¢ 0
b, a, ¢,
(1.1) A= by a3 -. eR™"
Cpy
0 b, a,

arise in many areas of numerical analysis, such as spline analysis [5, p. 133], difference
methods for boundary value problems [9] and the numerical solution of linear second
order recurrence relations [2, pp. 14 fi.]. Since the nonzero elements of A occur only
within a band of width three, the cost of solving a tridiagonal system Ax=b using
Gaussian elimination with partial pivoting is O(n) flops, as opposed to the O(n?) flops
required when A is a full matrix [5, p. 166]. (See [15] for the definition of “flop™.)

Let A be a square nonsingular matrix and | - || a matrix norm. When computing
solutions of linear systems Ax = b one would usually like to know the condition number
of A,

cond (A) = [|A] |A7'],

or at least an estimate, since this quantity measures the sensitivity of the true solution
to perturbations in the data A and b, and features in various bounds for the norm of

the error in the computed solution [17, pp. 192 f1.]. For the I, matrix norm, given for
A= (ay) by

(1.2) Allw=max¥ |ay|,
! Jj

or the I, matrix norm, ||Al|; =||A7||«, |A| is readily obtained whereas computation of
|A7"|| is more difficult.

Let A be a tridiagonal matrix of order n. One way of computing ||A™"|, is first
to compute A~'—using, say, Gaussian elimination with partial pivoting—and then to
calculate the norm. However, this computation requires O(n?) flops, which, for large
n, dominates the cost of solving Ax =b. We show that |A™'||, may be computed in
O(n) flops; the methods used necessarily avoid explicit computation of the inverse.

* Received by the editors March 6, 1984. This work was carried out with the support of a SERC Research
Studentship.
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The following definition is required.

DEeFINITION. The tridiagonal matrix A in (1.1) is irreducible if b,, bs, - - -, b, and
¢, G, * * *, C,_y are all nonzero; otherwise it is reducible.

We remark that this definition is consistent with the more usual definition of
irreducibility which applies to a general square matrix [16, pp. 102, 104].

The algorithms to be derived in § 4 apply to irreducible tridiagonal matrices. In
§ 7 we suggest a simple way of dealing with a tridiagonal matrix which is reducible.

Sections 5 and 6 are concerned with the numerical properties of our algorithms
when implemented in floating-point arithmetic. The numerical stability of one of the
algorithms is demonstrated with the aid of a backward error analysis.

For the case where A is positive definite we derive, in § 8, an alternative and more
efficient way of computing |A™"|.. This method only requires the solution of one
positive definite tridiagonal linear system. We show how the LINPACK routine SPTSL,
which solves Ax =b for positive definite tridiagonal matrices A, can be modified so
that it also computes cond, (A), the latter computation proceeding in parallel with the
solution of Ax=b.

The methods to be derived apply exclusively to the [, and I, norms; we comment
briefly on the [, norm condition number. The quantity

¢ = (cond (A) cond, (A))"?
provides an order of magnitude estimate of cond, (A) since [19, p. 82]
cond, (A)= ¢ =n cond, (A),

and ¢ may be computed in O(n) flops when A is tridiagonal. A variety of alternative
techniques are available for the estimation of cond,(A) when A is symmetric
tridiagonal; among these are the well-known methods of inverse iteration, Sturm
sequences, and bisection [20].

2. The inverse of a bidiagonal matrix. We begin by developing some properties
of the inverse of a bidiagonal matrix B. These lead to an efficient algorithm for the
computation of || B!, and are also of use in § 8 since the LU factors of a tridiagonal
matrix are bidiagonal, when they exist.

Consider the nonsingular upper bidiagonal matrix

U, ¢ 0
U, ¢
2.1) U= u; . eR™", u;#0, 1=i=n.
Cn—1
0 U,

We find an explicit formula for the elements B; of U~'. The jth column, x;=
(Bij» Bajp 5 Bny) ™, of U™ " satisfies Ux; = e, where ¢; is the jth unit vector. It follows
that

Bij=0a l>.]’
1
Bjj _;;,
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Hence
0, i> ],
2.2) By=3 11 /—
~ II( c’), i<j,
Uir=i \ U,

where the empty product is defined to be 1. We observe from (2.2) that for all i and
j |B;| depends only on the moduli of the elements of U. In other words, the modulus

of each element of U™' is independent of the signs of the elements of U. It follows,
using (1.2), that

(23) |T|=[U| implies [T |lw=|U"|lx,

where, for A= (ay), |A| denotes the matrix (|a|).
There is one particular distribution of the signs of the elements which yields a

matrix for which the I, norm of the inverse is easily calculated. To show this, we
define for A= (a;) A’s comparison matrix M(A) = (m;) by

_ |aij|a l=.}’
24 i "{—laijl, i),

From (2.2) it is clear that M(U) ' =0, that is M(U) ™" has nonnegative elements (cf.
[12]). We now make use of the observation that if A™'=0 then [|A™ |o=[|A""€]lw,
where e=(1, 1, - - -, 1), Together with (2.3) and the fact that |M (A)|=|A| this yields

(2.5) 10 o= IM(U) M= [M(U)"e]|c-

These relations are also valid if U is lower bidiagonal.
Hence, in order to calculate | B™'||, for a bidiagonal matrix B it is only necessary
to solve one bidiagonal linear system and then to evaluate the I, norm of the solution

vector. We have the following algorithm, an analogue of which holds for a lower
bidiagonal matrix.

ALGorITHM 2.1. Given the nonsingular upper bidiagonal matrix U in (2.1) this
algorithm computes y=||U™"| .

zo=1/|u,|; v=1z,
For i=n—-1to 1 step—1
zi= (1+]|c|* ziy)/ ||
v:=max (v, z;).
Cost. 3n flops. (We count max (-) as a flop.)

Thus Algorithm 2.1 requires O(n) flops, a significant reduction on the O(n”) flops
which would be required to compute U™" and then calculate the norm.

3. The inverse of a tridiagonal matrix. Let A be a nonsingular tridiagonal matrix
of order n. A can be represented in terms of O(n) quantities: its nonzero elements.
The next theorem shows that, as might be expected, A is also representable in terms
of O(n) quantities—even though A™' has in general O(n?) nonzero elements.
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THEOREM 1. Let the tridiagonal matrix A in (1.1) be nonsingular.
(1) If A is irreducible and A™" = (a;;) then there are vectors x, y, p and q such that

xiyj’ l§],
(3.1) Q;; ={ Lo
" lpg, iz
(2) If A is reducible then
(a) if =0, so that

_
A, 0 ]

3.2 A= S

(3:2) LB, A

where A, e R and A,e R"™"™D qgre tridiagonal, then
(AT 0

. A= ]
(3 3) i X A2—1 ’

where X e R™"™9% is a rank-one matrix if b, #0, or a zero matrix if b,., =0, and the
theorem applies recursively to A, and A,;
(b) if b1 =0, part (a) applies to A”.

Proof. (1). See [14, Thm. 2].

(2). If ¢; =0then A is clearly of the form (3.2) and 0# det (A) =det (A,) det (A,),
so A, and A, are nonsingular. It is easily verified that X = —A;'B,A7". B, has at most
one nonzero element, b,,,, in its (1, i) position, so if b, =0, X =0; otherwise B, is
of rank one and hence X is of rank one. 0O

We remark that for the case A= A" part (1) of Theorem 1 is proved by Bukhberger
and Emel’yanenko [1] and stated without proof by Graybill [10].

The vectors x and y (and similarly p and q) in (3.1) are easily seen to be unique
up to a nonzero scale factor; any nonzero element of x or y can be assigned an arbitrary
nonzero value (clearly x, # 0 and y, #0).

There is, in fact, some redundancy in the representation (3.1) of A™". For the four
vectors x, y, p and q contain 4n—2 “free” values, while A depends on only 3n—2
numbers. This redundancy arises from the way in which part (1) of Theorem 1 is
proved, namely by considering the upper triangular and lower triangular parts of A™"
separately. The following theorem provides a more concise representation of A™", in
terms of 3n —2 numbers.

THEOREM 2. Let the tridiagonal matrix A in (1.1) be nonsingular and irreducible.
Then there exist vectors x and y such that A~ = (ay) is given by

d. i<
(3.4) a,.j={"'yf »o =D
yixjdj, lg‘k

where
Jj—1 c
dj=]_[(—), 1=j=n
r=1 br+l

Proof. Let D =diag (d;). D exists and is nonsingular since A is irreducible. It is
easily verified that T = DA is tridiagonal, symmetric and irreducible. By applying
Theorem 1 to T, and using the symmetry of 7, we find that there are vectors x and y
such that T™'=(B;) is given by

xiyj’ ié.]a
Bij = _
yixj, 1=].

From the relation A™'= T7'D the result follows. 0O
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Remark. Theorem 2, when combined with the method for computing x and y
described in the next section, is essentially the same as [21, Thm. 2].

4. Algorithms for the irreducible case. Let the tridiagonal matrix A in (1.1) be
nonsingular and irreducible. We now show, using the results of the previous section,
that | A™'||, can be computed in O(n) flops.

Theorem 1 asserts the existence of vectors x, y, p and g such that the elements
a; of A™' are given by (3.1). Formation of each element a; of A™" explicitly, using
(3.1), requires O(n*) multiplications. However, in order to evaluate ||A™"||, we need
only the row sums of A™'. The ith row sum of A" is, from (3.1),

IP:"I1|+ |Piq2|+ st |Pi4i—1'+ |xiyi|+ |xiyi+l|+ st |xiJ’n|,
which may be expediently rewritten as

lPi‘("hl"’l‘h""' : '+|‘Ii—1|)+Ixil(lJ’i|+|J’i+1|+’ : '+|)’n|)-

Clearly, by accumulating the sums t;=|q;|+ -+ -+|q;| and s;=|y)|+- - - +|y,| the row
sums of A™' can be evaluated in O(n) flops, given the vectors x, y, p and q. We now
show how these vectors can be computed.

Following Ikebe [14] we equate the last columns in AA™' =1 and the first rows
in A'A = I, to obtain, using (3.1), A(y,x)=e, and (x,y7)A=e], that is,

(4.1) Ax=y, e,
(4.2) ATy=x"e,.

The one degree of freedom in the vectors x and y may be expended by setting x,=1;
then equations (4.1) and (4.2) may be solved for x,, - - *, X,,, ¥, * * * , ¥; using the method
of [14].

The vectors p and q are obtained in a similar way, using A” in place of A. Thus
we obtain the following algorithm.

ALGoORITHM 4.1. Given the nonsingular n X n irreducible tridiagonal matrix A in
(1.1) this algorithm computes y=[|A™"| .

1) x3=1;x=—a,/q
For i=3ton
X;i= = (@ * X+ b * X 5)/ 6y
Yn=1/(b,*x,_,+a,*Xx,)
Yn1"= = Qn* Y/ €y
For i=n—-2to 1 step —1
¥i'=—(@ir1* Yis1 + b2 * yisa)/ c
(2) Repeat step (1) with x;, y, b; and ¢; replaced by g;, p;, ¢;_; and b, respectively.
(3) su=1|yl
For i=n—1to 1step—1
8= s+ il
=1
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For i=2ton
t,= ti_1+|qi|
y:=max (sy, | pa|*1,)
For i=2to n—1
y:=max (v, | pil* tioy + x| 5).

Cost. 17n flops.

An algorithm for the computation of |A™"|. which is in general more efficient
than Algorithm 4.1 can be derived from Theorem 2. Equating the last columns, and
the first columns, in AA™" = I we find, using (3.4), that A(y,d,)x = e, and A(x,d,)y = e,.
These equations may be rewritten, using d, =1, as

(4.3) Ax = (yud,) ey,
(4.9) Ay=xi"e,.

Choosing x, =1, we can solve for x as in the previous algorithm and then determine
y from (4.4), making use of the knowledge that y, # 0.

Because the factor d; is common to each element in the jth column of A™' (see
(3.4)) it is more convenient to evaluate the I, norm of A™" than to evaluate the I, norm.

ALGORITHM 4.2. Given the nonsingular n X n irreducible tridiagonal matrix A in
(1.1) this algorithm computes y=||A7"|;.

1) xy =1l x=-a/c¢
For i=3ton
X;i=—(a_1* X+ bi_ *x;_5)/ ¢i—3-
(2) za=1; 2,1 =—a,/b,
For i=n—2to 1step—1
2= —(@i1* Zig1 + Civ1 * Zina) / biny
0:=a;*z,+c *2,.
3) so=|zl
For i=n—1to 1step—1
8= 81+ ]2
=1

For i=2ton-—1

ti = t,~_1+|x,~|
di=1;y=s
For j==2ton

dji=di_1*¢_1/b;
y=max (% (|z]* i, +[x|*5) *|d})
y=1/|6l.
Cost. 14n flops.
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We now derive an algorithm for computing | A™!||.. which makes use of the LU
factorisation of A, assuming this exists. The algorithm is based on the representation
(3.1) and is obtained by choosing x; =1 and rewriting (4.2) and (4.1) as

(4.5) Aly=e,
(4.6) Az=e, (z=ynx).

ALGORITHM 4.3. Given a nonsingular nXn irreducible tridiagonal matrix A
possessing a LU factorisation A= LU, this algorithm computes |A™"| .

(1) Compute the LU factorisation of A.

(2) Use the LU factorisation to solve for the vectors y and z in (4.5) and (4.6).
Similarly, solve for p and r, where Ap=e,, ATr=e¢, (r=p,q).

(3) Execute step (3) of Algorithm 4.1 with p, q¢ and x replaced by p,'p, r and
ya'z respectively.

Cost. 18n flops.

We note that if Algorithms 4.1, 4.2 and 4.3 are adapted to take advantage of
symmetry, then in each case the operation count is reduced to about 11n flops.

5. Computational considerations. Let the tridiagonal matrix A in (1.1) be nonsing-
ular and irreducible, and consider the representation (3.1) of A™' = («;) (the following
applies to p and g in place of y and x if A is replaced by A”).

Let x; =1. Using the standard determinantal formula for the elements of the
inverse [17, p. 402] one finds that

_ 66ttt Chy

In=a1, = det (A)

From (3.1) the transpose of y is the first row of A™" and x is the last column of A™"
scaled by y,'. Clearly, the vectors x, y, p and q in (3.1) can be very badly scaled, in
the sense that the nonzero elements of any particular vector can vary widely in order
of magnitude. This is true whatever the choice of x,, and is not related to the conditioning
of A.

Examples. (1) For the n Xn tridiagonal matrix A defined by a;,=4, b;=c¢;_; =1,
we have (x,=1)|x,|=8""", |y)|=67" and |y,|~ 6", where 6 =2++3; cond (A)=3.

(2)

1
Az[l f] 0<exl, [JAo=2.

Here (x,=1) x,=—1/¢, yy=1/(1—¢) and y,=—¢/(1—¢).

We make two observations. First, there is a strong possibility of overflow and
harmful underflow when Algorithm 4.1 is implemented on a computer. Second, it is
not clear that in the presence of rounding errors the norm computed by Algorithm 4.1
will be of the correct order of magnitude (one does not usually want the condition
number to many significant digits). For as Examples (1) and (2) illustrate we may have
a; =x;y;= O(1) with |x;|» 1 and |y;|« 1; this is an ill-conditioned representation of a;
in the sense that the product is very sensitive to absolute perturbations in y;.

Similar comments apply to Algorithm 4.2 and the representation (3.4).

Note that the elements of the vectors y, z, p and r in Algorithm 4.3 are elements
of A™!, so they will not overflow on a computer as long as |A™!|| is not too large.
Step (3) of Algorithm 4.3 results in the divisions by the potentially very small quantities
p. and y, being carried out at the last possible stage.
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6. Error analysis. The observations of the last section lead us to investigate the
accuracy of the norms computed by Algorithms 4.1, 42 and 4.3 in floating-point
arithmetic and to consider how overflows and underflows can be avoided when the
algorithms are implemented.

Consider Algorithm 4.3 implemented on a computer with ¢-digit base B8 floating-
point arithmetic, and assume that the algorithm runs to completion. Make the usual
assumption [20, p. 113] that

f1(x op y)=(x op y)(1+38), op=*/,+, -,

for some |8| = ¢, where £ =38""" is the relative machine precision.

A backward error analysis in the style of de Boor and Pinkus [6] reveals that the
computed LU factors from step (1) of Algorithm 4.3 satisfy (using a bar denote a
computed quantity)

(6.1) LU=A+E,

where E satisfies

(6.2) |E|= pielL]|U];

i, i=1,2,- -+, denotes a constant of order one. (The absence of a term involving n

in this and subsequent bounds is due to the fact that A is tridiagonal.)

The standard backward error analysis for solution of a triangular system [17, p.
408] can be used to show that the computed vector y from step (2) of Algorithm 4.3
satisfies

(U+8U)(L+8L) 5=e,

where

(6.3) 50| = p,6|0] and |5L]= psel L.
It follows that y is the true solution of

(6.4) Wii=e,

where

W=A+F=(L+8L)(U+80).
Combining (6.1), (6.2) and (6.3) we have, writing u = max (u, iz, 13),
|F|=(@ue +ue)|L]| U],

from which, using (6.1) and (6.2), it can be deduced that W is tridiagonal and
irreducible.

Let Z satisfy
(6.5) Wz =e,.

By comparing the back substitutions which determine 7 and the computed vector Z
from step (2) of Algorithm 4.3, one finds that

(6.6) z=(1+p)s,  |p|=pane

Thus we have shown that the vectors y and Z computed by Algorithm 4.3 in
floating-point arithmetic are, respectively, 7, and an approximation to Z with small
componentwise relative error, where j and Z are the true vectors in (4.5) and (4.6)
corresponding to using the matrix W= A+ F in place of A.
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Now assume that

(6.7) [Flleo= ellAllo
and
(6.8) cond, (A)e« 1.
Then, using the result [17, p. 189]
[A"'-(A+E)'|_ ¢ IE|
- = s ¢=cond (A)— <1,
A~ 1-¢ Al

we have, approximately,
(6.9) A = W, =conde, (A)e|| A7 -

From (6.4), (6.5) and (6.6) it follows that the “‘upper triangular parts” R; of the row
sums computed in step (3) of Algorithm 4.3 (that is, R; approximates |a;|+- - + + |,
where A™' = (a;)) satisfy

R=(z |/3i,~|)<1+0(ne)),

where W' =(B,). Hence

) |%’|‘Ri| =

jzi

; (lers| = 1B

= Z la; — Byj| = cond (A) e[| A wo,
Jj=i
using (6.9). A similar result holds for the remaining parts of the computed row sums.

Thus we conclude that if (6.7) and (6.8) are satisfied, then the number ¥ computed
by Algorithm 4.3 in floating-point arithmetic satisfies, approximately,

17— 114" ]
(6.10) —
1A e

This is just about the best that can be expected, since it can be shown that the condition
number for the problem of computing | A™"|| is cond,, (A).

Algorithm 4.3 breaks down in step (3) if the computed quantity y, is zero. It is
easily checked that this can happen only if y,, or some intermediate quantity, underflows
to zero (cancellation cannot take place). Unfortunately, underflow can occur even for
quite well-behaved matrices, as indicated by the first example in § 5. The possibility
of underflow (and overflow) may be avoided by representing all the numbers which
arise in Algorithm 4.3 by a pair (d, e)=d X b®, where 1=d <b (say), e is an integer,
and b is some base, preferably a power of the machine base B. (This idea can also be

applied to Algorithms 4.1 and 4.2.) Then, for example, the computation z=xx*y
becomes

=2cond, (A)e.

z= (dx* dy) X bex+e = dz X bez,

where d, is kept in the desired range through a suitable scaling by a power of b together
with an adjustment of the exponent e,. This technique, with b = 10, is used in LINPACK
in all the code which evaluates determinants.

We have been unable to prove a result such as (6.10) for Algorithms 4.1 and 4.2.
When Algorithm 4.2 for example is executed in floating-point arithmetic, steps (1) and
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(2) can be interpreted as being exact for perturbed matrices A+ E; and A+ E, with
|Ei|= melA|, i=1,2, but it is difficult to assess the effect of E; # E,, which will be true
in general, on the accuracy of the row sums computed in step (3). Note that a forward
error analysis is not helpful because the coefficient matrices of the triangular systems
which are solved in Algorithms 4.1 and 4.2 can be arbitrarily ill-conditioned—their
diagonal elements are b;’s or ¢;’s.

However, our experience in using Algorithms 4.1 and 4.2 is that they both produce
extremely accurate results, whatever the condition number of A. In fact, we have not
come across an instance in which the norms computed by Algorithms 4.1, 4.2 and 4.3
differed from each other in more than the last two significant digits—even when the
computed vectors had elements covering the whole spectrum of machine numbers:
from underflow level to overflow level. The machine used here was a Commodore
4032 microcomputer with 8 =2, t=32 and exponent range —128=e =127.

We feel that this unexpectedly high accuracy of the computed norms is due to
the phenomenon observed by Wilkinson [19, pp. 103 fi.], [20, pp. 249 fI.] (see also
[17, p. 150]), whereby the accuracy of the computed solution to a triangular system
is commonly independent of the condition number of the coefficient matrix.

Condition (6.7) relates to the stability of Gaussian elimination without pivoting
and will certainly be satisfied if A is diagonally dominant; this is often the case in
recurrence relation applications [3]. To avoid both large element growth and the
possibility of Gaussian elimination breaking down one could use partial pivoting in
Algorithm 4.3, obtaining PA= LU, with a guaranteed bound of 2 for the “growth
factor” [17, p. 158]. Note, however, that pivoting changes the form of the triangular
factors (L is now lower triangular with at most two nonzero elements per column and
U is upper triangular with u; =0 for j> i+2), resulting in a possible extra n flops for
both the factorisation stage and each substitution; and our proof of the result (6.10)
does not apply in this case.

Note that everything we have said concerning the properties and computation of
the vectors in (3.1) and (3.4) applies perforce to the methods for inverting irreducible
tridiagonal matrices which have been proposed in [1], [14], [21].

7. Dealing with reducibility. For particular classes of matrix it is possible to verify
irreducibility in advance. Difference methods for boundary value problems can lead
to tridiagonal matrices with off-diagonal elements of the form a + O(h), where a >0
and h is the mesh length [16, pp. 96 fi.]; here, irreducibility is assured for sufficiently
small h. The tridiagonal matrices which arise in the numerical solution of linear second
order recurrence relations can be assumed, without loss of generality, to be irreducible
[3]. In some situations, however, one will be unable to guarantee irreducibility. In this
section we describe how to deal with the case where A is reducible.

Let A be an n Xn nonsingular reducible tridiagonal matrix. If A is symmetric
then A has the block form diag (A,, A,, - - -, A;), where each matrix A, is nonsingular
and either diagonal, or irreducible and tridiagonal. Hence [|A™"|lo=max; | A7 |lw»
which can be computed in O(n) flops by applying Algorithm 4.3 (say) to each of the
matrices A, as appropriate.

If A is nonsymmetric then we suggest the following approach. Let E be the
tridiagonal matrix whose diagonal elements are zero, and whose off-diagonal elements
are zero or §/2 according as the corresponding elements of A are nonzero or zero;

here, & is a small nonzero number. The matrix G = A+ E is irreducible and tridiagonal.
If

(7.1) 8|A7 o=0.1
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then [18, p. 293]
A o= G |0 =SA™" |

Thus, by choosing & small enough a satisfactory approximation to |A™'||. can be
computed in O(n) flops, by applying one of the algorithms for the irreducible case to
G. A suitable choice for 8 is a small multiple of the relative machine precision &. For
such a §, (7.1) will be satisfied unless A is very nearly singular to working precision
(assuming ||Allx=1). We note that the poor scaling discussed in § 5 is quite likely to
be associated with G if A has many zero elements on its subdiagonal and superdiagonal.

An alternative method for dealing with the case where A is nonsymmetric and
reducible, leading to computation of | A™"|| rather than an approximation, is described
in [13]. The method is motivated by part (2) of Theorem 1 and regards A as a block
tridiagonal matrix, where the diagonal blocks are tridiagonal and irreducible. The
computational cost is again O(n) flops but the method is rather more difficult to
implement than the above technique.

8. Positive definiteness.

8.1. Let
a, b, 0
b, a, b
(8.1) A= by ay .. eR™"
. b,
0 b, a,

be a positive definite tridiagonal matrix with, necessarily,
(8.2) a;>0, 1=i=n

In this section we derive a method for computing ||A™'||, which is more efficient than
the “symmetric” versions of Algorithms 4.1, 4.2 and 4.3 and which does not require
A to be irreducible.

We begin by showing that there is a matrix D = diag (d;), d; = =1, such that

(8.3) M(A)= DAD,

where M(A) is the comparison matrix defined in (2.4). Writing W = DAD, we have
w; = a;, 1=i=n

and
Wi =dbigdi, 1=isn—1.

Let d;=1 and d,,, = —sgn (db;.,), 1=i=n—1, where

x=0,

L
S

W is evidently tridiagonal and symmetric, w; = a; =|a;| (using (8.2)), |W; ;1| =|bisi|
and w;;;, =0. Hence W= M(A), which establishes (8.3).
A is positive definite and hence has a Choleski factorisation

(8.4) A=LL",
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where
m, lz
L = m3 l3
0 m, I,

with [;> 0 for all i. We claim that
(8.5) M(A)=M(L)M(L)".

This is proved by noting, first, that (8.4) implies a;=m?+ 17 and b,,, = Im,,,. Then,
writing H= M(L)M(L)",
hi = (=|m)(=|m;)+ I} = a; = |a)|
and
hijir= Ii(_|mi+l|) = _lb.'+1|‘
Hence H = M(A) as required.

Note that M(A) is positive definite, by (8.5). In fact, the positive definiteness of
A is independent of the signs of the off-diagonal elements {b;}.
From § 2, M(L) '=0, therefore

(8.6) M(A) '=M(L)""M(L)'=o0.
The final result we require is
(8.7) M(A) ' =|A7Y,

which is a consequence of (8.3).
It follows from (8.6) and (8.7) that if A is a positive definite tridiagonal matrix,

1A o= AT llo= 1M (A) " [lo = M (A) e[|

As in the bidiagonal matrix case, computation of the I, norm of the inverse reduces
to solution of a linear system involving the comparison matrix. Thus we have

ALGoriTHM 8.1. Given an nXxn positive definite tridiagonal matrix A this
algorithm computes y= || A7 .

Solve M(A)z = e, evaluating y:=max,=;=, z; = || 2| c-

Cost. 6n flops.

The operation count given for Algorithm 8.1 assumes the use of the LDL”
factorisation of M(A). The closely related Choleski factorisation is unattractive in this
context because it requires n square roots, and an extra n divisions in the substitution
stage. The LDL™ factors of the matrix A in (8.1),

1 0
L= l3 1 s D=diag (di)’

0 I, 1
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are generated by
dy=a,,

b; ,
= — .= a: — L.b: =<
=a d;=a;— b, 2=i=n

8.2. The nesting technique. LINPACK [7] has a routine SPTSL which solves Ax =b
for positive definite tridiagonal matrices A. We shall show that it is possible to “‘nest”
Algorithm 8.1 inside the routine SPTSL in such a way that the composite routine
computes cond,, (A) in addition to solving Ax = b, and is computationally more efficient
than separate applications of SPTSL and Algorithm 8.1. Because SPTSL uses a
nonstandard factorisation method which is more complicated than the LDL” factorisa-
tion, we first derive the nesting technique for the LDL™ method.

An important feature which Algorithm 8.1 does not exploit is that the LDL”
factorisations of A and M(A) are related: by comparison with (8.4) and (8.5), if
A=LDL" then M(A)= M(L)DM(L)". Therefore, solution of M(A)z=e can be
accomplished using the LDL” factorisation of A, which has to be computed anyway
in the course of solving Ax = b; there is no need to explicitly factorise M(A). The
next algorithm makes use of this observation, thereby saving 2n flops.

ALGORITHM 8.2. Given the n X n positive definite tridiagonal matrix A in (8.1)
and the vector f, this algorithm computes both the solution to the linear system Ax = f
and y=||A™"|«. The solution overwrites f.

The statements marked with an asterisk are those which have been added to the
basic routine for Ax = f in order to compute ||A™"||.

(1) dii=a,
(*) z=1
For i=2ton
l,=>b;/d;_,
di=a,—I*b;
fi=fi— L fi
(%) zi=1+|l|*z_,.

(2 Jo=tal dn
(*) z,=z,/dn; yi=2,
For i'=n—1to 1 step —1
Ji=fil di= L * fia
(%) 2=z di+ |l % iy
(*) y = max (v, z).
Cost. 9n flops.

In Algorithm 8.2 computation of | A™"||. adds only 4n flops to the cost of solving
Ax =f. Furthermore, computation of |A™"||. does not introduce any loops over and
above those required for solution of the linear system. This is an important feature,
since typically the loop overheads may account for a significant portion of the machine
execution time of Algorithm 8.2 [8]. We conclude that on most computers the execution
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time for a routine based on Algorithm 8.2 should be less than 80% greater than that
of an equivalent routine which only solves Ax = f.

We now show how Algorithm 8.1 can be nested within the LINPACK routine
SPTSL. First, we describe briefly the nonstandard reduction technique which this
routine uses; for full details see [7]. The reduction consists of a form of Gaussian
elimination without pivoting in which subdiagonal elements are eliminated using row
operations working from the top, and, simultaneously, superdiagonal elements are
eliminated using row operations working from the bottom. Thus zeros are introduced
to the elements in positions (2,1), (n—1, n), (3,2), (n—2,n—1),- - -, in this order,
until the two eliminations meet in the middle. The reduced system is such that the
unknowns can be determined by a simple substitution process, which works from the
middle to the top and bottom of the matrix simultaneously.

The algorithm used in SPTSL is known as the “burn at both ends” (BABE)
algorithm. The motivation for the BABE algorithm is that each of its two loops (one
for the reduction phase and one for the substitution phase) is executed only half as
many times as the corresponding loop in a standard algorithm (since two eliminations
or two substitutions are performed on each run through a loop), so that the loop
overhead is reduced by a factor of two (cf. [8]). The LINPACK manual claims that
the BABE algorithm can solve positive definite tridiagonal linear systems up to 25%
faster than conventional algorithms.

It can be shown (see [13] for example) that the BABE algorithm corresponds to
the factorisation

(8.8) A=LUB,

where L is unit lower bidiagonal, U is unit upper bidiagonal, and the nonzero elements
of B lie on the diagonal and in positions (1,2), (2,3), -, (k, k+1), (k+2,k+1),
(k+3,k+2),---,(n,n—1), where k=[n/2] ([x] denotes the integer part of x).

The following lemma is the basis for the application of the nesting technique to
the BABE algorithm.

LeEMMA. If the positive definite tridiagonal matrix A is factored according to (8.8),
then

M(A)=M(LYM(U)M(B).

Proof. The proof proceeds by comparing, elementwise, the reduction phases of
the BABE algorithm applied to A and to M(A). For further details see [13]. O
The lemma shows that the equation

(8.9) M(A)z=e

can be solved using information gleaned during the solution of Ax =b by the BABE
algorithm, namely, the elements of L, U and B.

The modifications to the LINPACK routine SPTSL which are required in order
for this routine to compute cond, (A) (the same as cond (A) since A is symmetric)
in addition to solving Ax = b consist simply of extra statements, some for the evaluation
of |All; and some analogous to those marked with an asterisk in Algorithm 8.2. Two
extra parameters are required by the modified routine: a work vector Z of length n
and a REAL variable CONINYV in which to return the reciprocal of the condition
number. A vector w satisfying

| Aw[l, = CONINV||A|; |wl,
is easily obtained from z in (8.9) by using (8.3).
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All the LINPACK code which performs condition estimation incorporates a scaling
technique, designed to prevent overflow during computation of the condition estimates
[4], [7]. Similar precautions are clearly desirable in the computation of the solution
of (8.9). However, the LINPACK scaling technique requires O(n?) flops, which is
prohibitively expensive in the context of SPTSL; for this special case we suggest a
simple modification which brings the cost down to O(n) flops. The modified scaling
technique takes advantage of the bidiagonal nature of the matrix factors in (8.8).

ALGORITHM ScALE. Let L=(l;) be a nonsingular lower bidiagonal matrix. This
algorithm computes a vector z, with ||z||o=1, and a number 6, such that Lz = 6b.

(1) (h,0=0; zo:=0)
0:=1
For i=1ton
(*) a=0%b—1; *%z_,
If || > |I| then
B=1;/a
(*) 0:=0xp
w; =8
z;=1
else
w;=1
L zi=afl,
(2) m=1
Fori=n—-1to 1step—1
(*) If wiiy#1 then wi=w*xw;,
(%) Z; =z % .

Cost. 2n flops, plus at most 4n flops for the scalings, in the statements marked
with an asterisk.

The LINPACK scaling technique would, on introducing a scaling at the ith stage,
immediately rescale all the previously computed values zy, - - -, z;_,. Instead Algorithm
Scale stores the scale factors in the vector w (thus an extra n storage locations are
required), and is thereby able to rescale at the final stage in O(n) flops.

A modification to the LINPACK scaling technique which attempts to reduce the
frequency of the scalings is described in [11]; this modification could profitably be
adopted in Algorithm Scale. In a small number of tests that we performed using a
version of Algorithm Scale which incorporates the technique in [11], the cost of the
scaling in Algorithm Scale was never greater than 2n flops.

Finally, we note that the basic modifications to SPTSL suggested above increase
the computational cost of the routine from 5n flops to 11n flops (2n of which arise
from the evaluation of ||A||;). Incorporation of the scaling method used in Algorithm
Scale could at worst add another 8n flops to the operation count.



CONDITION NUMBER OF A TRIDIAGONAL MATRIX 165

9. Concluding remarks. We conclude by briefly discussing the choice of algorithm
for computing |A™'|. from among those presented. If the tridiagonal matrix A is
positive definite or bidiagonal, then Algorithms 8.1 and 2.1 respectively are recommen-
ded. Both these algorithms are very satisfactory from the point of view of numerical
stability. We note that the triangular systems which are solved are of the form discussed
by Wilkinson [20, p. 250].

For general irreducible tridiagonal matrices A the choice is between Algorithms
4.1, 4.2 and 4.3, for which the differences in computational cost are relatively small.
In the context of solving a linear system Ax =b, a factorisation PA= LU is likely to
be already available, in which case Algorithm 4.3 (minus the first step and using
PA=LU in the second step) is attractive. In general, Algorithm 4.2 is both more
efficient and easier to ““code-up” than Algorithms 4.1 and 4.3. As regards the very real
dangers of overflow and underflow when these algorithms are implemented, and their
numerical stability, see §§ 5 and 6.
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