Algorithms for Cholesky and QR Factorizations, and the Semidefinite Generalized Eigenvalue Problem

Lucas, Craig

2004

MIMS EPrint: 2007.5
ALGORITHMS FOR CHOLESKY
AND QR FACTORIZATIONS,
AND THE SEMIDEFINITE
GENERALIZED EIGENVALUE
PROBLEM

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy
in the Faculty of Science and Engineering

2004

Craig Lucas
Department of Mathematics
Contents

Abstract 11

Declaration 13

Copyright 14

Acknowledgments 15

1 Introduction 16

1.1 Basic Definitions 16
 1.1.1 Definitions in Linear Algebra 16
 1.1.2 Matrix Types 17
 1.1.3 The Determinant 19
 1.1.4 Vector Norms 19
 1.1.5 Matrix Norms 20
 1.1.6 Floating Point Numbers 22

1.2 Eigenvalue Problems 23
 1.2.1 The Standard Eigenvalue Problem 23
 1.2.2 The Hermitian Eigenvalue Problem 24
 1.2.3 Deflation 25
 1.2.4 Similarity 25

2
1.2.5 Definiteness ... 26
1.2.6 The Generalized Eigenvalue Problem 27
1.2.7 The Symmetric Semidefinite Generalized
 Eigenvalue Problem 28
1.2.8 Kronecker Canonical Forms for Matrix Pencils 29
1.3 Matrix Transformations .. 30
 1.3.1 Congruence Transformations 30
 1.3.2 Unitary Transformations 31
1.4 The QR Factorization 32
 1.4.1 Computing the QR Factorization 32
 1.4.2 The Blocked QR Factorization 38
1.5 Rank Revealing Decompositions 40
 1.5.1 The Pivoted QR Factorization 41
 1.5.2 The Complete Orthogonal Decomposition 42
 1.5.3 The Spectral Decomposition 43
 1.5.4 The Singular Value Decomposition 45
 1.5.5 The $LDLT$ Factorization 45
 1.5.6 The Cholesky Factorization 47
1.6 The BLAS and LAPACK .. 47
 1.6.1 Blocked Algorithms and the BLAS 47
 1.6.2 LAPACK .. 50
 1.6.3 The Choice of Block Size in our Codes 50
1.7 The Computing Environment 51
1.8 Performance Profiles ... 52

2 The Pivoted Cholesky Factorization 53
 2.1 Introduction ... 53
2.2 A Level 2 Gaxpy Algorithm ... 55
2.3 A Level 2 Pivoted Gaxpy Algorithm 56
2.4 LAPACK’s Level 3 Algorithm ... 59
2.5 A Level 3 Pivoted Algorithm .. 60
2.6 Numerical Experiments .. 62
 2.6.1 Speed Tests .. 63
 2.6.2 Backward Error Tests and Rank Detection 65
2.7 Checking for Indefiniteness ... 68
2.8 Conclusions ... 68

3 The Symmetric Semidefinite Generalized Eigenvalue Problem 70
3.1 Introduction .. 70
3.2 A General Method .. 73
 3.2.1 Step One .. 73
 3.2.2 Step Two .. 74
 3.2.3 Step Three .. 74
 3.2.4 Step Four ... 76
 3.2.5 Summary .. 78
3.3 Existing Methods ... 78
 3.3.1 Fix and Heiberger’s Algorithm 78
 3.3.2 Parlett’s Algorithm ... 79
 3.3.3 Cao’s Algorithm .. 79
 3.3.4 The QZ Algorithm .. 79
 3.3.5 The MDR Algorithm .. 82
 3.3.6 The GUPTRI Algorithm ... 83
3.4 Options for Rank Revealing Decompositions 85
 3.4.1 $B = X_1 DX_1^T$.. 86
3.4.2 \(A_{22}^{(2)} = X_3 DX_3^T \) .. 87
3.4.3 \(A_{13}^{(3)} = X_4 DZ_4 \) .. 87
3.4.4 Calling ssgep.m ... 88
3.4.5 Operation Count of our Algorithm 89
3.5 Numerical Experiments .. 91
3.5.1 Industrial Example .. 92
3.5.2 Regular Pencil Examples 93
3.5.3 Nonregular Pencil Examples 97
3.6 Conclusions .. 101
3.7 The Symmetric Indefinite Generalized
 Eigenvalue Problem .. 103
 3.7.1 Step One ... 103
 3.7.2 Step Two .. 104
 3.7.3 Step Three .. 105

4 Updating the QR Factorization and the Least Squares Problem 107
4.1 Introduction .. 107
4.2 Updating Algorithms .. 109
 4.2.1 Deleting Rows 110
 4.2.2 Alternative Methods for Deleting Rows 114
 4.2.3 Adding Rows 120
 4.2.4 Deleting Columns 131
 4.2.5 Adding Columns 138
4.3 Error Analysis .. 148
 4.3.1 Deleting Rows 149
 4.3.2 Adding Rows 150
 4.3.3 Deleting Columns 150

5
4.3.4 Adding Columns 150
4.4 Numerical Experiments 151
 4.4.1 Speed Tests 151
 4.4.2 Backward Error Tests 158
4.5 Conclusions 160
4.6 Software Available 160
 4.6.1 LINPACK 161
 4.6.2 MATLAB 161
 4.6.3 The NAG Library 161
 4.6.4 Reichel and Gragg’s Algorithms 162
 4.6.5 What’s new in our algorithms 163

5 Summary 164

Appendices 167

A Code for the Pivoted Cholesky Factorization 167
 A.1 lev2pcho1.f 167
 A.2 lev3pcho1.f 175
 A.3 blas_dmax_val.f 184

B Testing Code for the Cholesky Routines 186
 B.1 cl_dchkaa.f 187
 B.2 cl_dchkpo.f 196

C MATLAB Code for the Symmetric Semidefinite Generalized
 Eigenvalue Problem 203
 C.1 ssgep.m 203
 C.2 lqdetlt.m 211
D Code for Updating the QR Factorization 215
D.1 delcols.f .. 215
D.2 delcolsq.f .. 219
D.3 addcols.f .. 222
D.4 addcolsq.f .. 227

Bibliography 232
List of Tables

1.6.1 Level 1, 2 and 3 BLAS operations and the flops and memory
 references required. ... 48

2.6.1 Speedups of our codes compared with LINPACK code. 65
2.6.2 Comparison of normwise backward errors. 67
2.6.3 Errors in computed rank for DCHDC. 67

3.4.1 Options for rrd1 in ssgep.m. 86
3.4.2 Options for rrd3 in ssgep.m. 87
3.4.3 Options for rrd4 in ssgep.m. 88
3.4.4 Flops compared with computation time of RRDs. 90

4.4.1 Normwise backward error for $\| U \|_F$ order 100. 160
4.4.2 Normwise backward error for $\| U \|_F$ order 1e+9. 160
List of Figures

1.6.1 BLAS flop rate on IBM RS6000/590. 49

2.6.1 Comparison of speed for different n. 64
2.6.2 Speed ratio of pivoted codes over LAPACK codes for the full
rank case. .. 66

3.5.1 Performance profile for maximum backward error, $\gamma(\hat{x}, \hat{\lambda})$, of
computed finite eigenvalues and eigenvectors. 95
3.5.2 Performance profile for the relative residual, $\rho(\hat{X}, \hat{\Lambda})$, of com-
puted finite eigenvalues and eigenvectors. 96
3.5.3 Performance profile for condition number, $\kappa_2(U)$, of overall trans-
formation matrix U. 97
3.5.4 Performance profile for maximum backward error, $\gamma(\hat{x}, \hat{\lambda})$, of
computed finite eigenvalues and eigenvectors 99
3.5.5 Performance profile for the relative residual, $\rho(\hat{X}, \hat{\Lambda})$, of com-
puted finite eigenvalues and eigenvectors 101
3.5.6 Performance profile for condition number, $\kappa_2(U)$, of overall trans-
formation matrix U. Note the last two lines are coincident. 102

4.4.1 Comparison of speed for \texttt{DELCOLS} with $k = 1$ for different m. 153
4.4.2 Comparison of speed for \texttt{DELCOLS} with $k = n/2$ for different m. 154
4.4.3 Comparison of speed for \texttt{DELCOLS} for different p. 155
4.4.4 Comparison of speed for ADDCOLS with $k = 1$ for different m. . . 156
4.4.5 Comparison of speed for ADDCOLS with $k = n/2$ for different m. . . 157
Abstract

We consider algorithms for three problems in numerical linear algebra: computing the pivoted Cholesky factorization, solving the semidefinite generalized eigenvalue problem and updating the QR factorization.

Fortran 77 codes exist in LAPACK for computing the Cholesky factorization (without pivoting) of a symmetric positive definite matrix using Level 2 and 3 BLAS. In LINPACK there is a Level 1 BLAS routine for computing the Cholesky factorization with complete pivoting of a symmetric positive semidefinite matrix. We present two new algorithms and Fortran 77 LAPACK-style codes for computing this pivoted factorization: one using Level 2 BLAS and one using Level 3 BLAS. We show that on modern machines the new codes can be many times faster than the LINPACK code. Also, with a new stopping criterion they provide more reliable rank detection and can have a smaller normwise backward error.

The generalized eigenvalue problem $Ax = \lambda Bx$ in the case where A and B are real and symmetric and B is positive semidefinite is considered. We present an algorithm for solving this problem that has a potentially smaller operation count than existing methods and requires no further restrictions on A and B. The eigenvalues of the problem are classified as finite or infinite. Nonregular matrix pencils, where the eigenvalues can take any value, are also discussed and
a deflation strategy is given. We include a MATLAB code for our algorithm and give some numerical experiments.

We also treat the problem of updating the QR factorization, with applications to the least squares problem. Algorithms are presented that compute the factorization $\tilde{A} = \tilde{Q}\tilde{R}$ where \tilde{A} is the matrix $A = QR$ after it has had a number of rows or columns added or deleted. This is achieved by updating the factors Q and R, and we show this can be much faster than computing the factorization of \tilde{A} from scratch. We consider algorithms that exploit the Level 3 BLAS where possible and place no restriction on the dimensions of A or the number of rows and columns added or deleted. For some of our algorithms we present Fortran 77 LAPACK-style code and show the backward error of our updated factors is comparable to the error bounds of the QR factorization of \tilde{A}.
Declaration

No portion of the work referred to in this thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institution of learning.

The material in Chapter 2 and Appendix A is based on the technical report ‘LAPACK-Style Codes for Level 2 and 3 Pivoted Cholesky Factorizations’, Numerical Analysis Report No. 442, Manchester Centre for Computational Mathematics, February, 2004 (http://www.ma.man.ac.uk/MCCM/). The report is also LAPACK Working Note 161 (http://www.netlib.org/lapack/lawns/).
Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either in full, or of extracts, may be made only in accordance with instructions given by the Author and lodged in the John Rylands University Library of Manchester. Details may be obtained from the Librarian. This page must form part of any such copies made. Further copies (by any process) of copies made in accordance with such instructions may not be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this thesis is vested in the University of Manchester, subject to any prior agreement to the contrary, and may not be made available for use by third parties without the written permission of the University, which will prescribe the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may take place is available from the Head of the Department of Mathematics.
Acknowledgments

The following people all contributed to the writing of this thesis. I am extremely grateful to all of them.

My supervisor Nick Higham shared his expertise and guided me through the writing process, without him it would not have been possible.

Sven Hammarling gave me much advice and support. I had many useful exchanges with him and he taught me a lot about scientific programming.

Françoise Tisseur made many helpful suggestions throughout my three years as a PhD student.

Volker Mehrmann made useful comments on the material in Chapter 3.

The company of my fellow students Michael Berhanu, Gareth Hargreaves and Anna Mills was both helpful to my work and a welcome distraction from it.

Chris Paul supplied fast and detailed IT support when I needed it.

Finally, Glenn whose constant encouragement was integral to the completion of this work. His love, affection and humour enabled me to switch off and relax when I needed to. This thesis is dedicated to him.
Chapter 1

Introduction

We start by giving some definitions and background theory which we use throughout this thesis. Some of the material is this section is based on material in [14], [24], [29], [30], [41], [50] and [51].

1.1 Basic Definitions

1.1.1 Definitions in Linear Algebra

- A set of vectors \(S = \{a_1, \ldots, a_n\} \in \mathbb{R}^n \) is \textit{linearly independent} if the linear combination

\[
\sum_{i=1}^{n} \alpha_i a_i, \quad \alpha_i \in \mathbb{R}
\]

being zero implies all the \(\alpha_i \) are zero. Otherwise, if a nontrivial (\(\alpha_i \neq 0, i = 1; n \)) combination of the \(a_i \) is zero then the vectors in \(S \) are said to be \textit{linearly dependent}.

- The set of all linear combinations of \(S \) is called the \textit{span} of \(S \), that is

\[
\text{span}\{a_1, \ldots, a_n\} = \left\{ \sum_{i=1}^{n} \beta_i a_i : \beta_i \in \mathbb{R} \right\}.
\]
If the vectors in S are linearly independent and $b \in \operatorname{span}(S)$, then b is a unique linear combination of the a_i.

- The range of a matrix A is defined by
 \[
 \text{ran}(A) = \{ y \in \mathbb{R}^n : y = Ax \text{ for some } x \in \mathbb{R}^n \}.
 \]

- The null space of A is defined by
 \[
 \text{null}(A) = \{ x \in \mathbb{R}^n : Ax = 0 \}.
 \]

- If the matrix $A = [a_1 \ldots a_n]$ is a column partitioning then
 \[
 \text{ran}(A) = \text{span}\{a_1, \ldots, a_n\}.
 \]

- The rank of a A is defined by
 \[
 \text{rank}(A) = \dim(\text{ran}(A)),
 \]
 where \dim is the dimension, the number of linearly independent vectors, of $\text{ran}(A)$.

- If for $A \in \mathbb{R}^{m \times n}$
 \[
 \text{rank}(A) < \min(m, n),
 \]
 then A is rank deficient.

1.1.2 Matrix Types

- The matrix $A^T \in \mathbb{R}^{n \times n}$ is the transpose of A. If the (i,j) element of A is a_{ij}, then the (i,j) element of A^T is a_{ji}.

- The matrix $A^* \in \mathbb{C}^{n \times n}$ is the conjugate transpose of A. If the (i,j) element of A is a_{ij}, then the (i,j) element of A^* is \bar{a}_{ji}, where \bar{a}_{ji} is the conjugate of a_{ji}.
• A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$ and $A \in \mathbb{C}^{n \times n}$ is Hermitian if $A = A^*$.

• The identity matrix $I_n \in \mathbb{R}^{n \times n}$ is a matrix which has ones on the diagonal and zeros elsewhere. The vector e_k is the kth column of I_n.

• A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if $Q^TQ = I$, where I is the identity matrix and $Q \in \mathbb{C}^{n \times n}$ is unitary if $Q^*Q = I$.

• A matrix $A \in \mathbb{C}^{n \times n}$ is upper triangular if $a_{ij} = 0$, $i > j$. Similarly if $a_{ij} = 0$, $j > i$ then the matrix $A \in \mathbb{C}^{n \times n}$ is lower triangular. If the diagonal elements of an upper (or lower) triangular matrix are all 1, then the matrix is said to be unit upper (or lower) triangular.

• A matrix $A \in \mathbb{C}^{m \times n}$, $m \neq n$, is upper trapezoidal if $a_{ij} = 0$, $i > j$.

• A matrix $A \in \mathbb{C}^{m \times n}$ is upper Hessenberg if $a_{ij} = 0$, $i > j + 1$.

• A permutation matrix is a permutation of the identity matrix, where either the rows or columns are a permutation of those in I_n. The effect of multiplying a matrix from the left by a permutation matrix is the reordering of the rows of that matrix. Multiplying from the right reorders columns.

• If $AX = XA = I_n$ for $A, X \in \mathbb{R}^{n \times n}$ then X is said to be the inverse of A and is denoted A^{-1}. If A^{-1} exists then rank$(A) = n$ and it is said to have full rank and be nonsingular, else it is singular.

• A block matrix is a matrix regarded as consisting not of individual elements but of blocks of elements. Many of the above definitions extend to block matrices.
1.1.3 The Determinant

The determinant of an n-by-n matrix $A \in \mathbb{R}^{n \times n}$ is defined in terms of order $n - 1$ determinants by

$$\det(A) = \sum_{j=1}^{n} (-1)^{j+1} a_{1j} \det(A_{1j}),$$

where A_{1j} is an $(n - 1)$-by-$(n - 1)$ matrix obtained by deleting the first row and jth column of A. In the 1-by-1 case

$$\det(a) = a.$$

If the determinant of A is nonzero then this implies A is nonsingular and vice versa.

The determinant of an upper (or lower) triangular matrix is the product of the diagonal elements. The determinant of a block upper (or lower) triangular matrix is equal to the product of the determinants of the individual diagonal blocks.

1.1.4 Vector Norms

Norms are a means of obtaining a scalar measure of the size of a vector or matrix.

Vector norms are functions $\| \cdot \| : \mathbb{C}^n \to \mathbb{R}$ and satisfy the vector norm axioms:

- $\|x\| \geq 0$ for all $x \in \mathbb{C}^n$, and $\|x\| = 0$ if and only if $x = 0$.
- $\|\kappa x\| = |\kappa| \|x\|$ where $\kappa \in \mathbb{C}$, $x \in \mathbb{C}^n$.
- $\|x + y\| \leq \|x\| + \|y\|$ for all $x, y \in \mathbb{C}^n$ (triangle inequality).
The Hölder p-norm is defined as

$$\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}, \quad p \geq 1.$$

This definition gives the three most popular vector norms:

$$\|x\|_1 = \sum_{i=1}^{n} |x_i|,$$

$$\|x\|_2 = \left(\sum_{i=1}^{n} |x_i|^2 \right)^{1/2} = (x^*x)^{1/2}, \quad \text{(Euclidean Length)},$$

$$\|x\|_\infty = \max_{1 \leq i \leq n} |x_i|.$$

The vector 2-norm is invariant under orthogonal or unitary transformation, that is

$$\|Qx\|_2^2 = x^*Q^*Qx = x^*x = \|x\|_2^2,$$

for orthogonal or unitary matrix Q.

1.1.5 Matrix Norms

Matrix norms are functions $\| \cdot \| : \mathbb{C}^{m \times n} \to \mathbb{R}$ and satisfy the matrix norm axioms:

- $\|A\| \geq 0$ for all $A \in \mathbb{C}^{m \times n}$, and $\|A\| = 0$ if and only if $A = 0$.
- $\|\kappa A\| = |\kappa| \|A\|$ where $\kappa \in \mathbb{C}$, $A \in \mathbb{C}^{m \times n}$.
- $\|A + B\| \leq \|A\| + \|B\|$ for all $A, B \in \mathbb{C}^{m \times n}$.

Common matrix norms for $A \in \mathbb{C}^{m \times n}$ are the Frobenius norm, defined as

$$\|A\|_F = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2},$$

and the subordinate matrix norms defined as

$$\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|},$$

20
for given vector norms on \(\mathbb{C}^m \) in the numerator and \(\mathbb{C}^n \) in the denominator.

Three useful subordinate matrix norms are:

\[
\|A\|_1 = \max_{1 \leq j \leq m} \sum_{i=1}^{n} |a_{ij}| \quad \text{(maximum column sum)},
\]

\[
\|A\|_2 = (\rho(A^*A))^{1/2} = \sigma_{\max}(A) \quad \text{(spectral norm)},
\]

\[
\|A\|_\infty = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}| \quad \text{(maximum row sum)},
\]

where the spectral radius

\[
\rho(A) = \max\{|\lambda| : \det(A - \lambda I) = 0\},
\]

and \(\sigma_{\max}(A) \) is the largest singular value of \(A \), see Section 1.5.4.

A matrix norm is \textit{consistent} if

\[
\|AB\| \leq \|A\|\|B\|.
\]

All the above matrix norms are consistent.

The Frobenius and 2-norm are invariant under orthogonal and unitary transformation, that is, for orthogonal or unitary matrices \(U \) and \(V \),

\[
\|UAV\|_2 = \|A\|_2 \quad \text{and} \quad \|UAV\|_F = \|A\|_F.
\]

The definition of subordinate matrix norms can be generalized by allowing different vector norms, so we have

\[
\|A\|_{\alpha,\beta} = \max_{x \neq 0} \frac{\|Ax\|_\beta}{\|x\|_\alpha}.
\]

The matrix \textit{condition number}, \(\kappa_{\alpha,\beta}(A) \), of a nonsingular matrix \(A \) is defined in terms of these generalized subordinate norms

\[
\kappa_{\alpha,\beta}(A) := \lim_{\epsilon \to 0} \sup_{\|\Delta A\|_{\alpha,\beta} \leq \epsilon} \left(\frac{\|(A + \Delta A)^{-1} - A^{-1}\|_{\beta,\alpha}}{\epsilon \|A^{-1}\|_{\beta,\alpha}} \right).
\]
And by [29, Thm. 6.4], equivalently

$$\kappa_{\alpha,\beta}(A) = \|A\|_{\alpha,\beta} \|A^{-1}\|_{\beta,\alpha}.$$

The condition numbers measures the sensitivity of the inverse of a matrix to perturbations in the data.

1.1.6 Floating Point Numbers

A floating point number system $F \subset \mathbb{R}$ is a subset of the real numbers of the form

$$y = \pm m \times \beta^e,$$

for mantissa m, base β, precision t and exponent range $e_{\text{min}} \leq e \leq e_{\text{max}}$. This representation is employed by all modern computer systems.

For $fl(x)$ denoting an element of F that is nearest to x, we have the following theorem [29].

Theorem 1.1.1 If $x \in \mathbb{R}$ lies in the range of F then

$$fl(x) = x(1 + \sigma), \quad |\sigma| < u = \frac{1}{2} \beta^{1-t}. \quad \Box$$

Thus the real number x can be approximated by an element in F with a relative error of u, which we call the *unit roundoff*.

An operation involving floating point numbers, such as addition, subtraction, multiplication and division we call a *floating point operation* or *flop*.

Throughout this thesis we quote only the highest order for flop counts. That is, if an algorithm requires $3n^3 + 2n^2$ flops to compute, we say only that this requires $3n^3$ flops. This as because for large n, usually the case we are interested in, the $2n^2$ term is not significant compared to the higher order term.
We say that $fl(x)$ overflows if
\[|fl(x)| > \max\{|y| : y \in F\} \]
and underflows if
\[0 < |fl(x)| < \min\{|y| : 0 \neq y \in F\}. \]

If the number system consists of all real numbers we have the concept of exact arithmetic, since every real number can be represented, and the unit roundoff is zero.

A phenomenon that can arise in floating point arithmetic is cancellation error. It is the extreme loss of significant digits when two floating point numbers, that are nearly equal, are subtracted. See [29, Sec. 1.7] for an example. In practice computations can often be performed in an order that reduces or avoids cancellation error.

1.2 Eigenvalue Problems

1.2.1 The Standard Eigenvalue Problem

If $A \in \mathbb{C}^{n \times n}$, $x \neq 0 \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$, then we call the problem
\[Ax = \lambda x \] (1.2.1)
the standard eigenvalue problem. The scalar λ is an eigenvalue and x is a corresponding eigenvector.

If we write (1.2.1) as
\[(A - \lambda I)x = 0, \]
then we see that x is in the null space of the matrix $A - \lambda I$, which therefore has to be nonempty. Equivalently
\[\det(A - \lambda I) = 0, \]
and this degree n polynomial is called the characteristic polynomial. We can write this in factored form

$$
\det(A - \lambda I) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n),
$$

where the λ_i are the eigenvalues of (1.2.1). Some of the λ_i may be repeated, so we write

$$
\det(A - \lambda I) = (\lambda - \tilde{\lambda}_1)^{m_1}(\lambda - \tilde{\lambda}_2)^{m_2} \cdots (\lambda - \tilde{\lambda}_k)^{m_k},
$$

where the $\tilde{\lambda}_i$ are distinct and m_i is the algebraic multiplicity of $\tilde{\lambda}_i$, with $\sum_i m_i = n$. The eigenvalue $\tilde{\lambda}_i$ also has a geometric multiplicity, which is the maximum number of linearly independent eigenvectors, or, equivalently, the dimension of the null space of $A - \tilde{\lambda}_i I$.

An eigenvalue with algebraic multiplicity 1 is a simple eigenvalue. If λ_i has algebraic multiplicity greater than its geometric multiplicity then the matrix and the eigenvalue we describe as defective. Defective matrices have less than n linearly independent eigenvectors.

1.2.2 The Hermitian Eigenvalue Problem

If $A \in \mathbb{C}^{n \times n}$ is Hermitian (or real and symmetric) we call the eigenvalue problem the Hermitian (symmetric) eigenvalue problem.

Theorem 1.2.1 (Schur Decomposition) If $A \in \mathbb{C}^{n \times n}$ then there exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$ such that

$$
QAQ^* = U,
$$

where U is upper triangular. □
If we apply Theorem 1.2.1 to Hermitian A and take complex conjugates of U then

\[U^* = (QAQ^*)^* = (Q^*)^* A^* Q^* = QA Q^* = U. \]

So U is both upper triangular and Hermitian and is therefore diagonal.

If we write $AQ = QU$, then from (1.2.1), the columns of Q are linearly independent eigenvectors and the U_{ii} are eigenvalues. Since $U^* = U$ then the eigenvalues of the Hermitian (or real and symmetric) eigenvalue problem are real. We then have the following theorem.

Theorem 1.2.2 (Spectral Decomposition) If $A \in \mathbb{C}^{n\times n}$ is Hermitian then there exists a unitary matrix Q and a diagonal matrix $A \in \mathbb{R}^{n\times n}$ such that

\[QA Q^* = A. \]

1.2.3 Deflation

The determinant of a block upper triangular matrix is equal to the product of the determinants of the individual diagonal blocks. Then if we seek the eigenvalues of a block upper triangular matrix U, we have

\[\det(U - \lambda I) = \prod_i \det(U_{ii} - \lambda I). \]

Thus the problem can split into smaller subproblems which can be solved independently. We call this process *deflation*.

1.2.4 Similarity

If $A \in \mathbb{C}^{n\times n}$ and $Y \in \mathbb{C}^{n\times n}$ is nonsingular, then $B = YAY^{-1}$ is said to be *similar* to A.
Theorem 1.2.3 If $A \in \mathbb{C}^{n \times n}$ and $B \in \mathbb{C}^{n \times n}$ are similar, then they have the same eigenvalues.

Proof. If λ is an eigenvalue of A with corresponding eigenvector x, then for nonsingular $Y \in \mathbb{C}^{n \times n}$

$$B(Yx) = YAY^{-1}Yx = YAx = \lambda (Yx),$$

so λ is an eigenvalue of B with corresponding eigenvector $Yx \neq 0$. \qed

1.2.5 Definiteness

A Hermitian matrix is said to be positive definite if

$$x^*Ax > 0, \text{ for any } x \neq 0,$$

and positive semidefinite if the inequality is not strict.

Theorem 1.2.4 If $A \in \mathbb{C}^{n \times n}$ is Hermitian and positive definite all its eigenvalues are real and positive.

Proof. Since A is Hermitian it has real eigenvalues and if x is an eigenvector of A then

$$0 < x^*Ax = x^*\lambda x = \lambda (x^*x) \Rightarrow \lambda > 0. \quad \Box$$

Similarly, $\lambda \geq 0$ if A is positive semidefinite.

We define negative definiteness and negative semidefiniteness in a analogous way. If a matrix is neither positive semidefinite nor negative semidefinite we describe it as indefinite.
1.2.6 The Generalized Eigenvalue Problem

The generalized eigenvalue problem is of the form

\[Ax = \lambda Bx, \]

(1.2.2)

where \(A, B \in \mathbb{C}^{n \times n} \), \(\lambda \in \mathbb{C} \) is an eigenvalue and \(x \neq 0 \in \mathbb{C}^n \) a corresponding eigenvector. Equivalently, \(\lambda \) is an eigenvalue if \(\det(A - \lambda B) = 0 \).

If \(B \) is nonsingular we can write \(B^{-1}Ax = \lambda x \) or \(AB^{-1}y = \lambda y, \ y = Bx \) which are standard eigenvalue problems. We note that \(AB^{-1} = B(B^{-1}A)B^{-1} \) is similar to \(B^{-1}A \) so the problems share the same eigenvalues.

We call the matrix \(A - \lambda B \) a matrix pencil, and an eigenvector \(x \) is a null vector of the pencil. This matrix pencil is nonregular if \(\det(A - \lambda B) = 0 \) for all \(\lambda \), else it is regular.

We can write (1.2.2) as

\[\beta Ax = \alpha Bx, \ \ \lambda = \alpha/\beta. \]

(1.2.3)

This is a convenient notation that allows us to describe all eigenvalues of (1.2.2). If \(\beta = 0 \) we describe the eigenvalue as infinite. If \(B \) is singular then the null vectors of \(B \) will be eigenvectors corresponding to infinite eigenvalues. If \(A \) and \(B \) share a common null space, \(Ax = Bx = 0, x \neq 0 \), then \((\beta A - \alpha B)x = 0 \) for all \(\alpha \) and \(\beta \) and the pencil is nonregular. A non-empty intersection of the null spaces of \(A \) and \(B \) is a sufficient but not necessary condition for the pencil to be nonregular: for example \(A \) and \(B \) in the pencil

\[A - \lambda B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \]

have no null vectors in common but the pencil is nonregular.

If \(\beta \neq 0 \) then the eigenvalue is finite, with \(\alpha = 0 \) corresponding to a zero eigenvalue. We note that if \(A \) is singular then the null vectors of \(A \) are
eigenvectors corresponding to zero eigenvalues, provided they are not also in
the null space of B, as then α and β could take any value.

As with the standard eigenvalue problem, for a single eigenvalue we describe
the maximum number of corresponding linearly independent eigenvectors as its
geometric multiplicity. And the number of times an eigenvalue is repeated we
call its algebraic multiplicity. An eigenvalue whose algebraic multiplicity ex-
cceeds its geometric multiplicity is a defective eigenvalue and a pencil containing
one or more defective eigenvalues is a defective matrix pencil.

We can determine the α and β in (1.2.3) by the following theorem.

Theorem 1.2.5 (Generalized Schur Decomposition) If $A, B \in \mathbb{C}^{n \times n}$
then there exist unitary matrices Q and Z such that

$$Q^*AZ = \tilde{A}, \quad Q^*BZ = \tilde{B}, \quad (1.2.4)$$

where \tilde{A} and \tilde{B} are upper triangular. \hfill \Box

Applying Theorem 1.2.5 to our pencil we have

$$\det(A - \lambda B) = \det(QZ^*) \prod_{i=1}^{n} (a_{ii} - \lambda b_{ii}), \quad (1.2.5)$$

where a_{ii} and b_{ii} are the diagonal entries of \tilde{A} and \tilde{B} respectively. If $a_{ii} = b_{ii} = 0$
for at least one i, then the pencil is nonregular. Conversely, the pencil is only
nonregular if there is such an a_{ii} and b_{ii}.

If the pencil is regular then (1.2.5) shows that there are n eigenvalues that
are either finite or infinite.

1.2.7 The Symmetric Semidefinite Generalized

Eigenvalue Problem

If for

$$\beta Ax = \alpha Bx, \quad \lambda = \alpha / \beta, \quad (1.2.6)$$
$A, B \in \mathbb{R}^{n \times n}$ are symmetric and one is semidefinite we call the problem the symmetric semidefinite generalized eigenvalue problem.

1.2.8 Kronecker Canonical Forms for Matrix Pencils

The Kronecker Canonical Form (KCF) is given by the following theorem.

Theorem 1.2.6 (The Kronecker Canonical Form) If $A, B \in \mathbb{C}^{n \times n}$ then there exist matrices $P \in \mathbb{C}^{n \times m}$ and $Q \in \mathbb{C}^{n \times n}$ such that

$$P^{-1} (A - \lambda B) Q = \begin{bmatrix} A_1 - \lambda B_1 & & & \\ & A_2 - \lambda B_2 & & \\ & & \ddots & \\ & & & A_r - \lambda B_r \end{bmatrix}$$

(1.2.7)

is block diagonal, where $r \leq m$ and the blocks $A_i - \lambda B_i$ take one of the following four forms

$$J_j(\gamma) = \begin{bmatrix} \gamma - \lambda & 1 & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & \gamma - \lambda & \\ & & & & 1 \end{bmatrix} \in \mathbb{C}^{j \times j}, \quad j = 1, 2 \ldots$$

$$N_j = \begin{bmatrix} 1 & -\lambda & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & \ddots & -\lambda \\ & & & & 1 \end{bmatrix} \in \mathbb{C}^{j \times j}, \quad j = 1, 2 \ldots$$

$$L_j = \begin{bmatrix} -\lambda & 1 & & & \\ & \ddots & & & \\ & & \ddots & & \\ & & & -\lambda & 1 \\ & & & & -\lambda & 1 \end{bmatrix} \in \mathbb{C}^{j \times (j+1)}, \quad j = 0, 1, 2 \ldots$$
\[L_j^T = \begin{bmatrix}
-\lambda \\
1 \\
. \\
. \\
. \\
-\lambda \\
1
\end{bmatrix} \in \mathbb{C}^{(j+1) \times j}, \quad j = 0, 1, 2, \ldots \]

The \(J_j(\gamma) \) blocks give the finite eigenvalues \(\gamma \). The number of times a \(J_j(\gamma) \) block appears gives the geometric multiplicity of the eigenvalue. The sum of the orders of these blocks gives the algebraic multiplicity for a particular \(\gamma \).

The \(N_j \) blocks give the infinite eigenvalues, with the number of \(N_j \) blocks giving the geometric multiplicity for infinite eigenvalues.

The \(L_j \) blocks are called \textit{right singular blocks}, and the \(L_j^T \) blocks are called \textit{left singular blocks}. Together they define the nonregular structure of the matrix pencil. Note an \(L_0 \) block has zero rows and an \(L_0^T \) zero columns. The interpretation of this is for \(X \in \mathbb{C}^{n \times n} \) and \(Y \in \mathbb{C}^{(n-1) \times (n-1)} \)

\[X = \begin{bmatrix}
L_0 \\
Y \\
L_0^T
\end{bmatrix} = \begin{bmatrix}
Y \\
0
\end{bmatrix}. \]

Cao [11] shows that the KCF of a pencil when \(A \) and \(B \) are symmetric and \(B \) is positive semidefinite consists only of blocks of the following forms:

\[J_1(\gamma) = \gamma - \lambda, \quad N_1 = 1 - 0 \]

\[N_2 = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} - \lambda \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}, \quad L_0 \text{ and } L_0^T. \]

1.3 Matrix Transformations

1.3.1 Congruence Transformations

The transformation \(Y \leftarrow Q^*XQ \), with \(Q \) nonsingular, we call a \textit{congruence transformation}. These transformations have two important properties when
applied to a matrix pencil. Firstly, symmetry is preserved, taking the conjugate
transpose of the transformed pencil we have

\[(Q^*(A - \lambda B)Q)^* = Q^*(A - \lambda B)^*(Q^*)^* = Q^*(A - \lambda B)Q.\]

Also, eigenvalues are preserved, the pencils are equivalent.

Theorem 1.3.1 *Let \(A, B \in \mathbb{C}^{n \times n} \) be Hermitian and \(Q \) be nonsingular. Then if \(\lambda \) is an eigenvalue of the matrix pencil \(A - \lambda B \) then it is also an eigenvalue of the transformed pencil \(Q^*(A - \lambda B)Q \). Also, if \(x \) is an eigenvector corresponding to \(\lambda \) in \(A - \lambda B \) then \(y = Q^{-1}x \) is the corresponding eigenvector in the transformed pencil.*

Proof. If \(\lambda \) and \(x \) are an eigenvalue and corresponding eigenvector of the pencil \(A - \lambda B \) then

\[Q^*AQ(Q^{-1}x) = Q^*Ax = \lambda Q^*Bx = \lambda Q^*B(Q^{-1}x)\]

and \(\lambda \) and \(Q^{-1}x \) are an eigenvalue and corresponding eigenvector of the transformed pencil. \(\square \)

1.3.2 Unitary Transformations

If \(Q \in \mathbb{C}^{n \times n} \) is unitary (or real and orthogonal) we call the transformation

\[Y \leftarrow Q^*XQ\]

a unitary (or orthogonal) similarity transformation. This transformation clearly has the same properties as a congruence transformation.

The fact that the Frobenius and 2-norm are unitarily invariant has advantages for unitary transformations. Consider a matrix \(X \) which has errors in the form of a perturbation matrix, \(E \). If we apply the orthogonal transformation

\[Y + F \leftarrow Q^*(X + E)Q,\]
then

$$
\|F\|_2 = \|Q^T E Q\|_2 = \|E\|_2 \quad \text{and} \quad \|F\|_F = \|Q^T E Q\|_F = \|E\|_F.
$$

The errors in the transformed matrix have the same norm as the error in the original matrix.

1.4 The QR Factorization

For $A \in \mathbb{R}^{m \times n}$ the QR factorization is given by

$$
A = QR, \quad \quad \quad (1.4.1)
$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper trapezoidal.

1.4.1 Computing the QR Factorization

We compute the QR factorization of $A \in \mathbb{R}^{m \times n}$, $m \geq n$ and of full rank, by applying an orthogonal transformation matrix Q^T so that

$$
Q^T A = R,
$$

and Q is the product of orthogonal matrices chosen to transform A to be the upper triangular matrix R.

One method uses *Givens matrices* to introduce zeros below the diagonal one element at a time. A Givens matrix, $G(i, j) \in \mathbb{R}^{m \times m}$, is of the form

$$
G(i, j) = \begin{bmatrix}
I & & & & \\
& c & s & & i \\
& & I & & \\
& & -s & c & j \\
& & & & I
\end{bmatrix}
$$
where \(c = \cos(\theta) \) and \(s = \sin(\theta) \) for some \(\theta \), and is therefore orthogonal.

For \(x \in \mathbb{R}^n \), if we set

\[
 c = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}, \quad s = \frac{-x_j}{\sqrt{x_i^2 + x_j^2}},
\]

then for \(G(i,j)^T x = y \),

\[
 y_k = \begin{cases}
 cx_i - sx_j & k = i, \\
 0 & k = j, \\
 x_k & k \neq i,j,
 \end{cases}
\]

so only the \(i \)th and \(j \)th elements are affected. We can compute \(c \) and \(s \) by

the following algorithm. All the algorithms in this thesis are presented in a
MATLAB-like pseudo code.

Algorithm 1.4.1 This function returns scalars \(c \) and \(s \) such that

\[
 \begin{bmatrix} c & s \\ -s & c \end{bmatrix}^T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} d \\ 0 \end{bmatrix},
\]

where \(a, b, \) and \(d \) are scalars, and \(s^2 + c^2 = 1 \).

function \([c, s] = \text{givens}(a, b)\)

if \(b = 0 \)
 \(c = 1 \)
 \(s = 0 \)
else
 if \(\text{abs}(b) \geq \text{abs}(a) \)
 \(t = -a/b \)
 \(s = 1/\sqrt{1 + t^2} \)
 \(c = st \)
 else
 \(t = -b/a \)
 \(c = 1/\sqrt{1 + t^2} \)
 \(s = ct \)
 end
end

Here the computation of \(c \) and \(s \) has been rearranged to avoid possible overflow.
Now to transform A to an upper trapezoidal matrix we require a Givens matrix for each subdiagonal element of A, and apply each one in a suitable order such as

$$G(n, n + 1)^T \ldots G(m - 1, m)^T G(1, 2)^T \ldots G(m - 1, m)^T A = Q^T A = R,$$

which is a QR factorization. For example for $m = 6$ and $n = 4$, with a $+$ denoting a nonzero entry:

$$A = \begin{bmatrix}
+ & + & + & + \\
+ & + & + & + \\
+ & + & + & + \\
+ & + & + & + \\
+ & + & + & + \\
+ & + & + & + \\
\end{bmatrix} \xrightarrow{G(5,6)^T} \begin{bmatrix}
+ & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
\end{bmatrix} \xrightarrow{G(4,5)^T} \ldots$$

$$\xrightarrow{G(1,2)^T} \begin{bmatrix}
+ & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
\end{bmatrix} \xrightarrow{G(5,6)^T} \begin{bmatrix}
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
0 & + & + & + \\
\end{bmatrix} \xrightarrow{G(4,5)^T} \ldots$$

This strategy is adopted in the following algorithm.

Algorithm 1.4.2 This algorithm computes the R factor of a Givens QR factorization of a matrix $A \in \mathbb{R}^{m \times n}$, $m \geq n$, overwriting the upper triangular part of A with the nonzero elements of R.

34
for \(j = 1 : n \)
 \[
 \text{for } i = m - 1 : j + 1 \quad \left[c, s \right] = \text{givens}(A(i - 1, j), A(i, j)) \\
 A(i - 1, j) = cA(i - 1, j) - sA(i, j) \\
 \begin{bmatrix}
 c \\
 -s \\
 c
 \end{bmatrix}^T A(i - 1 : i, j + 1 : n)
 \]
end

Note we do not compute quantities we know are zero. Also, the matrix \(Q \) is not formed but applied implicitly. We can store \(c \) and \(s \) and if \(Q \) is required to multiply another matrix, say, we can do this in a similar way to Algorithm 1.4.2. It is possible to encode \(c \) and \(s \) in a single scalar (see [24, Sec. 5.1.11]), which could then be stored in the eliminated \(a_{ij} \).

The primary use of Givens matrices is to eliminate particular elements in a matrix. A more efficient approach for a \(QR \) factorization is to use \textit{Householder matrices} which introduce zeros in all the subdiagonal elements of a column simultaneously.

Householder matrices, \(H \in \mathbb{R}^{n \times n} \), are of the form

\[
H = I - \tau vv^T, \quad \tau = \frac{2}{v^Tv},
\]

where the \textit{Householder vector}, \(v \in \mathbb{R}^n \), is nonzero. It is easy to see that \(H \) is symmetric and orthogonal. If \(y \) and \(z \) are distinct vectors such that \(\|y\|_2 = \|z\|_2 \) then there exists an \(H \) such that

\[
Hy = z.
\]

We can determine a Householder vector such that

\[
H \begin{bmatrix}
\alpha \\
\vspace{-0.5cm}
\beta
\end{bmatrix} = \begin{bmatrix}
\beta \\
\vspace{-0.5cm}
0
\end{bmatrix},
\]

35
where \(x \in \mathbb{R}^{n-1} \), and \(\alpha \) and \(\beta \) are scalars. By setting
\[
v = \begin{bmatrix} \alpha \\ x \end{bmatrix} \pm \left\| \begin{bmatrix} \alpha \\ x \end{bmatrix} \right\|_2 e_1. \tag{1.4.2}\]

We then have
\[
H \begin{bmatrix} \alpha \\ x \end{bmatrix} = \mp \left\| \begin{bmatrix} \alpha \\ x \end{bmatrix} \right\|_2 e_1,
\]

that is
\[
\beta = \mp \left\| \begin{bmatrix} \alpha \\ x \end{bmatrix} \right\|_2.
\]

In we choose the sign in (1.4.2) to be negative then \(\beta \) is positive. However, if \(\begin{bmatrix} \alpha & x^T \end{bmatrix} \) is close to a positive multiple of \(e_1 \), then this can give large cancellation error. So we use the formula [40]
\[
v_1 = \alpha - \| \begin{bmatrix} \alpha & x^T \end{bmatrix} \|_2 = \frac{\alpha^2 - \| \begin{bmatrix} \alpha & x^T \end{bmatrix} \|^2_2}{\alpha + \| \begin{bmatrix} \alpha & x^T \end{bmatrix} \|^2_2} = \frac{-\| x \|^2_2}{\alpha + \| \begin{bmatrix} \alpha & x^T \end{bmatrix} \|^2_2}
\]
to avoid this in the case when \(\alpha > 0 \). This is adopted in the following algorithm.

Algorithm 1.4.3 For \(\alpha \in \mathbb{R} \) and \(x \in \mathbb{R}^{n-1} \) this function returns a vector \(v \in \mathbb{R}^{n-1} \) and a scalar \(\tau \) such that \(\tilde{v} = \begin{bmatrix} 1 \\ v \end{bmatrix} \) is a Householder vector, scaled so \(\tilde{v}(1) = 1 \) and \(H = \begin{bmatrix} I - \tau & v \\ v^T \end{bmatrix} \) is orthogonal, with \(H \begin{bmatrix} \alpha \\ x \end{bmatrix} = \begin{bmatrix} \beta \\ 0 \end{bmatrix} \), where \(\beta \in \mathbb{R} \).

function \([v, \tau] = \text{householder}(\alpha, x)\)
\[
s = \|x\|_2^2
\]
\[
v = x
\]
if \(s = 0 \)
\[
\tau = 0
\]
else
\[
t = \sqrt{\alpha^2 + s}
\]
% choose sign of \(v \)
if \(\alpha \leq 0 \)
\[
v_{\text{one}} = \alpha - t
\]
else

36
\[v_{\text{one}} = -s/(\alpha + t) \]
end
\[\tau = 2v_{\text{one}}^2/(s + v_{\text{one}}^2) \]
\[v = v/v_{\text{one}} \]
end

Here we have normalized \(v \) so \(v_1 = 1 \) and the \textit{essential} part of the Householder vector, \(v(2:n) \), can be stored in \(x \).

Thus if we apply \(n \) Householder matrices, \(H_j \), to introduce zeros in the subdiagonal columns one by one, we have the \(QR \) factorization

\[H_n \ldots H_1 A = Q^T A = R, \]

and the \(H_j \) are such that their vectors \(v_j \) are of the form

\[v_j(1:j-1) = 0, \]
\[v_j(j) = 1, \]
\[v_j(j+1:m) : \quad \text{as } v \text{ in Algorithm 1.4.3}. \]

This leads to the following Householder \(QR \) factorization algorithm.

\textbf{Algorithm 1.4.4} \textit{This algorithm computes a Householder \(QR \) factorization of a matrix } \(A \in \mathbb{R}^{m \times n} \), \(m \geq n \), \textit{overwriting the upper triangular part of } \(A \) \textit{with the nonzero elements of } \(R \). \(Q \) \textit{is not formed explicitly. The essential part of the Householder vectors are stored in the subdiagonal of } \(A \).

\begin{verbatim}
for j = 1:n
 [v, \tau(j)] = \text{householder}(A(j, j), A(j + 1:m, j))
 A(j, j) = A(j, j) - \tau(j)A(j, j) + v^T A(j + 1:m, j))
 if j < n
 A(j:m, j + 1:n) = A(j:m, j + 1:n) - \tau(j) [1 \ v^T]^T ([1 \ v^T] A(j:m, j + 1:n))
 end
end
A(j + 1:m, j) = v
end
\end{verbatim}
The algorithm requires $2n^2(m - n/3)$ flops. The essential part of the Householder vectors are stored in the subdiagonal, and we refer to Q being in factored form. If Q is required to be applied to another matrix, it can be applied as in Algorithm 1.4.4.

If Q is to be formed explicitly we can do so with the backward accumulation method by computing

$$(H_1 \ldots (H_{n-2}(H_{n-1}H_n))).$$

This exploits the fact that the leading $(j-1)$-by-$(j-1)$ part of H_j is the identity.

Algorithm 1.4.5 This algorithm forms the orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ of the QR factorization as Algorithm 1.4.4, with the essential part of the Householder vectors stored in the subdiagonal of A and the vector τ from Algorithm 1.4.4.

\[
Q = I \\
\text{for } j = n: -1: 1 \\
v = A(j + 1:m, j) \\
Q(j:m, j:m) = Q(j:m, j:m) - \tau(j)[1 \ v^T]^T ([1 \ v^T]Q(j:m, j:m))
\]

end

1.4.2 The Blocked QR Factorization

A blocked algorithm acts on a blocked matrix. We discuss the benefits of this in Section 1.6.1. We derive a blocked Householder QR factorization as follows [45].

Theorem 1.4.1 We can write the product of p Householder matrices, $H_i = I - \tau_i v_i v_i^T$, as

$$H_1H_2 \ldots H_p = I - VTV^T,$$

where

$$V = \begin{bmatrix} v_1 & v_2 & \ldots & v_p \end{bmatrix} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix},$$
and $V_1 \in \mathbb{R}^{p \times p}$ is lower triangular and T is upper triangular.

Proof. The proof is inductive. For $p = 1$ we have $T = \tau_1$ which is an upper triangular matrix. Now assuming it is true for $p - 1$, we have

$$H_1 H_2 \ldots H_{p-1} = I - VTV^T,$$

so

$$H_1 H_2 \ldots H_{p-1} H_p = (I - VTV^T)(I - \tau_p v^T_p v_p)$$

$$= I - \tau_p v^T_p v_p - VTV^T + \tau_p VTV^T v^T_p v_p$$

$$= I - [V v_p] \begin{bmatrix} TV^T - \tau_p TV^T v^T_p v_p & \tau_p v^T_p \\ \tau_p & \tau_p \end{bmatrix}$$

$$= I - [V v_p] \begin{bmatrix} T & -\tau_p TV^T v_p \\ 0 & \tau_p \end{bmatrix} \begin{bmatrix} V^T \\ v^T_p \end{bmatrix}. \quad \Box$$

With this representation of the Householder vectors we can derive a blocked algorithm. At the kth step we apply Algorithm 1.4.4 to the first p columns of A only, for some block size p. When the current block has been factorized we apply $I - VTV^T$, the product of the p Householder matrices, to update the trailing matrix. This leads to the following algorithm.

Algorithm 1.4.6 This algorithm computes $Q^T A = R \in \mathbb{R}^{m \times n}$, $m \geq n$, using a blocked method with block size n_b, overwriting the upper triangular part of A with the nonzero elements of R.

for $k = 1: n_b : n$

% Check for the last column block
$\hat{p} = \min(n_b, n - k + 1)$

for $j = k: \hat{p} + j - 1$

$[v, \tau(j)] = \text{householder}(A(j, j), A(j + 1: m, j))$

% Update trailing part of current block only
$A(j, j) = A(j, j) - \tau(j) A(j, j) + v^T A(j + 1: m, j))$

if $j < k + j - 1$

$A(j:m, j + 1:k + j - 1) = A(j:m, j + 1:k + j - 1) -$
\[\tau(j) [1 \quad v^T] ([1 \quad v^T] A(j:m,j + 1:k + jb - 1)) \]

end

\[V(j,j) = 1 \]

\[V(j + 1:m,j) = v \]

end

% If we are not in last block column
% build T and update trailing matrix
if \(k + jb \leq n \)
for \(j = k:k + jb - 1 \)
% Build T
if \(j = k \)
\[T(1,1) = \tau(j) \]
else
\[T(1:j - k,j - k + 1) = -\tau(j)T(1:j - k,1:j - k) \]
\[*V(j:m,k:j - 1)^T V(j:m,j) \]
\[T(j - k + 1,j - k + 1) = \tau(j) \]
end
end
% Update trailing matrix
\[A(k:m,j + 1:n) = A(k:m,j + 1:n) \]
\[-V(k:m,k:k + jb - 1)T(1:jb,1:jb)^T (V(k:m,k:k + jb - 1)^T \]
\[*A(k:m,j + 1:n)) \]
end

end

1.5 Rank Revealing Decompositions

A rank-revealing decomposition (RRD) for a symmetric matrix \(A \in \mathbb{R}^{n \times n} \) takes
the form

\[A = XDX^T, \]

where \(X \in \mathbb{R}^{n \times n} \) is well conditioned and \(D \in \mathbb{R}^{n \times n} \) is diagonal. For a general
matrix \(C \in \mathbb{R}^{n \times n} \) an RRD takes the form

\[C = XGZ, \]
where $X \in \mathbb{R}^{m \times m}$ and $Z \in \mathbb{R}^{n \times n}$ are well conditioned and $G \in \mathbb{R}^{m \times n}$ is trapezoidal or diagonal. The diagonal elements of D and G are arranged in decreasing order of absolute value.

We let η denote a tolerance used to define negligibility of matrix elements. In floating point arithmetic η will usually be some multiple of the unit roundoff, u. That is, for

$$D = \begin{bmatrix} D_1 & 0 \\ 0 & D_2 \end{bmatrix}, \quad \text{and} \quad G = \begin{bmatrix} G_{11} & G_{12} \\ 0 & G_{22} \end{bmatrix},$$

then if

$$\|D_2\| \leq \eta \quad \text{and} \quad \|G_{22}\| \leq \eta,$$

for some norm, we set them to zero. If the order of D_2 and G_{22} is as large as possible, the dimension of D_1 or G_{11} is the rank of the matrix. In exact arithmetic we could set $\eta = 0$.

1.5.1 The Pivoted QR Factorization

A *pivoted* factorization involves the swapping of rows and/or columns to order elements in the factors. This helps to decide rank. The pivoting is represented in the factorization by a permutation matrix.

We can factor a rank deficient matrix, $A \in \mathbb{R}^{m \times n}$, by using a pivoted QR factorization

$$A = QRP^T,$$ \hspace{1cm} (1.5.1)

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal, $P \in \mathbb{R}^{n \times n}$ is a permutation matrix and $R \in \mathbb{R}^{m \times n}$ is of the form

$$R = \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix},$$

where $R_{11} \in \mathbb{R}^{n \times r}$ is upper triangular and r is the rank of A. R satisfies

$$r_{kk}^2 \geq \sum_{i=k}^{\min(j,r)} r_{ij}^2, \quad j = k + 1: n, \quad k = 1: r,$$
and

\[|r_{11}| \geq |r_{22}| \geq \cdots \geq |r_{rr}| > 0. \]

The column pivoting strategy is, at the \(k \)th stage, to ensure

\[\|a_k^{(k)}(k:m)\|_2 = \max_{j \geq k} \|a_j^{(k)}(k:m)\|_2, \]

that is we permute the column with the largest norm to the leading position from the trailing matrix \(A^{(k-1)}(A(k:m,k:n)) \).

Note that since \(\|Qx\|_2^2 = \|x\|_2^2 \) for any orthogonal matrix \(Q \), then for \(Qx = y \in \mathbb{R}^n \)

\[\|y(2:n)\|_2^2 = \|x\|_2^2 - y_1^2 \]

and so the new column norms used for pivoting need not be completely recalculated.

The algorithm requires \(4(mnr + m^2r) - 2r^2(3m/2 + n) + 5/3r^3 \) flops. For references for rank revealing \(QR \) algorithms see [14] and [29].

1.5.2 The Complete Orthogonal Decomposition

After the pivoted \(QR \) factorization of \(A \in \mathbb{R}^{m \times n} \) of rank \(r \) we have

\[Q^T A P = R = \begin{bmatrix} \begin{array}{c} R_{11} & R_{12} \\ 0 & 0 \end{array} \end{bmatrix}, \]

where \(R_{11} \) is upper triangular. We can further reduce \(R \) by eliminating \(R_{12} \) with Householder matrices.

We find \(r \) Householder matrices such that

\[H_r \ldots H_1 \begin{bmatrix} R_{11}^T \\ R_{12}^T \end{bmatrix} = \begin{bmatrix} \overline{R_{11}}^T \\ 0 \end{bmatrix}, \]
where \overline{R}_{11} is upper triangular. Then we have

\[
A = Q(RH_1^T \ldots H_r^T)H_r \ldots H_1 P^T
\]
\[
= Q \begin{bmatrix} \overline{R}_{11} & 0 \\ 0 & 0 \end{bmatrix} V,
\]
\[
= QUV,
\] (1.5.2)

where $V = H_r \ldots H_1 P^T$, which is the \textit{complete orthogonal decomposition}.

The algorithm requires $4(mnr + m^2r) - r^2(3m + 7n) - 5/3r^3 + 4/3n^3 - 4n^2r$
flops.

1.5.3 The Spectral Decomposition

For symmetric $A \in \mathbb{R}^{n \times n}$ we can perform the spectral decomposition (Theorem 1.2.2)

\[
A = QAQ^T,
\] (1.5.3)

where Q is orthogonal and contains the eigenvectors of A and A is diagonal and contains the eigenvalues of A, which we will order according to

\[
|\lambda_{11}| \geq |\lambda_{22}| \geq \cdots \geq |\lambda_{rr}| > |\lambda_{r+1,r+1}| = \cdots = 0,
\]

where r is the rank of A.

There are many ways algorithmically that we can compute a spectral decomposition. The most popular method for symmetric matrices, employed by LAPACK [1] and MATLAB [36], is to first reduce the matrix A to tridiagonal form by a symmetric Householder QR factorization so that

\[
Q_1^T AQ_1 = T,
\]

where T is a tridiagonal (and symmetric) matrix. If any off diagonal elements are zero the problem can be deflated into smaller subproblems, if not it is said
to be *unreduced*. The unreduced matrix is then diagonalized by a *shifted QR* iteration to give
\[Q_2^T T Q_2 = A, \]
where \(Q_2 Q_1 = Q \) in (1.5.3).

The shift is a process whereby convergence is accelerated by computing the \(QR \) factorization of \(A - \mu I \) instead of \(A \), where \(\mu \) is an approximate eigenvalue, giving the iteration
\[
T^{(k)} - \mu I = Q_2 R \\
T^{(k+1)} = RQ_2 + \mu I,
\]
\(T^{(k+1)} \) is similar to \(T^{(k)} \) since \(RQ_2 + \mu I = Q_2^T (Q_2 R + \mu I) Q_2 = Q_2^T T^{(k)} Q_2 \), and the \(T^{(k+1)} \)’s converge to \(A \). See [24, Alg. 8.3.3] for details and discussion on the choice of \(\mu \).

The algorithm tends to order the eigenvalues in \(A \) algebraically. Ordering the eigenvalues by absolute size is achieved by a trivial permutation of \(A \) and correspondingly \(Q \). A decision on rank can then be made by deciding which values of \(\lambda_i \) can be taken as zero.

The algorithm requires an average of \(9n^3 \) flops to compute the eigenvalues and \(Q \), but depends on the amount of iterations required.

The divide and conquer algorithm [19] gives an alternative way of solving the tridiagonal problem. It repeatedly divides the tridiagonal matrix into two halves, solves the eigenproblems of each half, and joins the solutions together.

The eigenvalues and eigenvectors can be computed with \(4n^3 \) flops. This ‘best’ figure we use in this thesis for comparing flop counts with other algorithms.
1.5.4 The Singular Value Decomposition

Theorem 1.5.1 (Singular Value Decomposition (SVD)) For $A \in \mathbb{R}^{n \times n}$ there exist orthogonal matrices

$$
U = [u_1, \ldots, u_m] \in \mathbb{R}^{n \times m} \text{ and } V = [v_1, \ldots, v_n] \in \mathbb{R}^{n \times n}
$$

such that

$$
U^T AV = \text{diag}(\sigma_1, \ldots, \sigma_p) \in \mathbb{R}^{m \times n},
$$

where $p = \min(m, n)$ and

$$
\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0. \quad \square
$$

If $A \in \mathbb{C}^{n \times n}$ then the same relation applies with unitary U and V.

The σ_i are the singular values of A and the vectors u_i and v_i are the ith left singular vectors and the ith right singular vectors respectively.

In exact arithmetic if

$$
\sigma_1 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_p = 0,
$$

then the rank of A is r.

The Golub-Reinsch algorithm for the SVD requires $4m^2n + 8mn^2 + 9n^3$ flops, we use this figure for comparing flop counts with other algorithms. For further details see [24].

1.5.5 The LDL^T Factorization

The LDL^T factorization of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ takes the form

$$
PAP^T = LDL^T,
$$

(1.5.5)
where $P \in \mathbb{R}^{n \times n}$ is a permutation matrix, $L \in \mathbb{R}^{n \times n}$ is unit lower triangular, and $D \in \mathbb{R}^{n \times n}$ is block diagonal, with blocks having dimension 1 or 2.

The factorization is computed as follows. Suppose we can find a permutation Π such that

$$
\Pi \Pi^T = \begin{bmatrix}
E & C^T \\
C & B
\end{bmatrix},
$$

where E is of order 1 or 2 and nonsingular. We can then factorize

$$
\Pi \Pi^T = \begin{bmatrix}
I_s & 0 \\
CE^{-1} & I_{n-s}
\end{bmatrix} \begin{bmatrix}
E & 0 \\
0 & B - CE^{-1}C^T
\end{bmatrix} \begin{bmatrix}
I_s & E^{-1}C^T \\
0 & I_{n-s}
\end{bmatrix}.
$$

Repeating the process recursively on $B - CE^{-1}C^T$ gives the factorization. The algorithm requires $n/3$ flops plus the permutation overhead.

The permutations Π, and whether $s = 1$ or 2 can be determined by several different methods. Two such methods are:

- **Partial Pivoting** due to Bunch and Kaufman [8], where at each stage only two columns need to be searched and only $O(n^2)$ comparisons are required.

- **Rook Pivoting** due to Ashcroft, Grimes and Lewis [2], which is similar to partial pivoting but has an iterative stage.

See [29] for further details and an error analysis.

We can reduce the block diagonal matrix D to diagonal form by applying a spectral decomposition to each 2-by-2 block in D, if

$$
D = \text{diag}(D_{11}, D_{22}, \ldots, D_{pp})
$$

for p blocks and D_{ii} is either a single entry or a 2-by-2 block, then we factor the 2-by-2 blocks

$$
D_{ii} = Q_{ii} \tilde{D}_{ii} Q_{ii}^T,
$$

46
where \tilde{D}_{ii} is diagonal and we have

$$Q = \text{diag}(Q_{11}, Q_{22}, \ldots, Q_{pp})$$

where Q_{11} is either 1 or a 2-by-2 block corresponding to the dimension of the D_{ii}, and so we have finally

$$A = LQDQ^TL^T, \quad (1.5.6)$$

where D is diagonal, containing the 1-by-1 D_{ii} or the 2-by-2 \tilde{D}_{ii}.

See Appendix C for lqdtlt.m, a MATLAB implementation.

1.5.6 The Cholesky Factorization

We look at this factorization in detail in Chapter 2.

1.6 The BLAS and LAPACK

1.6.1 Blocked Algorithms and the BLAS

All modern computers operate a memory hierarchy, with the fastest to access being registers where the actual computation is done down to the disk which is the slowest to access. From fastest to slowest we have

$$\text{registers} \rightarrow \text{cache} \rightarrow \text{memory} \rightarrow \text{disk}.$$

Data must move through the levels of memory to be used in the registers. Moving between levels at the bottom of the hierarchy can be slower than the arithmetic in the registers. Thus our algorithms must be designed to exploit this structure, minimizing the amount of data movement. We would like to reuse data in the cache as much as possible.
The Basic Linear Algebra Subprograms (BLAS) [32], [20], [18] are Fortran and C library routines for carrying out common linear algebra operations, and optimized versions are available for specific computer architectures. They are organized into three levels.

- Level 1 - Vector operations, such as inner products and scalar/vector multiplication.

- Level 2 - Matrix-Vector operations, such as solving triangular systems and matrix/vector multiplication.

- Level 3 - Matrix-Matrix operations, such as solving triangular systems with multiple right-hand sides and matrix/matrix multiplication.

Thus we would like to organize our algorithms so we can call these optimized subroutines. In fact, it is highly desirable that our algorithms exploit the Level 3 BLAS. Consider the three related operations

\[y = \alpha x + y, \quad y = Ax + y, \quad C = AB + C, \]

where \(A, B, C \in \mathbb{R}^{m \times n}, \) \(x, y \in \mathbb{R}^n \) and \(\alpha \in \mathbb{R} \). Table 1.6.1 shows the amount of flops and memory references required for these operations.

Table 1.6.1: Level 1, 2 and 3 BLAS operations and the flops and memory references required.

<table>
<thead>
<tr>
<th>Operation</th>
<th>BLAS Level</th>
<th>flops (f)</th>
<th>memory references (m)</th>
<th>f/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = \alpha x + y)</td>
<td>Level 1</td>
<td>2n</td>
<td>3n + 1</td>
<td>2/3</td>
</tr>
<tr>
<td>(y = Ax + y)</td>
<td>Level 2</td>
<td>2n^2</td>
<td>n^2 + 3n</td>
<td>2</td>
</tr>
<tr>
<td>(C = AB + C)</td>
<td>Level 3</td>
<td>2n^3</td>
<td>4n^2</td>
<td>n/2</td>
</tr>
</tbody>
</table>

It is clear that Level 3 operations can have a much higher ratio of flops to memory references than lower level BLAS operations, thus reducing the data
movement overhead. This is illustrated in Figure 1.6.1 which shows the speed of the three operations in Table 1.6.1 on an IBM RS6000/590.

![Figure 1.6.1: BLAS flop rate on IBM RS6000/590.](image)

The Level 3 operation peaks at nearly 250 Mflops/sec. The maximum theoretical machine speed is 264 Mflops/sec. The Level 2 operation peaks at nearly 150 Mflops/sec and the Level 1 operation below 50 Mflops/sec. The plot shows the common phenomenon of speed increase for larger matrices.

We seek to write blocked algorithms like the blocked QR factorization in Section 1.4.2. Algorithm 1.4.6 involves more Level 3 BLAS operations and less Level 2 BLAS operations than the unblocked version, Algorithm 1.4.4, but does require more flops. In this case this was achieved by delaying the update of the trailing matrix until we had factored a whole column block. Thus by Figure 1.6.1 we would expect to achieve more Mflops/sec and an overall shorter computation time for the factorization, as the additional flops are negligible compared to the speedup the plot implies.
Also in blocked algorithms a whole block may be held in the cache memory while it is used, negating the need to move the data from main memory and potentially decreasing computation time.

The block size \(n_b \) in Algorithm 1.4.6 must still be decided. The choice is dependent on the individual algorithm and the computer hardware it is to run on, but is typically 32 or 64.

1.6.2 LAPACK

LAPACK [1] is a library of Fortran 77 routines for common problems in numerical linear algebra. They include routines for solving linear systems of equations, least squares problem, eigenvalue problems and matrix factorizations.

The library is built on the BLAS routines as much as possible, helping to make it portable. In particular the Level 3 BLAS are exploited as much as possible.

The codes we present in Chapter 2 and Chapter 4 are written in the style of LAPACK.

1.6.3 The Choice of Block Size in our Codes.

The code in this thesis is written to fit into the LAPACK library. Thus the block size is intended to be returned by the LAPACK routine ILAENV, which performs this task. It is assumed that an installer of LAPACK will have sufficient knowledge of the system to amend the values in ILAENV where necessary.

If a user wishes to use the routines in this thesis and does not have LAPACK installed on their system, then they can remove the call to ILAENV and specify the block size explicitly in the source code of the routine. If the user is experienced in using the BLAS on their system than the choice of block size...
may be obvious. However, if this is not the case the user is advised to start with a value of 32 and reach an optimum figure for their system empirically.

1.7 The Computing Environment

The numerical experiments reported in this thesis were run on various PCs running the Linux operating system. The details of the particular machines are given in the relevant sections.

The compiler used for the Fortran code was the GNU Fortran 77 compiler, g77, and was at version 3.2. No optimization was applied at compile time, which is the default for this compiler. Two flags were used, namely

- `Wall` which turns on all warnings the compiler can give, and
- `ffortran-bounds-check` which checks that the code does not attempt to reference an index of an array outside the specified bounds.

Thus, compilation of a code called `code.f` looked like:

```
g77 -c -Wall -ffortran-bounds-check code.f.
```

The BLAS used on the PCs was the Automatically Tuned Linear Algebra Software (ATLAS) BLAS [3]. This was compiled on a 1.4GHz AMD Athlon with 256MB of memory.

When timing of code was undertaken, the code was run 3 or 4 times to ensure consistency. The mean time is given. The PCs being used are available for remote access, thus we need to check no other user has logged in during a run of experiments, using computer resources and potentially slowing down our results. Also, since the operating system is always performing a task then a mean time will give a better estimate of the time required to run the code.
A task that requires a lot of computer resources may be carried out during one particular run giving an inaccurate estimate of time.

There is no significance in repeating the runs 3 or 4 times. This was an inconsistency of the author’s over the time this thesis was written.

1.8 Performance Profiles

A convenient way of comparing the results of different methods in computation is performance profiles, due to Dolan and Moré [17].

Suppose we have a set of test problems, \(P \), and a set of solvers, \(S \). We distinguish solvers from methods: a solver is an implementation of a method and may not be unique. Let \(t_s(p) \in \mathbb{R} \) measure the performance of solver \(s \in S \) on test problem \(p \in P \). This scalar measure could be typically speed, accuracy or the flop count, and a smaller measure represents a better performance. Define the performance ratio

\[
r_{p,s} = \frac{t_s(p)}{\min\{t_\sigma(p) : \sigma \in S\}} \geq 1,
\]

which is the performance of solver \(s \) on the problem \(p \) divided by the best performance across all solvers on this problem. The performance profile of solver \(s \) is

\[
\phi_s(\theta) = \frac{1}{\text{number of problems}} \times \text{number of } p \in P \text{ such that } r_{p,s} \leq \theta, \quad \theta \geq 1.
\]

That is \(\phi_s(\theta) \) is the probability that solver \(s \) is within a factor \(\theta \) of the best solver on the set of test problems.

The performance profile is then generated by plotting \(\phi_s(\theta) \) against \(\theta \) over all solvers \(s \). This is implemented in the MATLAB M-file `perfprof.m` [26].
Chapter 2

The Pivoted Cholesky Factorization

2.1 Introduction

The Cholesky factorization of a symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ has the form

$$ A = LL^T, $$

where $L \in \mathbb{R}^{n \times n}$ is a lower triangular matrix with positive diagonal elements. If A is positive semidefinite, of rank r, there exists a Cholesky factorization with complete pivoting ([29, Thm. 10.9], for example). That is, there exists a permutation matrix $P \in \mathbb{R}^{n \times n}$ such that

$$ P^T AP = LL^T, \quad (2.1.1) $$

where L is unique in the form

$$ L = \begin{bmatrix} L_{11} & 0 \\ L_{12} & 0 \end{bmatrix}, $$
with $L_{11} \in \mathbb{R}^{r \times r}$ lower triangular with positive diagonal elements. L satisfies

$$
\ell_{kk}^2 \geq \sum_{j=k}^{\min(i,r)} \ell_{ij}^2, \quad i = k + 1; n, \quad k = 1; r,
$$

and

$$
\ell_{11} \geq \ell_{22} \geq \cdots \geq \ell_{rr}.
$$

A common occurrence of positive semidefinite matrices is in statistics, namely covariance matrices. The (i,j)th element of a covariance matrix, S, holds the sample covariance of the ith and jth random variable.

If $P \in \mathbb{R}^{m \times n}$ holds m observations of n random variables then the sample covariance is defined as

$$
s_{ij} = \frac{1}{m-1} (p_i - \bar{p}_i)^T (p_j - \bar{p}_j), \quad \bar{p}_k = \frac{1}{m} \sum_{l=1}^{m} p_{lk},
$$

where p_k is the kth column of P and \bar{p}_k is the sample mean of the kth random variable. It can be shown, see [33] for example, that S is positive semidefinite of rank at most $m - 1$. Thus the number of observations need to be greater than the number of random variables for the covariance matrix to be positive definite. This is often not the case.

Covariance matrices are found in many applications such as statistical signal processing and financial modeling. The factorization of these covariance matrices arise in algorithms in theses areas, and the pivoted Cholesky factorization is therefore employed.

The factorization is also used in some algorithms solving the linear least squares problem

$$
\min_{x} \| Ax - b \|_2, \quad A \succeq 0,
$$

and as a test for whether a matrix is numerically positive semidefinite or not.
However, our motivation for the work in this chapter is the efficient factorization of B in the symmetric semidefinite generalized eigenvalue problem

$$Ax = \lambda Bx, \quad B \succeq 0,$$

where A and B are symmetric. This is the topic of the next chapter.

In LINPACK the routines \texttt{xCHDC} perform the Cholesky factorization with complete pivoting, but it uses only Level 1 BLAS. For computational efficiency we would like a routine that exploits the Level 2 or Level 3 BLAS.

In this chapter we describe a ‘gaxpy’ Level 2 BLAS algorithm for the positive definite case, and show how complete pivoting can be incorporated for the semidefinite case. We describe the existing LAPACK Level 3 code and explain why this code cannot be altered to include pivoting. We give an alternative Level 3 algorithm and show that this can include pivoting. The Level 3 code calls the Level 2 code for small n. Finally we report on some numerical experiments.

2.2 A Level 2 Gaxpy Algorithm

Gaxpy stands for generalized Ax plus y, and is thus a matrix-vector multiplication with a vector addition. Comparing the jth columns in $A = LL^T$ we have [24]

$$A(:,j) = \sum_{k=1}^{j} L(:,k)L^T(k,j) = \sum_{k=1}^{j} L(j,k)L(:,k),$$

and therefore

$$L(j,j)L(:,j) = A(:,j) - \sum_{k=1}^{j-1} L(j,k)L(:,k).$$

Defining

$$v := A(:,j) - \sum_{k=1}^{j-1} L(j,k)L(:,k),$$

$$L(j,j)L(:,j) = v - L(j,j)v.$$
then if we know the first \(j - 1 \) columns of \(L \) then \(v \) is computable.

Now, \(L(1: j - 1, j) = 0 \) which implies \(v(1: j - 1) = 0 \) and comparing terms we have that

\[
L(j, j)^2 = v(j),
\]

so we have finally

\[
L(j: n, j) = v(j: n) / \sqrt{v(j)},
\]

which leads to the following gaxpy-based algorithm.

Algorithm 2.2.1 This algorithm computes the Cholesky factorization \(A = LL^T \) of a symmetric positive definite matrix \(A \in \mathbb{R}^{n \times n} \), overwriting \(A \) with \(L \).

Set \(L \) = lower triangular part of \(A \)
for \(j = 1: n \)

(*) \n
\[
L(j, j) = L(j, j) - L(j, 1: j - 1)L(j, 1: j - 1)^T
\]

if \(L(j, j) \leq 0 \)

\[\text{return } \% A \text{ is not positive definite}\]

\[
L(j, j) = \sqrt{L(j, j)}
\]

% Update \(j \)th column
if \(1 < j < n \)

\[
L(j + 1: n, j) = L(j + 1: n, j) - L(j + 1: n, 1: j - 1)L(j, 1: j - 1)^T
\]

end

if \(j < n \)

\[
L(j + 1: n, j) = L(j + 1: n, j) / L(j, j)
\]

end

end

The (Level 2 BLAS) LAPACK [1] subroutines \(xPOTF2 \) use this algorithm.

It requires \(n^3/3 \) flops.

2.3 A Level 2 Pivoted Gaxpy Algorithm

We can introduce pivoting into Algorithm 2.2.1, for \(L = (\ell_{ij}) \), by finding the largest possible \(\ell_{jj} \) at (*) from the remaining \(n - j + 1 \) diagonal elements and
using it as the pivot. We find

\[q = \min \left\{ p : L(p, p) - d(p) = \max_{j \leq i \leq n} \{L(i, i) - d(i)\} \right\} \quad (2.3.1) \]

where \(d \) is a vector of dot products with

\[d(i) = L(i, 1:j - 1)L(i, 1:j - 1)^T, \quad i = j:n, \quad (2.3.2) \]

and swap rows and columns \(q \) and \(j \), putting the pivot \(\ell_{q q} \) into the lead position. This is complete pivoting.

For computational efficiency we can store the inner products in (2.3.2) and update them on each iteration. This approach gives the following pivoted gaxpy algorithm.

Algorithm 2.3.1 This algorithm computes the pivoted Cholesky factorization with complete pivoting \(P^T A P = LL^T \) of a symmetric positive semidefinite matrix \(A \in \mathbb{R}^{n \times n} \), overwriting \(A \) with \(L \). The nonzero elements of the permutation matrix \(P \) are given by \(P(piv(k), k) = 1, k = 1:n \).

Set \(L = \) lower triangular part of \(A \)
\(dots(1:n) = 0 \) \quad \% \text{Store accumulated dot products}
\(piv = 1:n \)
for \(j = 1:n \)
if \(j > 1 \)
\(dots(i) = dots(i) + L(i, j - 1)^2, \quad i = j:n \)
end
\(q = \min \left\{ p : L(p, p) - dots(p) = \max_{j \leq i \leq n} \{L(i, i) - dots(i)\} \right\} \)
(\#) if stopping criterion is met
\(\% \text{computed rank of} \ A \ \text{is} \ j - 1 \)
end
swap \(L(j,:) \) and \(L(q,:) \)
swap \(L(:,j) \) and \(L(:,q) \)
swap \(dots(j) \) and \(dots(q) \)
swap \(piv(j) \) and \(piv(q) \)
\(L(j,j) = L(j,j) - dots(j) \)
\(L(j,j) = \sqrt{L(j,j)} \)
\(\% \text{Update} \ j \text{-th column} \)
if \(1 < j < n\)
\[
L(j + 1: n, j) = L(j + 1: n, j) - L(j + 1: n, 1: j - 1)L(j, 1: j - 1)^T
\]
end
if \(j < n\)
\[
L(j + 1: n, j) = L(j + 1: n, j) / L(j, j)
\]
end

The pivoting overhead is \(3(r+1)n - 3/2(r+1)^2\) flops and \((r+1)n - (r+1)^2/2\) comparisons, where \(r = \text{rank}(A)\).

The computed rank, \(\hat{r}\), of \(A\) is determined by a stopping criterion at (#) in Algorithm 2.3.1. For a positive semidefinite matrix \(A\), in exact arithmetic [24, Thm. 4.2.6]

\[
a_{ii} = 0 \Rightarrow A(i, :) = 0, \ A(:, i) = 0.
\]

Then at the \(j\)th iteration if the pivot, which we will denote by \(\chi_{jj}^{(j)}\), is less than or equal to some tolerance, \(\text{tol}\), then

\[
\text{tol} \geq \chi_{jj}^{(j)} \geq \chi_{ii}^{(j)}, \ i = j + 1: n,
\]

and we set the trailing matrix \(L(j: n, j:n) = 0\) and the computed rank is \(j - 1\).

Three possible stopping criteria are discussed in [29, Sec. 10.3.2]. The first is used in LINPACK’s code for the Cholesky factorization with complete pivoting, \texttt{xCHDC}. Here the algorithm is stopped on the \(k\)th step if

\[
\chi_{ii}^{(k)} \leq 0, \ i = k:n.
\]

In practice \(\hat{r}\) may be greater than \(r\) due to rounding errors.

In [29] the other two criteria are shown to work more effectively. The first is

\[
\|\tilde{S}_k\| \leq \epsilon\|A\| \text{ or } \chi_{ii}^{(k)} \leq 0, \ i = k:n,
\]

\[(2.3.4)\]
where \(\tilde{S}_k = A_{22} - A_{12}^T A_{11}^{-1} A_{12} \), with \(A_{11} \in \mathbb{R}^{k \times k} \) the leading submatrix of \(A \), is the Schur complement of \(A_{11} \) in \(A \), while the second is

\[
\max_{k \leq i \leq n} \chi^{(k)}_{ii} \leq \epsilon \chi^{(1)}_{11},
\]

where in both cases \(\epsilon = nu \), and \(u \) is the unit roundoff. The latter test is related to (2.3.4) in that if \(A \) and \(\tilde{S}_k \) are positive semidefinite then

\[
\chi^{(1)}_{11} = \max_{i,j} |a_{ij}| \approx \| A \|_2, \quad \text{and}, \quad \max_{k \leq i \leq n} \chi^{(k)}_{ii} \approx \| \tilde{S}_k \|_2.
\]

We have used the latter criterion, preferred for its lower computational cost. See Appendix A for the double precision Fortran 77 code lev2pcho1.f.

2.4 LAPACK’s Level 3 Algorithm

The (Level 3 BLAS) LAPACK subroutines xPOTRF compute the Cholesky factorization of a block partitioned matrix. Starting with \(L^{(0)} = A \), the algorithm computes the current block column of \(L \) using the previously computed blocks and does not update the trailing matrix. We have at the \(k \)th step

\[
\begin{bmatrix}
L_{11}^{(k-1)} & L_{12}^{(0)} & L_{13}^{(0)} \\
L_{21}^{(k-1)} & L_{22}^{(0)} & L_{23}^{(0)} \\
L_{31}^{(k-1)} & L_{32}^{(0)} & L_{33}^{(0)} \\
\end{bmatrix},
\]

where \(L_{11}^{(k-1)} \in \mathbb{R}^{(k-1)n_b \times (k-1)n_b} \), for some block size \(n_b \), is lower triangular and we wish to update the \(k \)th block column

\[
\begin{bmatrix}
L_{12}^{(0)} \\
L_{22}^{(0)} \\
L_{32}^{(0)} \\
\end{bmatrix},
\]

making \(L_{22}^{(k)} \in \mathbb{R}^{n_b \times n_b} \) lower triangular and \(L_{12}^{(k)} \) zero. The \(k \)th step is as follows:
set $L_{12}^{(k)} = 0$
$L_{22}^{(k)} = L_{22}^{(0)} - L_{21}^{(k-1)}L_{21}^{(k-1)^T}$
factorize $L_{22}^{(k)} = 	ilde{L}^T$
if this factorization fails
A is not positive definite
else
$L_{22}^{(k)} = 	ilde{L}$
$L_{32}^{(k)} = L_{32}^{(0)} - L_{31}^{(k-1)}L_{21}^{(k-1)^T}$
solve $XL_{22}^{(k)} = L_{32}^{(k)}$, for X
$L_{32}^{(k)} = X$
end

In order to add pivoting to this algorithm we would need to decide all the pivots for the kth block column, carry out the required permutations, and continue with the step above.

The pivot for the first column can be found by computing all the possible diagonal elements as $(2.3.1)$. To repeat this to find the second pivot we need first to update the vector of dot products, which can only be achieved by updating the first column of the kth block. So we have performed a complete step of Algorithm 2.3.1, before we find the second pivot. Thus in determining all the pivots for the current block column we will have formed $L_{22}^{(k)}$ and $L_{32}^{(k)}$ by Algorithm 2.3.1. We would like an algorithm with Level 3 operations that is independent of the pivoting.

2.5 A Level 3 Pivoted Algorithm

We can write for the semidefinite matrix $A^{(k-1)} \in \mathbb{R}^{n \times n}$ and $n_b \in \mathbb{R}$ \cite{24}

$$A^{(k-1)} = \begin{bmatrix} A_{11}^{(k-1)} & A_{12}^{(k-1)} \\ A_{21}^{T(k-1)} & A_{22}^{(k-1)} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 \\ L_{21} & I_{n-n_b} \end{bmatrix} \begin{bmatrix} I_{n_b} & 0 \\ 0 & A^{(k)} \end{bmatrix}^{T},$$

where $L_{11} \in \mathbb{R}^{n_b \times n_b}$ and $L_{21} \in \mathbb{R}^{(n-n_b) \times n_b}$ form the first n_b columns of the Cholesky factor L of $A^{(k-1)}$. Now to complete our factorization of $A^{(k-1)}$ we
need to factor the reduced matrix

\[A^{(k)} = A^{(k-1)}_{22} - L_{21} L_{21}^T, \]
(2.5.1)

which we can explicitly form, taking advantage of symmetry.

From this representation we can derive a block algorithm. We start with
\(A^{(0)} = A \) and a block size \(n_b \). At the \(k \)th step we apply the equivalent of \(n_b \) steps of Algorithm 2.3.1 to \(A^{(k-1)} \) to form \(n_b \) columns of \(L \). We then update the trailing matrix \(A^{(k)} \), which is of dimension \(n - kn_b \), according to (2.5.1). We then repeat the process with \(A^{(k)} \), the factorization of which is independent of the columns of \(L \) already formed. This is a pivoted algorithm, as Algorithm 2.3.1 acts on the whole trailing matrix.

At each step the Level 2 part of the algorithm requires \(n - (k - 1)n_b \) flops and the Level 3 update requires \((n - kn_b)^3/3 \) flops. The Level 3 fraction is approximately \(1 - 3n_b/2n \).

Algorithm 2.5.1 This algorithm computes the pivoted Cholesky factorization with complete pivoting \(P^T A P = LL^T \) of a symmetric positive semidefinite matrix \(A \in \mathbb{R}^{n \times n} \), overwriting \(A \) with \(L \), using a Level 3 update and block size \(n_b \). The nonzero elements of the permutation matrix \(P \) are given by \(P(piv(k), k) = 1, k = 1:n \).

Set \(L \) = lower triangular part of \(A \)
\[
\epsilon = nu \\
piv = 1:n \\
\text{for } k = 1:n_b:n \\
\quad \text{\(jb = \min(n_b, n - k + 1) \)} \quad \text{\% Allow for last incomplete block} \\
\quad \text{\(dots(k:n) = 0 \)} \quad \text{\% Store accumulated dot products} \\
\quad \text{\(tol = n \times u \times \max(\text{diag}(A)) \)} \quad \text{\% Tolerance in stopping criterion} \\
\quad \text{for } j = k:k+jb-1 \\
\qquad \text{if } j > k \\
\qquad \quad \text{\(dots(i) = dots(i) + L(i, j-1)^2, \quad i = j:n \)} \\
\qquad \text{end} \\
\quad \text{end} \\
q = \min \left\{ p : L(p,p) - dots(p) = \max_{j \leq i \leq n} \{ L(i,i) - dots(i) \} \right\}
if \(L(q, q) \leq tol \)
 return \(\% \) computed rank of \(A \) is \(j - 1 \)
end

swap \(L(j,:) \) and \(L(q,:) \)
swap \(L(:,j) \) and \(L(:,q) \)
swap \(\text{dots}(j) \) and \(\text{dots}(q) \)
swap \(\text{piv}(j) \) and \(\text{piv}(q) \)

\[
L(j,j) = L(j,j) - \text{dots}(j)
\]

\[
L(j,j) = \sqrt{L(j,j)}
\]

\(\% \) Update \(j \)th column
if \(1 < j < n \)
 \[
 L(j+1:n,j) = L(j+1:n,j) - L(j+1:n,1:j-1)L(j,1:j-1)^T
 \]
end
if \(j < n \)
 \[
 L(j+1:n,j) = L(j+1:n,j)/L(j,j)
 \]
end
if \(k+jb < n \)
 \% perform Level 3 update
 \[
 L(j+1:n,j+1:n) = L(j+1:n,j+1:n) - L(j+1:n,1:j)L(j+1:n,1:j)^T
 \]
end
end

See Appendix A for the double precision Fortran 77 code lev3pchol.f.

2.6 Numerical Experiments

We tested and compared four Fortran subroutines:

- LINPACK’s `DCHDC` [21], which uses Level 1 BLAS and stopping criterion (2.3.3).

- LINPACK’s `DCHDC`, altered to use stopping criterion (2.3.5).
• An implementation of Algorithm 2.3.1, obtained by modifying LAPACK’s DPUTF2, using stopping criterion (2.3.5): lev2pcho1.f in Appendix A.

• An implementation of Algorithm 2.5.1, again using stopping criterion (2.3.5): lev3pcho1.f in Appendix A.

The tests were performed on a 1400MHz AMD Athlon running Red Hat Linux version 6.2 with kernel 2.2.22 and a Sun 167MHz UltraSparc running Solaris version 2.7. All test matrices were generated in MATLAB 6.5. The unit roundoff $u \approx 1.1e-16$.

We test the speed of computation, the normwise backward error and the rank revealing properties of the routines. In all cases the results for the Linux machine are given. The results on the Sun for backward error and rank detection were indistinguishable from those on the Linux machine. The timings on the Sun were much greater than, but in proportion to, those on the Linux machine.

2.6.1 Speed Tests

We first compared the speed of the factorization of the LINPACK code and our Level 2 and 3 routines for different sizes of $A \in \mathbb{R}^{n \times n}$. We generated random symmetric positive semidefinite matrices of order n and rank $r = 0.7n$ by computing

$$A = \sum_{i=1}^{0.7n} xx^T, \quad x = \text{rand}(n, 1),$$

where the MATLAB command rand$(n, 1)$ generates a random vector, with elements uniformly distributed on $(0, 1)$, of length n. For each value of n the codes were run four times and the mean times are shown in Figure 2.6.1. The speedups of the new codes over the LINPACK code are given in Table 2.6.1.
We achieve a good speedup, with the Level 3 code as much as 8 times faster than the LINPACK code.

We also compared the speed of the unpivoted LAPACK subroutines against our Level 2 and Level 3 pivoted codes, using full rank matrices, to demonstrate the pivoting overhead. Figure 2.6.2 shows the ratio of speed of the pivoted codes to the unpivoted codes. These show that the pivoting overhead is negligible for large n, recalling the pivoting overhead is $3rn - 3/2r^2$ flops, and the unpivoted factorization is of order n^3. The use of the pivoted codes instead of the unpivoted ones could be warranted if there is any doubt over whether a matrix is positive definite.
Table 2.6.1: Speedups of our codes compared with LINPACK code.

<table>
<thead>
<tr>
<th>n</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEV2PCHOL</td>
<td>2.05</td>
<td>2.21</td>
<td>2.35</td>
<td>2.29</td>
<td>2.33</td>
<td>2.32</td>
</tr>
<tr>
<td>LEV3PCHOL</td>
<td>5.30</td>
<td>6.03</td>
<td>6.90</td>
<td>7.52</td>
<td>7.78</td>
<td>8.05</td>
</tr>
</tbody>
</table>

2.6.2 Backward Error Tests and Rank Detection

We tested all four subroutines on a further set of random positive semidefinite matrices, this time with pre-determined eigenvalues, similar to the tests in [27]. The matrices were generated by setting $A = QAQ^T$ where Q was a random orthogonal matrix computed by the method of Stewart [48] using qmult.m [35].

For matrices of rank r we chose the nonzero eigenvalues in three ways:

- Case 1: $\lambda_1 = \lambda_2 = \cdots = \lambda_{r-1} = 1, \quad \lambda_r = \alpha \leq 1$
- Case 2: $\lambda_1 = 1, \quad \lambda_2 = \lambda_3 = \cdots = \lambda_r = \alpha \leq 1$
- Case 3: $\lambda_i = \alpha^{i-1}, \quad 1 \leq i \leq r, \quad \alpha \leq 1$

Here, α was chosen to vary $\kappa_2(A) = \lambda_1/\lambda_r$.

For each case we constructed a set of 100 matrices by using every combination of:

$$n = \{70, 100, 200, 500, 1000\},$$

$$\kappa_2(A) = \{1, 1e+3, 1e+6, 1e+9, 1e+12\},$$

$$r = \{0.2n, 0.3n, 0.5n, 0.9n\},$$

where $r = \text{rank}(A)$. We computed the relative normwise backward error

$$\frac{\|A - \hat{P}\hat{L}\hat{L}^T\hat{P}^T\|_2}{\|A\|_2},$$
Figure 2.6.2: Speed ratio of pivoted codes over LAPACK codes for the full rank case.

for the computed Cholesky factor \(\hat{L} \) and permutation matrix \(\hat{P} \). We have, from [29, Thm. 10.22], the following upper bound

\[
\frac{\|A - \hat{P} \hat{L} \hat{L}^T \hat{P}^T\|_2}{\|A\|_2} \leq 2r \gamma_{r+1} (\|W\|_2 + 1)^2 + O(u^2),
\]

(2.6.1)

where

\[
W = \hat{L}_{11}^{-1} \hat{L}_{12}, \quad \hat{L} = \begin{bmatrix} \hat{L}_{11} & 0 \\ \hat{L}_{12} & 0 \end{bmatrix}, \quad \hat{L}_{11} \in \mathbb{R}^{x r}, \quad \gamma_{r+1} = \frac{c(r + 1)u}{1 - c(r + 1)u},
\]

and \(u \) is the unit roundoff, \(c \) is a small integer constant, and from [29, Lemma 10.13],

\[
\|W\|_2 \leq \sqrt{\frac{1}{3} (n - r) (4r - 1)},
\]

(2.6.2)

and so there is no guarantee of stability of the algorithm for large \(n \) and \(r \).
Table 2.6.2: Comparison of normwise backward errors.

<table>
<thead>
<tr>
<th>n</th>
<th>$|W|_2$</th>
<th>70</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>3.58</td>
<td>4.39</td>
<td>7.91</td>
<td>15.12</td>
<td>27.11</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>10.67</td>
<td>12.26</td>
<td>20.62</td>
<td>32.52</td>
<td>66.03</td>
</tr>
<tr>
<td>DCHDC</td>
<td>min</td>
<td>1.654e-16</td>
<td>3.654e-16</td>
<td>6.651e-16</td>
<td>5.504e-15</td>
<td>1.933e-14</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>3.172e-13</td>
<td>1.498e-13</td>
<td>1.031e-12</td>
<td>2.823e-12</td>
<td>4.737e-11</td>
</tr>
<tr>
<td>DCHDC with (2,3,5)</td>
<td>min</td>
<td>1.707e-16</td>
<td>2.561e-16</td>
<td>4.737e-16</td>
<td>1.273e-15</td>
<td>2.687e-15</td>
</tr>
<tr>
<td>LEV2PCHOL</td>
<td>min</td>
<td>1.671e-16</td>
<td>2.526e-16</td>
<td>5.121e-16</td>
<td>1.240e-15</td>
<td>2.597e-15</td>
</tr>
<tr>
<td>LEV3PCHOL</td>
<td>min</td>
<td>1.671e-16</td>
<td>2.476e-16</td>
<td>5.121e-16</td>
<td>1.271e-15</td>
<td>2.600e-15</td>
</tr>
</tbody>
</table>

There was little difference for the normwise backward errors between the three cases and Table 2.6.2 shows minimum and maximum values for different n. The codes with the new stopping criterion give smaller errors than the original LINPACK code. The minimum and maximum values of $\|W\|$ are also given, and show that after r stages the algorithm will have produced a stable factorization. In fact, for all the codes with our stopping criterion \(\hat{r} = r \), and so the rank was detected exactly. This was not the case for the unmodified DCHDC, and the error, \(\hat{r} - r \), is shown in Table 2.6.3.

Table 2.6.3: Errors in computed rank for DCHDC.

<table>
<thead>
<tr>
<th>n</th>
<th>70</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>max</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>19</td>
</tr>
</tbody>
</table>

The larger backward error for the original DCHDC is due to the stopping criterion. As Table 2.6.3 shows, the routine is terminated after more steps than our codes, adding more nonzero columns to \hat{L}. 67
2.7 Checking for Indefiniteness

The algorithm does not attempt to check if the matrix is positive semidefinite and indeed the stopping criterion is based on A being positive semidefinite. For example, if we supplied

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$

then the algorithm would stop after one step, and give the rank to be 1, whereas A is indefinite with eigenvalues of $\{1, 1, -1\}$. A check of the residual

$$\|A - \hat{P}\hat{L}\hat{L}^T\hat{P}^T\|,$$

bearing in mind (2.6.1) and (2.6.2), may allow confirmation that A is not close to being positive semidefinite.

The user could also update the trailing matrix by (2.5.1) to give

$$\tilde{A}^{r+1} = A^{(r+1)}(r+1:n, r+1:n) = A(r)(r+1:n, r+1:n) - \hat{L}_{21}\hat{L}_{21}^T.$$

We know the diagonal elements should be ‘small’ since the algorithm stopped after \hat{r} steps and consequently $\|\tilde{A}^{r+1}\|$ should be negligible, but if $\|\tilde{A}^{r+1}\|$ is large then the original matrix could have been indefinite. However, if $\|W\|$ is large then it is more difficult to reach this conclusion, as there may have been significant error growth during the factorization.

Of course, if there is serious doubt over semidefiniteness then a symmetric indefinite factorization should be used.

2.8 Conclusions

We have presented two Fortran 77 codes for the Cholesky factorization with complete pivoting of a positive semidefinite matrix: a Level 2 BLAS version
and a Level 3 BLAS version. Our tests show that our codes are much faster than the existing LINPACK code on our test machines.

Furthermore, with a new stopping criterion the rank is revealed much more reliably, and this leads to a smaller normwise backward error.

We propose that the double precision Fortran 77 codes lev2pcho1.f and lev3pcho1.f, and their single precision and complex equivalents, be included in LAPACK.

Appendix B contains Fortran 77 testing routines required for submission of the codes in Appendix A to LAPACK.
Chapter 3

The Symmetric Semidefinite Generalized Eigenvalue Problem

3.1 Introduction

We consider the generalized eigenvalue problem

$$Ax = \lambda Bx$$ \hspace{1cm} (3.1.1)

in the case where A and B are real and symmetric and B is positive semidefinite. However, our theory and algorithms extend to the complex Hermitian case.

The symmetric semidefinite generalized eigenvalue problem arises in structural engineering and commonly in vibrational analysis. A vibration analysis requires the solution of the problem

$$Kx = \lambda Mx,$$

where K is the stiffness matrix and M is the mass matrix and is positive semidefinite. The matrices are derived from a finite element analysis of the vibration problem. The λ are the natural frequencies and the x the normal
mode shapes. The solution of the generalized eigenvalue problem form the
solution of the ordinary differential equation

\[M\ddot{y}(t) + Ky(t) = 0. \]

By considering solutions of the form

\[y(t) = xe^{i\omega t}, \]

where \(x \) is a nonzero vector we have the generalized eigenvalue problem

\[-\omega^2 e^{i\omega t} M x + e^{i\omega t} K x = -\omega^2 M x + K x = 0, \quad -\omega^2 = \lambda,\]

as \(e^{i\omega t} \) is nonzero.

Since the matrices are from a finite element analysis they can be arbitrarily
large. Dimensions of \(M \) and \(K \) in the tens of thousand are common.

The symmetric semidefinite generalized eigenvalue problem is used in an-
other structural engineering problem, including buckling analysis. They also
arise in quantum chemistry, electronic engineering and control theory.

Because the dimensions of the matrices can be very large we would like an
algorithm that is efficient as possible and exploits the symmetry of the problem.

We show how to reduce (3.1.1) by congruence transformations to a sym-
matic standard eigenvalue problem. If the pencil \(A - \lambda B \) is nonregular we
deflate it to a regular pencil during the reduction. Our algorithm extends the
work of Fix and Heiberger [23], as generalized by Parlett [41] and Cao [11]. We
generalize the algorithm further by considering a wider choice of congruence
transformations by not limiting ourselves to orthogonal transformations.

We will see that our choice of transformations leads to an algorithm that
has many times less flops than those suggested by the authors above. Also,
the backward error of the computed solution can be as favourable as as that
computed with orthogonal transformations. Thus we show it is possible to increase efficiency of existing algorithms without the lost of numerical stability.

We also compare our algorithm with other methods, neither of which exploit the symmetry of the problem. Namely the QZ algorithm for regular matrix pencils and the GUPTRI algorithm for nonregular pencils. We show that the QZ algorithm produces a solution with a smaller error than is produced by implementations of our algorithm but requires far more flops. Also the QZ algorithm is unsuitable for nonregular pencils. The GUPTRI algorithm that can deal with nonregular pencils always has a larger error than our algorithm in our experiments. Also the implementation of our algorithm with nonorthogonal transformations produces errors comparable with those produced by orthogonal transformations. The flops required by the GUPTRI algorithm is an order of magnitude higher than that required by ours. The GUPTRI algorithm also fails for some of our test problems.

Thus in the general case of nonregular matrix pencils we propose an algorithm that is more efficient and can be as stable as algorithms previously suggested.

The efficient implementation of our algorithm depends upon the algorithm and code we developed in Chapter 2.

We give a full classification of the eigenvalues of the problem and discuss the geometric multiplicity of the eigenvectors.

We will use the notation \(A, B \overset{U}{\mapsto} A', B' \) to denote the transformation

\[
A' = U^T A U, \quad B' = U^T B U.
\]

If \(B = XDX^T \) and \(X \) is singular then we define \(\overline{X} \) such that

\[
A, B \overset{\overline{X}}{\mapsto} A', D,
\]
where \bar{X} is nonsingular. For example, the pivoted Cholesky factorization of P^TBP yields a factor

$$X = L = \begin{bmatrix} L_{11} & 0 \\ L_{21} & 0 \end{bmatrix},$$

where L_{11} is nonsingular with dimension the rank of B, and X is singular. We define

$$\bar{X} = \begin{bmatrix} L_{11} & 0 \\ L_{21} & I \end{bmatrix},$$

and

$$A, \; P^TBP \xrightarrow{\bar{X}^{-T}} \lambda A', \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}.$$

For a general matrix, C, with a factorization, $C = XGZ$, we form transformation matrices in an equivalent way.

3.2 A General Method

3.2.1 Step One

First we diagonalize the symmetric positive semidefinite matrix B by computing an RRD (rank revealing decomposition)

$$B = X_1 \text{diag}(D_1, D_2) X_1^T,$$

where $D_1 \in \mathbb{R}^{r_1 \times r_1}$ is positive definite and $D_2 \in \mathbb{R}^{r_2 \times r_2}$, with r_1 chosen minimally so that $\|D_2\|_2 \leq \eta \|D_1\|_2$ and η is described in Section 1.5. We set $D_2 = 0$. We thus transform the pencil $A - \lambda B$ according to

$$A, \; B \xrightarrow{\bar{X}_{1}^{-T}} A^{(1)}, \; B^{(1)} = \begin{bmatrix} A_{11}^{(1)} & A_{12}^{(1)} \\ A_{12}^{(1)} & A_{22}^{(1)} \end{bmatrix}, \text{diag}(D_1, 0).$$
3.2.2 Step Two

We now transform D_1 to the identity. We define $U_2 = \text{diag}(D_1^{-1/2}, I_{r_2})$ and then

$$A^{(1)}, B^{(1)} \xrightarrow{U_2} A^{(2)}, B^{(2)} \equiv \begin{array}{c c c}
 1 & 2 & 1 \\
 r_1 & r_2 & \end{array} \begin{bmatrix}
 A_{11}^{(2)} & A_{12}^{(2)} \\
 A_{21}^{(2)T} & A_{22}^{(2)} \\
 \end{bmatrix}, \text{diag}(I_{r_1}, 0).$$

If B is positive definite then $r_2 = 0$ and we can now solve the standard eigenvalue problem

$$A^{(2)} z = \lambda z, \quad x = X_1^{-T} U_2 z.$$

If B is positive semidefinite we proceed to step three.

3.2.3 Step Three

We now reduce $A_{22}^{(2)}$ to diagonal form. Compute the RRD

$$A_{22}^{(2)} = X_3 \Phi_3 X_3^T,$$

where the diagonal matrix

$$\Phi_3 = \begin{array}{c c c}
 1 & 2 & 0 \\
 r_3 & r_4 & \end{array} \begin{bmatrix}
 \Phi_{11} & 0 \\
 0 & \Phi_{22} \\
 \end{bmatrix},$$

where $r_2 = r_3 + r_4$ and r_3 is chosen minimally so that $\|\Phi_{22}\|_2 \leq \eta \|\Phi_{11}\|_2$. We set $\Phi_{22} = 0$ and define $U_3 = \text{diag}(I_{r_1}, X_3^{-T})$ and hence transform

$$A^{(2)}, B^{(2)} \xrightarrow{U_3} A^{(3)}, B^{(3)},$$

where

$$A^{(3)} = \begin{array}{c c c c}
 1 & 2 & 3 & 4 \\
 r_1 & r_3 & r_4 & \end{array} \begin{bmatrix}
 A_{11}^{(3)} & A_{12}^{(3)} & A_{13}^{(3)} \\
 A_{12}^{(3)T} & A_{22}^{(3)} & 0 \\
 A_{13}^{(3)T} & 0 & 0 \\
 \end{bmatrix}, \quad B^{(3)} = B^{(2)} = \text{diag}(I_{r_1}, 0),$$

74
and \(D^{(3)}_{22} = \Phi_{11} \).

Now if \(r_4 = 0 \), the last row and column of \(A^{(3)} \) is not present and we have the eigenproblem, which we now write in \((\alpha, \beta)\) form \((\lambda = \alpha/\beta)\),

\[
\begin{pmatrix}
 r_1 \\
 r_2
\end{pmatrix}
\begin{bmatrix}
 A^{(3)}_{11} & A^{(3)}_{12} \\
 A^{(3)\top}_{12} & D^{(3)}_{22}
\end{bmatrix}
\begin{bmatrix}
 w_1 \\
 w_2
\end{bmatrix}
= \alpha
\begin{bmatrix}
 I_{r_1} & 0 \\
 0 & 0
\end{bmatrix}
\begin{bmatrix}
 w_1 \\
 w_2
\end{bmatrix}.
\tag{3.2.1}
\]

Solving for \(w_2 \) gives

\[
w_2 = -D^{(3)}_{22}^{-1}A^{(3)\top}_{12}w_1
\]

and hence we obtain the \(r_1 \)-by-\(r_1 \) symmetric eigenvalue problem

\[
\beta(A^{(3)}_{11} - A^{(3)\top}_{12}D^{(3)}_{22}^{-1}A^{(3)}_{12})w_1 = \alpha w_1.
\tag{3.2.2}
\]

Thus there are \(r_1 \) finite eigenvalues. There are also \(r_2 \) infinite eigenvalues corresponding to \(\beta = 0 \). Solving (3.2.2) in this case gives \(w_1 = 0 \), and the \(w_2 \) are arbitrary provided they are linearly independent, so we set \(r_2 \ w_2 = e_i \in \mathbb{R}^2, \ i = 1: r_2 \). The eigenvectors of the original problem are then given by

\[
x = X_1^T U_2 U_3 w.
\]

The eigenvectors corresponding to the infinite eigenvalues are the null vectors of \(B \).

If \(r_4 > 0 \) and \(A^{(3)}_{13} = 0 \) then \(\det(A^{(3)} - \lambda B^{(3)}) \equiv 0 \) and hence the pencil \(A - \lambda B \) is nonregular. On removing the last \(r_4 \) rows and columns we deflate the nonregular part of the pencil and we obtain a system of the form (3.2.1) again, which provides \(r_1 \) finite and \(r_3 \) infinite eigenvalues.

If neither \(r_4 = 0 \) nor \(A^{(3)}_{13} = 0 \) then we proceed to step four.
3.2.4 Step Four

Now we transform $A_{13}^{(3)} \in \mathbb{R}^{r_1 \times r_4}$. This matrix can be of arbitrary rank, so we compute the RRD,

$$A_{13}^{(3)} = X_4 \begin{bmatrix} G_{11} & 0 \\ 0 & 0 \\ \end{bmatrix} Z_4,$$

where G_{11} is diagonal or triangular and X_4 is required to be orthogonal to keep $B = \text{diag}(I_{r_1}, 0)$ on transformation. This decomposition will involve some η-negligibility decisions during its computation. We define $U_4 = \text{diag}(X_4, I_{r_3}, Z_4^{-1})$, and perform a final transformation

$$A^{(3)}, B^{(3)} \xrightarrow{U_4} A^{(4)}, B^{(4)},$$

where

$$A^{(4)} = \begin{bmatrix} A^{(4)}_{11} & A^{(4)}_{12} & A^{(4)}_{13} & G^{(4)}_{14} & 0 \\ \end{bmatrix} \begin{bmatrix} A^{(4)}_{12} & A^{(4)}_{13} & 0 & 0 \\ A^{(4)}_{22} & A^{(4)}_{23} & 0 & 0 \\ G^{(4)}_{14} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} r_5 \\ r_6 := r_1 - r_5 \\ r_3 \\ r_7 := r_4 - r_5 \end{bmatrix},$$

and $G^{(4)}_{14} = G_{11}$, $D^{(4)}_{33} = D^{(3)}_{22}$ and $B^{(4)} = B^{(3)} = \text{diag}(I_{r_1}, 0)$.

The last block row and column of zeros are not present if $r_7 = 0$, and the pencil is then regular; otherwise it is nonregular.

After removing the last block row and column of zeros, if necessary, we are left with the following regular eigenproblem, which we again write in (α, β) form,
\[
\beta \begin{bmatrix}
A^{(4)}_{11} & A^{(4)}_{12} & A^{(4)}_{13} & G^{(4)}_{14} \\
A^{(4)^\top}_{12} & A^{(4)}_{22} & A^{(4)}_{23} & 0 \\
A^{(4)^\top}_{13} & A^{(4)^\top}_{23} & D^{(4)}_{33} & 0 \\
G^{(4)^\top}_{14} & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4
\end{bmatrix}
= \alpha
\begin{bmatrix}
I_r & 0 & 0 & 0 \\
0 & I_r & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4
\end{bmatrix}, \quad (3.2.3)
\]

Solving from the bottom up gives
\[
\beta v_1 = 0,
\]
\[
\beta v_3 = -\beta D^{(4)^{-1}}_{33} (A^{(4)^\top}_{13} v_1 + A^{(4)^\top}_{23} v_2)
= -\beta D^{(4)^{-1}}_{33} A^{(4)^\top}_{23} v_2,
\]
\[
\beta (A^{(4)}_{22} - A^{(4)^\top}_{23} D^{(4)^{-1}}_{33} A^{(4)^\top}_{23}) v_2 = \alpha v_2, \quad (3.2.4)
\]
\[
\beta v_4 = G^{(4)^{-1}}_{14} (\alpha v_1 - \beta A^{(4)}_{13} v_2 - \beta A^{(4)}_{13} v_3).
\]

We distinguish two cases. First, \(\beta \neq 0 \): here, (3.2.4) gives \(r_6 \) finite eigenvalues, \(v_1 = 0 \), and \(v_3 \) and \(v_4 \) are uniquely determined by the eigenvectors \(v_2 \). Second, \(\beta = 0 \), and (necessarily) \(\alpha \neq 0 \): from (3.2.3) it is clear that \(v_1 = 0, v_2 = 0 \) and \(v_3 \) and \(v_4 \) are arbitrary. Therefore there are \(r_3 + r_5 \) linearly independent eigenvectors corresponding to infinite eigenvalues. Our total of \(r_6 + r_3 + r_5 \) eigenvalues of (3.2.3) leaves \(r_5 \) eigenvalues unaccounted for. It is not hard to show that the determinant of the pencil in (3.2.3) is
\[
\pm \det(\beta G^{(4)^{-1}}_{14}) \det(\beta D^{(4)}_{33}) \det(\beta A^{(4)}_{22} - \beta A^{(4)^\top}_{23} D^{(4)^{-1}}_{33} A^{(4)^\top}_{23} - \alpha I_r),
\]
and hence there are \(2r_5 + r_3 \) infinite eigenvalues in total, corresponding to \(\beta = 0 \), but only \(r_5 + r_3 \) corresponding linearly independent eigenvectors, given by setting
\[
\begin{bmatrix}
v_3 \\
v_4
\end{bmatrix}
= e_i \in \mathbb{R}^{r_3 + r_5}, \quad i = 1: r_3 + r_5.
\]

In the nonregular case we set
\[
v = [0 \quad v_2^T \quad v_3^T \quad v_4^T \quad 0]^T,
\]

77
and we have the corresponding eigenvectors of the original problem (3.1.1),

\[x = \mathbf{X}_1^T \mathbf{U}_2 \mathbf{U}_3 \mathbf{U}_4 v. \]

3.2.5 Summary

The classification of the eigenvalues provided by the algorithm can be summarized as follows.

if \(r_4 = 0 \)

The problem is regular, with \(r_1 \) finite and \(r_2 \) infinite eigenvalues.

else

if \(A_{13}^{(3)} = 0 \)

The problem is nonregular, with \(r_1 \) finite and \(r_3 \) infinite eigenvalues.

else

The problem is nonregular if \(r_7 > 0 \) and otherwise regular.

There are \(r_6 \) finite and \(r_3 + 2r_5 \) infinite eigenvalues.

end

All the finite eigenvalues are real, as they arise as the solutions of symmetric standard eigenproblems.

Also we note that if \(r_1 \leq r_4 \) and \(A_{13}^{(3)} \) has full rank, then \(r_6 = 0 \) and there are no finite eigenvalues.

3.3 Existing Methods

3.3.1 Fix and Heiberger’s Algorithm

Our algorithm is a generalization of the Fix and Heiberger algorithm [23]. Their algorithm uses the following RRDs:
• Step one: spectral decomposition,

• Step three: spectral decomposition,

• Step four: QR factorization.

The QR factorization of \(A_{13}^{(3)} \) at step four requires the conditions

\[
r_1 \geq r_4 \quad \text{and} \quad \text{rank}(A_{13}^{(3)}) = r_4,
\]

and therefore is not applicable to nonregular pencils.

Some numerical examples are given in [23]. They also derive error bounds for computed eigenvalues and eigenvectors.

3.3.2 Parlett’s Algorithm

Parlett’s algorithm [41] improves on Fix and Heiberger by allowing for non-regular pencils. The first three steps are the same but at step four the QR factorization is replaced with the singular value decomposition

\[
A_{13}^{(3)} = U \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} V^T,
\]

and with \(\|\Sigma_2\| \leq \eta \|\Sigma_1\| \), \(\Sigma_2 \) is set to zero, for some suitable \(\eta \).

3.3.3 Cao’s Algorithm

Cao’s algorithm [11], like ours, is a generalization of Fix and Heiberger’s algorithm. Here, the only requirement is that the transformations at steps one, three and four are all orthogonal.

3.3.4 The QZ Algorithm

The QZ algorithm of Moler and Stewart [37] computes the generalized Schur form (1.2.4) to solve the generalized eigenvalue problem. There are three steps.
Step One - Reduction to Hessenberg-Triangular Form

The first step reduces A to upper Hessenberg form and B to upper triangular form. An orthogonal matrix U is found such that, in the 5-by-5 case

$$U^T A = \begin{bmatrix} + & + & + & + & + \\ + & + & + & + & + \\ + & + & + & + & + \\ + & + & + & + & + \\ + & + & + & + & + \end{bmatrix}, \quad U^T B = \begin{bmatrix} + & + & + & + \\ 0 & + & + & + \\ 0 & 0 & + & + \\ 0 & 0 & 0 & + \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

where + represents a nonzero entry. Then zeros are introduced into A by Givens matrices while keeping the upper triangular structure of B. Starting with the bottom left corner A and B are multiplied by a Givens matrix from the left such that

$$A, B \leftarrow G_L^T(4,5)(A, B) = \begin{bmatrix} + & + & + & + & + \\ + & + & + & + & + \\ + & + & + & + & + \\ + & + & + & + & + \\ 0 & + & + & + & + \end{bmatrix}, \quad \begin{bmatrix} + & + & + & + \\ 0 & + & + & + \\ 0 & 0 & + & + \\ 0 & 0 & 0 & + \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

A nonzero entry is introduced in B which is immediately eliminated by multiplying A and B with a Givens matrix from the right such that

$$A, B \leftarrow (A, B)G_R(4,5) = \begin{bmatrix} + & + & + & + & + \\ + & + & + & + & + \\ + & + & + & + & + \\ + & + & + & + & + \\ 0 & + & + & + & + \end{bmatrix}, \quad \begin{bmatrix} + & + & + & + \\ 0 & + & + & + \\ 0 & 0 & + & + \\ 0 & 0 & 0 & + \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

We continue in this manner with pairs of Givens matrices applied to the pencil until we have finally

$$A - \lambda B \leftarrow G_L^T(4,5)G_L^T(3,4)G_L^T(4,5)G_L^T(2,3)G_L^T(3,4)G_L^T(4,5)*$$

$$(A - \lambda B)G_R(4,5)G_R(3,4)G_R(2,3)G_R(4,5)G_R(3,4)G_R(4,5),$$

where A is now upper Hessenberg and B is upper triangular as required.
Step Two - Deflation

If $a_{k+1,k} = 0$, for some k, then we have

$$A - \lambda B = \begin{bmatrix} A_{11} - \lambda B_{11} & A_{12} - \lambda B_{12} \\ 0 & A_{22} - \lambda B_{22} \end{bmatrix},$$

and we can solve the two smaller problems $A_{11} - \lambda B_{11}$ and $A_{22} - \lambda B_{22}$ independently.

If a zero appears on the diagonal of B, in any position, it is possible to introduce a zero in the $(n, n - 1)$ position of A and also *chase* the zero on B's diagonal to the (n, n) position, and thus deflate the problem. This is achieved with pairs of Givens matrices in a similar way as used in step one. After this process we have

$$A - \lambda B = \begin{bmatrix} A_{11} & A_{12} \\ 0 & a_{22} \end{bmatrix} - \lambda \begin{bmatrix} B_{11} & B_{12} \\ 0 & 0 \end{bmatrix},$$

where A_{11} is upper Hessenberg, $a_{22} \neq 0$ is a scalar and B_{11} is upper triangular. We thus solve $A_{11} - \lambda B_{11}$ and have an infinite eigenvalue given by

$$\lambda = \frac{a_{22}}{0}.$$

Step Three - The QZ Step

The QZ step applies unitary transformations, Q and Z to the deflated $A - \lambda B$, such that

$$Q^*(A - \lambda B)Z = S - \lambda T,$$

where S and T are upper triangular. In the real case S may only be reduced to quasi-upper triangular form. That is block upper triangular with 1-by-1 and 2-by-2 blocks. It can be reduced to upper triangular form if S is allowed to become complex.
This is an iterative process. It is derived from considering one step of the standard shifted QR algorithm on the matrix AB^{-1}, which is never formed. On average two iterations per eigenvalue are required. Eigenvectors can be found by the process of inverse iteration. Further details can be found in the original paper [37] and [24].

The are two major disadvantages of the QZ algorithm. Firstly it does not take advantage of any symmetry, destroying it at the first step. This means we are not guaranteed real eigenvalues in floating point arithmetic. Secondly the QZ algorithm is unsuitable for nonregular matrix pencils. It can fail to identify the nonregular part of the problem [31].

3.3.5 The MDR Algorithm

In [9] Bunse-Gerstner presents an algorithm for solving the symmetric semidefinite generalized eigenvalue problem, the MDR algorithm.

The algorithm attempts to simultaneously diagonalize A and B and is described as closely related to the QR algorithm for real symmetric matrices. Firstly, the pencil is reduced to the form

$$
\begin{bmatrix}
A_{11}^{(1)} & A_{12}^{(1)} \\
A_{12}^{(1)T} & A_{22}^{(1)}
\end{bmatrix} - \lambda \begin{bmatrix} 0 & 0 \\ 0 & D_{22}^{(2)} \end{bmatrix},
$$

where $D_{22}^{(2)} \in \mathbb{R}^{r \times r}$ is diagonal and $r = \text{rank}(B)$, by any suitable method. The above pencil is a symmetric permutation of that produced by step one of our algorithm.

A proof is given [9, Thm. 2.1] of the existence of a matrix which can diagonalize (3.3.1) by congruence transformations and requires

$$\text{rank} \left(\begin{bmatrix} A_{11}^{(1)} \\ A_{12}^{(1)T} \end{bmatrix} \right) = \text{rank}(A_{11}^{(1)})$$

in (3.3.1), and we note that this is a strong condition.
Furthermore, convergence of the algorithm is only guaranteed if $A_{11}^{(1)}$ is nonsingular. This convergence condition is used in the second step of the MDR algorithm to produce a transformed pencil of the form

$$A^{(2)} = \begin{bmatrix} A_{11}^{(2)} & 0 \\ 0 & A_{22}^{(2)} \end{bmatrix} - \lambda \begin{bmatrix} 0 & 0 \\ 0 & D_{22}^{(2)} \end{bmatrix},$$

(3.3.3)

therefore leaving $A_{22}^{(2)} - \lambda D_{22}^{(2)}$ to be solved and give the finite eigenvalues.

It is recognized in [9] that the MDR algorithm acts like the QR algorithm for the symmetric eigenvalue problem $D_{22}^{(2)^{1/2}} A_{22}^{(2)} D_{22}^{(2)^{1/2}} x = \lambda x$. Thus the MDR algorithm cannot solve nonregular pencils with the convergence condition (3.3.2).

The MDR algorithm then transforms $A_{22}^{(2)}$ to a tridiagonal matrix, T, and goes on to solve

$$(T - \lambda D_{22}^{(2)})x = 0$$

using shifts to accelerate convergence.

3.3.6 The GUPTRI Algorithm

The Algorithm

The GUPTRI (Generalized UPper TRIangular) algorithm [15], [16] aims to capture the structure of the Kronecker Canonical Form (KCF) (1.2.7) of the matrix pencil. Stable computation of the KCF cannot be guaranteed as the transformation matrices may be arbitrarily ill-conditioned. So the GUPTRI algorithm transforms a matrix pencil to a 5-by-5 block upper trapezoidal pencil, each diagonal block is such that its KCF consists only of one type of block.

The GUPTRI algorithm applies unitary transformations $P \in \mathbb{C}^{n \times m}$ and $Q \in \mathbb{C}^{n \times n}$ to the general pencil $A - \lambda B \in \mathbb{C}^{n \times n}$, to generate the generalized Schur-staircase form:
\[
P^*(A - \lambda B)Q = \begin{bmatrix}
 A_R - \lambda B_R & X & X & X & X \\
 0 & A_Z - \lambda B_Z & X & X & X \\
 0 & 0 & A_F - \lambda B_F & X & X \\
 0 & 0 & 0 & A_I - \lambda B_I & X \\
 0 & 0 & 0 & 0 & A_L - \lambda B_L
\end{bmatrix},
\]

where an \(X\) denotes a nonzero matrix of conformable dimensions. This is a block upper trapezoidal matrix and the blocks are block upper trapezoidal themselves:

- \(A_R - \lambda B_R\) is such that its KCF has only \(L_j\) blocks.
- \(A_Z - \lambda B_Z\) is such that its KCF has only \(J_j(0)\) blocks.
- \(A_F - \lambda B_F\) is such that its KCF has only \(J_j(\gamma), \gamma \neq 0\), blocks.
- \(A_I - \lambda B_I\) is such that its KCF has only \(N_j\) blocks.
- \(A_L - \lambda B_L\) is such that its KCF has only \(L_j^T\) blocks.

There are two reductions. Firstly the pencil is reduced to \(RZ\) (Right Zero)-staircase form and a remaining block. That is for unitary matrices \(U_1 \in \mathbb{C}^{m \times m}\) and \(V_1 \in \mathbb{C}^{n \times n}\)

\[
U_1^*(A - \lambda B)V_1 = \begin{bmatrix}
 A_R - \lambda B_R & X & X \\
 0 & A_Z - \lambda B_Z & X \\
 0 & 0 & A_{33} - \lambda B_{33}
\end{bmatrix}
\]

\(\) RZ-staircase.

This is achieved in a finite number of transformations. At the \(k\)th step the number and dimension of \(L_{k-1}\) and \(J_k(0)\) blocks is determined, and these values are returned by the algorithm.

The second reduction generates the \(LI\) (Left Infinity)-staircase part of the pencil. It acts on

\[
\mu A_{33} - B_{33} \in \mathbb{C}^{n \times t}, \quad \lambda - 1/\mu.
\]

84
Unitary matrices $U_2 \in \mathbb{C}^{s \times s}$ and $V_2 \in \mathbb{C}^{t \times t}$ are found such that

$$U_2^*(A_{33} - \lambda B_{33})V_2 = \begin{bmatrix} A_{11} - \lambda B_{11} & X & X \\ 0 & A_I - \lambda B_I & X \\ 0 & 0 & A_L - \lambda B_L \end{bmatrix}$$ LI-staircase.

The number and dimension of N_j and L_j blocks are computed and returned.

Finally, $A_{11} - \lambda B_{11}$ is transformed to reveal the finite nonzero eigenvalues using the QZ algorithm

$$Q^*(A_{11} - \lambda B_{11})Z = A_F - \lambda B_F.$$

Deciding Rank

The GUPTRI algorithm uses the singular value decomposition to decide numerical rank during the RZ and LI reductions. The algorithm uses two tolerance values, ϵ and gap. The numerical rank of a matrix, r, is defined for singular values σ_i, $\sigma_i > \sigma_{i-1}$, by

$$\sigma_{n-r+1} > \epsilon \sigma_n, \text{ and } \sigma_{n-r+1} > \text{gap} \ast \sigma_{n-r}.$$ If these two conditions are satisfied the rank is taken as r, and $\sigma_1, \ldots, \sigma_{n-r+2}$ are set to zero. If the second condition fails σ_{n-r} is also set to zero and the process is repeated. If it is never satisfied then the numerical rank is not defined for that matrix.

3.4 Options for Rank Revealing Decompositions

Our aim is to have RRDs with minimal flop count while maintaining numerical stability and correctly revealing rank. The following tables list possible
RRDs that can be selected in a MATLAB implementation of our algorithm; see ssgep.m in Appendix C.

Note since we are not concerned with timings we are using MATLAB’s implementation of the RRDs. For built in functions MATLAB calls LAPACK routines where possible. However, for the pivoted Cholesky factorization we call cholp.m from [28]. In an implementation outside of MATLAB we would call the codes we developed in Chapter 2.

3.4.1 \(B = X_1 DX_1^T \)

At step one we perform the transformation

\[
X_1^{-1} B X_1^{-T} = \text{diag}(D_1, 0).
\]

Two possible rank revealing decompositions are given in Table 3.4.1. Here

\[
L = \begin{bmatrix} L_{11} & 0 \\ L_{12} & 0 \end{bmatrix}, \quad \mathcal{T} = \begin{bmatrix} L_{11} & 0 \\ L_{12} & I_{r_2} \end{bmatrix}.
\]

<table>
<thead>
<tr>
<th>Name / Eqn. No./ (\text{rrd1 in ssgep.m})</th>
<th>Factorization of (B)</th>
<th>flops</th>
<th>(\overline{X}_1^{-T})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesky Factorization / (2.1.1) / 'chol'</td>
<td>(B = PLL^T P^T), (D_1 = I_{r_1})</td>
<td>(r_1^2 n - \frac{2}{3} r_1^3)</td>
<td>(\mathcal{T}^{-1} P^T)</td>
</tr>
<tr>
<td>Spectral Decomposition / (1.5.3) / 'spec'</td>
<td>(B = Q \begin{bmatrix} \Lambda_1 & 0 \ 0 & \Lambda_2 \end{bmatrix} Q^T), (D_1 = \Lambda_1)</td>
<td>(4n^3)</td>
<td>(Q^T)</td>
</tr>
</tbody>
</table>

Table 3.4.1: Options for \(\text{rrd1 in ssgep.m} \).
3.4.2 \(A_{22}^{(2)} = X_3DX_3^T\)

At step 3 we perform the transformation
\[
X_3^{-1}A_{22}^{(2)}X_3^{-T} = \text{diag}(\Phi_{11}, 0).
\]

Two possible rank revealing decompositions are given in Table 3.4.2. Here \(L\) and \(\overline{L}\) are as defined above.

<table>
<thead>
<tr>
<th>Name / Eqn. No./ rrd3 in ssgep.m</th>
<th>Factorization of (A_{22}^{(2)})</th>
<th>flops (X_3^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Decomposition / (1.5.3) / 'spec'</td>
<td>(A_{22}^{(2)} = Q \begin{bmatrix} \Lambda_1 & 0 \ 0 & \Lambda_2 \end{bmatrix} Q^T), (D_{22}^{(3)} = \Lambda_1)</td>
<td>(4r_2^3) (Q^T)</td>
</tr>
<tr>
<td>(LQDLQ^T L^T) Factorization / (1.5.6) / 'ldlt'</td>
<td>(A_{22}^{(2)} = P^T LQ \begin{bmatrix} D_1 & 0 \ 0 & D_2 \end{bmatrix} Q^T L^T P), (D_{22}^{(3)} = D_1)</td>
<td>(r_3^2 r_2^2) (Q^T \overline{L}^{-1} P)</td>
</tr>
</tbody>
</table>

Table 3.4.2: Options for rrd3 in ssgep.m.

3.4.3 \(A_{13}^{(3)} = X_4DZ_4\)

Finally at step four we wish to perform the transformation
\[
X_4^{-1}A_{13}^{(3)}Z_4^{-1} = \text{diag}(A_{14}^{(4)}, 0),
\]

where \(A_{14}^{(4)}\) can be triangular or diagonal. Four possible rank revealing decompositions are given in Table 3.4.3. Here
\[
\overline{R} = \begin{bmatrix}
\text{diag(diag}(R_{11})^{-1})R_{11} & \text{diag(diag}(R_{11})^{-1})R_{12} \\
0 & I_{r_4-r_5}
\end{bmatrix}.
\]
<table>
<thead>
<tr>
<th>Name / Eqn. No./ \textit{rrd4 in ssgem.m}</th>
<th>Factorization of $A_{13}^{(3)}$</th>
<th>flops</th>
<th>X_4^{-1}, Z_4^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpivoted \textit{QR} Factorization / (1.4.1) / 'qr'</td>
<td>$A_{13}^{(3)} = QR$, $G_{14}^{(4)} = R$</td>
<td>$2r_2^2(r_1 - r_4/3)$</td>
<td>$X_4^{-1} = Q^T$, $Z_4^{-1} = I_{r_4}$</td>
</tr>
<tr>
<td>Pivoted \textit{QR} Factorization / (1.5.1) / 'qrp'</td>
<td>$A_{13}^{(3)} = Q \begin{bmatrix} R_{11} & R_{12} \ 0 & 0 \end{bmatrix} P^T$, $G_{14}^{(4)} = \text{diag}(R_{11})$</td>
<td>$4(r_1 r_4 r_5 + r_1^2 r_5)$</td>
<td>$X_4^{-1} = Q^T$, $Z_4^{-1} = PR^{-1}$</td>
</tr>
<tr>
<td>Complete Orth. Decomposition / (1.5.2) / 'cod'</td>
<td>$A_{13}^{(3)} = U \begin{bmatrix} R_1 & 0 \ 0 & 0 \end{bmatrix} V$, $G_{14}^{(4)} = R_1$</td>
<td>$4(r_1 r_4 r_5 + r_1^2 r_5)$</td>
<td>$X_4^{-1} = U^T$, $Z_4^{-1} = V^T$</td>
</tr>
<tr>
<td>Singular Value Decomposition / (1.5.4) / 'svd'</td>
<td>$A_{13}^{(3)} = U \begin{bmatrix} \Sigma_1 & 0 \ 0 & \Sigma_2 \end{bmatrix} V^T$, $G_{14}^{(4)} = \Sigma_1$</td>
<td>$4r_1^2 r_4 + 8r_1 r_4^2 + 9r_4^2$</td>
<td>$X_4^{-1} = U^T$, $Z_4^{-1} = V$</td>
</tr>
</tbody>
</table>

Table 3.4.3: Options for \textit{rrd4 in ssgem.m.}

3.4.4 Calling \textit{ssgem.m}

The call to \textit{ssgem.m} takes the form $[U,D,r] = \text{ssgem}(A,B,\text{rrd1},\text{rrd3},\text{rrd4}, \text{reltol}, \text{normtol})$. The arguments are as follows:

- \textbf{A} is the symmetric matrix A in $Ax - \lambda Bx$.
- \textbf{B} is the symmetric matrix B in $Ax - \lambda Bx$.
- \textbf{rrd1} specifies the RRD at step one, see Table 3.4.1.
- \textbf{rrd3} specifies the RRD at step three, see Table 3.4.2.
- \textbf{rrd4} specifies the RRD at step four, see Table 3.4.3.
- \textbf{reltol} specifies the tolerance for RRDs. The default is the unit roundoff, u. Then in $A = XDXT \in \mathbb{R}^{m \times n}$, where the elements in D, d_{ii}, are

88
decreasing in magnitude, \(d_{ii} \), \(i = r + 1:n \), are taken as zero if
\[
d_{r+1,r+1} \leq \text{reitol} \times n \times d_{11},
\]
and the rank is taken as \(r \). Similarly for \(A = XGZ \in \mathbb{R}^{m \times n} \), \(G(r + 1:m, r + 1:n) \) are set to zero if
\[
g_{r+1,r+1} \leq \text{reitol} \times \max(m,n) \times g_{11}.
\]

- \(\text{normtol} \) specifies the tolerance for deciding if \(A_{13}^{(3)} \in \mathbb{R}^{1 \times r4} \) is to be considered zero, if
\[
\|A_{13}^{(3)}\|_F \leq \text{normtol} \times \max(r1, r4) \times \|A^{(3)}\|_F
\]
then we set \(A_{13}^{(3)} = 0 \). The default is \(u \).

With the following calls we can implement the Fix and Heiberger, Parlett and Cao algorithms described earlier:

- The Fix & Heiberger algorithm can be implemented with the call:
 \[
 [U,D,r] = \text{ssgep}(A,B,'spec','spec','qr',\text{reitol},\text{normtol})
 \]
- The Parlett algorithm can be implemented with the call:
 \[
 [U,D,r] = \text{ssgep}(A,B,'spec','spec','svd',\text{reitol},\text{normtol})
 \]
- The above is also a call to a Cao algorithm, and so is:
 \[
 [U,D,r] = \text{ssgep}(A,B,'spec','spec','cod',\text{reitol},\text{normtol})
 \]

3.4.5 Operation Count of our Algorithm

In this section we compare the flops of various permutations of RRDs in our algorithm.
If we perform only steps one and two, that is \(A_{22}^{(1)} \) has full rank, then performing the transformations and solving the symmetric eigenvalue problem involve

\[
4n^3 + 2n^2 r_1 + 4r_1^2 + 2r_1^2 r_2 + 4r_1 r_2^2
\]
flops. Then there are further flops to perform the RRDs at step one and three. The RRD with the minimum and maximum flop counts are given in Table 3.4.4.

We can see that if we choose a spectral decomposition in favour of the pivoted Cholesky factorization at step one or the \(LDL^T \) at step three we have twelve times as many flops.

There are other factors to consider such as the proportion of computation performed by Level 2 or 3 BLAS routines. To ensure flops are a reasonable indication of speed, we timed the LAPACK routines for the factorizations, as well as LEV3PCHOL for the pivoted Cholesky factorization.

The tests were performed in Fortran 77 on a 2545MHz AMD Athlon running a hybrid version of Red Hat Linux 8 and 9 with kernel 2.4.20. The times given are an average of three timings. We generated random symmetric matrices of dimension 1000. The timings are shown in Table 3.4.4.

<table>
<thead>
<tr>
<th>RRD</th>
<th>Flops</th>
<th>Time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Decomposition</td>
<td>(4n^3)</td>
<td>8.18</td>
</tr>
<tr>
<td>Cholesky Factorization</td>
<td>(n^3/3)</td>
<td>0.85</td>
</tr>
<tr>
<td>(LDL^T) Factorization</td>
<td>(n^3/3)</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table 3.4.4: Flops compared with computation time of RRDs.

The timings show that the speedup of our algorithm may not be quite as good as the flops counts predict for the Cholesky factorization, but better for
the LDL^T factorization.

If we perform all steps of our algorithm, but with $A_{13}^{(3)}$ having full rank then the transformations and solving the symmetric eigenvalue problem involve

$$4n^3 + 4r_1^3 + 2r_1^2r_3 + 2r_2^2r_1 + 2r_6(n^2 + r_1^2r_2^2 + r_3r_6 + r_4^2 + r_5r_6 + r_3r_3 + 2r_6^2)$$

flops. Then there are further flops to perform the RRDs at steps one, three and four.

The overall operation count for our algorithm depends on the rank of the matrices we factorize. However, a worst case is approximately $18n^3$ flops. The QZ algorithm requires $46n^3$ flops to compute the eigenvalues and eigenvectors. The GUPTRI algorithm requires $O(n^4)$ flops in the nonregular case for which it is used. Thus our algorithm should perform better than the QZ and GUPTRI algorithm for speed, and the choice of RRD can decrease computation time further. We next look at the stability of our algorithm.

3.5 Numerical Experiments

The tests were performed with MATLAB 6.5 on a 2545MHz AMD Pentium running a hybrid version of Red Hat Linux 8 and 9 with kernel 2.4.20. The unit roundoff $u \approx 1.1e-16$. The relative normwise backward error for a computed finite eigenvalue, $\hat{\lambda}$, and its corresponding eigenvector, \hat{x}, of $Ax = \lambda Bx$ is defined to be

$$\gamma(\hat{x}, \hat{\lambda}) = \min\{\epsilon : (A + \Delta A)\hat{x} = \hat{\lambda}(B + \Delta B)\hat{x}, \quad \|\Delta A\|_2 \leq \epsilon\|A\|_2, \quad \|\Delta B\|_2 \leq \epsilon\|B\|_2\}.$$

We evaluate this by the expression [25]

$$\gamma(\hat{x}, \hat{\lambda}) = \frac{\|r\|_2}{\left(\|\hat{\lambda}\|_B + \|A\|_2\|\hat{x}\|_2\right)^2}, \quad (3.5.1)$$

91
where \(r = \hat{\lambda} B \hat{x} - A \hat{x} \) is the residual.

For an infinite eigenvalue, \(\beta = 0 \), this simplifies to

\[
\gamma(\hat{x}, \hat{\lambda}) = \frac{\|Bx\|_2}{\|B\|_2 \|\hat{x}\|_2},
\]

(3.5.2)

We also use the relative residual

\[
\rho(\hat{X}, \hat{\Lambda}) := \frac{\|A\hat{X} - B\hat{X}\hat{\Lambda}\|_2}{\|A\|_2 \|\hat{X}\|_2 + \|B\|_2 \|\hat{X}\|_2 \|\hat{\Lambda}\|_2},
\]

(3.5.3)

where \(\hat{X} \) is a matrix of eigenvectors corresponding to finite eigenvalues and \(\hat{\Lambda} \) is a diagonal matrix of finite eigenvalues.

We present the comparison of these errors, for finite eigenvalues, by performance profiles. Where the computed error was less than the unit roundoff we set it to \(\text{eps}/2 \), the unit roundoff in MATLAB.

We test two implementations of our algorithm, those that require the maximum and minimum flops as described above. The first implementation uses only orthogonal RRDs so all transformations are orthogonal with the exception of \(U_2 \) at step two, and we saw the advantage of orthogonal transformations in Section 1.3.2. The second uses RRDs that are not orthogonal, using the pivoted Cholesky factorization, the stability of which is discussed in Section 2.6 and the \(LDL^T \) factorization discussed in [29].

3.5.1 Industrial Example

This is a fluid flow problem from a dynamical analysis in structural engineering and was taken from the Harwell-Boeing Collection available at Matrix Market [34]. The matrices are from the ‘BCSSSTRUC1’ data set and the mass matrix, \(M \), is ‘BCSSTM13’ and the stiff matrix, \(K \), is ‘BCSSTK13’. The dimension of the matrices is 2003 and \(K \) is positive definite so step four of our algorithm will not be performed.
Using default tolerances, the call

\[
[U, D, r] =
\text{ssgep}(K, M, 'spec', 'spec', 'svd')
\]

gave a maximum \(\gamma(\hat{x}, \hat{\lambda})\) of 8.246e-16 and for

\[
[U, D, r] =
\text{ssgep}(K, M, 'chol', 'ldlt', 'svd')
\]

a maximum \(\gamma(\hat{x}, \hat{\lambda})\) of 7.607e-16. The matrices here are very well conditioned.

This was the largest data set available to the author. Also, since \(K\) is positive definite, we generate our own test matrices to fully explore the behavior of our algorithm and other methods.

3.5.2 Regular Pencil Examples

Here we generate some random regular pencils and compare implementations of our algorithm with the \(QZ\) algorithm.

We construct a set of test matrices as follows:

\(B\) is set to be

\[
Q^T \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_{r_1}, 0, \ldots, 0)Q,
\]

where \(Q\) is a random orthogonal matrix.

We construct \(A\) such that

\[
A =
\begin{bmatrix}
A_{11}^{(2)} & A_{12}^{(2)} \\
A_{12}^{(2)T} & A_{22}^{(2)}
\end{bmatrix},
\]

where

- \(A_{11}^{(2)}\) is a random symmetric matrix.
• $A_{22}^{(2)}$ has full rank, we compute

$$A_{22}^{(2)} = Q \text{ diag}(\tilde{\lambda}_1, \tilde{\lambda}_2, \ldots, \tilde{\lambda}_{r_2}) Q^T,$$

where $\tilde{\lambda} \neq 0$ and $Q \in \mathbb{R}^{r_2 \times r_2}$ is a random orthogonal matrix.

• $A_{12}^{(2)}$ is a random matrix.

We chose the nonzero eigenvalues, λ_i (and $\tilde{\lambda}_i$), to be geometrically decreasing

$$\lambda_i = \alpha^{i-1}, \quad 1 \leq i \leq r, \quad \alpha \leq 1,$$

and α was chosen to vary $\kappa_2 = \lambda_1/\lambda_r$. See gen_data.m in Appendix C.

For each case we constructed a set of 48 matrices, with $n = 500$, by using every combination of:

$$\kappa_2(B) = \{1e+3, 1e+6, 1e+9, 1e+12\},$$

$$\kappa_2(A_{22}) = \{1e+3, 1e+6, 1e+9, 1e+12\},$$

rank of B and A_{22} (as %) = \{30, 50, 70\}.

We tested three algorithms:

• $[U,D,r] = \text{ssgep}(A,B,'\text{chol}', '\text{ldlt}', '\text{qrp}')$

• $[U,D,r] = \text{ssgep}(A,B,'\text{spec}', '\text{spec}', '\text{svd}')$

• $[U,D] = \text{eig}(A,B)$, (the QZ algorithm)

and computed the maximum $\gamma(\widehat{x}, \widehat{\lambda})$ and $\rho(\widehat{X}, \widehat{\Lambda})$ for finite eigenvalues and the condition number of the overall transformation matrix. We represent the results by performance profiles.

Figure 3.5.1 shows the performance profile for the maximum $\gamma(\widehat{x}, \widehat{\lambda})$ of each algorithm on each test problem. For approximately 80% of the test
Figure 3.5.1: Performance profile for maximum backward error, $\gamma(\hat{x}, \hat{\lambda})$, of computed finite eigenvalues and eigenvectors.

problems the QZ algorithm performed best, where the smallest error was $4.27e-16$. Around 20% of the problems gave the smallest value of the maximum $\gamma(\hat{x}, \hat{\lambda})$ with the implementation of our algorithm with orthogonal RRDs, shown (SPEC / SPEC / SVD). In comparison the implementation with nonorthogonal RRDs, shown (Cholesky / LDL^T / QRP), performed poorly, never achieving the smallest error for a particular test problem. However, the profile is very close to that with the orthogonal RRDs for $\theta > 100$.

The values of $\rho(\hat{X}, \hat{\lambda})$ were more favourable for implementations of our algorithm, and are shown in Figure 3.5.2. The proportion of values that were smallest for each problem are about the same as for $\gamma(\hat{x}, \hat{\lambda})$. However, every result was within a factor of 25 of the smallest.

We also measured the condition number of the overall transformation, U, 95
such that

$$U^T (A - \lambda B) U = A^{(4)} - \lambda B^{(4)},$$

which for our algorithm is

$$U = U_4 U_3 U_2 \overline{X}_1^T,$$

and

$$\kappa_2(U) = \|U\|_2 \|U^{-1}\|_2 \leq \|U_4\|_2 \|U_4^{-1}\|_2 \|U_3\|_2 \|U_3^{-1}\|_2 \|U_2\|_2 \|U_2^{-1}\|_2 \|\overline{X}_1\|_2 \|\overline{X}_1^T\|_2.$$

Unsurprisingly the condition of Q and Z for the QZ algorithm was 1 or very close to 1. For our algorithm with the orthogonal RRDs $\kappa_2(U) \leq \|U_2\|_2 \|U_2^{-1}\|_2 = \sqrt{\kappa_2(B)}$ as the only nonorthogonal transformation matrix
$U_2 = \text{diag}(D_1^{-1/2}, I_{r_2})$, where D_1 holds the square root of the eigenvalues of B. This gives the steps in Figure 3.5.3. Our algorithm with nonorthogonal RRDs gave a value as large as $1e+8$ and also steps up as the condition number of B is increased.

![Graph](attachment:image.png)

Figure 3.5.3: Performance profile for condition number, $\kappa_2(U)$, of overall transformation matrix U.

The QZ algorithm destroys symmetry so real eigenvalues are not guaranteed. In the above examples the QZ algorithm returned complex eigenvalues in 7 out of the 48 test matrices. The imaginary part was of order $1e-14$ or $1e-15$.

3.5.3 Nonregular Pencil Examples

Here we generate some random nonregular pencils and compare implementations of our algorithm with a Fortran 77 implementation of the GUPTRI
algorithm called via a MEX interface.

We construct a set of test matrices as follows:

$$B = \begin{bmatrix} I_{r_1} & 0 \\ 0 & 0 \end{bmatrix}$$

With this B we can specify A so as to predict (in exact arithmetic) r_i, $i = 1: 7$, as the transformation at step 1 will not alter the spectrum of the submatrices of A set out below.

We construct A such that

$$A = \begin{bmatrix} r_1 & r_2 \\ r_1 & A_{11}^{(2)} \\ & \begin{bmatrix} A_{12}^{(2)} & A_{12}^{(2)} \\ A_{12}^{(2)} & A_{22}^{(2)} \end{bmatrix} \\ & \begin{bmatrix} A_{12}^{(2)} \end{bmatrix} \begin{bmatrix} A_{12}^{(2)} \end{bmatrix}^T \end{bmatrix},$$

where

- $A_{11}^{(2)}$ is a random symmetric matrix.
- $A_{22}^{(2)}$ has r_3 nonzero eigenvalues and r_4 zero eigenvalues, we compute

$$Q \text{ diag}(\lambda_1, \lambda_2, \ldots, \lambda_{r_3}, 0, \ldots, 0) Q^T,$$

where $\lambda \neq 0$ and $Q \in \mathbb{R}^{r_2 \times r_2}$ is a random orthogonal matrix.
- $A_{12}^{(2)}$ has r_5 nonzero singular values and $\min(r_1, r_2) - r_5$ zero singular values, we compute

$$Q_1 \text{ diag}(\sigma_1, \sigma_2, \ldots, \sigma_{r_5}, 0, \ldots, 0) Q_2,$$

where $\sigma \neq 0$ and $Q_1 \in \mathbb{R}^{r_1 \times r_1}$, $Q_2 \in \mathbb{R}^{r_2 \times r_2}$ are random orthogonal matrices.

We chose the nonzero eigenvalues, λ_i (and singular values, σ_i) again geometrically decreasing

$$\lambda_i = \alpha^{i-1}, \quad 1 \leq i \leq r, \quad \alpha \leq 1,$$
where α was chosen to vary $\kappa_2 = \lambda_1/\lambda_r$. Again $n = 500$.

First we set $\kappa_2 = 1$ and

$$\text{rank of } B, A_{22} \text{ and } A_{12} \text{ (as \%)} = \{30, 50, 70\}$$

and repeated this 16 times to give a set of 48 test matrices.

We tested three algorithms

- $[U,D,r] = \text{ssgep}(A,B,'\text{chol}', '\text{ldlt}', '\text{qrp}')$
- $[U,D,r] = \text{ssgep}(A,B,'\text{spec}', '\text{spec}', '\text{svd}')$
- The GUPTRI algorithm with default tolerances.

and again computed the maximum $\gamma(\hat{x}, \hat{\lambda})$ and $\rho(\hat{X}, \hat{\Lambda})$ for finite eigenvalues and the condition number of the overall transformation matrix.

![Figure 3.5.4: Performance profile for maximum backward error, $\gamma(\hat{x}, \hat{\lambda})$, of computed finite eigenvalues and eigenvectors.](image)
The GUPTRI algorithm 'failed' on 10 of the 48 test problems. It failed in the sense that it gave one or more zero eigenvalues not predicted by the test problem and also gave L_j blocks with $j > 0$ in the KCF, contradicting the theory of Cao [11]. This failure then affected the computation of the remaining nonzero finite eigenvalues. On inspection some eigenvalues were close to those computed by our algorithm, but some were not. The maximum value of $\gamma(\hat{x}, \hat{\lambda})$ in these cases was of order $1e-1$. These results were omitted from the following performance profiles.

From Figure 3.5.4 we can see the GUPTRI algorithm never achieved the smallest maximum value for $\gamma(\hat{x}, \hat{\lambda})$. Our algorithm with nonorthogonal RRDs gave the smallest value for 100% of the problems. However, the implementation of our algorithm with orthogonal RRDs was within a factor of 5 of the figures for nonorthogonal RRDs.

The performance profile for the values of $\rho(\hat{X}, \hat{\Lambda})$ is shown in Figure 3.5.5. The results here are very similar to those of $\gamma(\hat{x}, \hat{\lambda})$.

The condition number of the overall transformation matrix is shown in Figure 3.5.6. For our algorithm with orthogonal RRDs we should have $\kappa_2(U) \leq \|U_2\|_2\|U_2^{-1}\|_2 = \sqrt{\kappa_2(B)} = 1$, and indeed the value was 1 or very close to 1. Also the condition numbers of the transformation matrices returned by GUPTRI were 1 or very close to 1. For the implementation of our algorithm with nonorthogonal RRDs we had condition numbers as high as $1e+3$.

We repeated the experiments with $\kappa_2 = 10$ and the GUPTRI algorithm now failed 40 times out of 48. Failure of the GUPTRI algorithm to identify the KCF is discussed in [10].
3.6 Conclusions

There is a trade-off with implementations of our algorithm. The implementation with nonorthogonal RRDs can require far fewer flops than using orthogonal RRDs. However, the backward error is generally larger than with orthogonal transformation matrices, although the difference is not always significant. With the nonregular test problems the nonorthogonal RRDs implementation fared slightly better, although this was with submatrices with a condition number of 1. We have only tested two implementations of our algorithm and there are many other combinations of RRD possible.

The QZ algorithm gives the best backward error result, compared to both implementations of our algorithm, more often for regular pencils but requires at least three times as many flops. The QZ algorithm also destroys symmetry
and can produce eigenvalues with a small imaginary part and it cannot be relied upon for nonregular pencils.

The GUPTRI algorithm can fail for test problems with a small condition number and requires flops of $O(n^4)$ for nonregular pencils. The algorithm always produced a larger error than implementations of our algorithm, and was at least a factor of 100 greater. Thus any implementation of our algorithm is more efficient and more stable than the GUPTRI algorithm for out test problems. Also, GUPTRI destroys the symmetry of the problem.

In both our algorithm and the GUPTRI algorithm we are making rank decisions. It is unclear what the effect of these are on the overall performance of the algorithms, and this is an open question.

There are other issues we have not addressed. There may be cancellation
errors in forming the symmetric eigenvalue problem

\[A^{(4)}_{22} - A^{(4)}_{23} D^{(4)-1}_{33} A^{(4)T}_{23}, \]

and \(D^{(4)-1}_{33} \) may be ill conditioned depending on our choice of tolerance for the RRD.

Further work is required to address and understand these problems.

3.7 The Symmetric Indefinite Generalized Eigenvalue Problem

We briefly describe here how our algorithm can be adapted for the generalized eigenvalue problem

\[Ax = \lambda Bx \quad (3.7.1) \]

in the case where \(A \) and \(B \) are real and symmetric and \(B \) is now indefinite and may be singular. We consider the algorithm as a deflation strategy.

3.7.1 Step One

First we diagonalize the matrix \(B \) by computing an RRD

\[B = X_1 \text{diag}(D_1, D_2) X_1^T, \]

where \(D_1 \in \mathbb{R}^{r_1 \times r_1} \) and \(D_2 \in \mathbb{R}^{r_2 \times r_2} \), with \(r_1 \) chosen minimally so that \(\|D_2\|_2 \leq \eta \|D_1\|_2 \). We set \(D_2 = 0 \). We thus transform the pencil \(A - \lambda B \)

\[A, B \xrightarrow{X_1^T} A^{(1)}, B^{(1)} = \begin{bmatrix} r_1 & r_2 \\ r_1 & r_2 \end{bmatrix} \begin{bmatrix} A^{(1)}_{11} & A^{(1)}_{12} \\ A^{(1)}_{12}^T & A^{(1)}_{22} \end{bmatrix}, \text{diag}(D_1, 0). \]
Since all the diagonal elements of D_1 are not guaranteed to be all of the same sign, we cannot reduce it to the identity matrix as in the semidefinite case.

If B has full rank then $r_2 = 0$ and we can now solve the regular symmetric indefinite eigenvalue problem

$$A^{(2)} z = \lambda D_1 z,$$

or the nonsymmetric standard eigenvalue problem

$$D_1^{-1} A^{(2)} z = \lambda z,$$

by any suitable method. If B is rank deficient we proceed to step two.

3.7.2 Step Two

We now reduce $A_{22}^{(1)}$ to diagonal form. Compute the RRD

$$A_{22}^{(1)} = X_2 \Phi_2 X_2^T,$$

where the diagonal matrix

$$\Phi_2 = \begin{bmatrix} r_3 & r_4 \\ r_3 & 0 \\ 0 & \Phi_{22} \end{bmatrix},$$

where $r_2 = r_3 + r_4$ and r_3 is chosen minimally so that $\|\Phi_{22}\|_2 \leq \eta \|\Phi_{11}\|_2$. We set $\Phi_{22} = 0$ and define $U_2 = \text{diag}(I_{r_1}, X_3^T)$ and hence transform

$$A^{(1)}, B^{(1)} \xrightarrow{U_2} A^{(2)}, B^{(2)},$$

where

$$A^{(2)} = \begin{bmatrix} r_1 & r_3 & r_4 \\ r_1 & A_{11}^{(2)} & A_{12}^{(2)} & A_{13}^{(2)} \\ r_3 & A_{12}^{(2)*} & D_{22}^{(2)} & 0 \\ r_4 & A_{13}^{(2)*} & 0 & 0 \end{bmatrix}, \quad B^{(2)} = B^{(1)} = \text{diag}(D_1, 0),$$

104
and $D_{22}^{(3)} = \Phi_{11}$.

Now if $r_4 = 0$, the last row and column of $A^{(2)}$ is not present and we have the eigenproblem,

$$\begin{align*}
\begin{bmatrix}
 r_1 & r_2 \\
 r_1 & r_2 \\
\end{bmatrix}
\begin{bmatrix}
 A_{11}^{(2)} & A_{12}^{(2)} \\
 A_{21}^{(2)T} & D_{22}^{(2)} \\
\end{bmatrix}
\begin{bmatrix}
 w_1 \\
 w_2 \\
\end{bmatrix}
= \alpha
\begin{bmatrix}
 D_1 & 0 \\
 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 w_1 \\
 w_2 \\
\end{bmatrix}.
\end{align*}
\tag{3.7.2}$$

Solving for w_2 gives $w_2 = -D_{22}^{(2)-1} A_{12}^{(2)} w_1$ and hence we obtain the r_1-by-r_1 eigenvalue problem

$$\beta D_1^{-1} (A_{11}^{(2)} - A_{12}^{(2)} D_{22}^{(2)-1} A_{12}^{(2)T}) w_1 = \alpha w_1. \tag{3.7.3}$$

There are r_1 finite eigenvalues, from (3.7.3), and another r_2 infinite eigenvalues corresponding to $\beta = 0$.

If $r_4 > 0$ and $A_{13}^{(3)} = 0$ then the pencil $A - \lambda B$ is nonregular. On removing the last r_4 rows and columns we deflate the nonregular part of the pencil and we again obtain a system of the form (3.7.2), which provides r_1 finite and r_3 infinite eigenvalues.

If neither $r_4 = 0$ nor $A_{13}^{(3)} = 0$ then we proceed to step three.

3.7.3 Step Three

Now we make $A_{13}^{(2)} \in \mathbb{R}^{r_1 \times r_4}$ triangular or diagonal. We compute the RRD

$$A_{13}^{(2)} = X_3 \begin{bmatrix}
 G_{11} & 0 \\
 0 & 0 \\
\end{bmatrix} Z_3,$$

where G_{11} is diagonal or triangular. This decomposition will involve some η-negligibility decisions during its computation.
We define $U_3 = \text{diag}(X_3^{-T}, I_{r_3}, Z_3^{-1})$, and perform the transformation

$$ A^{(2)}, B^{(2)} \xrightarrow{U_3} A^{(3)}, B^{(3)}, $$

where $A^{(3)}, B^{(3)}$ is

$$
\begin{bmatrix}
 A^{(4)}_{11} & A^{(4)}_{12} & A^{(4)}_{13} & G^{(4)}_{14} & 0 \\
 A^{(4)}_{12} & A^{(4)}_{22} & A^{(4)}_{23} & 0 & 0 \\
 A^{(4)}_{13} & A^{(4)}_{23} & D^{(4)}_{33} & 0 & 0 \\
 G^{(4)}_{14} & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0
\end{bmatrix},

\begin{bmatrix}
 B^{(3)}_{11} & B^{(3)}_{12} & 0 & 0 & 0 \\
 B^{(3)}_{12} & B^{(3)}_{22} & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0
\end{bmatrix},

r_5, r_6 := r_1 - r_5, r_7 := r_4 - r_5

and $G^{(4)}_{14} = G_{11}$, $D^{(4)}_{33} = D^{(3)}_{22}$. The diagonal matrix D_1 has been made full by the transformation.

After removing the last block row and column of zeros, if necessary, we are left with the following regular eigenproblem,

$$
\beta
\begin{bmatrix}
 A^{(3)}_{11} & A^{(3)}_{12} & A^{(3)}_{13} & G^{(3)}_{14} \\
 A^{(3)}_{12} & A^{(3)}_{22} & A^{(3)}_{23} & 0 \\
 A^{(3)}_{13} & A^{(3)}_{23} & D^{(3)}_{33} & 0 \\
 G^{(3)}_{14} & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3 \\
 v_4
\end{bmatrix}
= \alpha
\begin{bmatrix}
 B^{(3)}_{11} & B^{(3)}_{12} & 0 & 0 \\
 B^{(3)}_{12} & B^{(3)}_{22} & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3 \\
 v_4
\end{bmatrix}.

(3.7.4)

Solving from the bottom up gives

$$
\beta v_4 = 0,
$$

$$
\beta v_3 = -\beta D^{(3)}_{33}^{-1} A^{(3)}_{23} v_2,
$$

$$
\beta (A^{(3)}_{22} - A^{(3)}_{23} D^{(3)}_{33}^{-1} A^{(3)}_{23}) v_2 = \alpha B^{(3)}_{22} v_2,
$$

$$
\beta v_4 = \alpha B^{(3)}_{12} v_2 - \beta G^{(4)}_{14}^{-1} (A^{(4)}_{12} v_2 + A^{(4)}_{13} v_3).

(3.7.5)

We thus have another symmetric indefinite generalized eigenvalue problem, of dimension r_6, and not a standard eigenproblem as in the semidefinite case. We can apply a recursion by restarting the algorithm with (3.7.5). This can continue until the algorithm stops naturally solving a regular problem.
Chapter 4

Updating the QR Factorization and the Least Squares Problem

4.1 Introduction

The linear system,

$$Ax = b,$$

where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$ is overdetemined if $m \geq n$. We can solve the least squares problem

$$\min_{x} \|Ax - b\|_{2},$$

with A having full rank. We then have with the QR factorization $A = QR$ and with $d = Q^{T}b$,

$$\|Ax - b\|_{2}^{2} = \|Q^{T}A - Q^{T}b\|_{2}^{2}$$

$$= \|Rx - d\|_{2}^{2}$$

$$= \left\| \begin{bmatrix} R_{1} \\ 0 \end{bmatrix} x - \begin{bmatrix} f \\ g \end{bmatrix} \right\|_{2}^{2}$$

$$= \|R_{1}x - f\|_{2}^{2} + \|g\|_{2}^{2},$$
where \(R_1 \in \mathbb{R}^{n \times n} \) is upper triangular and \(f \in \mathbb{R}^n \). The minimum 2-norm solution is then found by solving \(R_1 x = f \). The quantity \(\| g \|_2 \) is the residual and is zero in the case \(m = n \).

Each row of the matrix \(A \) can be said to hold observations of the variables \(x_i, i = 1:n \). An example of this is the data fitting problem. Consider the function

\[
g(t_i) \approx b_i, \quad i = 1:m.
\]

The value \(b_i \) has been observed at time \(t_i \). We wish to find the function \(g \) that approximates the value \(b_i \). In least squares fitting we restrict ourselves to functions of the form

\[
g(t) = x_1 g_1(t) + x_2 g_2(t) + \cdots + x_n g_n(t),
\]

where the functions \(g_i(t) \) we call basis functions, and the coefficients \(x_i \) are to be determined. We find the coefficients by solving the least squares problem with

\[
A = \begin{bmatrix}
g_1(t_1) & g_2(t_1) & \cdots & g_n(t_1) \\
g_1(t_2) & g_2(t_2) & \cdots & g_n(t_2) \\
\vdots & \vdots & \ddots & \vdots \\
g_1(t_m) & g_2(t_m) & \cdots & g_n(t_m)
\end{bmatrix}, \quad b = \begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{bmatrix}.
\]

Now, it may be required to update the least squares solution in the case where one or more observations (rows of \(A \)) are added or deleted. For instance we could have a sliding window where for each new observation recorded the oldest one is deleted. The observations for a particular time period may be found to be faulty, thus a block of rows of \(A \) would need to be deleted. Also, variables (columns of \(A \)) may be added or omitted to compare the different solutions. Updating after rows and columns have been deleted is also known as downdating.
To solve these updated least squares problems efficiently we have the problem of updating the QR factorization efficiently, that is we wish to find $\tilde{A} = \hat{Q}\hat{R}$, where \tilde{A} is the updated A, without recomputing the factorization from scratch. We assume that \tilde{A} has full rank. We also need to compute \tilde{d} such that
\[||\tilde{A}x - \tilde{b}|| = ||\hat{R}x - \hat{d}||, \]
where \tilde{b} is the updated b corresponding to \tilde{A} and $\tilde{d} = \hat{Q}^T\tilde{b}$.

4.2 Updating Algorithms

In this section we will examine all the cases where observations and variables are added to or deleted from the least squares problem. We derive algorithms for updating the solution of the least squares problem by updating the QR factorization of \tilde{A}, in the case $m \geq n$. For completeness we have also included discussion and algorithms for updating the QR factorization only when $m < n$. In all cases we give algorithms for computing \hat{Q} should it be required. We will assume that A and \tilde{A} have full rank.

Where possible we derive blocked algorithms to exploit the Level 3 BLAS and existing Level 3 LAPACK routines. We include LAPACK style Fortran 77 code for updating the QR factorization in the cases of adding and deleting blocks of columns.

For clarity the sines and cosines for Givens matrices and the Householder vectors are stored in separate vectors and matrices, but could be stored in the elements they eliminate. Wherever possible new data overwrites original data. All unnecessary computations have been avoided, unless otherwise stated.

We give floating point operation counts for our algorithms and compare them to the counts for the Householder QR factorization of \tilde{A}.

Some of the material is based on material in [4] and [24].
4.2.1 Deleting Rows

Deleting One Row

If we wish to update the least squares problem in the case of *deleting* an observation we have the problem of updating the QR factorization of A having deleted the kth row, a_k^T. We can write

$$\tilde{A} = \begin{bmatrix} A(1: k - 1, 1: n) \\ A(k + 1: m, 1: n) \end{bmatrix}$$

and we interpret $A(1:0, 1: n)$ and $A(m + 1: m, 1: n)$ as empty rows. We define a permutation matrix P such that

$$PA = \begin{bmatrix} a_k^T \\ A(1: k - 1, 1: n) \\ A(k + 1: m, 1: n) \end{bmatrix} = \begin{bmatrix} a_k^T \\ \tilde{A} \end{bmatrix} = PQR,$$

and if q^T is the first row of PQ then we can zero $q(2: m)$ with $m - 1$ Givens matrices, $G(i, j) \in \mathbb{R}^{m \times m}$, so that

$$G(1, 2)^T \ldots G(m - 1, m)^T q = \alpha e_1, \quad |\alpha| = 1, \quad (4.2.1)$$

since the Givens matrices are orthogonal. And we also have

$$G(1, 2)^T \ldots G(m - 1, m)^T R = \begin{bmatrix} v^T \\ \tilde{R} \end{bmatrix},$$

which is upper Hessenberg, so \tilde{R} is upper trapezoidal.

So we have finally

$$PA = \begin{bmatrix} a_k^T \\ \tilde{A} \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ 0 & \tilde{Q} \end{bmatrix} \begin{bmatrix} v^T \\ \tilde{R} \end{bmatrix},$$

and

$$\tilde{A} = \tilde{Q} \tilde{R}.$$
Note that the zero column below α is forced by orthogonality. Also note the choice of a sequence of Givens matrices over one Householder matrix. If we were to use a Householder matrix then the transformed R would be full, as H is full, and not upper Hessenberg. We update b by computing

$$G(1, 2)^T \ldots G(m - 1, m)^T Q^T Pb = \begin{bmatrix} \nu \\ \tilde{d} \end{bmatrix}.$$

This gives the following algorithm.

Algorithm 4.2.1 Given $A = QR \in \mathbb{R}^{m \times n}$, with $m \geq n$, this algorithm computes $\tilde{Q}^T \tilde{A} = \tilde{R} \in \mathbb{R}^{(m-1) \times n}$ where \tilde{R} is upper trapezoidal, \tilde{Q} is orthogonal and \tilde{A} is A with the kth row deleted, $1 \leq k \leq m$, and \tilde{d} such that $\|\tilde{A}x - \tilde{b}\|_2 = \|\tilde{R}x - \tilde{d}\|_2$, where \tilde{b} is b with the kth element deleted. The residual, $\|\tilde{d}(n + 1: m - 1)\|_2$, is also computed.

1. $q^T = Q(k, 1: m)$
 - if $k \neq 1$
 - Permuted b
 - $b(2: k) = b(1: k - 1)$
 - $d = Q^T b$

2. for $j = m - 1: -1: 1$
 - $[c(j), s(j)] = \text{givens}(q(j), q(j + 1))$
 - Update q
 - $q(j) = c(j)q(j) - s(j)q(j + 1)$
 - Update R if there is a nonzero row
 - if $j \leq n$
 - $R(j: j + 1, j: n) = \begin{bmatrix} c(j) & s(j) \\ -s(j) & c(j) \end{bmatrix}^T R(j: j + 1, j: n)$
 - % Update d
 - $d(j: j + 1) = \begin{bmatrix} c(j) & s(j) \\ -s(j) & c(j) \end{bmatrix}^T d(j: j + 1)$
 - $\tilde{R} = R(2: m, 1: n)$
 - $\tilde{d} = d(2: m)$
 - % Compute the residual
 - $\text{resid} = \|\tilde{d}(n + 1: m - 1)\|_2$
Computing \tilde{R} requires $3n^2$ flops, versus $2n^2(m - n/3)$ for the Householder QR factorization of \tilde{A}. If \tilde{Q} is required, it can be computed with the following algorithm.

Algorithm 4.2.2 Given vectors c and s from Algorithm 4.2.1 this algorithm forms an orthogonal matrix $\tilde{Q} \in \mathbb{R}^{(m-1) \times (m-1)}$ such that $\tilde{A} = \tilde{Q}\tilde{R}$, where \tilde{A} is the matrix $A = QR$ with the kth row deleted.

if $k \neq 1$
 % Permute Q
 $Q(2:k,1:m) = Q(1:k - 1,1:m)$
end
for $j = m - 1:-1:2$
 $Q(2:m,j:j + 1) = Q(2:m,j:j + 1) \begin{bmatrix} c(j) & s(j) \\ -s(j) & c(j) \end{bmatrix}$
end
% Do not need to update 1st column of Q
$Q(2:m,2) = s(1)Q(2:m,1) + c(1)Q(2:m,2)$
$\tilde{Q} = Q(2:m,2:m)$

Deleting a Block of Rows

If a block of p observations is to be deleted from our least squares problem, equivalent to deleting the p rows $A(k:k + p - 1,1:n)$ from A, we would like to find an analogous method to Algorithm 4.2.1 that uses Householder matrices, such that if H is a product of p Householder matrices then

$$ PA = \begin{bmatrix} A(k:k+p-1,1:n) \\ \tilde{A} \end{bmatrix} = (PQH)(HR) = \begin{bmatrix} I & 0 \\ 0 & \tilde{Q} \end{bmatrix} \begin{bmatrix} V \\ \tilde{R} \end{bmatrix}. $$

However as noted in the single row case, HR is full and H is chosen to introduce zeros in Q not R. Thus in order to compute $\tilde{A} = \tilde{Q}\tilde{R}$ and \tilde{A}, we need the equivalent of p steps of Algorithm 4.2.1 and Algorithm 4.2.2, since Givens matrices only affect two rows of the matrix they are multiplying, and so we have the following algorithm.
Algorithm 4.2.3 Given $A = QR \in \mathbb{R}^{m \times n}$, with $m \geq n$, this algorithm computes $\tilde{Q}^T \tilde{A} = \tilde{R} \in \mathbb{R}^{(m-p) \times n}$ where \tilde{R} is upper trapezoidal, \tilde{Q} is orthogonal and \tilde{A} is A with the kth to $(k+p-1)$st rows deleted, $1 \leq k \leq m-p+1$, $1 \leq p < m$, and \tilde{d} such that $\|\tilde{A}x - \tilde{b}\|_2 = \|\tilde{R}x - \tilde{d}\|_2$, where \tilde{b} is b with the kth to $(k+p-1)$st elements deleted. The residual, $\|\tilde{d}(n+1:m-p)\|_2$, is also computed.

$$W = Q(k:k+p-1,1:m)$$
if $k \neq 1$
% Permute b
$$b(p+1:k+p-1) = b(1:k-1)$$
end
$$d = Q^T b$$
for $i = 1:p$
for $j = m-1:-1:i$
$$[C(i,j), S(i,j)] = \text{givens}(W(i,j), W(i, j+1))$$
% Update W
$$W(i,j) = W(i,j)C(i,j) - W(i,j+1)S(i,j)$$
$$W(i+1:p, j+1) = W(i+1:p, j+1) \begin{bmatrix} C(i,j) & S(i,j) \\ -S(i,j) & C(i,j) \end{bmatrix}$$
% Update R if there is a nonzero row
if $j \leq n+i-1$
$$R(j:j+1, j-i+1:n) = \begin{bmatrix} C(i,j) & S(i,j) \\ -S(i,j) & C(i,j) \end{bmatrix}^T R(j:j+1, j-i+1:n)$$
end
% Update d
$$d(j:j+1) = \begin{bmatrix} C(i,j) & S(i,j) \\ -S(i,j) & C(i,j) \end{bmatrix}^T d(j:j+1)$$
end
$$\tilde{R} = R(p+1:m, 1:n)$$
$$\tilde{d} = d(p+1:m)$$
% Compute the residual
$$\text{resid} = \|\tilde{d}(n+1:m-p)\|_2$$

Computing \tilde{R} requires $3n^2p + p^2(m/3 - p)$ flops, versus $2n^2(m-p-n/3)$ for the Householder QR factorization of \tilde{A}. Note the following algorithm to compute \tilde{Q} is more economical than calling Algorithm 4.2.2 p times, saving
$3mp^2$ flops by not updating the first p rows of \tilde{Q}.

Algorithm 4.2.4 Given matrices C and S from Algorithm 4.2.3 this algorithm forms an orthogonal matrix $\tilde{Q} \in \mathbb{R}^{(m-p)\times(m-p)}$ such that $\tilde{A} = \tilde{Q}\tilde{R}$, where \tilde{A} is the matrix $A = QR$ with the kth to $(k + p - 1)$st rows deleted.

if $k \neq 1$

% Permute Q

$Q(p + 1:k + p - 1, m) = Q(1:k - 1, m)$

end

for $i = 1:p$

for $j = m - 1:-1:i + 1$

$Q(p + 1:m, j:j + 1) = Q(p + 1:m, j:j + 1) \begin{bmatrix} C(i, j) & S(i, j) \\ -S(i, j) & C(i, j) \end{bmatrix}$

end

% Do not need to update columns 1:p of Q

$Q(p + 1:m, i + 1) = S(i, i)Q(p + 1:m, i) + C(i, i)Q(p + 1:m, i + 1)$

$Q = Q(p + 1:m, p + 1:m)$

Updating the QR Factorization for any m and n

The relevant parts of Algorithm 4.2.3 and Algorithm 4.2.4 could be used to update the QR factorization of \tilde{A} in the case when $m < n$ without any alteration.

4.2.2 Alternative Methods for Deleting Rows

Hyperbolic Transformations

If we have the QR factorization $A = QR \in \mathbb{R}^{m \times n}$, then

$$A^T A = R^T Q^T Q R = R^T R,$$
which is a Cholesky factorization of $A^T A$. And if we define a permutation matrix P such that

$$PA = \begin{bmatrix}
a_k^T \\
A(1:k-1,1:n) \\
A(k+1:m,1:n)
\end{bmatrix} = \begin{bmatrix}
\tilde{a}_k^T \\
\tilde{A}
\end{bmatrix} = PQR,$$

where a_k^T is the kth row of A, then we have

$$R^T Q^T P^T PQR = R^T R = A^T A = \begin{bmatrix}
\tilde{a}_k^T \\
\tilde{A}
\end{bmatrix}^T \begin{bmatrix}
\tilde{a}_k^T \\
\tilde{A}
\end{bmatrix}.$$ \hspace{1cm} (4.2.2)

Thus if we find \tilde{R}, such that $\tilde{R}^T \tilde{R} = \tilde{A}^T \tilde{A}$, then we have computed \tilde{R} for \tilde{A} being A with the kth row deleted. This can be achieved with hyperbolic transformations.

We define $W \in \mathbb{R}^{m \times m}$ as pseudo-orthogonal with respect to the signature matrix

$$J = \text{diag}(\pm 1) \in \mathbb{R}^{m \times m}$$

if

$$W^T JW = J.$$

If we transform a matrix with W we say that this is a hyperbolic transformation.

Now from (4.2.2) we have

$$\tilde{A}^T \tilde{A} = A^T A - a_k a_k^T$$

$$= R^T R - a_k a_k^T$$

$$= [R^T \ a_k] \begin{bmatrix}
I_n & 0 \\
0 & -1
\end{bmatrix} \begin{bmatrix}
R \\
a_k^T
\end{bmatrix},$$

with the signature matrix

$$J = \begin{bmatrix}
I_n & 0 \\
0 & -1
\end{bmatrix}.$$ \hspace{1cm} (4.2.3)
And suppose there is a $W \in \mathbb{R}^{(n+1)\times(n+1)}$ such that $W^T JW = J$ with the property

$$W \begin{bmatrix} R \\ a_k^T \end{bmatrix} = \begin{bmatrix} \tilde{R} \\ 0 \end{bmatrix}$$

is upper trapezoidal. It follows that

$$\tilde{A}^T \tilde{A} = [R^T \ a_k] W^T JW \begin{bmatrix} R \\ a_k^T \end{bmatrix}$$

$$= [\tilde{R}^T \ 0] J \begin{bmatrix} \tilde{R} \\ 0 \end{bmatrix}$$

$$= \tilde{R}^T \tilde{R},$$

which is the Cholesky factorization we seek.

We construct the hyperbolic transformation matrix, W, by a product of hyperbolic rotations, $W(i, n + 1) \in \mathbb{R}^{(n+1)\times(n+1)}$, which are of the form

$$W(i, n + 1) = \begin{bmatrix} I & n + 1 \\ c & -s & i \\ I \\ -s & c & n + 1 \end{bmatrix}$$

where $c = \cosh(\theta)$ and $s = \sinh(\theta)$ for some θ and $c^2 - s^2 = 1$. $W(i, n + 1)^T JW(i, n + 1) = J$, where J is given in (4.2.3).

$W(i, n + 1)x$ only transforms the ith and $(n + 1)$st elements. To solve the 2×2 problem

$$\begin{bmatrix} c & -s \\ -s & c \end{bmatrix} \begin{bmatrix} x_i \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} y \\ 0 \end{bmatrix},$$

we note that $cx_{n+1} = sx_i$ and there is no solution for $x_i = x_{n+1} \neq 0$. If $x_i \neq x_{n+1}$ then we can compute c and s with the following algorithm.

Algorithm 4.2.5 This algorithm generates scalars c and s such that

$$\begin{bmatrix} c & -s \\ -s & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y \\ 0 \end{bmatrix}$$

where x_1, x_2 and y are scalars and $c^2 - s^2 = 1$, if a solution exists.
if $x_2 = 0$
 $s = 0$
 $c = 1$
else
 if $|x_2| < |x_1|
 t = x_2/x_1$
 $c = 1/\sqrt{1 - t^2}$
 $s = ct$
 else
 no solution exists
end
end

Note the norm of the rotation gets large as x_1 gets close to x_2.

We thus generate n hyperbolic transformations such that

$$W(n, n + 1) \ldots W(2, n + 1)W(1, n + 1) \begin{bmatrix} R \\ a_k^T \end{bmatrix} = \begin{bmatrix} \hat{R} \\ 0 \end{bmatrix}.$$

It turns out that all the $W(i, n + 1)$ can be found if A has full rank [4].

Chamber’s Algorithm

A method due to Chambers [12] mixes a hyperbolic and Givens rotation. If we have our usual Givens transformation on the vector x

$$\begin{bmatrix} c & s \\ -s & c \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix},$$

then the transformed x_i, \tilde{x}_i, are

$$\tilde{x}_1 = cx_1 - sx_2,$$ \hspace{1cm} (4.2.4)

$$\tilde{x}_2 = sx_1 + cx_2,$$

with

$$c = \frac{x_1}{\sqrt{x_1^2 + x_2^2}}, \quad s = \frac{-x_2}{\sqrt{x_1^2 + x_2^2}}.$$

117
Now suppose we know \tilde{x}_1 and want to recreate the vector x, then rearranging (4.2.4) we have

$$x_1 = \frac{(s x_2 + \tilde{x}_1)}{c},$$
$$\tilde{x}_2 = s x_1 + c x_2,$$

with

$$c = \frac{\sqrt{\tilde{x}_1^2 - x_2^2}}{\tilde{x}_1}, \quad s = \frac{-x_2}{\tilde{x}_1}.$$

Thus we can recreate the steps that would have updated \tilde{R} had we added a_k^T to \tilde{A}, instead of deleting it from A. At the ith step, for $i = 1:n + 1$, with

$$x_1 = R(i, i),$$
$$\tilde{x}_1 = \tilde{R}(i, i),$$
$$x_2 = a_k^{(i-1)}(i),$$

we compute, for $j = i:n + 1$:

$$\tilde{R}(i, j) = \frac{(R(i, i) + s a_k(j))/c,}{\tilde{R}(i, j)}$$
$$a_k^{(i)}(j) = s R(i, j) + c a_k^{(i-1)}(j).$$

Saunders’ Algorithm

If Q is not available then Saunders’ algorithm [44] offers an alternative to Algorithm 4.2.1. The first row of

$$PA = \begin{bmatrix} a_k^T \\ \tilde{A} \end{bmatrix} = PQ \begin{bmatrix} R_1 \\ 0 \end{bmatrix},$$

can be written

$$a_k^T = q^T \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = q_1^T q_2^T \begin{bmatrix} R_1 \\ 0 \end{bmatrix},$$

where $q_1 \in \mathbb{R}^n$. We compute q_1 by solving

$$R_1^T q_1 = a_k,$$
and since $\|q\|_2 = 1$ we have

$$\eta = \|q_2\|_2 = (1 - \|q_1\|_2^2)^{1/2}.$$

Then we have, with the same Givens matrices in (4.2.1),

$$G(n + 1, n + 2)^T \cdots G(m - 1, m)^T \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} q_1 \\ \pm \eta \\ 0 \end{bmatrix},$$

which would not effect R. So we need only compute

$$G(1, 2)^T \cdots G(n, n + 1)^T \begin{bmatrix} q_1 \\ \eta \end{bmatrix} = \alpha e_1, \quad |\alpha| = 1,$$

and update R by

$$G(1, 2)^T \cdots G(n, n + 1)^T R = \begin{bmatrix} v^T \\ \tilde{R} \end{bmatrix}.$$

This algorithm is implemented in LINPACK’s xCHDD.

Stability Issues

Stewart [49] shows that hyperbolic transformations are not backward stable. However, Chamber’s and Saunder’s algorithms are *relationally stable* [6], [47], that is if W represents the product of all the transformations then

$$W^T R = \begin{bmatrix} v^T \\ \tilde{R} \end{bmatrix} + E,$$

where

$$\|E\| \leq c_n u \|R\|,$$

and c_n is a constant that depends on n.

Saunder’s algorithm can fail for certain data, see [5].
Block Downdating

Hyperbolic transformations have been generalized by Rader and Steinhardt as hyperbolic Householder transformations [42].

Alternatives are discussed in Elden and Park [22], and the references contained within, including a generalization of Saunders Algorithm. See also Bojanczyk, Higham and Patel [7] and Olskanskyj, Lebak and Bojanczyk [39].

4.2.3 Adding Rows

Adding One Row

If we wish to add an observation to our least squares problem then we need to add a row, $u^T \in \mathbb{R}^n$, in the kth position, $k = 1:m + 1$, of $A = QR \in \mathbb{R}^{m \times n}$, $m \geq n$. We can then write

$$\tilde{A} = \begin{bmatrix} A(1:k - 1,1:n) \\ u^T \\ A(k:m,1:n) \end{bmatrix}$$

and we can define a permutation matrix, P, such that

$$P\tilde{A} = \begin{bmatrix} A \\ u^T \end{bmatrix},$$

and then

$$\begin{bmatrix} Q^T & 0 \\ 0 & 1 \end{bmatrix} P\tilde{A} = \begin{bmatrix} R \\ u^T \end{bmatrix}. \quad (4.2.5)$$
For example, with $m = 8$ and $n = 6$ the right-hand side of (4.2.5) looks like:

$$
\begin{bmatrix}
+ & + & + & + & + & & \\
0 & + & + & + & + & & \\
0 & 0 & + & + & + & & \\
0 & 0 & 0 & + & + & & \\
0 & 0 & 0 & 0 & + & & \\
0 & 0 & 0 & 0 & 0 & & \\
0 & 0 & 0 & 0 & 0 & & \\
\end{bmatrix},
$$

with the nonzero elements of R represented with a $+$ and the elements to be eliminated are shown with a Θ.

Thus to find $\tilde{A} = \tilde{Q}\tilde{R}$, we can define n Givens matrices, $G(i, j) \in \mathbb{R}^{m+1 \times m+1}$, to eliminate u^T to give

$$
G(n, m + 1)^T \ldots G(1, m + 1)^T \begin{bmatrix} \tilde{R} \\ u^T \end{bmatrix} = \tilde{R},
$$

so we have

$$
\tilde{A} = \left(P^T \begin{bmatrix} Q & 0 \\ 0 & 1 \end{bmatrix} G(1, m + 1) \ldots G(n, m + 1) \right) \tilde{R} = \tilde{Q}\tilde{R}.
$$

and to update b we compute

$$
G(n, m + 1)^T \ldots G(1, m + 1)^T \begin{bmatrix} Q^T b \\ \mu \end{bmatrix} = \tilde{d},
$$

where μ is the element inserted into b corresponding to u^T. This gives the following algorithm.

Algorithm 4.2.6 Given $A = QR \in \mathbb{R}^{m \times n}$, with $m \geq n$, this algorithm computes $\tilde{Q}^T \tilde{A} = \tilde{R} \in \mathbb{R}^{(m+1) \times n}$ where \tilde{R} is upper trapezoidal, \tilde{Q} is orthogonal and \tilde{A} is A with a row, $u^T \in \mathbb{R}^n$, inserted in the kth position, $1 \leq k \leq m + 1$, and \tilde{d} such that $\|\tilde{A}x - \tilde{b}\|_2 = \|\tilde{R}x - \tilde{d}\|_2$, where \tilde{b} is b with a scalar μ inserted in the kth position. The residual, $\|\tilde{d}(n + 1: m + 1)\|_2$, is also computed.
\[d = Q^T b \]
for \(j = 1:n \)
\[
\begin{align*}
[c(j), s(j)] &= \text{givens}(R(j, j), u(j)) \\
R(j, j) &= c(j)R(j, j) - s(j)u(j) \\
% & Update jth row of R and u \\
t1 &= R(j, j + 1:n) \\
t2 &= u(j + 1:n) \\
R(j, j + 1:n) &= c(j)t1 - s(j)t2 \\
u(j + 1:n) &= s(j)t1 + c(j)t2 \\
% & Update jth row of d and \(\mu \) \\
t1 &= d(j) \\
t2 &= \mu \\
d(j) &= c(j)t1 - s(j)t2 \\
\mu &= s(j)t1 + c(j)t2
\end{align*}
\]
end
\[
\tilde{R} = \begin{bmatrix} R \\ 0 \end{bmatrix}
\]
\[
\tilde{d} = \begin{bmatrix} d \\ \mu \end{bmatrix}
\]
% Compute the residual
\[
\text{resid} = \| \tilde{d}(n + 1:m + 1) \|_2
\]
Computing \(\tilde{R} \) requires \(3n^2 \) flops, versus \(2n^2(m - n/3) \) for the Householder QR factorization of \(\tilde{A} \). If \(\tilde{Q} \) is required, it can be computed with the following algorithm.

Algorithm 4.2.7 Given vectors \(c \) and \(s \) from Algorithm 4.2.6 this algorithm forms an orthogonal matrix \(\tilde{Q} \in \mathbb{R}^{(m+1) \times (m+1)} \) such that \(\tilde{A} = \tilde{Q}\tilde{R} \), where \(\tilde{A} \) is the matrix \(A = QR \) with a row added in the \(k \)th position.

Set \(\tilde{Q} = \begin{bmatrix} Q & 0 \\ 0 & 1 \end{bmatrix} \)
if \(k \neq m + 1 \)
% Permute \(Q \)
\[
Q = \begin{bmatrix} Q(1: k - 1, 1:n) \\ Q(m + 1, 1:n) \\ Q(k: m, 1:n) \end{bmatrix}
\]
end
for \(j = 1:n \)
\[t_1 \equiv \tilde{Q}(1: m + 1, j) \]
\[t_2 \equiv \tilde{Q}(1: m + 1, m + 1) \]
\[\tilde{Q}(1: m + 1, j) = c(j)t_1 - s(j)t_2 \]
\[\tilde{Q}(1: m + 1, m + 1) = s(j)t_1 + c(j)t_2 \]

end

Adding a Block of Rows

To add a block of \(p \) observations to our least squares problem we add a block of \(p \) rows, \(U \in \mathbb{R}^{(p \times n)} \), in the \(k \)th to \((k + p - 1)\)st positions, \(k = 1: m + 1 \), of \(A = QR \in \mathbb{R}^{m \times n} \), \(m \geq n \), we can then write

\[
\tilde{A} = \begin{bmatrix}
A(1: k - 1, 1: n) \\
U \\
A(k: m, 1: n)
\end{bmatrix}
\]

and we can define a permutation matrix, \(P \), such that

\[
P\tilde{A} = \begin{bmatrix}
A \\
U
\end{bmatrix},
\]

and

\[
\begin{bmatrix}
Q^T & 0 \\
0 & I_p
\end{bmatrix}
\begin{bmatrix}
P\tilde{A}
\end{bmatrix}
= \begin{bmatrix}
R \\
U
\end{bmatrix}.
\]

(4.2.6)

For example, with \(m = 8, n = 6 \) and \(p = 3 \) the right-hand side of Equation (4.2.6) looks like:

\[
\begin{bmatrix}
+ & + & + & + & + & + \\
0 & + & + & + & + & + \\
0 & 0 & + & + & + & + \\
0 & 0 & 0 & + & + & + \\
0 & 0 & 0 & 0 & + & + \\
0 & 0 & 0 & 0 & 0 & + \\
0 & 0 & 0 & 0 & 0 & 0 \\
\oplus & \oplus & \oplus & \oplus & \oplus & \oplus \\
\oplus & \oplus & \oplus & \oplus & \oplus & \oplus \\
\oplus & \oplus & \oplus & \oplus & \oplus & \oplus \\
\oplus & \oplus & \oplus & \oplus & \oplus & \oplus \\
\oplus & \oplus & \oplus & \oplus & \oplus & \oplus \\
\oplus & \oplus & \oplus & \oplus & \oplus & \oplus \\
\end{bmatrix}
\]
with the nonzero elements of R represented with a $+$ and the elements to be eliminated are shown with a Θ.

Thus to find $\tilde{A} = \tilde{Q}\tilde{R}$, we can define n Householder matrices to eliminate U to give
\[
H_n \ldots H_1 \begin{bmatrix} R \\ U \end{bmatrix} = \tilde{R},
\]
so we have
\[
\tilde{A} = \left(P^T \begin{bmatrix} Q & 0 \\ 0 & I_p \end{bmatrix} H_1 \ldots H_n \right) \tilde{R} = \tilde{Q}\tilde{R}.
\]

The Householder matrix, $H_j \in \mathbb{R}^{(m+p) \times (m+p)}$, will zero the jth column of U. Its associated Householder vector, $v_j \in \mathbb{R}^{(m+p)}$, is such that
\[
\begin{aligned}
v_j(1:j - 1) &= 0, \\
v_j(j) &= 1, \\
v_j(j + 1:m) &= 0, \\
v_j(m + 1:m + p) &= x/(r_{jj} - \| [r_{jj} \ x^T] \|_2), \text{ where } x = U(1:p,j).
\end{aligned}
\]

So the H_j have the following structure
\[
H_j = \begin{bmatrix}
I \\
\begin{bmatrix} h_{jj} \\ h_{m+1,j} \\ \vdots \\ h_{m+p,j} \end{bmatrix} & \begin{bmatrix} h_{j,m+1} & \ldots & h_{j,m+p} \\ h_{m+1,m+1} & \ldots & h_{m+1,m+p} \\ \vdots & \ddots & \vdots \\ h_{m+p,m+1} & \ldots & h_{m+p,m+p} \end{bmatrix}
\end{bmatrix}.
\]

Then to update b we compute
\[
H_n \ldots H_1 \begin{bmatrix} Q^T b \\ e \end{bmatrix} = \tilde{d},
\]
where e is such that $Ux = e$. This gives the following algorithm.
Algorithm 4.2.8 Given $A = QR \in \mathbb{R}^{m \times n}$, with $m \geq n$, this algorithm computes $\tilde{Q}^T \tilde{A} = \tilde{R} \in \mathbb{R}^{(m+p) \times n}$ where \tilde{R} is upper trapezoidal, \tilde{Q} is orthogonal and \tilde{A} is A with a block of rows, $U \in \mathbb{R}^{p \times n}$, inserted in the kth to $(k+p-1)$st positions, $1 \leq k \leq m+1$, $p \geq 1$, and \tilde{d} such that $\|	ilde{A}x - \tilde{b}\|_2 = \|	ilde{R}x - \tilde{d}\|_2$, where \tilde{b} is b with the vector e inserted in the kth to $(k+p-1)$st positions. The residual, $\|\tilde{d}(n+1:m+p)\|_2$, is also computed.

\[
d = Q^T b \\
\text{for } j = 1:n \\
[V(1:p,j), \tau(j)] = \text{householder}(R(j,j),U(1:p,j)) \\
\% \text{ Remember old } j\text{th row of } R \\
R_j = R(j,j+1:n) \\
\% \text{ Update } j\text{th row of } R \\
R(j,j+1:n) = (1 - \tau(j))R(j,j+1:n) - \tau(j)V(1:p,j)^T U(1:p,j+1:n) \\
\% \text{ Update trailing part if } U \\
\text{if } j < n \\
U(1:p,j+1:n) = U(1:p,j+1:n) - \tau(j)V(1:p,j)R_j \\
- \tau(j)V(1:p,j)(V(1:p,j)^T U(1:p,j+1:n)) \\
\% \text{ Remember old } j\text{th element of } d \\
d_j = R(j) \\
\% \text{ Update } j\text{th element of } d \\
d(j) = (1 - \tau(j))d(j) - \tau(j)V(1:p,j)^T e(1:p) \\
\% \text{ Update } e \\
e(1:p) = e(1:p) - \tau(j)V(1:p,j)d_j \\
- \tau(j)V(1:p,j)(V(1:p,j)^T e(1:p)) \\
\% \text{ Compute the residual} \\
\text{resid} = \|\tilde{d}(n+1:m+p)\|_2 \\
\]

Computing \tilde{R} requires $2n^2p$ flops, versus $2n^2(m+p-n/3)$ for the Householder QR factorization of \tilde{A}. If \tilde{Q} is required, it can be computed with the following algorithm.

Algorithm 4.2.9 Given the matrix V and vector τ from Algorithm 4.2.8 this algorithm forms an orthogonal matrix $\tilde{Q} \in \mathbb{R}^{(m+p) \times (m+p)}$ such that $\tilde{A} = \tilde{Q}\tilde{R}$.
where \tilde{A} is the matrix $A = QR$ with a block of rows inserted in the kth to $(k+p-1)$st positions.

Set $\tilde{Q} = \begin{bmatrix} Q & 0 \\ 0 & I \end{bmatrix}$

if $k \neq m + 1$

% Permute Q

$\tilde{Q} = \begin{bmatrix} \tilde{Q}(1:k-1,1:m+p) \\ \tilde{Q}(m + 1: m + p,1:m + p) \\ \tilde{Q}(k:m,1:m + p) \end{bmatrix}$

end

for $j = 1:n$

% Remember jth column of \tilde{Q}

$\tilde{Q}_k = \tilde{Q}(1:m + p,j)$

% Update jth column

$Q(1:m + p,j) = Q(1:m + p,j)(1 - \tau(j)) - \tilde{Q}(1:m + p, m + 1:m + p)\tau(j)V(1:p, j)$

% Update $m + 1:p$ columns of \tilde{Q}

$\tilde{Q}(1:m + p, m + 1:m + p) = \tilde{Q}(1:m + p, m + 1:m + p) - \tau(j)\tilde{Q}_kV(1:p, j)^T - \tau(j)(\tilde{Q}(1:m + p, m + 1:m + p)V(1:p, j))V(1:p, j)^T$

end

This algorithm could be made more economical by noting that at the jth stage, for $i > m$, $\tilde{q}_{ij} = 0$, and avoiding some unnecessary multiplications by zero. Also $\tilde{Q}(m + 1: m + p, 1:m) = 0$ and $\tilde{Q}(m + 1: m + p, m + 1:m + p) = I_p$, prior to the permutation.

Algorithm 4.2.8 can be improved by exploiting the Level 3 BLAS by using the representation of the product of n_b Householder matrices, H_i, as

$$H_1H_2\ldots H_{n_b} = I - VTV^T,$$ (4.2.8)

where

$$V = \begin{bmatrix} v_1 & v_2 & \ldots & v_{n_b} \end{bmatrix} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix},$$
and $V_1 \in \mathbb{R}^{n_b \times n_b}$ is lower triangular and T is upper triangular. We can write

$$Q^T \tilde{A} = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \\ 0 & 0 & 0 \\ U_{11} & U_{12} & U_{13} \end{bmatrix},$$

(4.2.9)

where the R_{ii} are upper triangular with $R_{11} \in \mathbb{R}^{r \times r}$ and $R_{22} \in \mathbb{R}^{n_b \times n_b}$, and after we have updated the first r columns, then the transformed right-hand side of (4.2.9) looks like:

$$\begin{bmatrix} R_{11}^{(r)} & R_{12}^{(r)} & R_{13}^{(r)} \\ 0 & R_{22}^{(r)} & R_{23}^{(r)} \\ 0 & 0 & R_{33}^{(r)} \\ 0 & 0 & 0 \\ 0 & U_{12}^{(r)} & U_{13}^{(r)} \end{bmatrix}.$$

Now we eliminate the first column of $U_{12}^{(r)}$ and instead of updating the trailing parts of R and U we update only the trailing parts of $U_{12}^{(r)}$ and the $(r + 1)$st row of $R_{22}^{(r)}$, which are the only elements affected in this middle block column, and continue in this way until U_{12} has been eliminated. We can then employ the representation (4.2.8) to apply n_b Householder matrices to update the last block column in one go. We have, by the definition of the Householder vectors in (4.2.7)

$$V_1 = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}, \quad V_1 = I_{n_b}, \quad V_2 = \begin{bmatrix} 0 \\ \overline{V}_2 \end{bmatrix},$$

where $\overline{V}_2 \in \mathbb{R}^{p \times n_b}$ hold the essential part of the Householder vectors for the current block column. Then

$$[I - TT^TV^T]^T \begin{bmatrix} R_{23} \\ R_{33} \\ 0 \\ U_{13} \end{bmatrix} = \begin{bmatrix} I_{n_p} \\ 0 \\ 0 \\ \overline{V}_2 \end{bmatrix}^T [I_{n_b} \ 0 \ \overline{V}_2]^T \begin{bmatrix} R_{23} \\ R_{33} \\ 0 \\ U_{13} \end{bmatrix}$$
\[(I_n - T^T)R_{23} - T^T \nabla_{2}^T U_{13} \]

This approach leads to a blocked algorithm, where at the kth stage we factorize \([R_{22} \quad 0 \quad U_{12}^T]^T\), where \(R_{22} \in \mathbb{R}^{n_b \times n_b}\) and \(U_{12} \in \mathbb{R}^{p \times n_b}\), then update \(R_{23} \in \mathbb{R}^{n_b \times (n-k_n)}\) and \(U_{13}^T \in \mathbb{R}^{p \times (n-k_n)}\) as above. And to update \(Q^T b = d\) we compute

\[
\begin{bmatrix}
 d(1: (k-1)n_b) \\
 (I_n - T^T)d((k-1)n_b + 1: kn_b) - T^T \nabla_{2}^T e \\
 d(kn_b + 1: m) \\
 - \nabla_{2}^T d((k-1)n_b + 1: kn_b) + (I - \nabla_{2}^T \nabla_{2}) e \\
\end{bmatrix} = \begin{bmatrix} d \\ e \end{bmatrix}.
\]

Algorithm 4.2.10 Given \(A = QR \in \mathbb{R}^{m \times n}\), with \(m \geq n\), this algorithm computes \(\tilde{Q}^T \tilde{A} = \tilde{R} \in \mathbb{R}^{(m+p) \times n}\) where \(\tilde{R}\) is upper trapezoidal, \(\tilde{Q}\) is orthogonal and \(\tilde{A}\) is \(A\) with a block of rows, \(U \in \mathbb{R}^{p \times n}\), inserted in the kth to \((k + p - 1)st\) positions, \(1 \leq k \leq m + 1\), \(p \geq 1\), and \(\tilde{d}\) such that \(\|\tilde{A}x - \tilde{b}\|_2 = \|\tilde{R}x - \tilde{d}\|_2\), where \(\tilde{b}\) is \(b\) with the vector \(e\) inserted in the kth to \((k + p - 1)st\) positions. The residual, \(\|\tilde{d}(n + 1: m + p)\|_2\), is also computed. This is a Level 3 BLAS algorithm with block size \(n_b\).

\[
d = Q^T b \\
\text{for } k = 1: n_b; n \\
\quad \% \text{Check for the last column block} \\
\quad j_b = \min(n_b, n - k + 1) \\
\quad \text{Factorize current block with Algorithm 4.2.8 where} \\
\quad V = V(1: p, k: k + j_b - 1) \\
\quad \% \text{If we are not in last block column build T} \\
\quad \% \text{and update trailing matrix} \\
\quad \text{if } k + j_b \leq n \\
\quad \quad \text{for } j = k: k + j_b - 1 \\
\quad \quad \% \text{Build T} \\
\quad \quad \text{if } j = k \\
\quad \quad \quad T(1, 1) = \tau(j) \\
\quad \quad \text{else} \
\]
\[T(1: j - k, j - k + 1) = -\tau(j)T(1: j - k, 1: j - k) \]
\[*V(1: p, k: j - 1)^T V(1: p, j) \]
\[T(j - k + 1, j - k + 1) = \tau(j) \]

end

\% Compute products we use more than once
\[T_V = T^T V(1: p, k: k + j b - 1)^T \]
\[T_e = T_V e \]
\[T_U = T_V U(1: p, , k + j b: n) \]

\% Remember old \(d \) and \(e \)
\[d_k = d(k: k + j b - 1) \]
\[e_k = e \]

\% Update \(d \) and \(e \)
\[d(k: k + j b - 1) = d_k - T^T d_k - T_e \]
\[e = -V(1: p, k: k + j b - 1)T^T d_k + e_k \]
\[-V(1: p, k: k + j b - 1)T_e \]

\% Remember old trailing parts of \(R \) and \(U \)
\[R_k = R(k: k + j b - 1, k + j b: n) \]
\[U_k = U(1: p, k + j b: n) \]

\% Update trailing parts of \(R \) and \(U \)
\[R(k: k + j b - 1, k + j b: n) = R_k - T^T R_k - T_U \]
\[U(1: p, k + j b: n) = -V(1: p, k: k + j b - 1)T^T R_k + U_k \]
\[-V(1: p, k: k + j b - 1)T_U \]

end

\[\tilde{R} = \begin{bmatrix} R \end{bmatrix} \]
\[\tilde{d} = \begin{bmatrix} d \end{bmatrix} \]

\% Compute the residual
\[resid = \|\tilde{d}(n + 1: m + p)\|_2 \]

We could apply the same approach to improve Algorithm 4.2.9.

Updating the QR Factorization for any \(m \) and \(n \)

In the case where \(m < n \) after \(m \) steps of Algorithm 4.2.8 we have
\[\tilde{A} = P^T \begin{bmatrix} Q^T & 0 \\
0 & I_p \end{bmatrix} H_1 \ldots H_n \begin{bmatrix} R_{11} & R_{22} \\
0 & V \end{bmatrix} , \]
where \(R_{11} \) is upper triangular and \(V \) is the transformed \(U(1: p, m + 1: n) \). Thus if we compute the QR factorization \(V = Q_V R_V \), we than have

\[
\tilde{A} = \left(P^T \begin{bmatrix} Q^T & 0 \\ 0 & I_p \end{bmatrix} H_1 \ldots H_n \begin{bmatrix} I_m & 0 \\ 0 & Q_V^T \end{bmatrix} \right) \tilde{R} = \tilde{Q}\tilde{R}.
\]

This gives us the following algorithms to update the QR factorization for any \(m \) and \(n \).

Algorithm 4.2.11 Given \(A = QR \in \mathbb{R}^{m \times n} \) this algorithm computes \(\tilde{Q}^T \tilde{A} = \tilde{R} \in \mathbb{R}^{(m+p) \times n} \) where \(\tilde{R} \) is upper trapezoidal, \(\tilde{Q} \) is orthogonal and \(\tilde{A} \) is \(A \) with a block of rows, \(U \in \mathbb{R}^{p \times n} \), inserted in the \(k \)th to \((k + p − 1)\)st positions, \(1 \leq k \leq m + 1, p \geq 1 \).

\[\begin{align*}
\text{lim} &= \min(m, n) \\
\text{for } j = 1: \text{lim} \\
[V(1:\ p, j), \tau(j)] &= \text{householder}(R(j, j), U(1:\ p, j)) \\
& \quad \% \text{ Remember old } j \text{th row of } R \\
R_k &= R(j, j + 1: n) \\
& \quad \% \text{ Update } j \text{th row of } R \\
R(j, j:n) &= (1 - \tau(j))R(j, j:n) - \tau(j)V(1:\ p, j)^T U(1:\ p, j:n) \\
& \quad \% \text{ Update trailing part if } U \\
& \quad \text{if } j < n \\
U(1:\ p, j + 1:n) &= U(1:\ p, j + 1:n) - \tau(j)V(1:\ p, j)R_k \\
& \quad \quad - \tau(j)V(1:\ p, j)(V(1:\ p, j)^T U(1:\ p, j + 1:n)) \\
& \quad \text{end} \\
\tilde{R} &= \begin{bmatrix} R \\ 0 \end{bmatrix} \\
& \quad \text{if } m < n \\
& \quad \text{Perform the } QR \text{ factorization } U(:, m + 1:n) = Q_U R_U \\
& \quad \tilde{R}(m + 1:m + p, m + 1:n) = R_U \\
& \quad \text{end}
\end{align*}\]

This algorithm could also be improved by using the representation (4.2.8) to include a Level 3 BLAS part. If \(\tilde{Q} \) is required it can be computed with the following algorithm.
Algorithm 4.2.12 Given the matrices V and Q_U and vector τ from Algorithm 4.2.11 this algorithm forms an orthogonal matrix $\tilde{Q} \in \mathbb{R}^{(m+p)\times(m+p)}$ such that $A = \tilde{Q}\tilde{R}$, where A is the matrix $A = QR$ with a block of rows inserted in the kth to $(k + p - 1)$st positions.

Set $\tilde{Q} = \begin{bmatrix} Q & 0 \\ 0 & I \end{bmatrix}$

if $k \neq m + 1$
 % Permute Q
 $\tilde{Q} = \begin{bmatrix} Q(1:k-1,1:m+p) \\ Q(m+1:m+p,1:m+p) \\ Q(k:m,1:m+p) \end{bmatrix}$
end

$\text{lim} = \min(m,n)$

for $j = 1:\text{lim}$
 % Remember jth column of \tilde{Q}
 $\tilde{Q}_k = \tilde{Q}(1:m+p,j)$
 % Update jth column
 $Q(1:m+p,j) = Q(1:m+p,j)(1 - \tau(j))$
 $\tilde{Q}(1:m+p,m+1:m+p)\tau(j)V(1:p,j)$
 % Update $m + 1:p$ columns of \tilde{Q}
 $\tilde{Q}(1:m+p,m+1:m+p) = \tilde{Q}(1:m+p,m+1:m+p)$
 $\tilde{Q}(1:m+p,m+1:m+p)\tau(j)V(1:p,j)V(1:p,j)^T$
end

if $m < n$
 $Q(1:m+p,m+1:m+p) = Q(1:m+p,m+1:m+p)Q_U$
end

4.2.4 Deleting Columns

Deleting One Column

If we wish to delete a variable from our least squares problem then we have the problem of updating the QR factorization of A where we delete the kth column, $k \neq n$, from A, we can write

$$\tilde{A} = \begin{bmatrix} A(1:m,1:k-1) & A(1:m,k+1:n) \end{bmatrix}$$
then
\[Q^T \tilde{A} = [R(1: m, 1: k - 1) \ R(1: m, k + 1: n)] \] \hspace{1cm} (4.2.10)

For example, with \(m = 8 \), \(n = 6 \) and \(k = 3 \) the right-hand side of Equation (4.2.10) looks like:
\[
\begin{bmatrix}
+ & + & + & + & & & \\
0 & + & + & + & & & \\
0 & 0 & + & + & & & \\
0 & 0 & \Theta & + & + & & \\
0 & 0 & 0 & \Theta & & & \\
0 & 0 & 0 & 0 & \Theta & & \\
0 & 0 & 0 & 0 & 0 & \Theta & \\
0 & 0 & 0 & 0 & 0 & 0 & \\
\end{bmatrix}
\]

with the nonzero elements to remain represented with a + and the elements to be eliminated are shown with a \(\Theta \).

Thus we can define \(n - k \) Givens matrices, \(G(i, j) \in \mathbb{R}^{m \times m} \), to eliminate the subdiagonal elements of \(Q^T \tilde{A} \) to give
\[
(G(n, n + 1)^T \ldots G(k, k + 1)^T Q^T)\tilde{A} = \tilde{Q}^T \tilde{A} = \tilde{R},
\]

where \(\tilde{R} \in \mathbb{R}^{m \times (n-1)} \) is upper trapezoidal and \(\tilde{Q} \in \mathbb{R}^{m \times m} \) is orthogonal, and to update \(b \) we compute
\[
G(n, n + 1)^T \ldots G(k, k + 1)^T Q^T b = \tilde{d}.
\]

This gives the following algorithm.

Algorithm 4.2.13 Given \(A = QR \in \mathbb{R}^{m \times n} \), with \(m \geq n \), this algorithm computes \(\tilde{Q}^T \tilde{A} = \tilde{R} \in \mathbb{R}^{m \times (n-1)} \) where \(\tilde{R} \) is upper trapezoidal, \(\tilde{Q} \) is orthogonal and \(\tilde{A} \) is \(A \) with the \(k \)th column deleted, \(1 \leq k \leq n - 1 \), and \(\tilde{d} \) such that \(\|Ax - b\|_2 = \|\tilde{R}x - \tilde{d}\|_2 \). The residual, \(\|\tilde{d}(n + 1: m)\|_2 \), is also computed.

\[
\tilde{d} = Q^T b \\
\text{set } R(1: m, k: n - 1) = R(1: m, k + 1: n)
\]
for \(j = k: n - 1 \)
\[
[c(j), s(j)] = \text{givens}(R(j, j), R(j + 1, j))
\]
\% Update \(R \)
\[
R(j, j) = c(j)R(j, j) - s(j)R(j + 1, j)
\]
\[
R(j:j + 1, j + 1:n - 1) = \begin{bmatrix}
 c(j) & s(j) \\
 -s(j) & c(j)
\end{bmatrix}^T \begin{bmatrix}
 R(j:j + 1, j + 1:n - 1)
\end{bmatrix}
\]
\% Update \(\tilde{d} \)
\[
\tilde{d}(j + 1) = \begin{bmatrix}
 c(j) & s(j) \\
 -s(j) & c(j)
\end{bmatrix}^T \tilde{d}(j + 1)
\]
end
\(\tilde{R} = \) upper triangular part of \(R(1:m, 1:n - 1) \)
\% Compute the residual
\[
\text{resid} = \|\tilde{d}(n + 1:m)\|_2
\]

Computing \(\tilde{R} \) requires \(n^2/2 - nk + k^2/2 \) flops, versus \(2n^2(m - n/3) \) for the Householder \(QR \) factorization of \(\tilde{A} \). If \(\tilde{Q} \) is required, it can be computed with the following algorithm.

Algorithm 4.2.14 Given vectors \(c \) and \(s \) from Algorithm 4.2.13 this algorithm forms an orthogonal matrix \(\tilde{Q} \in \mathbb{R}^{m \times m} \) such that \(\tilde{A} = \tilde{Q}\tilde{R} \), where \(\tilde{A} \) is the matrix \(A = QR \) with the \(k \)th column deleted.

for \(j = k: n - 1 \)
\[
Q(1:m, j:j + 1) = Q(1:m, j:j + 1) \begin{bmatrix}
 c(j) & s(j) \\
 -s(j) & c(j)
\end{bmatrix}
\]
end
\(\tilde{Q} = Q \)

In the case when \(k = n \) then
\[
\tilde{A} = A(1:m, 1:k - 1), \quad \tilde{R} = R(1:m, 1:k - 1), \quad \tilde{Q} = Q, \quad \text{and} \quad \tilde{d} = Q^T b,
\]
and there is no computation to do.

Deleting a Block of Columns

To delete a block of \(p \) variables from our least squares problem we delete a block of \(p \) columns, from the \(k \)th column onwards, from \(A \) and we can write
\[
\tilde{A} = \begin{bmatrix}
 A(1:m, 1:k - 1) & A(1:m, k + p:n)
\end{bmatrix}
\]

133
then

\[Q^T \tilde{A} = \begin{bmatrix} R(1:m,1:k-1) & R(1:m,k+p:n) \end{bmatrix}. \] (4.2.11)

For example, with \(m = 10 \), \(n = 8 \), \(k = 3 \) and \(p = 3 \) the right-hand side of Equation (4.2.11) looks like:

\[
\begin{bmatrix}
+ & + & + & + & + \\
0 & + & + & + & + \\
0 & 0 & + & + & + \\
0 & 0 & + & + & + \\
0 & 0 & + & + & + \\
0 & 0 & + & + & + \\
0 & 0 & + & + & + \\
0 & 0 & + & + & + \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
\]

with the nonzero elements to remain represented with a + and the elements to be eliminated are shown with a \(\ominus \).

Thus we can define \(n - p - k + 1 \) Householder matrices, \(H_j \in \mathbb{R}^{m \times m} \), with associated Householder vectors, \(v_j \in \mathbb{R}^{(p+1)} \) such that

\[
v_j(1:j-1) = 0,
\]

\[
v_j(j) = 1,
\]

\[
v_j(j + 1:j + p) = x / ((\tilde{Q}^T \tilde{A})_{jj} - \| (\tilde{Q}^T \tilde{A})_{jj} \times ^T \|_2),
\]

where \(x = Q^T \tilde{A}(j + 1:j + p,j) \),

\[
v_j(j + p + 1:m) = 0.
\]

The \(H_j \) have the following structure

\[
H_j = \begin{bmatrix} I \\
\begin{bmatrix} h_{j,j} & \cdots & h_{j,j+p} \\
\vdots & \ddots & \vdots \\
h_{j+p,j} & \cdots & h_{j+p,j+p} \end{bmatrix} \\
\end{bmatrix},
\]
and can be used to eliminate the subdiagonal of \(Q^T \tilde{A} \) to give
\[
(H_{n-p} \ldots H_k Q^T) \tilde{A} = Q^T \tilde{A} = \tilde{R},
\]
where \(\tilde{R} \in \mathbb{R}^{m \times (n-p)} \) is upper trapezoidal and \(\tilde{Q} \in \mathbb{R}^{m \times m} \) is orthogonal, and we update \(b \) by computing
\[
H_{n-p} \ldots H_k Q^T b = \tilde{d}.
\]
This gives the following algorithm.

Algorithm 4.2.15 Given \(A = QR \in \mathbb{R}^{m \times n} \), with \(m \geq n \), this algorithm computes \(Q^T \tilde{A} = \tilde{R} \in \mathbb{R}^{n \times (n-p)} \) where \(\tilde{R} \) is upper trapezoidal, \(\tilde{Q} \) is orthogonal and \(A \) is \(A \) with the \(k \)th to \((k + p - 1)\)st columns deleted, \(1 \leq k \leq n - p \), \(1 \leq p < n \), and \(\tilde{d} \) such that \(\| Ax - b \|_2 = \| \tilde{R} x - \tilde{d} \|_2 \). The residual, \(\| \tilde{d}(n+1:m) \|_2 \), is also computed.

\[
\tilde{d} = Q^T b
\]

set \(R(1:m, k:n-p) = R(1:m, k+p:n) \)

for \(j = k:n-p \)

\[
[V(1:p,j), \tau(j)] = \text{householder}(R(j,j), R(j+1:j+p,j))
\]

% Update \(R \)

\[
R(j,j) = R(j,j) - \tau(j) R(j,j) - \tau(j) V(1:p,j)^T R(j+1:j+p,j)
\]

if \(j < n-p \)

\[
\]

\[
-\tau(j) \left[\begin{array}{c} 1 \\ V(1:p,j)^T \end{array} \right] (\begin{array}{c} 1 \\ V(1:p,j)^T R(j:j+p,j+1:n-p) \end{array})
\]

end

% Update \(\tilde{d} \)

\[
\tilde{d}(j:j+p) = \tilde{d}(j:j+p) + 1
\]

\[
-\tau(j) \left[\begin{array}{c} 1 \\ V(1:p,j)^T \end{array} \right] \tilde{d}(j:j+p)
\]

end

\(\tilde{R} = \) upper triangular part of \(R(1:m,1:n-p) \)

% Compute the residual

\[
\text{resid} = \| \tilde{d}(n+1:m) \|_2
\]

Computing \(\tilde{R} \) requires \(4(np(n/2 - p - k) + p^2(p/2 + k) + pk^2 \) flops, versus \(2(n-p)^2(m - (n-p)/3) \) for the Householder \(QR \) factorization of \(\tilde{A} \). If \(\tilde{Q} \) is required, it can be computed with the following algorithm.
Algorithm 4.2.16 Given the matrix V and vector τ from Algorithm 4.2.15 this algorithm forms an orthogonal matrix $\tilde{Q} \in \mathbb{R}^{m \times m}$ such that $\tilde{A} = \tilde{Q}\tilde{R}$, where \tilde{A} is the matrix $A = QR$ with the kth to $(k + p - 1)$st columns deleted.

for $j = k: n - p$
\[Q(1:m, j:j + p) = Q(1:m, j:j + p) \]
\[-\tau(j) \left[Q(1:m, j:j + p) \begin{bmatrix} 1 \\ V(1:p, j) \end{bmatrix} \right] [1 \ V(1:p, j)^T] \]
end
\[\tilde{Q} = Q \]

In the case when $k = n - p + 1$ then

\[\tilde{A} = A(1:m, 1:k - 1), \quad \tilde{R} = R(1:m, 1:k - 1), \quad \tilde{Q} = Q, \text{ and } \tilde{d} = Q^Tb, \]
and there is no computation to do.

Updating the QR Factorization for any m and n

In the case when $m < n$ we need to:

- Increase the number of steps, we introduce lim, the last column to be updated.

- Determine the last index of the Householder vectors, which cannot exceed m.

This gives the following algorithms to update the QR factorization for any m and n.

Algorithm 4.2.17 Given $A = QR \in \mathbb{R}^{m \times n}$ this algorithm computes $\tilde{Q}^T\tilde{A} = \tilde{R} \in \mathbb{R}^{m \times (n-p)}$ where \tilde{R} is upper trapezoidal, \tilde{Q} is orthogonal and \tilde{A} is A with the kth to $(k+p-1)$st columns deleted, $1 \leq k \leq \min(m-1,n-p)$, $1 \leq p < n$.

set $R(1:m,k:n-p) = R(1:m,k+p:n)$
$\text{lim} = \min(m-1,n-p)$
for $j = k: \text{lim}$
$\text{last} = \min(j + p, m)$
$[V(1: \text{last} - j), \tau(j)] = \text{householder}(R(j, j), R(j + 1: \text{last}, j))$
% Update R
$R(j, j) = R(j, j) - \tau(j)R(j, j) - \tau(j)V(1: \text{last} - j, j)^TR(j + 1: \text{last}, j)$
if $j < n - p$
$\quad R(j: \text{last}, j + 1: n - p) = R(j: \text{last}, j + 1: n - p)$
$\quad -\tau(j) \begin{bmatrix} 1 \\ V(1: \text{last} - j, j) \end{bmatrix}$
$\quad \times ([1 \quad V(1: \text{last} - j, j)^T] R(j: \text{last}, j + 1: n - p))$
end
end
$\tilde{R} = \text{upper triangular part of } R(1:m, 1:n - p)$

If \tilde{Q} is required, it can be computed with the following algorithm.

Algorithm 4.2.18 Given the matrix V and vector τ from Algorithm 4.2.17 this algorithm forms an orthogonal matrix $\tilde{Q} \in \mathbb{R}^{m \times m}$ such that $A = \tilde{Q} \tilde{R}$, where \tilde{A} is the matrix $A = QR$ with the kth to $(k + p - 1)$st columns deleted.

$\text{lim} = \min(m - 1, n - p)$
for $j = k: \text{lim}$
$\text{last} = \min(j + p, m)$
$Q(1:m, j: \text{last}) = Q(1:m, j: \text{last})$
$\quad -\tau(j) \begin{bmatrix} 1 \\ V(1: \text{last} - j, j) \end{bmatrix}$
end
$\tilde{Q} = Q$

In the case when $k > \min(m - 1, n - p)$ then either $k = n - p + 1$ or $m < n$ and the deleted columns are in R_{12} where

$$Q^T \tilde{A} = [R_{11} \quad R_{12}],$$

with R_{12} full. There is no computation to do in either case.

See Appendix D for Fortran codes `delcols.f` and `delcolsq.f` for updating R and Q respectively.
4.2.5 Adding Columns

Adding One Column

If we wish to add a variable to our least squares problem, we have the problem of updating $A = QR$ after adding a column, $u \in \mathbb{R}^m$, in the kth position, $1 \leq k \leq n + 1$, of $A = QR$, we can then write

$$\tilde{A} = [A(1:m,1:k-1) \quad u \quad A(1:m,k:n)]$$

then

$$Q^T \tilde{A} = [R(1:m,1:k-1) \quad v \quad R(1:m,k:n)], \quad (4.2.12)$$

where $v = Q^T u$. For example, with $m = 8$, $n = 6$ and $k = 4$ the right-hand side of Equation (4.2.12) looks like:

$$
\begin{bmatrix}
+ & + & + & + & + & + \\
0 & + & + & + & + & + \\
0 & 0 & + & + & + & + \\
0 & 0 & 0 & + & + & + \\
0 & 0 & 0 & 0 & 0 & + \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix},
$$

with the nonzero elements to remain represented with a $+$, the elements to be eliminated are \ominus and the zero elements that can be filled in are shown with a \ominus.

Thus we can define $m - k$ Givens matrices, $G(i,j) \in \mathbb{R}^{m \times m}$, to eliminate $v(k+1:m)$. We then have

$$
(G(k,k+1)^T \ldots G(m-1,m)^T Q^T) \tilde{A} = \tilde{Q}^T \tilde{A} = \tilde{R},
$$

where $\tilde{R} \in \mathbb{R}^{m \times (n+1)}$ is upper trapezoidal and $\tilde{Q} \in \mathbb{R}^{m \times m}$ is orthogonal. We
then update b by computing

$$G(k, k + 1)^T \ldots G(m - 1, m)^T Q^T b = \tilde{d}.$$

This gives the following algorithm.

Algorithm 4.2.19 Given $A = QR \in \mathbb{R}^{m \times n}$, with $m \geq n$, this algorithm computes $\tilde{Q}^T \tilde{A} = \tilde{R} \in \mathbb{R}^{m \times (n+1)}$ where \tilde{R} is upper trapezoidal, \tilde{Q} is orthogonal and \tilde{A} is A with $a, u \in \mathbb{R}^n$, column inserted in the kth position, $1 \leq k \leq n + 1$, and \tilde{d} such that $\|Ax - b\|_2 = \|\tilde{R}x - \tilde{d}\|_2$. The residual, $\|\tilde{d}(n + 1: m)\|_2$, is also computed.

\begin{verbatim}
 u = Q^T u
 d = Q^T b
 for i = m: -1: k + 1
 [c(i), s(i)] = given(u(i - 1), u(i))
 u(i - 1) = c(i)u(i - 1) - s(i)R(i)
 % Update R if there is a nonzero row
 if i <= n + 1
 R(i - 1: i, i - 1: n) =
 \begin{bmatrix}
 c(i) & s(i) \\
 -s(i) & c(i)
 \end{bmatrix}
 R(i - 1: i, i - 1: n)
 end
 % Update R
 d(i - 1: i) =
 \begin{bmatrix}
 c(i) & s(i) \\
 -s(i) & c(i)
 \end{bmatrix}
 \tilde{d}(i - 1: i)
 end
 if k = 1
 \tilde{R} = upper triangular part of [u R]
 else if k = n + 1
 \tilde{R} = upper triangular part of [R u]
 else
 \tilde{R} = upper triangular part of [R(1: m, 1: k - 1) u R(1: m, k: n)]
 end
 % Compute the residual
 resid = \|\tilde{d}(n + 1: m)\|_2
\end{verbatim

If \tilde{Q} is required, it can be computed with the following algorithm.

Algorithm 4.2.20 Given the vectors c and s from Algorithm 4.2.19 this algorithm forms an orthogonal matrix $\tilde{Q} \in \mathbb{R}^{m \times m}$ such that $\tilde{A} = \tilde{Q}\tilde{R}$, where \tilde{A} is the matrix $A = QR$ with a column inserted in the kth position.
for $i = m: -1: k + 1$

$$Q(1:m, i - 1:i) = Q(1:m, i - 1:i) \begin{bmatrix} c(j) & s(j) \\ -s(j) & c(j) \end{bmatrix}$$

end

$\tilde{Q} = Q$

Adding a Block of Columns

If we add p variables to our problem, that is add a block of p columns, $U \in \mathbb{R}^{m \times p}$, in the kth to $(k + p - 1)$st positions of A we can write

$$\tilde{A} = [A(1:m, 1:k - 1) \quad U \quad A(1:m, k:n)]$$

then

$$Q^T \tilde{A} = [R(1:m, 1:k - 1) \quad V \quad R(1:m, k:n)] ,$$

where $V = Q^T U$. For example, with $m = 12$, $n = 6$, $k = 3$ and $p = 3$ the right-hand side of Equation (4.2.12) looks like:

$$\begin{bmatrix}
+ + + + + + + + + \\
0 + + + + + + + + + \\
0 0 + + + + + + + + + \\
0 0 ⊕ + + ⊕ + + + + + \\
0 0 ⊕ ⊕ + ⊕ ⊕ + + + + \\
0 0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + \\
0 0 ⊕ ⊕ ⊕ 0 ⊕ ⊕ ⊕ ⊕ \\
0 0 ⊕ ⊕ ⊕ 0 0 ⊕ ⊕ ⊕ ⊕ \\
0 0 ⊕ ⊕ ⊕ 0 0 0 0 0 \\
0 0 ⊕ ⊕ ⊕ 0 0 0 0 0 \\
0 0 ⊕ ⊕ ⊕ 0 0 0 0 0 \\
0 0 ⊕ ⊕ ⊕ 0 0 0 0 0 \\
\end{bmatrix},$$

with the nonzero elements to remain represented with a +, the elements to be eliminated are ⊕ and the zero elements that can be filled in are shown with a ⊕.
We would like an orthogonal matrix, W, such that
\[
\begin{bmatrix}
I & 0 \\
0 & W^T
\end{bmatrix} Q^T \tilde{A} = \tilde{R}, \quad W \in \mathbb{R}^{(m-k+1) \times (m-k+1)}.
\]

If W were the product of Householder matrices, then \tilde{R} would be full. Thus we use Givens matrices and generalize Algorithm 4.2.19.

Algorithm 4.2.21 Given $A = QR \in \mathbb{R}^{m \times n}$, with $m \geq n$, this algorithm computes $Q^T \tilde{A} = \tilde{R} \in \mathbb{R}^{m \times (n+p)}$ where \tilde{R} is upper trapezoidal, \tilde{Q} is orthogonal and \tilde{A} is A with a block of columns, $U \in \mathbb{R}^{m \times p}$, inserted in the kth to $(k+p-1)$st position, $1 \leq k \leq n+1$, $p \geq 1$, and \tilde{d} such that $\|\tilde{A}x - b\|_2 = \|\tilde{R}x - \tilde{d}\|_2$. The residual, $\|\tilde{d}(n+1:m)\|_2$, is also computed.

\[
\begin{align*}
U &= Q^T U \\
\tilde{d} &= Q^T b \\
\text{for } j = 1:p \\
\text{for } i = m:-1:k+j \\
[C(i,j), S(i,j)] &= \text{givens}(U(i-1,j), U(i,j)) \\
\text{% Update } U \\
U(i-1,j) &= C(i,j)U(i-1,j) - S(i,j)U(i,j) \\
\text{if } j < p \\
U(i-1:i,j+1:p) &= \\
&\begin{bmatrix}
C(i,j) & S(i,j) \\
-S(i,j) & C(i,j)
\end{bmatrix}^T U(i-1:i,j+1:p) \\
\text{end} \\
\text{% Update } R \text{ if there is a nonzero row} \\
\text{if } i \leq n+j \\
R(i-1:i,i-j:n) &= \\
&\begin{bmatrix}
C(i,j) & S(i,j) \\
-S(i,j) & C(i,j)
\end{bmatrix}^T R(i-1:i,i-j:n) \\
\text{end} \\
\text{% Update } \tilde{d} \\
\tilde{d}(i-1:i) &= \begin{bmatrix}
C(i,j) & S(i,j) \\
-S(i,j) & C(i,j)
\end{bmatrix}^T \tilde{d}(i-1:i) \\
\text{end} \\
\text{end} \\
\text{if } k = 1 \\
\tilde{R} &= \text{upper triangular part of } [U \; R] \\
\text{else if } k = n+1 \\
\end{align*}
\]
\[\tilde{R} = \text{upper triangular part of } [R \ U] \]
else
\[\tilde{R} = \text{upper triangular part of } [R(1:m, 1:k-1) \ U \ R(1:m,k:n)] \]
end

% Compute the residual
\[resid = \| \tilde{d}(n+1:m) \|_2 \]

Computing \(\tilde{R} \) requires \(6(mp(n+p-m/2) - p^2(n/2-k/2-p/3) + kp(k/2-n)) \) flops, versus \(2(n+p)^2(m - (n+p)/3) \) for the Householder QR factorization of \(\tilde{A} \). If \(\tilde{Q} \) is required, it can be computed with the following algorithm.

Algorithm 4.2.22 Given matrices \(C \) and \(S \) from Algorithm 4.2.21 this algorithm forms an orthogonal matrix \(\tilde{Q} \in \mathbb{R}^{m \times m} \) such that \(\tilde{A} = \tilde{Q}\tilde{R} \), where \(\tilde{A} \) is the matrix \(A = QR \) with a block of columns inserted in the \(k \)th to \((k+p-1) \)st positions.

for \(j = 1:p \)
 for \(i = m:-1:k+j \)
 \[Q(1:m, i-1:i) = Q(1:m, i-1:i) \begin{bmatrix} C(i,j) & S(i,j) \\ -S(i,j) & C(i,j) \end{bmatrix} \]
 end
end
\[\tilde{Q} = Q \]

We can improve on this algorithm by including a Level 3 BLAS part by using a blocked QR factorization of part of \(\tilde{A} \) before we finish the elimination.
process with Givens matrices. That is, for our example:

\[
\begin{bmatrix}
+ + + + + + + + + \\
0 + + + + + + + + \\
0 0 + + + + + + + \\
0 0 ⊙ + + ⊙ + + + \\
0 0 ⊙ ⊙ + ⊙ ⊙ + + \\
0 0 ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ + \\
0 0 ⊙ ⊙ ⊙ 0 ⊙ ⊙ ⊙ \\
0 0 ⊙ ⊙ ⊙ 0 0 0 ⊙ \\
0 0 ⊙ ⊙ ⊙ 0 0 0 0 \\
0 0 ⊙ ⊙ ⊙ 0 0 0 0 \\
\end{bmatrix},
\]

we eliminate the elements shown with a ⊙ with a QR factorization of the bottom 6 by 3 block of \(V \) and the remainder of the elements can be eliminated with Givens matrices and are shown with a ⊙. The zero elements that can be filled in are shown with a ⊙ and the non-zero elements to remain represented with a + as before.

For the case of \(k \neq 1, n + 1 \) and \(m > n + 1 \), we have

\[
Q^T \tilde{A} = \begin{bmatrix}
R_{11} & V_{12} & R_{12} \\
0 & V_{22} & R_{23} \\
0 & V_{32} & 0 \\
\end{bmatrix}
\]

where \(R_{11} \in \mathbb{R}^{(k-1)\times(k-1)} \) and \(R_{23} \in \mathbb{R}^{(n-k+1)\times(n-k+1)} \) are upper triangular, then if \(V_{32} \) has the QR factorization \(V_{32} = Q_{V} R_{V} \in \mathbb{R}^{(m-n)\times p} \) we have

\[
\begin{bmatrix}
I_n & 0 \\
0 & Q_{V}^T \\
\end{bmatrix} Q^T \tilde{A} = \begin{bmatrix}
R_{11} & V_{12} & R_{12} \\
0 & V_{22} & R_{23} \\
0 & R_{V} & 0 \\
\end{bmatrix}.
\]

We then eliminate the upper triangular part of \(R_{V} \) and the lower triangular part of \(V_{22} \) with Givens matrices which makes \(R_{23} \) full and the bottom right
block upper trapezoidal. So we have finally

\[G(k + 2p - 2, k + 2p - 1)^T \quad \ldots \quad G(k + p, k + p + 1)^T G(k, k + 1)^T \]

\[\ldots G(k + p - 1, k + p)^T \begin{bmatrix} I_n & 0 \\ 0 & Q_V^T \end{bmatrix} Q_V^T \tilde{A} = \tilde{R} \]

This gives the following algorithm.

Algorithm 4.2.23 Given \(A = QR \in \mathbb{R}^{m \times n} \), with \(m \geq n \), this algorithm computes \(\tilde{Q}^T \tilde{A} = \tilde{R} \in \mathbb{R}^{m \times (n + p)} \) where \(\tilde{R} \) is upper trapezoidal, \(\tilde{Q} \) is orthogonal and \(\tilde{A} \) is \(A \) with a block of columns, \(U \in \mathbb{R}^{m \times p} \), inserted in the \(k \)th to \((k + p - 1)\)st position, \(1 \leq k \leq n + 1 \), \(p \geq 1 \), and \(\tilde{d} \) such that \(\| \tilde{A}x - b \|_2 = \| \tilde{R}x - \tilde{d} \|_2 \). The residual, \(\| \tilde{d}(n + 1: m) \|_2 \), is also computed. The algorithm incorporates a Level 3 QR factorization.

\[
U = Q^T U \\
\tilde{d} = Q^T b \\
\text{if } m > n + 1 \\
\quad \% \text{ Factorize rows } n + 1 \text{ to } m \text{ of } U \text{ if there are more than 1,} \\
\quad \% \text{ with a Level 3 QR algorithm} \\
\quad U(n + 1: m, 1: p) = Q_U R_U \\
\quad \% \text{ Update } \tilde{d} \\
\quad \tilde{d}(n + 1: m) = Q_V^T \tilde{d}(n + 1: m) \\
\text{end} \\
\text{if } k \leq n \\
\quad \% \text{ Zero out the rest with Givens} \\
\quad \text{for } j = 1: p \\
\quad \quad \% \text{ First iteration updates one column} \\
\quad \quad upfirst = n \\
\quad \quad \text{for } i = n + j: -1: j + 1 \\
\quad \quad \quad [C(i, j), S(i, j)] = \text{givens}(U(i - 1, j), U(i, j)) \\
\quad \quad \quad \% \text{ Update } U \\
\quad \quad \quad U(i - 1, j) = C(i, j) U(i - 1, j) - S(i, j) U(i, j) \\
\quad \quad \quad \text{if } j < p \\
\quad \quad \quad U(i - 1: i, j + 1: p) = \\
\quad \quad \quad \quad \begin{bmatrix} C(i, j) & S(i, j) \\ -S(i, j) & C(i, j) \end{bmatrix}^T U(i - 1: i, j + 1: p) \\
\quad \quad \quad \text{end} \\
\quad \quad \% \text{ Update } R \]}
\[R(i - 1: i, \text{up}\text{first}: n) = \begin{bmatrix} C(i, j) & S(i, j) \\ -S(i, j) & C(i, j) \end{bmatrix}^T R(i - 1: i, \text{up}\text{first}: n) \]

% Update one more column next i step
up\text{first} = \text{up}\text{first} - 1
% Update \(\tilde{d} \)
\[\tilde{d}(i - 1: i) = \begin{bmatrix} C(i, j) & S(i, j) \\ -S(i, j) & C(i, j) \end{bmatrix}^T \tilde{d}(i - 1: i) \]

end
end
if \(k = 1 \)
\[\tilde{R} = \text{upper triangular part of } [U \quad R] \]
else if \(k = n + 1 \)
\[\tilde{R} = \text{upper triangular part of } [R \quad U] \]
else
\[\tilde{R} = \text{upper triangular part of } [R(1: m, 1: k - 1) \quad U \quad R(1: m, k: n)] \]
end
% Compute the residual
resid = \(\| \tilde{d}(n + 1: m) \|_2 \)

If \(\tilde{Q} \) is required, it can be computed with the following algorithm.

Algorithm 4.2.24 Given matrices \(Q_U, C \) and \(S \) and the vector \(\tau \) from Algorithm 4.2.23 this algorithm forms an orthogonal matrix \(\tilde{Q} \in \mathbb{R}^{m \times m} \) such that \(\tilde{A} = \tilde{Q}\tilde{R} \), where \(\tilde{A} \) is the matrix \(A = QR \) with a block of columns inserted in the \(k \)th to \((k + p - 1) \)st positions.

if \(m > n + 1 \)
\[Q(1: m, 1: m - n) = Q(1: m, 1: m - n)Q_U \]
end
if \(k \leq n \)
for \(j = 1: p \)
for \(i = n + j: -1: j + 1 \)
\[Q(1: m, i - 1: i) = Q(1: m, i - 1: i) \begin{bmatrix} C(i, j) & S(i, j) \\ -S(i, j) & C(i, j) \end{bmatrix} \]
end
end
\[\tilde{Q} = Q \]
Updating the QR Factorization for any m and n

In the case where $m > n$, to update only the QR factorization, then we need to consider the limits of the for loops and upstart to convert Algorithm 4.2.23.

- We introduce $j\text{stop}$ which is the last index in the outer for loop. There may be a situation where there are not elements to eliminate over the full width of U. For example $Q^T\tilde{A}$, for $m = 5$, $n = 6$, $k = 3$ and $p = 3$, looks like:

$$
\begin{bmatrix}
+ & + & + & + & + & + & + \\
0 & + & + & + & + & + & + \\
0 & 0 & + & + & + & + & + \\
0 & 0 & \oplus & + & \oplus & + & + \\
0 & 0 & \oplus & \oplus & + & \oplus & + \\
\end{bmatrix},
$$

and there are no elements to eliminate in the last column of V.

- $i\text{start}$ is introduced as the first element in the jth column to be eliminated cannot exceed m.

- The first column to be updated for jth step may no longer be n, so $up\text{first}$ is set accordingly.

Note if $m \leq n + 1$ and $k > n$ there is nothing to do and neither outer if block is entered.

Algorithm 4.2.25 Given $A = QR \in \mathbb{R}^{m \times n}$, this algorithm computes $\tilde{Q}^T\tilde{A} = \tilde{R} \in \mathbb{R}^{m \times (n+p)}$ where \tilde{R} is upper trapezoidal, \tilde{Q} is orthogonal and \tilde{A} is A with a block of columns, $U \in \mathbb{R}^{n \times p}$, inserted in the kth to $(k+p-1)st$ position. The algorithm incorporates a Level 3 QR factorization.

\[
\begin{align*}
U &= Q^T U \\
\text{if } m > n + 1 \\
\quad & \text{% Factorize rows } n + 1 \text{ to } m \text{ of } U \text{ if there are more than 1,} \\
\quad & \text{% with a Level 3 QR algorithm} \\
\quad & U(n + 1:m, 1:p) = Q_U R_U
\end{align*}
\]
end
if \(k \leq n \)
 \%
 % Zero out the rest with Givens, stop at the last column of
 % \(U \) or the last row if that is reached first
 \(j_{\text{stop}} = \min(p, m - k - 2) \)
 for \(j = 1 : j_{\text{stop}} \)
 \%
 % Start at first row to be eliminated in current column
 \(i_{\text{start}} = \min(n + j, m) \)
 \%
 % Index of first nonzero column in update of \(R \)
 \(\text{upfirst} = \max(i_{\text{start}} - j - 1, 1) \)
 for \(i = i_{\text{start}} : -1 : j + 1 \)
 \[
 [C(i,j), S(i,j)] = \text{givens}(U(i - 1,j), U(i,j))
 \]
 \%
 % Update \(U \)
 \(U(i - 1,j) = C(i,j)U(i - 1,j) - S(i,j)U(i,j) \)
 if \(j < p \)
 \%
 % Update \(U \)
 \(U(i - 1:i, j + 1:p) = \)
 \[
 \begin{bmatrix}
 C(i,j) & S(i,j) \\
 -S(i,j) & C(i,j)
 \end{bmatrix}^T U(i - 1:i, j + 1:p)
 \]
 end
 end
 \%
 % Update \(R \)
 \(R(i - 1:i, \text{upfirst}:n) = \)
 \[
 \begin{bmatrix}
 C(i,j) & S(i,j) \\
 -S(i,j) & C(i,j)
 \end{bmatrix}^T R(i - 1:i, \text{upfirst}:n)
 \]
 \%
 % Update one more column next \(i \) step
 \(\text{upfirst} = \text{upfirst} - 1 \)
 end
end
end
if \(k = 1 \)
 \(\tilde{R} = \) upper triangular part of \([U \ R] \)
else if \(k = n + 1 \)
 \(\tilde{R} = \) upper triangular part of \([R \ U] \)
else
 \(\tilde{R} = \) upper triangular part of \([R(1:m,1:k - 1) \ U \ R(1:m,k:n)] \)
end

If \(\tilde{Q} \) is required, it can be computed with the following algorithm.
Algorithm 4.2.26 Given matrices Q_U, C and S and the vector τ from Algorithm 4.2.25 this algorithm forms an orthogonal matrix $\tilde{Q} \in \mathbb{R}^{m \times m}$ such that $\tilde{A} = \tilde{Q} \tilde{R}$, where \tilde{A} is the matrix $A = QR$ with a block of columns inserted in the kth to $(k + p - 1)$st positions.

$$Q(1:m, n + 1:m) = Q(1:m, n + 1:m)Q_U$$

end
if $k \leq n$

$$j_{stop} = \min(p, m - k - 2)$$

for $j = 1:j_{stop}$

$$i_{start} = \min(n + j, m)$$

for $i = i_{start}:-1:j + 1$

$$Q(1:m, i - 1:i) = Q(1:m, i - 1:i) \begin{bmatrix} C(i, j) & S(i, j) \\ -S(i, j) & C(i, j) \end{bmatrix}$$

end
end
end
$\tilde{Q} = Q$

See Appendix D for Fortran codes addcols.f and addcolsq.f for updating R and Q respectively.

4.3 Error Analysis

It is well known that orthogonal transformations are stable. We have the following columnwise results [29], where

$$\hat{\gamma}_k = \frac{cku}{1 - cku},$$

and u is the unit roundoff and c is a small integer constant.

Lemma 4.3.1 (Sequence of Givens Matrices) If

$$B = G_r \ldots G_1 A = Q^T A \in \mathbb{R}^{n \times n}$$

148
where G_i is a Givens matrix, then the computed matrix \hat{B} satisfies
\[
Q^TA - \hat{B} = \Delta B, \quad \|\Delta b_j\|_2 \leq \tilde{\gamma}_r\|a_j\|_2, \quad j = 1:n. \quad \blacksquare \quad (4.3.1)
\]

Lemma 4.3.2 (Sequence of Householder Matrices) If
\[
B = H_r \ldots H_1 A = Q^T A \in \mathbb{R}^{n \times n}
\]
where H_i is a Householder matrix, then the computed matrix \hat{B} satisfies
\[
Q^T A - \hat{B} = \Delta B, \quad \|\Delta b_j\|_2 \leq \tilde{\gamma}_r\|a_j\|_2, \quad j = 1:n. \quad \blacksquare \quad (4.3.2)
\]

This result implies that Householder transformations are less accurate by a factor of n, but this is not observed in practice. We then have

Theorem 4.3.1 (Householder QR Factorization) If
\[
R = Q^T A
\]
where Q is a product of Householder matrices, then the computed factor \hat{R} satisfies
\[
Q^T A - \hat{R} = \Delta R, \quad \|\Delta r_j\|_2 \leq \tilde{\gamma}_r\|a_j\|_2, \quad j = 1:n. \quad \blacksquare
\]

We now give results for computing the factor \hat{R} by our algorithms.

4.3.1 Deleting Rows

We have from Section 4.2.1
\[
G(1, 2)^T \ldots G(m - 1, m)^T \hat{R} = \begin{bmatrix} v^T \\ \tilde{R} \end{bmatrix},
\]
and from (4.3.1) we have for the computed quantities \hat{R} and \hat{v}
\[
\hat{R} = \tilde{R} + \Delta R, \quad \|\Delta r_j\|_2 \leq \tilde{\gamma}_r\|a_j\|_2, \quad j = 1:n.
\]

Recall that the $G(i, j)$ are chosen to introduce zeros in Q.

149
4.3.2 Adding Rows

We have from Section 4.2.3

\[H_n \ldots H_1 \begin{bmatrix} \hat{R} \\ U \end{bmatrix} = \tilde{R}, \quad U \in \mathbb{R}^{p \times n}, \]

and from (4.3.2) we have

\[\tilde{R} = \tilde{R} + \Delta R, \quad \| \Delta r_j \|_2 \leq \tilde{\gamma}_{n(p+1)} \left\| \begin{bmatrix} \hat{r}_{jj} \\ U(:, j) \end{bmatrix} \right\|_2, \quad j = 1:n. \]

4.3.3 Deleting Columns

We have from Section 4.2.4

\[H_{n-p} \ldots H_k \left[\hat{R}(:, 1:k-1) \quad \hat{R}(:, k+p:n) \right] = \tilde{R}, \]

and from (4.3.2) we have

\[\tilde{R} = \tilde{R} + \begin{bmatrix} 0 \\ \Delta R \end{bmatrix}, \quad \Delta R \in \mathbb{R}^{(m-k+1) \times n} \]

\[\| \Delta r_j \|_2 = 0, \quad j = 1:k-1, \]

\[\leq \tilde{\gamma}_{(n-k-p+1)(n-k+1)} \| \hat{r}(k:n, j) \|_2, \quad j = k:n-p. \]

4.3.4 Adding Columns

We have from Section 4.2.5

\[G(k+2p-2, k+2p-1) \ldots \]

\[G(k+p-1, k+p) \begin{bmatrix} I & 0 \\ 0 & Q \hat{r} \end{bmatrix} \left[\hat{R}(:, 1:k-1) \quad \hat{V} \quad \hat{R}(:, k:n) \right] = \tilde{R}, \]

where \(\hat{V} \) = \(Q^T U \) and from (4.3.1) and (4.3.2) we have

\[\tilde{R} = \tilde{R} + \begin{bmatrix} 0 \\ \Delta H \end{bmatrix} + \begin{bmatrix} 0 \\ \Delta G \end{bmatrix}, \quad \Delta H \in \mathbb{R}^{(m-n) \times n}, \quad \Delta G \in \mathbb{R}^{(m-k+1) \times n} \]
\[\| \Delta H_j \|_2 = 0, \quad k - 1 \geq j \geq k + p, \]

\[\leq \gamma_{(n-k)p} \| \tilde{V} (n + 1: m, j) \|_2, \quad j = k: k + p - 1, \]

\[\| \Delta G_j \|_2 = 0, \quad j = 1: k - 1, \]

\[\leq \gamma_{(n-k)n} \left\| (Q^T \tilde{V})(k: m, j) + \begin{bmatrix} 0 \\ \Delta \hat{r}_j \end{bmatrix} \right\|_2, \quad j = k: n + p. \]

Given these results we expect the normwise backward error

\[\frac{\| \tilde{A} - \tilde{Q}\tilde{R} \|_2}{\| \tilde{A} \|_2}, \]

when \(\tilde{Q} \) and \(\tilde{R} \) are computed with our algorithms to be close to that with \(\hat{Q} \) and \(\hat{R} \) computed directly from \(\hat{A} \). We consider some examples in the next section.

4.4 Numerical Experiments

4.4.1 Speed Tests

In this section we test the speed of our double precision Fortran 77 codes, see Appendix D, against LAPACK’s DGECRF, a Level 3 BLAS routine for computing the QR factorization of a matrix. The input matrix, in this case \(\tilde{A} \), is overwritten with \(\tilde{R} \), and \(\tilde{Q} \) is returned in factored form in the same way as our codes do.

The tests were performed on a 1400MHz AMD Athlon running Red Hat Linux version 6.2 with kernel 2.2.22. The unit roundoff \(u \approx 1.1e-16 \).

We tested our code with

\[m = \{1000, 2000, 3000, 4000, 5000\} \]

and \(n = 0.3m \), and the number of columns added or deleted was \(p = 100 \).

We generated our test matrices by populating an array with random double
precision numbers generated with the LAPACK auxiliary routine DLARAN. \(A = QR \) was computed with DGEQRF, and \(\tilde{A} \) was formed appropriately.

We timed our codes acting on \(Q^T \tilde{A} \), the starting point for computing \(\tilde{R} \), and in the case of adding columns we included the computation of \(Q^T U \) in our timings, which we formed with the BLAS routine DGEMM. We also timed DGEQRF acting on only the part of \(Q^T \tilde{A} \) that needs to be updated, the nonzero part from row and column \(k \) onwards. Here we can construct \(\tilde{R} \) with this computation and the original \(R \). Finally, we compute DGEQRF acting on \(\tilde{A} \). We aim to show our codes are faster than these alternatives. In all cases an average of three timings are given.

To test our code DELCOLS we first chose \(k = 1 \), the position of the first column deleted, where the maximum amount of work is required to update the factorization. We have

\[
\tilde{A} = A(1:m, p+1:n), \quad \text{and} \quad Q^T \tilde{A} = R(1:m, p+1:n)
\]

and timed:

- DGEQRF on \(\tilde{A} \).
- DGEQRF on \((Q^T \tilde{A})(k:n, k:n-p) \) which computes the nonzero entries of \(\tilde{R}(k:m, p+1:n) \).
- DELCOLS on \(Q^T \tilde{A} \).

The results are given in Figure 4.4.1. Our code is clearly much faster than recomputing the factorization from scratch with DGEQRF, and for \(n = 5000 \) there is a speedup of 20. Our code is also faster than using DGEQRF on \((Q^T \tilde{A})(k:n, k:n-p) \), where there is a maximum speedup of over 3.
Figure 4.4.1: Comparison of speed for DELCOLS with $k = 1$ for different m.

We then tested for $k = n/2$ where much less work is required to perform the updating, we have

$$
\tilde{A} = [A(1:m, 1:k - 1) \ A(1:m, k + p: n)], \quad \text{and}
$$

$$
Q^T \tilde{A} = [R(1:m, 1:k - 1) \ R(1:m, k + p: n)]
$$

and timed:

- DGEQRF on $(Q^T \tilde{A})(k: n, k: n - p)$ which computes the nonzero entries of $\tilde{R}(k;m, k:n-p)$.

- DELCOLS on $Q^T \tilde{A}$.

The results are given in Figure 4.4.2. The timings for DGEQFR on \tilde{A} would, of course, be the same as for $k = 1$, giving a maximum speedup of over 100
Figure 4.4.2: Comparison of speed for DELCOLS with $k = n/2$ for different m.

in this case. We achieve a speedup of approximately 3 over using DGEQRF on
$(Q^T \bar{A})(k: n, k: n - p)$.

We then considered the effect of varying p with DELCOLS for fixed $m = 3000,
$n = 1000$ and $k = 1$. As we delete more columns from A there are less columns
to update, but more work is required for each one. We chose

$$p = \{100, 200, 300, 400, 500, 600, 700, 800\}$$

and timed:

- DGEQRF on \bar{A}
- DGEQRF on $(Q^T \bar{A})(k: n, k: n - p)$ which computes the nonzero entries of
 $\bar{R}(k: m, k: n - p)$.
Figure 4.4.3: Comparison of speed for DELCOLS for different p.

- DELCOLS on $Q^T\bar{A}$.

The results are given in Figure 4.4.3. The timings for DELCOLS are relatively level and peak at $p = 300$, whereas the timings for the other codes obviously decrease with p. The speedup of our code decreases with p, and from $p = 300$ there is little difference between our code and DGEQRF on $(Q^T\bar{A})(k: n, k: n - p)$.

To test ADDCOLS we generated random matrices $A \in \mathbb{R}^{m \times n}$ and $U \in \mathbb{R}^{m \times p}$, and again use

$$m = \{1000, 2000, 3000, 4000, 5000\}$$

$n = 0.3m$, and $p = 100$. We first set $k = 1$ where maximum updating is required. We have

$$\bar{A} = [U \ A], \quad \text{and} \quad Q^T\bar{A} = [Q^T U \ R]$$
Figure 4.4.4: Comparison of speed for ADDCOLS with $k = 1$ for different m.

and timed:

- **DGEQRF** on \bar{A}.

- **ADDCOLS** on $Q^T\bar{A}$, including the computation of $Q^T U$ with **DGEMM**.

The results are given in Figure 4.4.4. Here our code achieves a speedup of over 3 for $m = 5000$ over the complete factorization of \bar{A}.

We then tested for $k = n/2$, where less work is required to do the updating. We have

$$\bar{A} = \begin{bmatrix} A(1:m, 1:k-1) & U & A(1:m, k:n) \end{bmatrix}, \quad \text{and}$$

$$Q^T\bar{A} = \begin{bmatrix} R(1:m, 1:k-1) & Q^T U & R(1:m, k:n) \end{bmatrix}$$

and timed:
Figure 4.4.5: Comparison of speed for ADDCOLS with \(k = n/2 \) for different \(m \).

- **DGEQRF** on \(\tilde{A} \), as above.

- **DGEQRF** on \((Q^T \tilde{A})(k:m, k:n+p) \) which computes \(\tilde{R}(k:m, k:n+p) \), including the computation of \(Q^TU \) for which we again use **DGEMM**.

- **ADDCOLS** on \(Q^T \tilde{A} \), including the computation of \(Q^TU \).

The results are given in Figure 4.4.5. Here we have a maximum speedup of over 4 with our code against **DGEQRF** on \(\tilde{A} \). We achieve a maximum speedup of approximately 2 against **DGEQRF** on \((Q^T \tilde{A})(k:m, k:n+p) \).

We do not vary \(p \) as this increases the work for both our code and **DGEQRF** on \((Q^T \tilde{A})(k:m, k:n+p) \) roughly equally.
4.4.2 Backward Error Tests

The tests here were performed on a 2545MHz AMD Pentium running a hybrid version of Red Hat Linux 8 and 9 with kernel 2.4.20.

Here we test our code for updating Q and R; DELCOLS and DELCOLSQ for deleting columns and ADDCOLS and ADDCOLSQ for adding columns. We did this in the following way:

- We form a random matrix

\[
A^{(0)} = \begin{bmatrix} A_1 & U & A_2 \end{bmatrix}, \quad \|A_1\|_F, \|A_2\|_F, \|U\|_F \text{ of order 100},
\]

where $A_1 \in \mathbb{R}^{m \times (k-1)}$, $A_2 \in \mathbb{R}^{m \times (n-k-p+1)}$, $U \in \mathbb{R}^{m \times p}$.

- We then form the QR factorization

\[
A^{(0)} = Q^{(0)}R^{(0)} = Q^{(0)} \begin{bmatrix} R_1 & R_U & R_2 \end{bmatrix},
\]

where $R_1 \in \mathbb{R}^{m \times (k-1)}$, $R_2 \in \mathbb{R}^{m \times (n-k-p+1)}$, $R_U \in \mathbb{R}^{m \times p}$, using the LAPACK routines DGEQRF and DORGQR.

- Next, for

\[
\tilde{A} = \begin{bmatrix} A_1 & A_2 \end{bmatrix},
\]

we form

\[
Q^{(0)\top} \tilde{A} = \begin{bmatrix} R_1 & R_2 \end{bmatrix},
\]

and call DELCOLS and DELCOLSQ to update the QR factorization of \tilde{A}, forming

\[
\tilde{A} = \tilde{Q}\tilde{R} = \begin{bmatrix} \tilde{R}_1 & \tilde{R}_2 \end{bmatrix},
\]

where $\tilde{R}_1 \in \mathbb{R}^{m \times (k-1)}$, $\tilde{R}_2 \in \mathbb{R}^{m \times (n-k-p+1)}$.

158
• We now compute the QR factorization of $A^{(0)}$ by updating \widetilde{Q} and \widetilde{R}. We call ADDCOLS on

$$
\begin{bmatrix}
\widetilde{R}_1 & \widetilde{Q}^T U & \widetilde{R}_2
\end{bmatrix}
$$

to form $R^{(1)}$ and then call ADDCOLSQ to form $Q^{(1)}$, so we have, in exact arithmetic

$$A^{(0)} = Q^{(1)} R^{(1)}.$$

We then repeat this rep times and measure the normwise backward error

$$\frac{\| A^{(0)} - Q^{(rep)} R^{(rep)} \|_2}{\| A \|_2}.$$

We use every combination of the following set of parameters:

\begin{align*}
 m &= 500 \\
 n &= \{400, 500, 600\} \\
 p &= \{50, 100, 150\} \\
 k &= \{1, 51, \ldots, n - p + 1\}.
\end{align*}

We then repeated the entire process, but with

$$\| U \|_F$$

of order 1e+9.

The results are given in Table 4.4.1 and Table 4.4.2. The error increases with the number of repeats which is expected. However, the value is not effected significantly by the value of $\| U \|_F$.

The smallest value of the error in every case was approximately of order $10u$. The worse case was still only of order $2 \times rep \times u$.

159
Table 4.4.1: Normwise backward error for $\|U\|_F$ order 100.

<table>
<thead>
<tr>
<th>rep</th>
<th>5</th>
<th>50</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smallest error over all tests</td>
<td>1.146e-15</td>
<td>1.212e-15</td>
<td>1.223e-15</td>
</tr>
<tr>
<td>Largest error over all tests</td>
<td>5.031e-15</td>
<td>2.399e-14</td>
<td>1.252e-13</td>
</tr>
</tbody>
</table>

Table 4.4.2: Normwise backward error for $\|U\|_F$ order 1e+9.

<table>
<thead>
<tr>
<th>rep</th>
<th>5</th>
<th>50</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smallest error over all tests</td>
<td>8.298e-16</td>
<td>9.309e-16</td>
<td>9.576e-16</td>
</tr>
<tr>
<td>Largest error over all tests</td>
<td>4.381e-15</td>
<td>2.055e-14</td>
<td>1.014e-13</td>
</tr>
</tbody>
</table>

4.5 Conclusions

The speed tests show that our updating algorithms are faster than computing the QR factorization from scratch or using the factorization to update columns k onward, the only columns needing updating.

Furthermore, the normwise backward error tests show that the errors are within the bound for computing the Householder QR factorization of A. Thus, within the parameters of our experiments, the increase of speed is not at the detriment of accuracy.

We propose the double precision Fortran 77 codes delcols.f, delcolsq.f, addcols.f and addcolsq.f, and their single precision and complex equivalents, be included in LAPACK.

4.6 Software Available

Here we list some software that is available to update the QR factorization and least squares problem. An 'x' in a routine indicates more than one routine for different precisions or for real or complex data.
4.6.1 LINPACK

LINPACK [21] has three routines that update the least squares problem and the QR factorization.

- \texttt{xCHUDP} updates the least squares problem when a row has been added in the \((m + 1)\)st position.

- \texttt{xCHDD} updates the least squares problem when a row has been deleted from the \(m\)th position, an implementation of Saunder’s algorithm.

- \texttt{xCHEX} update the least squares problem when the rows of \(A\) have been permuted.

In all cases the transformation matrices are represented by a vectors of sines and cosines, and \(\widetilde{Q}\) is not constructed.

4.6.2 MATLAB

MATLAB [36] supply three routines for updating the QR factorization only.

- \texttt{qrdelete} updates when one row or column is deleted from any position.

- \texttt{qrinsert} updates when one row or column is added to any position.

- \texttt{qrupdate} returns the factorization of \(A\) after a rank one change, that is

\[
\widetilde{A} = A + uv^T, \quad u \in \mathbb{R}^n, \quad v \in \mathbb{R}^n.
\]

In all cases both \(\widetilde{Q}\) and \(\widetilde{R}\) are returned.

4.6.3 The NAG Library

The Mark 20 NAG Library [38] contains routines for updating two cases.
• F06xPF performs the factorization

\[\alpha uu^T + R_1 = \overline{QR}_1, \]

where

\[R = \begin{bmatrix} R_1 \\ 0 \end{bmatrix}, \quad \overline{R} = \begin{bmatrix} \overline{R}_1 \\ 0 \end{bmatrix}, \quad R_1, \overline{R}_1 \in \mathbb{R}^{n \times n}, \]

and

\[\overline{Q} = Q\overline{Q}. \]

\(\overline{Q} \) is represented by vectors of sines and cosines.

• F06xQF performs the downdating problem

\[\begin{bmatrix} R_1 \\ \alpha uu^T \end{bmatrix} = \overline{Q} \begin{bmatrix} \overline{R}_1 \\ 0 \end{bmatrix}, \]

where \(R, \overline{R} \) and \(\overline{Q} \) are as above.

4.6.4 Reichel and Gragg’s Algorithms

Reichel and Gragg [43] provide several Fortran 77 implementations of the algorithms discussed in [13] for updating the QR factorization, returning both \(\overline{Q} \) and \(\overline{R} \). In all cases only \(m \geq n \) is handled. The routines use BLAS like routines for matrix and vector operations written for optimal performance on the test machine used in [43]. No error results are given for the Fortran routines, although some results are given for the Algol implementations in [13].

• DDELR updates after one row is deleted; this algorithm varies from ours and uses a Gram-Schmidt re-orthogonalization process.

• DINSR updates when one row is added, and is similar to our algorithm.

• DDELC updates when one column is deleted, and is similar to our algorithm.
• **DINSC** updates after one column is added; this algorithm varies from ours and again uses a Gram-Schmidt re-orthogonalization process.

• **DRNK1** updates after a rank 1 modification to A.

• **DRRPM** updates when \tilde{A} is A with some of its columns permuted.

4.6.5 What’s new in our algorithms

Our contribution is:

• We deal with adding/deleting block of p row/columns, and in two of the four cases we exploit the Level 3 BLAS. Also, the Level 2 code for deleting a block of rows is more efficient than calling the code for deleting one row p times.

• In the case of updating the QR factorization we place no restrictions on m and n.

• All our codes call existing BLAS and LAPACK routines.
Chapter 5

Summary

We have presented new algorithms and Fortran 77 LAPACK-style codes for computing the Cholesky factorization with complete pivoting of a symmetric positive semidefinite matrix, namely:

- lev2pchol.f A Level 2 BLAS routine.
- lev3pchol.f A Level 3 BLAS routine.

It has been shown that these new codes can be many times faster than the existing LINPACK code. Also, with the Higham [29] stopping criterion they provide more reliable rank detection and can have a smaller normwise backward error than using the existing LINPACK code.

We propose our codes should be included in a future release of LAPACK, and have written testing code for this purpose.

The semidefinite symmetric generalized eigenvalue problem has been considered, both the regular and nonregular cases. We presented an algorithm that can have a potentially smaller operation count than existing methods. Different rank revealing factorizations were explored for transforming the problem and demonstrated practically with our MATLAB M-file ssgep.m. In particular we
did not restrict ourselves to orthogonal factorizations as other methods have done.

Our numerical experiments showed there is a trade-off between the number of flops and the size of the backward error of the solution. That is, the implementation of our algorithm with orthogonal rank revealing factorizations required more flops than using nonorthogonal rank revealing factorizations but the normwise backward error was generally smaller.

For regular matrix pencils the normwise backward error was generally better for the QZ algorithm than the implementations of our algorithm, but required much more flops. As the QZ algorithm can not be relied upon for nonregular pencils, we compared our algorithm with the GUPTRI algorithm in this case. However, we found the GUPTRI algorithm sometimes failed and always gave a larger normwise backward error. It also needs many times more flops than the implementations of our algorithm. Thus, for nonregular matrix pencil our algorithm performs better in every regard for our test problems.

There is still the open question as to the effect of the rank decisions we make at each step of our algorithm and are made in the GUPTRI algorithm on the final solution of the semidefinite symmetric generalized eigenvalue problem.

Updating the QR factorization with applications to the least squares problem was also treated. Algorithms were presented that compute the factorization $\tilde{A} = \tilde{Q}\tilde{R}$ where \tilde{A} is the matrix $A = QR$ after it has had a number of rows or columns added or deleted.

We presented Fortran codes for a subset of these problems, namely:

- `delcols.f` for updating R when columns have been deleted from A.
- `delcolsq.f` for updating Q when columns have been deleted from $A`.

165
• addcols.f for updating \(R \) when columns have been added to \(A \).

• addcolsq.f for updating \(Q \) when columns have been added to \(A \).

These codes, and our other algorithms, differ from previous methods as we have exploited the Level 3 BLAS where possible. Also we have dealt with blocks of rows and columns and place no restriction on the dimensions of \(A \).

It was shown that our codes can be much faster than computing the factorization of \(\tilde{A} \) from scratch with existing LAPACK routines. Also, the backward error of our updated factors is comparable to the error bounds of the \(QR \) factorization of \(\tilde{A} \).

We propose our codes should be included in a future release of LAPACK, with appropriate testing code to be written.

We have not written Fortran code for updating after adding rows. Also, more investigation is needed to decide on the best approach for a practical code for updating after rows have been deleted.
Appendix A

Code for the Pivoted Cholesky Factorization

A.1 lev2pchl.f

SUBROUTINE LEV2PCHOL(UPLO, N, A, LDA, PIV, RANK, TOL, WORK,
$ INFO)

* Modified to include pivoting for semidefinite matrices by
* Craig Lucas, University of Manchester. January, 2004
*
* Original LAPACK routine DPOTF2
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
DOUBLE PRECISION TOL
INTEGER INFO, LDA, N, RANK
CHARACTER UPLO
*
* .. Array Arguments ..
DOUBLE PRECISION A(LDA, *), WORK(*)
INTEGER PIV(*)
*
* Purpose
* ======
*
* LEV2PCHOL computes the Cholesky factorization with complete
* pivoting of a real symmetric positive semidefinite matrix A.
*
* The factorization has the form
* \[P' \cdot A \cdot P = U' \cdot U, \] if UPLO = 'U',
* \[P' \cdot A \cdot P = L \cdot L', \] if UPLO = 'L',
* where U is an upper triangular matrix and L is lower triangular, and
* P is stored as vector PIV.
*
* This algorithm does not attempt to check that A is positive
* semidefinite. This version of the algorithm calls level 2 BLAS.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is stored.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the symmetric matrix A. If UPLO = 'U', the leading
* n by n upper triangular part of A contains the upper
* triangular part of the matrix A, and the strictly lower
* triangular part of A is not referenced. If UPLO = 'L', the
* leading n by n lower triangular part of A contains the lower
* triangular part of the matrix A, and the strictly upper
* triangular part of A is not referenced.
*
* On exit, if INFO = 0, the factor U or L from the Cholesky
* factorization as above. If UPLO = U the first RANK rows
* of the upper triangular part contains the nonzero part of U.
* If UPLO = L the first RANK columns of the lower triangular
* part contains the nonzero part of L. A is unchanged if
* RANK = 0.
*
* PIV (output) INTEGER array, dimension (N)
* PIV is such that the nonzero entries are P(PIV(K), K) = 1.
*
* RANK (output) INTEGER
* The rank of A given by the number of steps the algorithm completed. If the largest algebraic diagonal element is zero than RANK is set to zero.

* TOL (input) DOUBLE PRECISION
* User defined tolerance. If TOL < 0, then N*EPS*MAX(A(K,K)) will be used. The algorithm terminates after K-1 steps if the Kth pivot <= TOL.

* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).

* WORK DOUBLE PRECISION array, dimension (2*N)
* Work space.

* INFO (output) INTEGER
* < 0: if INFO = -K, the K-th argument had an illegal value
* = 0 algorithm completed successfully.

* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER (ONE = 1.0D+0, ZERO = 0.0D+0)

* ..
* .. Local Scalars ..
DOUBLE PRECISION AJJ, DSTOP, DTEMP, EPS
INTEGER ITEMP, J, P, PVT
LOGICAL UPPER

* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
LOGICAL LSAME
EXTERNAL DLAMCH, LSAME

*..
* .. External Subroutines ..
EXTERNAL BLAS_DMAX_VAL, DGEMV, DSCAL, DSWAP, XERBLA

*..
* .. Intrinsic Functions ..
INTRINSIC MAX, SQRT

*..

* Test the input parameters
* INFO = 0
 UPPER = LSAME(UPLO, 'U')
 IF(.NOT.UPPER .AND. .NOT.LSAME(UPLO, 'L')) THEN
 INFO = -1
 ELSE IF(N.LT.0) THEN
 INFO = -2
 ELSE IF(LDA.LT.MAX(1, N)) THEN
 INFO = -4
 END IF
 IF(INFO.NE.0) THEN
 CALL XERBLA('LEV2PC', -INFO)
 RETURN
 END IF
*
 Quick return if possible
*
 IF(N.EQ.0)
 RETURN
*
 Initialize PIV
*
 DO 10 P = 1, N
 PIV(P) = P
 10 CONTINUE
*
 Get unit roundoff
*
 EPS = DLAMCH('E')
*
 Compute stopping value
*
 CALL BLAS_DMAX_VAL(N, A(1, 1), LDA+1, PVT, DTEMP)
 AJJ = A(PVT, PVT)
 IF(AJJ.EQ.ZERO) THEN
 RANK = 0
 GO TO 80
 END IF
*
 Compute stopping value if not supplied
*
 IF(TOL.LT.ZERO) THEN
 DSTOP = N*EPS*AJJ
ELSE
 DSTOP = TOL
END IF
*
* Set first half of WORK to zero, holds dot products
* DO 20 P = 1, N
 WORK(P) = 0
20 CONTINUE
*
* IF(UPPER) THEN
* *
* Compute the Cholesky factorization P' * A * P = U' * U
* DO 40 J = 1, N
*
* Find pivot, test for exit, else swap rows and columns
* Update dot products, compute possible pivots which are
* stored in the second half of WORK
*
* DO 30 P = J, N
*
* IF(J.GT.1) THEN
 WORK(P) = WORK(P) + A(J-1, P)**2
END IF
WORK(N+P) = A(P, P) - WORK(P)
*
30 CONTINUE
*
* IF(J.GT.1) THEN
 CALL BLAS_DMAX_VAL(N-J+1, WORK(N+J), 1, ITEMP, DTEMP)
 PVT = ITEMP + J - 1
 AJJ = WORK(N+PVT)
 IF(AJJ.LE.DSTOP) THEN
 A(J, J) = AJJ
 GO TO 70
 END IF
END IF
*
* IF(J.NE.PVT) THEN
*
* Pivot OK, so can now swap pivot rows and columns
*
\begin{verbatim}
A(PVT, PVT) = A(J, J)
CALL DSWAP(J-1, A(1, J), 1, A(1, PVT), 1)
IF(PVT.LT.N)
 CALL DSWAP(N-PVT, A(J, PVT+1), LDA,
 \$ A(PVT, PVT+1), LDA)
 CALL DSWAP(PVT-J-1, A(J, J+1), LDA, A(J+1, PVT), 1)
*
 Swap dot products and PIV
*
 DTEMP = WORK(J)
 WORK(J) = WORK(PVT)
 WORK(PVT) = DTEMP
 ITEMP = PIV(PVT)
 PIV(PVT) = PIV(J)
 PIV(J) = ITEMP
END IF
*

 AJJ = SQRT(AJJ)
 A(J, J) = AJJ
*

 Compute elements J+1:N of row J
*
 IF(J.LT.N) THEN
 CALL DGEMV('Trans', J-1, N-J, -ONE, A(1, J+1), LDA,
 \$ A(1, J), 1, ONE, A(J, J+1), LDA)
 CALL DSCAL(N-J, ONE / AJJ, A(J, J+1), LDA)
 END IF
*
 40 CONTINUE
*
 ELSE
*
 Compute the Cholesky factorization P' * A * P = L * L'
*
 DO 60 J = 1, N
*
 Find pivot, test for exit, else swap rows and columns
 Update dot products, compute possible pivots which are
 stored in the second half of WORK
*
 DO 50 P = J, N
*
 IF(J.GT.1) THEN
\end{verbatim}
WORK(P) = WORK(P) + A(P, J-1)**2
END IF
WORK(N+P) = A(P, P) - WORK(P)

* 50 CONTINUE *

IF(J.GT.1) THEN
 CALL BLAS_DMAX_VAL(N-J+1, WORK(N+J), 1, ITEMP, DTEMP)
 PVT = ITEMP + J - 1
 AJJ = WORK(N+PVT)
 IF(AJJ.LE.DSTOP) THEN
 A(J, J) = AJJ
 GO TO 70
 END IF
END IF

* IF(J.NE.PVT) THEN *

 Pivot OK, so can now swap pivot rows and columns

 A(PVT, PVT) = A(J, J)
 CALL DSWAP(J-1, A(J, 1), LDA, A(PVT, 1), LDA)
 IF(PVT.LT.N)
 CALL DSWAP(N-PVT, A(PVT+1, J), 1, A(PVT+1, PVT),
 $ CALL DSWAP(PVT-J-1, A(J+1, J), 1, A(PVT, J+1), LDA)
 END IF

 Swap dot products and PIV

 DTEMP = WORK(J)
 WORK(J) = WORK(PVT)
 WORK(PVT) = DTEMP
 ITEMP = PIV(PVT)
 PIV(PVT) = PIV(J)
 PIV(J) = ITEMP
END IF

AJJ = SQRT(AJJ)
A(J, J) = AJJ

* Compute elements J+1:N of column J *

IF(J.LT.N) THEN
CALL DGEMV('No tran', N-J, J-1, -ONE, A(J+1, 1), LDA,
 A(J, 1), LDA, ONE, A(J+1, J), 1)
CALL DSCAL(N-J, ONE / AJJ, A(J+1, J), 1)
END IF

60 CONTINUE

END IF

Ran to completion, A has full rank

RANK = N

GO TO 80
70 CONTINUE

Rank is number of steps completed

RANK = J - 1

80 CONTINUE
RETURN

End of LEV2PCHOL

END
A.2 lev3pchol.f

The Level 3 code calls the Level 2 code when the block size is greater than n. The block size is determined by the LAPACK function ILAENV. Note we pass the function name DPOTRF, the existing Level 3 LAPACK routine for the full rank Cholesky factorization, to return a suitable value.

```
SUBROUTINE LEV3PCHOL( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, $
   INFO )
*
* Craig Lucas, University of Manchester. January, 2004
* Some code taken from LAPACK routine DPOTF2
*
* .. Scalar Arguments ..
DOUBLE PRECISION TOL
INTEGER INFO, LDA, N, RANK
CHARACTER UPLO
*
*
* .. Array Arguments..
DOUBLE PRECISION A( LDA, * ), WORK( * )
INTEGER PIV( * )
*
*
* Purpose
* ======
*
* LEV3PCHOL computes the Cholesky factorization with complete
* pivoting of a real symmetric positive semidefinite matrix A.
*
* The factorization has the form
*   $P' \ast A \ast P = U' \ast U$, if UPLO = 'U',
*   $P' \ast A \ast P = L' \ast L$, if UPLO = 'L',
* where U is an upper triangular matrix and L is lower triangular, and
* P is stored as vector PIV.
*
* This algorithm does not attempt to check that A is positive
* semidefinite. This version of the algorithm calls level 3 BLAS.
*
* Arguments
* ======
*
* UPLO    (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is stored.
```
* * = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the symmetric matrix A. If UPLO = 'U', the leading
* n by n upper triangular part of A contains the upper
* triangular part of the matrix A, and the strictly lower
* triangular part of A is not referenced. If UPLO = 'L', the
* leading n by n lower triangular part of A contains the lower
* triangular part of the matrix A, and the strictly upper
* triangular part of A is not referenced.
*
* On exit, if INFO = 0, the factor U or L from the Cholesky
* factorization as above. If UPLO = U the first RANK rows
* of the upper triangular part contains the nonzero part of U.
* If UPLO = L the first RANK columns of the lower triangular
* part contains the nonzero part of L. A is unchanged if
* RANK = 0.
*
* PIV (output) INTEGER array, dimension (N)
* PIV is such that the nonzero entries are P(PIV(K), K) = 1.
*
* RANK (output) INTEGER
* The rank of A given by the number of steps the algorithm
* completed. If the largest algebraic diagonal element is
* zero than RANK is set to zero.
*
* TOL (input) DOUBLE PRECISION
* User defined tolerance. If TOL < 0, then N*EPS*MAX(A(K,K))
* will be used. The algorithm terminates after K-1 steps if
* the Kth pivot <= TOL.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* WORK DOUBLE PRECISION array, dimension (2*N)
* Work space.
*
* INFO (output) INTEGER
* < 0: if INFO = -K, the K-th argument had an illegal value
algorithm completed successfully.

= 0 algorithm completed successfully.

Parameters

DOUBLE PRECISION ONE, ZERO
PARAMETER (ONE = 1.0D+0, ZERO = 0.0D+0)

Local Scalars

DOUBLE PRECISION AJJ, DSTOP, DTEMP, EPS
INTEGER ITEMP, J, JB, K, NB, P, PVT
LOGICAL UPPER

External Functions

REAL DLAMCH
INTEGER ILAENV
LOGICAL LSAME
EXTERNAL DLAMCH, ILAENV, LSAME

External Subroutines

EXTERNAL BLAS_DMAX_VAL, DGEMV, DSCAL, DSWAP, DSYSK,
$ LEV2PCHOL, XERBLA

Intrinsic Functions

INTRINSIC MAX, MIN, SQRT

Test the input parameters.

INFO = 0
UPPER = LSAME(UPLO, 'U')
IF(.NOT.UPPER .AND. .NOT.LSAME(UPLO, 'L')) THEN
 INFO = -1
ELSE IF(N.LT.0) THEN
 INFO = -2
ELSE IF(LDA.LT.MAX(1, N)) THEN
 INFO = -4
END IF
IF(INFO.NE.0) THEN
 CALL XERBLA('LEVEL3', -INFO)
 RETURN
END IF

END
* Quick return if possible
* IF(N.EQ.0)
 $ RETURN
* Get block size
* NB = ILAENV(1, 'DPOTRF', UPLO, N, -1, -1, -1)
 IF(NB.LE.1 .OR. NB.GE.N) THEN
* Use unblocked code
* CALL LEV2PCHOL(UPLO, N, A(1, 1), LDA, PIV, RANK, TOL, WORK, $
 INFO)
 GO TO 110
* ELSE
* Initialize PIV
* DO 10 P = 1, N
 PIV(P) = P
10 CONTINUE
* Get unit roundoff
* EPS = DLAMCH('E')
* Compute stopping value
* CALL BLAS_DMAX_VAL(N, A(1, 1), LDA+1, PVT, DTEMP)
 AJJ = A(PVT, PVT)
 IF(AJJ.EQ.ZERO) THEN
 RANK = 0
 GO TO 110
 END IF
* Compute stopping value if not supplied
* IF(TOL.LT.ZERO) THEN
 DSTOP = N*EPS*AJJ
ELSE
 DSTOP = TOL
END IF

* *
* IF(UPPER) THEN
* *
Compute the Cholesky factorization $P' * A * P = U' * U$
* *
DO 50 K = 1, N, NB
* *
Account for last block not being NB wide
* *
$JB = \text{MIN}(NB, N-K+1)$
* *
Set relevant part of first half of WORK to zero,
hold dot products
* *
DO 20 P = K, N
 WORK(P) = 0
20 CONTINUE
* *
DO 40 J = K, K + JB - 1
* *
Find pivot, test for exit, else swap rows and columns
Update dot products, compute possible pivots which are
stored in the second half of WORK
* *
DO 30 P = J, N
* *
IF(J.GT.K) THEN
 WORK(P) = WORK(P) + A(J-1, P)**2
END IF
WORK(N+P) = A(P, P) - WORK(P)
* *
30 CONTINUE
* *
IF(J.GT.1) THEN
 CALL BLAS_DMAX_VAL(N-J+1, WORK(N+J), 1, ITEMP, DTEMP)
$PVT = ITEMP + J - 1$
AJJ = WORK(N+PVT)
IF(AJJ.LE.DSTOP) THEN
 A(J, J) = AJJ
GO TO 100

END IF
END IF

*
IF(J.NE.PVT) THEN
*
Pivot OK, so can now swap pivot rows and columns
*
A(PVT, PVT) = A(J, J)
CALL DSWAP(J-1, A(1, J), 1, A(1, PVT), 1)
IF(PVT.LT.N)
$ CALL DSWAP(N-PVT, A(J, PVT+1), LDA,
$ A(PVT, PVT+1), LDA)
$ CALL DSWAP(PVT-J-1, A(J, J+1), LDA,
$ A(J+1, PVT), 1)
*
Swap dot products and PIV
*
DTEMP = WORK(J)
WORK(J) = WORK(PVT)
WORK(PVT) = DTEMP
ITEMP = PIV(PVT)
PIV(PVT) = PIV(J)
PIV(J) = ITEMP
END IF

*
AJJ = SQRT(AJJ)
A(J, J) = AJJ
*
Compute elements J+1:N of row J.
*
IF(J.LT.N) THEN
CALL DGEMV('Trans', J-K, N-J, -ONE, A(K, J+1),
$ LDA, A(K, J), 1, ONE, A(J, J+1),
$ LDA)
CALL DSCAL(N-J, ONE / AJJ, A(J, J+1), LDA)
END IF
*
CONTINUE
*
Update trailing matrix, J already incremented
*
IF(K+JB.LE.N) THEN
CALL DSYRK('Upper', 'Trans', N-J+1, JB, -ONE,
$ A(K, J), LDA, ONE, A(J, J), LDA$

END IF
*
50 CONTINUE
*
ELSE
*
Compute the Cholesky factorization $P' \cdot A \cdot P = L \cdot L'$
*
DO 90 K = 1, N, NB
*
Account for last block not being NB wide
*
JB = MIN(NB, N-K+1)
*
Set relevant part of first half of WORK to zero,
holds dot products
*
DO 60 P = K, N
 WORK(P) = 0
 CONTINUE
*
DO 80 J = K, K + JB - 1
*
Find pivot, test for exit, else swap rows and columns
Update dot products, compute possible pivots which are
stored in the second half of WORK
*
DO 70 P = J, N
*
IF(J.GT.K) THEN
 WORK(P) = WORK(P) + A(P, J-1)**2
END IF
WORK(N+P) = A(P, P) - WORK(P)
*
70 CONTINUE
*
IF(J.GT.1) THEN
 CALL BLAS_DMAX_VAL(N-J+1, WORK(N+J), 1, ITEMP,
 DTEMP)
 PVT = ITEMP + J - 1
 AJJ = WORK(N+PVT)
 IF(AJJ.LE.DSTOP) THEN

181
A(J, J) = AJJ
GO TO 100
END IF
END IF
*

IF(J.NE.PVT) THEN
*

Pivot OK, so can now swap pivot rows and columns
*

A(PVT, PVT) = A(J, J)
CALL DSWAP(J-1, A(J, 1), LDA, A(PVT, 1), LDA)
IF(PVT.LT.N)
 CALL DSWAP(N-PVT, A(PVT+1, J), 1,
 A(PVT+1, PVT), 1)
 CALL DSWAP(PVT-J-1, A(J+1, J), 1, A(PVT, J+1),
 LDA)
*

Swap dot products and PIV
*

DTEMP = WORK(J)
WORK(J) = WORK(PVT)
WORK(PVT) = DTEMP
ITEMP = PIV(PVT)
PIV(PVT) = PIV(J)
PIV(J) = ITEMP
END IF
*

AJJ = SQRT(AJJ)
A(J, J) = AJJ
*

Compute elements J+1:N of column J.
*

IF(J.LT.N) THEN
 CALL DGEMV('No tran', N-J, J-K, -ONE, A(J+1, K),
 LDA, A(J, K), LDA, ONE, A(J+1, J),
 1)
 CALL DSCAL(N-J, ONE / AJJ, A(J+1, J), 1)
END IF
*

80 CONTINUE
*

Update trailing matrix, J already incremented
*
IF (K+JB.LE.N) THEN
 CALL DSYRK('Lower', 'No Trans', N-J+1, JB, -ONE,
 $ A(J, K), LDA, ONE, A(J, J), LDA)
 END IF
* 90 CONTINUE
* END IF
END IF
* Ran to completion, A has full rank
* RANK = N
* GO TO 110
100 CONTINUE
* Rank is the number of steps completed
* RANK = J - 1
* 110 CONTINUE
RETURN
* End of LEV3PCHOL
* END
A.3 blas_dmax_val.f

The subroutine BLAS_DMAX_VAL is modified from the BLAS function IDAMAX to return the largest algebraic value of a vector and the smallest index that contains that value. This routine is used as there is not an appropriate routine in the current version of the BLAS. IDAMAX returns the largest absolute value and its index. The name and interface conform to the BLAS Technical Forum Standard [46], which gives details of a future release of the BLAS.

SUBROUTINE BLAS_DMAX_VAL(N, X, INCX, K, R)

* * BLAS_DMAX_VAL finds the largest component of X, R, and
* determines the smallest index, K, such that X(K) = R.
* Craig Lucas, University of Manchester. June, 2003
* *
* Modified from the BLAS function IDAMAX:
* Jack Dongarra, LINPACK, 3/11/78.
* *
* .. Scalar Arguments ..
DOUBLE PRECISION R
INTEGER INCX, K, N
* *
* .. Array Arguments ..
DOUBLE PRECISION X(*)
* *
* .. Local Scalars ..
INTEGER I, IX
* *
K = 0
IF(N.LT.1 .OR. INCX.LE.0)
$ RETURN
K = 1
IF(N.EQ.1)
$ RETURN
IF(INCX.EQ.1)
$ GO TO 30
*
* Code for increment not equal to 1
*
IX = 1
R = X(1)
IX = IX + INCX
DO 20 I = 2, N
 IF(X(IX).LE.R)
 20 CONTINUE

$ \text{GO TO 10}
K = I
R = X(IX)

10 \text{CONTINUE}
IX = IX + INCX

20 \text{CONTINUE}
\text{RETURN}

* Code for increment equal to 1
*

30 \text{CONTINUE}
R = X(1)
DO 40 I = 2, N
IF(X(I) .LE. R)
$ \text{GO TO 40}
K = I
R = X(I)

40 \text{CONTINUE}
\text{RETURN}
\text{END}
Appendix B

Testing Code for the Cholesky Routines

CL_DCHKAA runs the test code for LEV2PCH0L and LEV3PCH0L. It reads in user set parameters and calls the subroutine CL_DCHKP0. It is based on the LAPACK testing routine DCHKAA. Other dependent routines follow the same naming convention of prefixing CL_ where existing LAPACK routines have been adapted for our code.

CL_DCHKP0 loops through all the different cases specified in the input file. Test matrices are generated, input arguments are checked and the backward error of the computed factor is measured. Full details are given in the individual files.

CL_DCHKP0 calls the following adapted LAPACK testing routines not included in this appendix:

- CL_DERRP0 checks LEV2PCH0L and LEV3PCH0L exit correctly when input parameters are incorrect.

- CL_DLATB4 sets parameters for the following routine.

- CL_DLATMS generates random matrices. Requires CL_DLATM1 which specifies eigenvalues of the random matrix.

- CL_DPOT01 calculates the backward error of the computed Cholesky factors.

- CL_ALAERH handles the output from the testing routines. CL_ALAHD is required which prints details to the screen.
The following LAPACK testing routines are also required for setting parameters to other routines, handling errors and printing results:

ALADHD ALAESM ALAREQ ALASUM CHKXER XLAENV

Special versions of the LAPACK routines ILAENV, which sets some of the input parameters to LEV2PCHOL and LEV3PCHOL, and XERBLA which handles errors are also required.
The full set of testing files can be found at http://www.ma.man.ac.uk/~clucas/cholesky.

B.1 cl_dchkaa.f

PROGRAM CL_DCHKAA

* Based on the following LAPACK routine.
* DCHKAA
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
Purpose
* =======
*
CL_DCHKAA is a test program for the DOUBLE PRECISION routine
* LEV3PCHOL, calling LEV2PCHOL for small N.
*
* The program must be driven by a short data file. The first 9 records
* specify problem dimensions and program options using list-directed
* input. The last line specify the LAPACK test path and the
* number of matrix types to use in testing. The test path is a legacy
* of the original LAPACK code and is always 'DPO'. An annotated example
* of a data file can be obtained by deleting the first 3 characters
* from the following 11 lines:
* Data file for testing DOUBLE PRECISION routine LEV3PCHOL
* 6 Number of values of N
* 0 10 20 30 100 200 Values of N
* 3 Number of values of NB
* 10 20 50 Values of NB (the block size)
* 3 Number of values of RANK
* 30 50 90 Values of rank (as a % of N)
* 1 Threshold value of test ratio
* T Put T to test the LAPACK routines (T = true)
* T Put T to test the error exits
* DPO 9 List types on next line if 0 < NTYPES < 9
*
* Internal Parameters
* ===============
*
* NMAX INTEGER
* The maximum allowable value for N
*
* MAXIN INTEGER
* The number of different values that can be used for each of
* N, NB, and RANK
*
* NIN INTEGER
* The unit number for input
*
* NOUT INTEGER
* The unit number for output
*
* ================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER (NMAX = 1000)
INTEGER MAXIN
PARAMETER (MAXIN = 12)
INTEGER MATMAX
PARAMETER (MATMAX = 9)
INTEGER NIN, NOUT
PARAMETER (NIN = 5, NOUT = 6)
*
* .. Local Scalars ..
DOUBLE PRECISION EPS, S1, S2, THRESH
INTEGER I, IC, J, K, LDA, NB, NMATS, NN, NNB, NNB2,
$ NRANK, NTYPES
LOGICAL FATAL, TSTCHK, TSTERR
CHARACTER C1
CHARACTER*2 C2
CHARACTER*3 PATH
CHARACTER*10 INTSTR
CHARACTER*72 ALINE

* .. Local Arrays..
* ..

DOUBLE PRECISION A(NMAX*NMAX, 3), PIV(NMAX),
$ RWORK(NMAX), WORK(NMAX*3)
INTEGER IWORK(25*NMAX), NBVAL(MAXIN),
$ NBVAL2(MAXIN), NVAL(MAXIN),
$ RANKVAL(MAXIN)
LOGICAL DOTYPE(MATMAX)

* ..
* .. External Functions..
DOUBLE PRECISION DLAMCH, DSECND
LOGICAL LSAME, LSAMEN
EXTERNAL DLAMCH, DSECND, LSAME, LSAMEN

* ..
* .. External Subroutines..

EXTERNAL ALAREQ, CL_DCHKPO

* ..
* .. Scalars in Common..
INTEGER INFOT, NUNIT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT

* ..
* .. Arrays in Common..
INTEGER IPARMS(100)

* ..
* .. Common blocks..
COMMON / CLAENV / IPARMS
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT

* ..
* .. Data statements..
DATA INTSTR / '0123456789' /

* ..

S1 = DSECND()
LDA = NMAX
FATAL = .FALSE.

* Read a dummy line.
* READ(NIN, FMT = *)
* Report values of parameters.
* WRITE(NOUT, FMT = 9994)
* Read the values of N
* READ(NIN, FMT = *)NN
IF(NN.LT.1) THEN
 WRITE(NOUT, FMT = 9996)' NN ', NN, 1
 NN = 0
 FATAL = .TRUE.
ELSE IF(NN.GT.MAXIN) THEN
 WRITE(NOUT, FMT = 9995)' NN ', NN, MAXIN
 NN = 0
 FATAL = .TRUE.
END IF
READ(NIN, FMT = *)(NVAL(I), I = 1, NN)
DO 10 I = 1, NN
 IF(NVAL(I).LT.0) THEN
 WRITE(NOUT, FMT = 9996)' N ', NVAL(I), 0
 FATAL = .TRUE.
 ELSE IF(NVAL(I).GT.NMAX) THEN
 WRITE(NOUT, FMT = 9995)' N ', NVAL(I), NMAX
 FATAL = .TRUE.
 END IF
10 CONTINUE
IF(NN.GT.0)
$ WRITE(NOUT, FMT = 9993)'N',
$ (NVAL(I), I = 1, NN)
*
* Read the values of NB
*
READ(NIN, FMT = *)NNB
IF(NNB.LT.1) THEN
 WRITE(NOUT, FMT = 9996)'NNB ', NNB, 1
 NNB = 0
 FATAL = .TRUE.
ELSE IF(NNB.GT.MAXIN) THEN
 WRITE(NOUT, FMT = 9995)'NNB ', NNB, MAXIN
 NNB = 0
FATAL = .TRUE.
END IF
READ(NIN, FMT = *) (NBVAL(I), I = 1, NNB)
DO 20 I = 1, NNB
 IF(NBVAL(I).LT.0) THEN
 WRITE(NOUT, FMT = 9996)' NB ', NBVAL(I), 0
 FATAL = .TRUE.
 END IF
20 CONTINUE
 IF(NNB.GT.0)
$ WRITE(NOUT, FMT = 9993)' NB',
$ (NBVAL(I), I = 1, NNB)
* * Set NBVAL2 to be the set of unique values of NB *
* NNB2 = 0
DO 40 I = 1, NNB
 NB = NBVAL(I)
 DO 30 J = 1, NNB2
 IF(NB.EQ.NBVAL2(J))
$ GO TO 40
30 CONTINUE
 NNB2 = NNB2 + 1
 NBVAL2(NNB2) = NB
40 CONTINUE
* * Read the values of RANKVAL *
* READ(NIN, FMT = *) NRANK
IF(NN.LT.1) THEN
 WRITE(NOUT, FMT = 9996)' NRANK', NRANK, 1
 NRANK = 0
 FATAL = .TRUE.
ELSE IF(NN.GT.MAXIN) THEN
 WRITE(NOUT, FMT = 9995)' NRANK', NRANK, MAXIN
 NRANK = 0
 FATAL = .TRUE.
END IF
READ(NIN, FMT = *) (RANKVAL(I), I = 1, NRANK)
DO 50 I = 1, NRANK
 IF(RANKVAL(I).LT.0) THEN
 WRITE(NOUT, FMT = 9996)' RANK ', RANKVAL(I), 0
 FATAL = .TRUE.
ELSE IF(RANKVAL(I).GT.100) THEN
 WRITE(NOUT, FMT = 9995)' RANK ', RANKVAL(I), 100
 FATAL = .TRUE.
END IF

50 CONTINUE
IF(NRANK.GT.0)
 $ WRITE(NOUT, FMT = 9993)' RANK % OF N',
 $ (RANKVAL(I), I = 1, NRANK)
*
* Read the threshold value for the test ratios.
*
READ(NIN, FMT = *)THRESH
WRITE(NOUT, FMT = 9992)THRESH
*
* Read the flag that indicates whether to test the routine.
*
READ(NIN, FMT = *)TSTchk
*
* Read the flag that indicates whether to test the error exits.
*
READ(NIN, FMT = *)TSTerr
*
IF(FATAL) THEN
 WRITE(NOUT, FMT = 9999)
 STOP
END IF
*
* Calculate and print the machine dependent constants.
*
EPS = DLAMCH('Underflow threshold')
WRITE(NOUT, FMT = 9991)'underflow', EPS
EPS = DLAMCH('Overflow threshold')
WRITE(NOUT, FMT = 9991)'overflow ', EPS
EPS = DLAMCH('Epsilon')
WRITE(NOUT, FMT = 9991)'precision', EPS
WRITE(NOUT, FMT = *)
*
* Read a test path and the number of matrix types to use.
*
READ(NIN, FMT = '(A72)', END = 110)ALINE
PATH = ALINE(1: 3)
NMATS = MATMAX
I = 3
60 CONTINUE
 I = I + 1
 IF(I.GT.72) THEN
 NMATS = MATMAX
 GO TO 100
 END IF
 IF(ALINE(I: I).EQ.' ')
 GO TO 60
 NMATS = 0
70 CONTINUE
 C1 = ALINE(I: I)
 DO 80 K = 1, 10
 IF(C1.EQ.INTSTR(K: K)) THEN
 IC = K - 1
 GO TO 90
 END IF
80 CONTINUE
 GO TO 100
90 CONTINUE
 NMATS = NMATS*10 + IC
 I = I + 1
 IF(I.GT.72)
 GO TO 100
 GO TO 70
100 CONTINUE
 C1 = PATH(1: 1)
 C2 = PATH(2: 3)
*
 Check first character for correct precision.
 IF(.NOT.LSAME(C1, 'Double precision')) THEN
 WRITE(NOUT, PMT = 9990)PATH
 ELSE IF(NMATS.LE.0) THEN
 Check for a positive number of tests requested.
 WRITE(NOUT, PMT = 9989)PATH
 ELSE IF(LSAMEN(2, C2, 'PO')) THEN
 PO: positive semi-definite matrices
NTYPES = 9

* CALL ALAREQ(PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT)

* IF(TSTCHK) THEN
 CALL CL_DCHKPO(DOTYPE, NN, NVAL, NNB2, NBVAL2, NRANK,
 RANKVAL, THRESH, TSTERR, LDA, A(1, 1),
 A(1, 2), A(1, 3), PIV, WORK, RWORK,
 IWORK, NOUT)
ELSE
 WRITE(NOUT, FMT = 9989)PATH
END IF

* ELSE

* WRITE(NOUT, FMT = 9990)PATH
END IF

* Branch to this line when the last record is read.
*
110 CONTINUE
CLOSE (NIN)
S2 = DSECND()
WRITE(NOUT, FMT = 9998)
WRITE(NOUT, FMT = 9997) S2 - S1

9999 FORMAT(/ ' Execution not attempted due to input errors')
9998 FORMAT(/ ' End of tests')
9997 FORMAT(' Total time used = ', F12.2, ' seconds', /)
9996 FORMAT(' Invalid input value: ', A5, '=' ', I6, '; must be >=',
 I6)
9995 FORMAT(' Invalid input value: ', A5, '=' ', I6, '; must be <=',
 I6)
9994 FORMAT(' Tests of the DOUBLE PRECISION routine LEV3PCHOL',
 '/ LAPACK VERSION X.X', ', ', /
 ' The following parameter values will be used:')
9993 FORMAT(4X, A12, ': ', 10I6, / 11X, 10I6)
9992 FORMAT(/ ' Routines pass computational tests if test ratio is ',
 ' less than', F8.2, /)
9991 FORMAT(' Relative machine ', A, ' is taken to be', D16.6)
9990 FORMAT(/ 1X, A3, ': Unrecognized path name')
9989 FORMAT(/ 1X, A3, ' routines were not tested')
9988 FORMAT(/ 1X, A3, ' driver routines were not tested')
* End of CL_DCHKAA
*
END
B.2 cl_dchkpo.f

SUBROUTINE CL_DCHKPO(DOTYPE, NN, NVAL, NNB, NBVAL, NRANK,
$ RANKVAL, THRESH, TSTERR, NMAX, A, AFAC,
$ PERM, PIV, WORK, RWORK, IWORK, NOUT)

* Based on the following LAPACK routine. Arguments added are
* NRANK, RANKVAL, PERM and PIV
*
* DCHKPO
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* December 7, 1999
*
* .. Scalar Arguments..
DOUBLE PRECISION THRESH
REAL PIV
INTEGER NMAX, NN, NNB, NOUT, NRANK
LOGICAL TSTERR
*
* .. Array Arguments..
DOUBLE PRECISION A(*), AFAC(*), PERM(*), RWORK(*),
$ WORK(*)
INTEGER IWORK(*), NBVAL(*), NVAL(*), RANKVAL(*)
LOGICAL DOTYPE(*)
*
* Purpose
* ======
*
* CL_DCHKPO tests LEV3PCHOL.
*
* Arguments
* ======
*
* DOTYPE (input) LOGICAL array, dimension (NTYPES)
* The matrix types to be used for testing. Matrices of type j
* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*
* NN (input) INTEGER
* The number of values of N contained in the vector NVAL.
* NVAL (input) INTEGER array, dimension (NN)
 The values of the matrix dimension N.
* NNB (input) INTEGER
 The number of values of NB contained in the vector NBVAL.
* NBVAL (input) INTEGER array, dimension (NBVAL)
 The values of the block size NB.
* NRANK (input) INTEGER
 The number of values of RANK contained in the vector RANKVAL.
* RANKVAL (input) INTEGER array, dimension (NBVAL)
 The values of the block size NB.
* THRESH (input) DOUBLE PRECISION
 The threshold value for the test ratios. A result is
 included in the output file if RESULT >= THRESH. To have
 every test ratio printed, use THRESH = 0.
* TSTERR (input) LOGICAL
 Flag that indicates whether error exits are to be tested.
* NMAX (input) INTEGER
 The maximum value permitted for N, used in dimensioning the
 work arrays.
* A (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)
* AFAC (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)
* PERM (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)
* PIV (workspace) INTEGER array, dimension (NMAX)
* WORK (workspace) DOUBLE PRECISION array, dimension (NMAX*3)
* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX)
* IWORK (workspace) INTEGER array, dimension (NMAX)
* NOUT (input) INTEGER
 * The unit number for output.
 *
 ==
 *
 * .. Parameters ..
 DOUBLE PRECISION ONE
 PARAMETER (ONE = 1.0D+0)
 INTEGER NTYPES
 PARAMETER (NTYPES = 9)
 *
 * .. Local Scalars ..
 DOUBLE PRECISION ANORM, CNDNUM, RESULT, TOL
 INTEGER COMPRANK, I, IMAT, IN, INB, INFO, IRANK, IUPL0,
 $ IZERO, KL, KU, LDA, MODE, N, NB, NERRS, NFAL",
 $ NIMAT, NRUN, RANK, RANKDIFF
 CHARACTER DIST, TYPE, UPLO, XTYPE
 CHARACTER*3 PATH
 *
 * .. Local Arrays ..
 INTEGER ISEED(4), ISEEDY(4)
 CHARACTER UPLOS(2)
 *
 * .. External Subroutines ..
 EXTERNAL CL_ALAERH, CL_ALAHDI, ALASUM, CL_DERRPO,
 $ DLABPY, CL_DLATB4, CL_DLATMS, CL_DPOT01,
 $ LEV3PCHOL, XLAENV
 *
 * .. Scalars in Common ..
 INTEGER INFOT, NUNIT
 LOGICAL LERR, OK
 CHARACTER*6 SRNAMT
 *
 * .. Common blocks ..
 COMMON / INFOC / INFOT, NUNIT, OK, LERR
 COMMON / SRNAMC / SRNAMT
 *
 * .. Intrinsic Functions ..
 INTRINSIC DBLE, MAX
 *
 * .. Data statements ..
 DATA UPLOS / 'U', 'L' /
..

Initialize constants and the random number seed.

 PATH(1: 1) = 'Double precision'
 PATH(2: 3) = 'PO'
 NRUN = 0
 NFAIL = 0
 NERRS = 0
 DO 10 I = 1, 4
 ISEED(I) = ISEEDY(I)
 10 CONTINUE

Test the error exits

 IF(TSTERR)
$ CALL CL_DERRPO(PATH, NOUT)
 INPUT = 0
 CALL XLAENV(2, 2)

Do for each value of N in NVAL

 DO 60 IN = 1, NN
 N = NVAL(IN)
 LDA = MAX(N, 1)
 XTYPE = 'N'
 NIMAT = NTYPES
 IF(N.LE.0)
$ NIMAT = 1

 IZERO = 0
 DO 50 IMAT = 1, NIMAT

 Do the tests only if DOTYPE(IMAT) is true.

 IF(.NOT.DOTYPE(IMAT))
$ GO TO 50

Do for each value of RANK in RANKVAL

 DO 40 IRANK = 1, NRANK

 Only repeat test 3 to 5 for different ranks
* Other tests use full rank
*
* IF((IMAT.LT.3 .OR. IMAT.GT.5) .AND. IRANK.GT.1)
*$
 GO TO 40
*
* RANK = (DBLE(RANKVAL(IRANK)) / 100.D+0)*N
*
* Do first for UPLO = 'U', then for UPLO = 'L'
*
* DO 30 IUPLO = 1, 2
 UPL0 = UPLOS(IUPLO)
*
* Set up parameters with DLATB4 and generate a test matrix
* with DLATMS.
*
* CALL CL_DLATB4(PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
*$
 MODE, CNDNUM, DIST)
*
* SRNAMT = 'DLATMS'
* CALL CL_DLATMS(N, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, RANK, KL, KU, UPL0, A,
$ LDA, WORK, INFO)
*
* Check error code from DLATMS.
*
* IF(INFO.NE.0) THEN
 CALL CL_ALAERH(PATH, 'DLATMS', INFO, 0, UPLO, N,
*$
 N, -1, -1, -1, IMAT, NFAIL, NERRS,
*$
 NOUT)
 GO TO 30
END IF
*
* Do for each value of NB in NBVAL
*
* DO 20 INB = 1, NNB
 NB = NBVAL(INB)
 CALL XLAENV(1, NB)
*
* Compute the pivoted L*L' or U'*U factorization
* of the matrix.
*
* CALL DLACPY(UPLO, N, N, A, LDA, AFAC, LDA)
SRNAMT = 'LEV3PC'

* Use default tolerance
* TOL = -ONE
CALL LEV3PCHOL(UPLO, N, AFAC, LDA, PIV, COMPRANK,
 TOL, WORK, INFO)
*$

* Check error code from LEV3PCHOL.
*
 IF(INFO.NE.IZERO) THEN
 CALL CL_ALAERH(PATH, 'LEV3PC', INFO, IZERO,
 UPLO,N, N, -1, -1, NB, IMAT,
 NFAIL, NERRS, NOUT)
 GO TO 20
 END IF
*$

* Skip the test if INFO is not 0.
*
 IF(INFO.NE.0)
 GO TO 20
*$

* Reconstruct matrix from factors and compute residual.
*
* PERM holds permuted L*L^T or U^T*U
*
 CALL CL_DPOT01(UPLO, N, A, LDA, AFAC, LDA, PERM,
 LDA, PIV, RWORK, RESULT, COMPRANK)
*$

* Print information about the tests that did not pass
 the threshold or where computed rank was not RANK.
*
 RANKDIFF = RANK - COMPRANK
 IF(N.EQ.0)
 RANKDIFF = 0
 IF(RESULT.GE.THRESH .OR. RANKDIFF.NE.0) THEN
 IF(NFAIL.EQ.0 .AND. NERRS.EQ.0)
 CALL CL_ALAHD(NOUT, PATH)
 WRITE(NOUT, FMT = 9999)UPLO, N, RANK,
 RANKDIFF, NB, IMAT, RESULT
 NFAIL = NFAIL + 1
 END IF
 NRUN = NRUN + 1
$
20 CONTINUE

* 30 CONTINUE
40 CONTINUE
50 CONTINUE
60 CONTINUE

* Print a summary of the results.
* CALL ALASUM(PATH, NOUT, NFAIL, NRUN, NERRS)
$ ' , G12.5)
RETURN
* End of CL_DCHKPO
*
END
Appendix C

MATLAB Code for the Symmetric Semidefinite Generalized Eigenvalue Problem

C.1 sssgep.m

function [U,D,r] = sssgep(A,B,rrd1,rrd3,rrd4,reltol,normtol)
%SSGEP Solves the symmetric semidefinite generalized eigenvalue problem.
% This function returns the finite eigenvalues and the eigenvectors of the symmetric semidefinite eigenvalue problem
% Ax = \lambda Bx, A = A\top, B = B\top and B semidefinite.
% [U,D,r] = sssgep(A,B,rrd1,rrd3,rrd4,reltol,normtol)
% U is a matrix of eigenvectors, the first r(6) columns contain those corresponding to finite eigenvalues, the remaining r(3) + r(5) correspond to infinite eigenvalues. The diagonal elements of D are the r(6) finite eigenvalues. r(1) is the numerical rank of B. r(7) is the dimension of the singular part of the pencil which has been deflated out of the problem.
%
rrd1 specifies rank revealing decomposition (RRD) for Step 1
'spec' spectral decomposition via eig.m (default)
'chol' Cholesky decomposition via chol.m
%
rrd3 specifies RRD for Step 3
'spec' as above (default)
'ldlt' LDL' factorization via lqdlxt.m
%
rrd4 specifies RRD for Step 4
% 'svd' singular value decomposition via svd.m (default)
% 'qr' column pivoted QR decomposition via qr.m
% 'qr' QR factorization via qr.m, fails for nonregular pencils
% 'cod' Complete orthogonal decomposition via cod.m

% reltol is a tolerance for defining the rank of an approximate
% diagonal matrix. For an RRD C = XDZ of dimension m-by-n with the
% elements in D ordered in descending order by magnitude if
% |d_ii| <= reltol * max(m,n) * |d_11|, i = r+1:n,
% then rank is r, and |d_ii|, i = r+1:n, are set to zero.
% normtol is a tolerance that decides if a submatrix, A_s of
% dimension m-by-n, of A is considered zero. The matrix is
% set to zero if
% \[\text{norm}(A_s, 'fro') <= \text{normtol} * \max(m,n) * \text{norm}(A, 'fro') \]
% If tolerances are omitted, they default to eps/2.
% Calls lqdto1t.m, distributed with this routine, and
% chol.m and cod.m from Nicholas Higham's Matrix Computation
% Toolbox, available at:
% http://www.ma.man.ac.uk/~higham/mctoolbox

if ~isequal(A,A') || ~isequal(B,B')
 error('A and B must be square and symmetric')
end

if length(A) ~= length(B)
 error('A and B must be the same size')
end

if nargin < 3 | isempty(rrd1), rrd1 = 'spec'; end
if nargin < 4 | isempty(rrd3), rrd3 = 'spec'; end
if nargin < 5 | isempty(rrd4), rrd4 = 'svd'; end
if nargin < 6 | isempty(reltol), reltol = eps/2; end
if nargin < 7 | isempty(normtol), normtol = eps/2; end

n = length(A);

% *********** STEP ONE ***********
tol = reltol * n;

if rrd1 == 'chol'
 [R,P,r1] = cholp(B,tol);
 R(r1+1:n,r1+1:n) = eye(n-r1);
 X1inv = R'\P';
 D11inv = 1;
elseif rrd1 == 'spec'
 [Q,D] = eig(B);
 d = diag(D);
 % sort D and Q, descending in value
 [res,i] = sort(-d);
 d = d(i);
 r1 = sum(d >= tol*d(1));
 Q = Q(:,i);
 X1inv = Q';
 D11inv = diag(1./(sqrt(d(1:r1))));
else
 error('Invalid option for RRD1')
end

% Transform A
A = X1inv*A*X1inv';

% ensure symmetry
A = (A+A')/2;

% *********** STEP TWO ***********
A(1:r1,1:r1) = D11inv*A(1:r1,1:r1)*D11inv;

% if r2 = 0 we can solve, else
r2 = n - r1;
if r2 ~= 0
A(1:r1,r1+1:n) = D11inv*A(1:r1,r1+1:n);

% ********** STEP THREE **********

tol = reltol * r2;
if rrd3 == 'spec'
 [X3invT,D] = eig(A(r1+1:n,r1+1:n));

 % sort D and X3invT, descending in abs value
 d = diag(D);
 [res,i] = sort(-abs(d));
 d = d(i);
 X3invT = X3invT(:,i);

 r3 = sum(abs(d) >= tol*abs(d(1)));

 D=diag(d);
elseif rrd3 == 'ldlt'
 [Q,L,D,P] = ldqtrlt(A(r1+1:n,r1+1:n));

 % sort D and Q, descending in abs value
 d=diag(D);
 [res,i] = sort(-abs(d));
 d = d(i);
 Q = Q(:,i);

 r3 = sum(abs(d) >= tol*abs(d(1)));

 D = diag(d);

 X3invT = P'/L'*Q;
else
 error('Invalid option for RRD3')
end

A(1:r1,r1+1:n) = A(1:r1,r1+1:n)*X3invT;
A(r1+1:r1+r3,r1+1:r1+r3) = D(1:r3,1:r3);

r4 = r2-r3;
% A13 may be considered zero, accumulate norm(A, 'fro') and test
normA = norm(A(1:r1,1:r1),'fro')^2;
normA = normA+2*norm(A(1:r1,r1+1:n),'fro')^2+sum(diag(D).*2);
normA = sqrt(normA);
normA13 = norm(A(1:r1,n-r4+1:n),'fro');
normtol*normA;
% treat A13 as zero
if normA13 <= normtol*max(r1,r4)*normA
 r5 = 0; r6 = r1; r7 = r4;
end
% A13 exists and is non zero
elseif r4 ~= 0

% ********** STEP FOUR **********

tol = reltol * max(r1,r4);
% We do A13 = X4*Delta*Z4
if rrd4 == 'qrp'
 [X4,R,P] = qr(A(1:r1,n-r4+1:n));

 % qr with p sorts diag
 if size(R,2) == 1 || size(R,1) == 1
 d = R;
 r5 = 1;
 Delta14 = d(1);
 else
 d = diag(R);
 r5 = sum(abs(d) >= tol*abs(d(1)));
 Delta14 = diag(d(1:r5));
 end

 U = eye(r4);
 U(1:r5,:) = Delta14\R(1:r5,:);

 Z4inv = P/U;
elseif rrd4 == 'cod'
 [X4,Delta14,Z4] = cod(A(1:r1,n-r4+1:n),tol);
 r5 = size(Delta14,1);
Z4inv = Z4';

elseif rrd4 == 'svd'
 [X4,D,Z4inv] = svd(A(1:r1,n-r4+1:n));
 if size(D,2) == 1 || size(D,1) == 1
 d = D;
 else
 d = diag(D);
 end
 r5 = sum(abs(d) >= tol*abs(d(1)));
 Delta14 = diag(d(1:r5));

elseif rrd4 == 'qr'
 [X4,R] = qr(A(1:r1,n-r4+1:n));
 d = diag(R);
 [res,i] = sort(-abs(d));
 d=d(i);
 r5 = sum(abs(d) >= tol*abs(d(1)));
 if r5 < r4
 error('Fix & Heiberger failure - pencil nonregular')
 end
 Delta14 = triu(R(1:r4,:));
 Z4inv = eye(r4);
else
 error('Invalid option for RRD4')
end

r6 = r1-r5;
r7 = r4-r5;

A(1:r1,1:r1) = X4'*A(1:r1,1:r1)*X4;
A(1:r1,r1+1:r1+r3) = X4'*A(1:r1,r1+1:r1+r3);

else
r5 = 0; r6 = r1; r7 = 0;

end

else

r3 = 0; r4=0; r5 = 0; r6 = r1; r7 = 0;

end

% ********** Solve SEP **********

% B had full rank
if r1 == n

[U,D] = eig(A);

U = D11inv*U;
U = X1inv'*U;

else

% A22 had full rank in STEP 2 or A13 zero in STEP 3
if r4 == 0 || r5 == 0

A11 = A(1:r1,1:r1);
% generic if r3 = n-r1 last index is just n as before
A12 = A(1:r1,r1+1:r1+r3);
D22inv = diag(1./(diag(A(r1+1:r1+r3,r1+1:r1+r3))));

if r4 = 0 then r3 = r2 so ok
U = zeros(n,r1+r3);
[U(1:r1,1:r1),D] = eig(A11-A12*D22inv*A12');

U(r1+1:r1+r3,:) = -D22inv*A12'*U(1:r1,:);

% Set part of U for infinite eigenvalues
U(r1+1:r1+r3,r1+1:r1+r3) = eye(r3);

U(r1+1:n,:) = X3invT*U(r1+1:n,:);
U(1:r1,:) = D11inv*U(1:r1,:);
U = X1inv'*U;

end
% A14 exists in STEP 4
else

A22 = A(r5+1:r1,r5+1:r1);
A23 = A(r5+1:r1,r1+1:r1+r3);
D33inv = diag(1./(diag(A(r1+1:r1+r3,r1+1:r1+r3))));
A12 = A(1:r5,r5+1:r1);
A13 = A(1:r5,r1+1:r1+r3);

U = zeros(n,r6+r3+r5);

[U(r5+1:r1,1:r6),D] = eig(A22-A23*D33inv*A23');

U(r1+1:r1+r3,:) = -D33inv*A23'*U(r5+1:r1,:);
U(r1+r3+1:r1+r3+r5,:) = -Delta14*(A12*U(r5+1:r1,:) + ...
 A13*U(r1+1:r1+r3,:));

% Set part of U for infinite eigenvalues
U(r1+1:r1+r3+r5,r6+1:r6+r3+r5) = eye(r3+r5);

U(1:r1,:) = X4*U(1:r1,:);
U(r1+r3+1:n,:) = Z4inv*U(r1+r3+1:n,:);
U(r1+1:n,:) = X3invT*U(r1+1:n,:);
U(1:r1,:) = D11inv*U(1:r1,:);
U = X1inv'*U;

end

end

r=[r1 r2 r3 r4 r5 r6 r7];
C.2 lqdtlt.m

function [Q,L,D,P]=lqdtlt(A, piv)

%LQDQLT LQDQ^T L^T factorization for a symmetric indefinite matrix.
% Given a Hermitian matrix A,
% [Q,L,D,P] = lqdtlt(A, PIV) computes a permutation P,
% a unit lower triangular L, a real diagonal D and orthogonal
% Q with 1x1 and 2x2 diagonal blocks, such that
% P*A*P' = L*Q*D*Q'L.
% LDLT_SYMM is called and the resulting 2x2 blocks in D
% are diagonalized with a spectral decomposition
% PIV controls the pivoting strategy for the LDL^T
% factorization performed by LDLT_SYMM:
% PIV = 'p': partial pivoting (Bunch and Kaufman),
% PIV = 'r': rook pivoting (Ashcroft, Grimes and Lewis).
% The default is rook pivoting.
% Calls ldlt_symm.m

n = size(A,1);

if nargin == 1
 piv = 'r';
end

% ldlt_symm tests for symmetric A
[L,D,P,rho,ncomp] = ldlt_symm(A, piv);

Q = eye(n);

for j = 1:n-1
 if D(j+1,j) ~= 0
 [Q2,D2] = eig(D(j:j+1,j:j+1));
 D(j:j+1,j:j+1) = D2;
 Q(j:j+1,j:j+1) = Q2;
 j = j+1;
 end
end
C.3 gen_data.m

function [A,B]=gen_data(r1,r2,r3,r5,k2one,k2two,reg)
%GEN_DATA Generation of random matrix pencils.
% [A,B]=gen_data(r1,r2,r3,r5) generates the matrix pencils
% described below.
%
% r1 r2 r1 r2
% B = Q' [D 0] Q r1, A = [A11 A12] r1 , such that
% [0 0] r2 [A12' A22] r2
%
% if reg == 1
% D = diag(lambda_1, ..., lambda_r1)
% where lambda_i > 0 and geometrically decreases such that
% lambda_1 = 1 and lambda_r1 = k2one^{-1}
% and Q is a random orthogonal matrix
%
% else
% D = eye(r1) and Q = eye(n)
%
% A11 is random symmetric matrix
%
% if reg == 1
% A22 = Q * diag(lambda_1, ..., lambda_r2) * Q'
% where lambda_i are geometrically decreasing such that
% lambda_1 = 1 and lambda_r2 = k2two^{-1}
% and Q is a random orthogonal matrix.
%
% else
% A22 = Q * diag(lambda_1, ..., lambda_r3, 0, ..., 0) * Q'
% where lambda_i are geometrically decreasing such that
% lambda_1 = 1 and lambda_r3 = k2one^{-1}
%
% if reg == 1
% A12 is a random matrix
%
% else
% A12 = Q1 * diag(sigma_1, ..., sigma_r5, 0, ..., 0) * Q2
% where sigma_i are geometrically decreasing such that
% sigma_1 = 1 and sigma_r5 = k2two^{-1}
% and Q1 and Q2 are random orthogonal matrices.
%
% if reg == 1 r3 and r5 are not used but are required
% calls qmult.m (private to elmat.m)

n = r1+r2;
if reg == 1

% Set B with rank r1
B = zeros(n);
d = zeros(r1,1);
d(1) = 1;

beta = power(1/k2one,1/(r1-1));
for m = 2:r1
 d(m) = beta^(m-1);
end

B(1:r1,1:r1) = diag(d);
Q = qmult(n);
B = Q'*B*Q;
B = (B+B')/2;

% Set A11 as random symmetric matrix
A = zeros(n);

A(1:r1,1:r1) = rand(r1);
A(1:r1,1:r1) = (A(1:r1,1:r1)+A(1:r1,1:r1)')/2;

% Set A22 with full rank
d = zeros(r2,1);
d(1) = 1;

beta = power(1/k2two,1/(r2-1));
for m = 2:r2
 d(m) = beta^(m-1);
end

A(r1+1:n,r1+1:n) = diag(d);
Q = qmult(r2);
A(r1+1:n,r1+1:n) = Q*A(r1+1:n,r1+1:n)*Q';
A(r1+1:n,r1+1:n) = (A(r1+1:n,r1+1:n)+A(r1+1:n,r1+1:n)')/2;

% Set A12 as random matrix
A(1:r1,r1+1:n) = rand(r1,r2);
A(r1+1:n,1:r1) = A(1:r1,r1+1:n);

else

% Set B with rank r1
B = zeros(n);
B(1:r1,1:r1) = eye(r1);

% Set A11 as random symmetric matrix
A = zeros(n);
A(1:r1,1:r1) = rand(r1);
A(1:r1,1:r1) = (A(1:r1,1:r1)+A(1:r1,1:r1)')/2;

% Set A22 with rank r3
d(1) = 1;

beta = power(1/x2one,1/(r3-1));
for m = 2:r3
 d(m) = beta^(m-1);
end

A(r1+1:r1+r3,r1+1:r1+r3) = diag(d);
Q = qmult(r2);
A(r1+1:n,r1+1:n) = Q*A(r1+1:n,r1+1:n)*Q';
A(r1+1:n,r1+1:n) = (A(r1+1:n,r1+1:n)+A(r1+1:n,r1+1:n)')/2;

% Set A12 with rank r5
d = zeros(r5,1);
d(1) = 1;

beta = power(1/x2two,1/(r5-1));
for m = 2:r5
 d(m) = beta^(m-1);
end

A(1:r5,r1+1:r1+r5) = diag(d);
Q2 = qmult(r2);
Q1 = qmult(r1);
A(1:r1,r1+1:n) = Q1*A(1:r1,r1+1:n)*Q2;
A(r1+1:n,1:r1) = A(1:r1,r1+1:n)';

end
Appendix D

Code for Updating the QR Factorization

D.1 delcols.f

```
SUBROUTINE DELCOLS( M, N, A, LDA, K, P, TAU, WORK, INFO )
*
* Craig Lucas, University of Manchester
* March, 2004
*
* .. Scalar Arguments ..
INTEGER INFO, K, LDA, M, N, P
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* ======
*
* Given a real m by (n+p) matrix, B, and the QR factorization
* B = Q_B * R_B, DELCOLS computes the QR factorization
* C = Q * R where C is the matrix B with p columns deleted
* from the kth column onwards.
*
* The input to this routine is Q_B' * C
*
* Arguments
* ======

```
* M (input) INTEGER
 The number of rows of the matrix C. M >= 0.
 *
* N (input) INTEGER
 The number of columns of the matrix C. N >= 0.
 *
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 On entry, the matrix Q_B’ * C. The elements in columns
 1:K-1 are not referenced.
 *
 On exit, the elements on and above the diagonal contain
 the n by n upper triangular part of the matrix R. The
 elements below the diagonal in columns k:n, together with
 TAU represent the orthogonal matrix Q as a product of
 elementary reflectors (see Further Details).
 *
* LDA (input) INTEGER
 The leading dimension of the array A. LDA >= max(1,M).
 *
* K (input) INTEGER
 The position of the first column deleted from B.
 0 < K <= N+P.
 *
* P (input) INTEGER
 The number of columns deleted from B. P > 0.
 *
* TAU (output) DOUBLE PRECISION array, dimension(N-K+1)
 The scalar factors of the elementary reflectors
 (see Further Details).
 *
* WORK DOUBLE PRECISION array, dimension (P+1)
 Work space.
 *
* INFO (output) INTEGER
 = 0: successful exit
 < 0: if INFO = -I, the I-th argument had an illegal value.
 *
 Further Details
 =================
 *
 The matrix Q is represented as a product of Q_B and elementary
 reflectors
 *

216
* Q = Q_B * H(k) * H(k+1) *...* H(last), last = min(m-1, n).
* Each H(j) has the form
* H(j) = I - tau*v*v',
* where tau is a real scalar, and v is a real vector with
* v(1:j-1) = 0, v(j) = 1, v(j+1:j+lenh-1), lenh = min(p+1, m-j+1),
* stored on exit in A(j+1:j+lenh-1,j) and v(j+lenh:m) = 0, tau is
* stored in TAU(j).
* The matrix Q can be formed with DELCOLSQ
* =--
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER (ONE = 1.0D+0)
* ..
* .. Local Scalars ..
DOUBLE PRECISION AJJ
INTEGER J, LAST, LENH
* ..
* .. External Subroutines ..
EXTERNAL DLARF, DLARFG, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* Test the input parameters.
*
INFO = 0
IF(M.LT.0) THEN
 INFO = -1
ELSE IF(N.LT.0) THEN
 INFO = -2
ELSE IF(LDA.LT.MAX(1, M)) THEN
 INFO = -4
ELSE IF(K.GT.N+P .OR. K.LE.0) THEN
 INFO = -5
ELSE IF(P.LE.0) THEN
 INFO = -6
END IF
IF(INFO.NE.0) THEN
 CALL XERBLA('DELCOLS', -INFO)
 RETURN
END IF
*
LAST = MIN(M-1, N)
*
DO 10 J = K, LAST
*
 Generate elementary reflector H(J) to annihilate the nonzero
 entries below A(J,J)
 *
 LENH = MIN(P+1, M-J+1)
 CALL DLARFG(LENH, A(J, J), A(J+1, J), 1, TAU(J-K+1))
*
 IF(J.LT.N) THEN
 *
 Apply H(J) to trailing matrix from left
 *
 AJJ = A(J, J)
 A(J, J) = ONE
 CALL DLARF('L', LENH, N-J, A(J, J), 1, TAU(J-K+1),
 A(J, J+1), LDA, WORK)
 A(J, J) = AJJ
*
END IF
*
10 CONTINUE
*
RETURN
*
End of DELCOLS
*
END
D.2 delcolsq.f

SUBROUTINE DELCOLSQ(M, N, A, LDA, Q, LDQ, K, P, TAU, WORK, INFO)
*
* Craig Lucas, University of Manchester
* March, 2004
*
* .. Scalar Arguments ..
INTEGER INFO, K, LDA, LDQ, M, N, P
*
* ..
* .. Array Arguments ..
DOUBLE PRECISION A(LDA, *), Q(LDQ, *), TAU(*), WORK(*)
*
*
Purpose

* DELCQLSQ generates an m by m real matrix Q with orthogonal columns,
* which is defined as the product of Q_B and elementary reflectors
* Q = Q_B * H(k) * H(k+1) *...* H(last), last = min(m-1, n) .
*
* where the H(j) are as returned by DELCQLSQ, such that C = Q * R and
* C is the matrix B = Q_B * R_B, with p columns deleted from the
* kth column onwards.
*
Arguments

* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the elements below the diagonal in columns k:n
* must contain the vector which defines the elementary
* reflector H(j) as returned by DELCQLS.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
* Q (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 * On entry, the matrix Q. B.
 * On exit, the matrix Q.
 *
* LDQ (input) INTEGER
 * The leading dimension of the array Q. LDQ >= M.
 *
* K (input) INTEGER
 * The position of the first column deleted from B.
 * 0 < K <= N+P.
 *
* P (input) INTEGER
 * The number of columns deleted from B. P > 0.
 *
* TAU (input) DOUBLE PRECISION array, dimension(N-K+1)
 * TAU(J) must contain the scalar factor of the elementary
 * reflector H(J), as returned by DLECOLS.
 *
* WORK DOUBLE PRECISION array, dimension (P+1)
 * Work space.
 *
* INFO (output) INTEGER
 * = 0: successful exit
 * < 0: if INFO = -I, the I-th argument had an illegal value.
 *
* ==
 *
* .. Parameters ..
 DOUBLE PRECISION ONE
 PARAMETER (ONE = 1.0D+0)
 *
* ..
 *
* .. Local Scalars ..
 DOUBLE PRECISION AJJ
 INTEGER J, LAST, LENH
 *
* ..
 *
* .. External Subroutines ..
 EXTERNAL DLARF, XERBLA
 *
* ..
 *
* .. Intrinsic Functions ..
 INTRINSIC MAX, MIN
 *
* ..
 *
* Test the input parameters.
*
INFO = 0
IF(M.LT.0) THEN
 INFO = -1
ELSE IF(N.LT.0) THEN
 INFO = -2
ELSE IF(LDA.LT.MAX(1, M)) THEN
 INFO = -4
ELSE IF(K.GT.N+P .OR. K.LE.0) THEN
 INFO = -5
ELSE IF(P.LE.0) THEN
 INFO = -6
END IF
IF(INFO.NE.0) THEN
 CALL XERBLA('DELCOLSQ', -INFO)
 RETURN
END IF
*
LAST = MIN(M-1, N)
*
DO 10 J = K, LAST
*
LENH = MIN(P+1, M-J+1)
*
Apply H(J) from right
*
AJJ = A(J, J)
A(J, J) = ONE
*
CALL DLARF('R', M, LENH, A(J, J), 1, TAU(J-K+1) ,
$Q(1, J), LDQ, WORK)$
*
A(J, J) = AJJ
*
10 CONTINUE
*
RETURN
*
End of DELCOLSQ
*
END
D.3 addcols.f

SUBROUTINE ADDCOLS(M, N, A, LDA, K, P, TAU, WORK, LWORK, INFO)
*
* Craig Lucas, University of Manchester
* March, 2004
*
* .. Scalar Arguments ..
INTEGER INFO, K, LDA, LWORK, M, N, P
*
* ..
* Array Arguments..
DOUBLE PRECISION A(LDA, *), TAU(*), WORK(*)
*
*
Purpose
====
*
* Given a real m by (n-p) matrix, B, and the QR factorization
* B = Q_B * R_B, ADDCOLS computes the QR factorization
* C = Q * R where C is the matrix B with p columns added
* in the kth column onwards.
*
* The input to this routine is Q_B' * C
*
* Arguments
====
*
* M (input) INTEGER
* The number of rows of the matrix C. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix C. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the matrix Q_B' * C. The elements in columns
* 1:K-1 are not referenced.
*
* On exit, the elements on and above the diagonal contain
* the n by n upper triangular part of the matrix R. The
* elements below the diagonal in columns K:N, together with
* TAU represent the orthogonal matrix Q as a product of
* elementary reflectors and Givens rotations.
* (see Further Details).
* LDA (input) INTEGER
 * The leading dimension of the array A. LDA >= max(1,M).
* K (input) INTEGER
 * The position of the first column added to B.
 * 0 < K <= N-P+1.
* P (input) INTEGER
 * The number of columns added to B. P > 0.
* TAU (output) DOUBLE PRECISION array, dimension(P)
 * The scalar factors of the elementary reflectors
 * (see Further Details).
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
 * Work space.
* LWORK (input) INTEGER
 * The dimension of the array WORK. LWORK >= P.
 * For optimal performance LWORK >= P*NB, where NB is the
 * optimal block size.
* INFO (output) INTEGER
 * = 0: successful exit
 * < 0: if INFO = -I, the I-th argument had an illegal value.

* Further Details
* =============

* The matrix Q is represented as a product of Q_B, elementary
* reflectors and Givens rotations

* Q = Q_B * H(k) * H(k+1) *...* H(k+p-1) * G(k+p-1,k+p) *...
* *G(k,k+1) * G(k+p,k+p+1) *...* G(k+2p-2,k+2p-1)
*
* Each H(j) has the form

* H(j) = I - tau*v*v'

* where tau is a real scalar, and v is a real vector with
* v(1:n-p-j+1) = 0, v(j) = 1, and v(j+1:m) stored on exit in
* A(j+1:m,j), tau is stored in TAU(j).
* Each G(i,j) has the form
*
* \[
* \begin{bmatrix}
* I & i-1 \\
* c & -s
* \end{bmatrix}
* \]
*
* \[G(i,j) = \begin{bmatrix}
* s & c \\
* & I
* \end{bmatrix} \]
*
* and zero A(i,j), where c and s are encoded in scalar and
* stored in A(i,j) and
*
* IF A(i,j) = 1, c = 0, s = 1
* ELSE IF | A(i,j) | < 1, s = A(i,j), c = sqrt(1-s**2)
* ELSE c = 1 / A(i,j), s = sqrt(1-c**2)
*
* The matrix Q can be formed with ADDCOLSQ
*
*==
*
* .. Local Scalars ..
DOUBLE PRECISION C, S
INTEGER I, INC, ISTART, J, JSTOP, UPLEN
* ..
* .. External Subroutines ..
EXTERNAL DGEQRF, DLASR, DROT, DROTG, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
*
* Test the input parameters.
*
INFO = 0
IF(M.LT.0) THEN
 INFO = -1
ELSE IF(N.LT.0) THEN
 INFO = -2
ELSE IF(LDA.LE.MAX(1, M)) THEN
 INFO = -4
ELSE IF(K.GT.N-P+1 .OR. K.LE.0) THEN
 INFO = -5
ELSE IF(P.LE.0) THEN

INFO = -6
END IF
IF(INFO.NE.0) THEN
 CALL XERBLA('ADDCOLS', -INFO)
 RETURN
END IF

* Do a QR factorization on rows below N-P, if there is more than one
* IF(M.GT.N-P+1) THEN
*
* Level 3 QR factorization
* CALL DGEQRF(M-N+P, P, A(N-P+1, K), LDA, TAU, WORK, LWORK, $
* INFO)
*
* END IF
*
* If K not equal to number of columns in B and not <= M-1 then
* there is some elimination by Givens to do
* IF(K+P-1.NE.N .AND. K.LE.M-1) THEN
*
* Zero out the rest with Givens
* Allow for M < N
*
 JSTOP = MIN(P+K-1, M-1)
 DO 20 J = K, JSTOP
*
* Allow for M < N
* ISTART = MIN(N-P+J-K+1, M)
 UPLEN = N - K - P - ISTART + J + 1
*
* INC = ISTART - J
*
 DO 10 I = ISTART, J + 1, -1
*
* Recall DROTG updates A(I-1, J) and
* stores C and S encoded as scalar in A(I, J)
* CALL DROTG(A(I-1, J), A(I, J), C, S)
 WORK(INC) = C

225
WORK(N+INC) = S

* Update nonzero rows of R
* Do the next two line this way round because
* A(I-1, N-UPLEN+1) gets updated
* A(I, N-UPLEN) = -S*A (I-1, N-UPLEN)
A(I-1, N-UPLEN) = C*A(I-1, N-UPLEN)

* CALL DROT(UPLEN, A(I-1, N-UPLEN+1), LDA, $ A(I, N-UPLEN+1), LDA, C, S)
* UPLEN = UPLEN + 1
INC = INC - 1

10 CONTINUE

* Update inserted columns in one go
* Max number of rotations is N-1, we’ve allowed N
* IF(J.LT.P+K-1) THEN
*
 CALL DLASR('L', 'V', 'B', ISTART-J+1, K+P-1-J, $ WORK(1), WORK(N+1), A(J, J+1), LDA)

* END IF
*
20 CONTINUE

* END IF
RETURN
*
End of ADDCOLS
*
END
D.4 addcolsq.f

SUBROUTINE ADDCOLSQ(M, N, A, LDA, Q, LDQ, K, P, TAU, WORK, INFO)
*
* Craig Lucas, University of Manchester
* March, 2004
*
* .. Scalar Arguments ..
INTEGER INFO, K, LDA, LDQ, M, N, P
*
* ..
* .. Array Arguments..
DOUBLE PRECISION A(LDA, *), Q(LDQ, *), TAU(*), WORK(*)
*
* Purpose
* ======
*
ADDCOLSQ generates an m by m real matrix Q with orthogonal columns,
which is defined as the product of Q_B, elementary reflectors and
Givens rotations
*
* \[Q = Q_B \times H(k) \times H(k+1) \ldots \times H(k+p-1) \times G(k+p-1,k+p) \ldots \]
* \[\times G(k,k+1) \times G(k+p,k+p+1) \ldots \times G(k+2p-2,k+2p-1) \]
*
* where the H(j) and G(i,j) are as returned by ADDCOLS, such that
* \(C = Q \times R \) and C is the matrix \(B = Q_B \times R_B \), with p columns added
* from the kth column onwards.
*
* Arguments
* ======
*
M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
A (input) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the elements below the diagonal in columns
* K:K+P-1 (if M > M-P+1) must contain the vector which defines
* the elementary reflector H(J). The elements above these
* vectors and below the diagonal store the scalars such that
* the Givens rotations can be constructed, as returned by
ADDCOLS.

* LDA (input) INTEGER
 The leading dimension of the array A. LDA >= max(1,M).

* Q (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 On entry, the matrix Q_B.
 On exit, the matrix Q.

* LDQ (input) INTEGER
 The leading dimension of the array Q. LDQ >= M.

* K (input) INTEGER
 The postion of first column added to B.
 0 < K <= N-P+1.

* P (input) INTEGER
 The number columns added. P > 0.

* TAU (output) DOUBLE PRECISION array, dimension(N-K+1)
 The scalar factors of the elementary reflectors.

* WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
 Work space.

* INFO (output) INTEGER
 = 0: successful exit
 < 0: if INFO = -I, the I-th argument had an illegal value

*===
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER (ONE = 1.0D+0, ZERO = 0.0D+0)
* ..
* .. Local Scalars ..
DOUBLE PRECISION DTEMP
INTEGER COL, I, INC, ISTART, J, JSTOP
* ..
* .. External Subroutines ..
EXTERNAL DLARF, DLASR, XERBLA
* ..
* .. Intrinsic Functions ..
INTEGRIC
\quad \text{ABS, MAX, MIN, SQRT}

*
*
* \text{Test the input parameters.}
*
INFO = 0
IF(M.LT.0) THEN
 INFO = -1
ELSE IF(N.LT.0) THEN
 INFO = -2
ELSE IF(LDA.LT.MAX(1, M)) THEN
 INFO = -4
ELSE IF(K.GT.N-P+1 .OR. K.LE.0) THEN
 INFO = -5
ELSE IF(P.LE.0) THEN
 INFO = -6
END IF
IF(INFO.NE.0) THEN
 CALL XERBLA('ADDCLQ', -INFO)
 RETURN
END IF
*
* \text{We did a QR factorization on rows below N-P+1}
*
IF(M.GT.N-P+1) THEN
*
\quad COL = N - P + 1
*
\quad DO 10 J = K, K + P - 1
*
\quad DTEMP = A(COL, J)
*
\quad A(COL, J) = ONE
*
* \text{If N+P > M-N we have only factored the first M-N columns.}
*
* \text{IF(M-COL+1.LE.0)}
*
\quad \text{GO TO 10}
*
\quad CALL DLARF('R', M, M-COL+1, A(COL, J), 1, TAU(J-K+1),
*
\quad Q(1, COL), LDQ, WORK)
*
* \quad A(COL, J) = DTEMP
*
\quad COL = COL + 1
*
10 CONTINUE
END IF

229
* If K not equal to number of columns in B then there was
* some elimination by Givens
* IF(K+P-1.LT.N .AND. K.LE.M-1) THEN
* Allow for M < N, i.e DO P wide unless hit the bottom first
* JSTOP = MIN(P+K-1, M-1)
DO 30 J = K, JSTOP
* ISTART = MIN(N-P+J-K+1, M)
INC = ISTART - J
* Compute vectors of C and S for rotations
* DO 20 I = ISTART, J + 1, -1
* IF(A(I, J).EQ.ONE) THEN
 WORK(INC) = ZERO
 WORK(N+INC) = ONE
ELSE IF(ABS(A(I, J)).LT.ONE) THEN
 WORK(N+INC) = A(I, J)
 WORK(INC) = SQRT((1-A(I, J)**2))
ELSE
 WORK(INC) = ONE / A(I, J)
 WORK(N+INC) = SQRT((1-WORK(INC)**2))
END IF
INC = INC - 1
20 CONTINUE
* Apply rotations to the Jth column from the right
* CALL DLASR('R', 'V', 'b', M, ISTART-I+1, WORK(1),
 WORK(N+1), Q(1, I), LDQ)
* 30 CONTINUE
* END IF
RETURN
* End of ADDCOLS
*
Bibliography

[36] MATLAB, version 6.5. The Mathworks Inc, Natick, MA, USA.

235
