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POLYNOMIALS∗
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Abstract. The standard way of solving the polynomial eigenvalue problem of degree m in n×n
matrices is to “linearize” to a pencil in mn×mn matrices and solve the generalized eigenvalue prob-
lem. For a given polynomial, P , infinitely many linearizations exist and they can have widely varying
eigenvalue condition numbers. We investigate the conditioning of linearizations from a vector space
DL(P ) of pencils recently identified and studied by Mackey, Mackey, Mehl, and Mehrmann. We
look for the best conditioned linearization and compare the conditioning with that of the original
polynomial. Two particular pencils are shown always to be almost optimal over linearizations in
DL(P ) for eigenvalues of modulus greater than or less than 1, respectively, provided that the prob-
lem is not too badly scaled and that the pencils are linearizations. Moreover, under this scaling
assumption, these pencils are shown to be about as well conditioned as the original polynomial. For
quadratic eigenvalue problems that are not too heavily damped, a simple scaling is shown to convert
the problem to one that is well scaled. We also analyze the eigenvalue conditioning of the widely
used first and second companion linearizations. The conditioning of the first companion linearization
relative to that of P is shown to depend on the coefficient matrix norms, the eigenvalue, and the
left eigenvectors of the linearization and of P . The companion form is found to be potentially much
more ill conditioned than P , but if the 2-norms of the coefficient matrices are all approximately
1 then the companion form and P are guaranteed to have similar condition numbers. Analogous
results hold for the second companion form. Our results are phrased in terms of both the standard
relative condition number and the condition number of Dedieu and Tisseur [Linear Algebra Appl.,
358 (2003), pp. 71–94] for the problem in homogeneous form, this latter condition number having
the advantage of applying to zero and infinite eigenvalues.
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1. Introduction. Consider the matrix polynomial of degree m

P (λ) =
m∑
i=0

λiAi, Ai ∈ C
n×n, Am �= 0.(1.1)

We will assume throughout that P is regular, that is, detP (λ) �≡ 0. The eigenproblem
for P—the polynomial eigenvalue problem—is to find scalars λ and nonzero vectors
x and y satisfying P (λ)x = 0 and y∗P (λ) = 0; x and y are right and left eigenvectors
corresponding to the eigenvalue λ.

A standard way of solving the eigenproblem is to convert P into a linear polyno-
mial

L(λ) = λX + Y, X, Y ∈ C
mn×mn
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with the same spectrum as P and solve the resulting generalized eigenproblem L(λ)x =
0, which is usually done by the QZ algorithm for small to medium size problems or a
Krylov method for large sparse problems. The aim of this work is to provide guidance
on how to choose from among the infinitely many possible pencils L(λ).

We are interested in pencils L(λ) that are linearizations of P (λ) in the following
sense: they satisfy

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(m−1)n

]
(1.2)

for some unimodular E(λ) and F (λ) (that is, det(E(λ)) is a nonzero constant, indepen-
dent of λ, and likewise for F ) [6, sect. 7.2]. This definition implies that γ det(L(λ)) =
det(P (λ)) for some nonzero constant γ, so that L and P have the same spectrum. As
an example, the pencil

C1(λ) = λ

[
A 0
0 I

]
+

[
B C
−I 0

]
(1.3)

can be shown to be a linearization for the quadratic Q(λ) = λ2A + λB + C; it is
known as the first companion form linearization (see section 7).

Two important sets of potential linearizations are identified and studied by Mackey,
Mackey, Mehl, and Mehrmann [13]. With the notation

Λ = [λm−1, λm−2, . . . , 1]T ,(1.4)

the sets are

L1(P ) =
{
L(λ) : L(λ)(Λ⊗ In) = v ⊗ P (λ), v ∈ C

m
}
,(1.5)

L2(P ) =
{
L(λ) : (ΛT ⊗ In)L(λ) = wT ⊗ P (λ), w ∈ C

m
}
.(1.6)

It is easy to check that C1(λ) in (1.3) belongs to L1(Q) (with v = e1)
1; so the pencils

in L1 can be thought of as generalizations of the first companion form. It is proved
in [13, Prop. 3.2, Prop. 3.12, Thm. 4.7] that L1(P ) and L2(P ) are vector spaces and
that almost all pencils in these spaces are linearizations of P .

One of the underlying reasons for the interest in L1 and L2 is that eigenvectors of P
can be directly recovered from eigenvectors of linearizations in L1 and L2. Specifically,
if L is any pencil in L1(P ) with nonzero vector v, then x is a right eigenvector of P
with eigenvalue λ if and only if Λ ⊗ x (if λ is finite) or e1 ⊗ x (if λ = ∞) is a right
eigenvector for L with eigenvalue λ. Moreover, if this L ∈ L1(P ) is a linearization for
P , then every right eigenvector of L has one of these two Kronecker product forms;
hence some right eigenvector of P can be recovered from every right eigenvector of L.
Similarly, if L is any pencil in L2(P ) with nonzero vector w, then y is a left eigenvector
for P with eigenvalue λ if and only if Λ ⊗ y (if λ is finite) or e1 ⊗ y (if λ = ∞) is a
left eigenvector for L with eigenvalue λ. Again, if this L ∈ L2(P ) is a linearization
for P , then every left eigenvector of L is of the form Λ⊗ y or e1 ⊗ y, and so every left
eigenvector of L produces a left eigenvector for P . Some insight can be gained from
the proof of the first part of these results. For any L ∈ L1(P ), postmultiplying the
equation in (1.5) defining L1 by 1 ⊗ x gives

L(λ)(Λ⊗ x) = v ⊗ P (λ)x.

1ei denotes the ith column of the identity matrix Im.
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Hence for finite λ and v �= 0, (x, λ) is an eigenpair for P if and only if (Λ⊗ x, λ) is an
eigenpair for L. The complete proofs of these results can be found in [13, Thm. 3.8,
Thm. 3.14, Thm. 4.4].

It is natural to concentrate attention on the pencils that lie in

DL(P ) = L1(P ) ∩ L2(P ),(1.7)

because there is a simultaneous correspondence between left and right eigenvectors of
P and of pencils in DL(P ). It is shown in [13, Thm. 5.3] and in [7, Thm. 3.4] that
L ∈ DL(P ) only if L satisfies the conditions in (1.5) and (1.6) with w = v, and that,
for any v ∈ C

m, there are uniquely determined X and Y such that L(λ) = λX + Y is
in DL(P ). Thus DL(P ) is always an m-dimensional space of pencils associated with
P . A basis for DL(P ) corresponding to the standard basis v = ei, i = 1:m, for C

m is
derived in [7, Sect. 3.3]. In this work we focus on linearizations in DL(P ).

Just as for L1 and L2, almost all pencils in DL(P ) are linearizations [13, Thm. 6.8].
In fact, there is a beautiful characterization of the subset of pencils L ∈ DL(P ) that
are linearizations [13, Thm. 6.7]: they are those for which no eigenvalue of P is a root
of the polynomial p(λ; v) := vTΛ =

∑m
i=1 viλ

m−i, where when v1 = 0 we define ∞ to
be a root of p(λ; v). Throughout this work we assume that the pencils L ∈ DL(P )
under consideration are linearizations.

The polynomials with m > 1 of greatest practical importance are the quadratics.
For later use we note that for m = 2 and Q(λ) = λ2A + λB + C,

DL(Q) =

{
L(λ) = λ

[
v1A v2A
v2A v2B − v1C

]
+

[
v1B − v2A v1C

v1C v2C

]
: v ∈ C

2

}
,(1.8)

which can be deduced directly from the definition of DL in (1.7).
We now summarize the organization of the paper. In section 2 we define and

describe properties of a relative condition number for a simple eigenvalue of P and
a condition number of Dedieu and Tisseur for the problem in homogeneous form.
Although there is no direct connection between the two condition numbers, both are
of interest, and all results in the paper are stated for both. In section 3 we obtain
for a linearization in DL(P ) expressions for the condition numbers that separate the
dependence on P from that of the vector v that defines the linearization. These ex-
pressions are then used in section 4 to approximately minimize the condition numbers
over all v. The pencils with v = e1 and v = em, which are linearizations when A0

and Am, respectively, are nonsingular, are shown always to be almost optimal within
DL(P ) for eigenvalues of modulus greater than or less than 1, respectively, provided
that the measure ρ = maxi ‖Ai‖2/min(‖A0‖2, ‖Am‖2) of the scaling of the problem is
of order 1. This result generalizes and strengthens earlier results of Tisseur [16] for the
quadratic case. Under the same scaling assumption these two linearizations are shown
to be about as well conditioned as the original polynomial. How to extend the results
to sets of eigenvalues, and the situation where we know only a region containing the
eigenvalues, is discussed in section 4.1.

In section 5 we turn to quadratic polynomials and show that a simple scaling
converts the problem to one that is well scaled, provided the quadratic is not too
heavily damped. In section 6 we prove the equality of the condition number of an
eigenvalue of a linearization in DL(P ) with the condition number of the corresponding
reciprocal eigenvalue of a linearization of the “reversal” of the polynomial. In section 7
we show that the ratio of the condition number of the first companion linearization
to that of P at a given λ depends on the product of a rational function of |λ| and the
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norms ‖Ai‖ with the ratio of the norms of the left eigenvectors of the pencil and P .
This result, and its analogue for the second companion form, reveals and gives insight
into potential instability of the companion forms.

Finally, the numerical experiments in section 8 show the ability of our analysis to
predict well the accuracy of eigenvalues computed via different linearizations.

2. Eigenvalue condition number. Let λ be a simple, finite, nonzero eigen-
value of P in (1.1) with corresponding right eigenvector x and left eigenvector y. A
normwise condition number of λ can be defined by

κP (λ) = lim
ε→0

sup

{
|Δλ|
ε|λ| :

(
P (λ + Δλ) + ΔP (λ + Δλ)

)
(x + Δx) = 0,

‖ΔAi‖2 ≤ εωi, i = 0:m

}
,(2.1)

where ΔP (λ) =
∑m

i=0 λ
iΔAi. The ωi are nonnegative weights that allow flexibility

in how the perturbations are measured; in particular, ΔAi can be forced to zero by
setting ωi = 0. An explicit formula for this condition number is given in the following
result.

Theorem 2.1 (Tisseur [16, Thm. 5]). The normwise condition number κP (λ) is
given by

κP (λ) =

(∑m
i=0 |λ|iωi

)
‖y‖2‖x‖2

|λ| |y∗P ′(λ)x| .(2.2)

The condition number κP (λ) has the disadvantage that it is not defined for zero
or infinite eigenvalues. In order to give a unified treatment for all λ, we rewrite the
polynomial in the homogeneous form

P (α, β) =
m∑
i=0

αiβm−iAi

and consider eigenvalues as pairs (α, β) �= (0, 0) that are solutions of the scalar equa-
tion detP (α, β) = 0; thus λ ≡ α/β. More precisely, since P (α, β) is homogeneous in
α and β, we define an eigenvalue as any line through the origin in C

2 of solutions of
detP (α, β) = 0. Let T(α,β)P1 denote the tangent space at (α, β) to P1, the projective
space of lines through the origin in C

2. Dedieu and Tisseur [3] define a condition
operator K(α, β) : (Cn×n)m+1 → T(α,β)P1 for the eigenvalue (α, β) as the differential
of the map from the (m + 1)-tuple (A0, . . . , Am) to (α, β) in projective space. The
significance of the condition operator is shown by the following result, which is an
extension of a result of Dedieu [2, Thm. 6.1]. Here and below, we sometimes write a
representative of an eigenvalue (α, β) as a row vector [α, β] ∈ C

1×2.
Theorem 2.2. Let (α, β) be a simple eigenvalue of P (α, β) with representative

[α, β] normalized so that ‖[α, β]‖2 = 1. For sufficiently small (m + 1)-tuples

ΔA ≡ (ΔA0, . . . , ΔAm),

the perturbed polynomial P̃ (α, β) =
∑m

i=0 α
iβm−i(Ai + ΔAi) has a simple eigenvalue

(α̃, β̃) for which, with the normalization [α, β][α̃, β̃]∗ = 1,

[α̃, β̃] = [α, β] + K(α, β)ΔA + o(‖ΔA‖).
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A condition number κP (α, β) can be defined as a norm of the condition operator:

κP (α, β) = max
‖ΔA‖≤1

‖K(α, β)ΔA‖2

‖[α, β]‖2
,

where the norm on ΔA is arbitrary. Note that this condition number is well defined,
since the right-hand side is independent of the choice of representative of the eigenvalue
(α, β). Let θ

(
(μ, ν), (μ̃, ν̃)

)
be the angle between the two lines (μ, ν) and (μ̃, ν̃). Then

for θ small enough,

|θ
(
(μ, ν), (μ̃, ν̃)

)
| ≤

∣∣tan
(
θ
(
(μ, ν), (μ̃, ν̃)

))∣∣ =

∥∥∥∥[μ̃, ν̃]
‖[μ, ν]‖2

[μ̃, ν̃][μ, ν]∗
− [μ, ν]

‖[μ, ν]‖2

∥∥∥∥
2

.

Inserting the particular representatives [α, β] and [α̃, β̃] of the original and perturbed
eigenvalues, normalized as in Theorem 2.2, gives∣∣θ((α, β), (α̃, β̃)

)∣∣ ≤ ‖[α, β] − [α̃, β̃]‖2 = ‖K(α, β)ΔA‖2 + o(‖ΔA‖).

Hence, the angle between the original and perturbed eigenvalues satisfies∣∣θ((α, β), (α̃, β̃)
)∣∣ ≤ κP (α, β)‖ΔA‖ + o(‖ΔA‖).(2.3)

By taking the sine of both sides we obtain a perturbation bound in terms of sin |θ|,
which is the chordal distance between (α, β) and (α̃, β̃) as used by Stewart and Sun [15,
Chap. 6]. Of course, sin |θ| ≤ |θ| and asymptotically these two measures of distance
are equal.

We will take for the norm on (Cn×n)m+1 the ω-weighted Frobenius norm

‖A‖ = ‖(A0, . . . , Am)‖ = ‖[ω−1
0 A0, . . . , ω

−1
m Am]‖F ,(2.4)

where the ωi are nonnegative weights that are analogous to those in (2.1). Define the
operators Dα ≡ ∂

∂α and Dβ ≡ ∂
∂β . The following result is a trivial extension of a result

of Dedieu and Tisseur [3, Thm. 4.2] that treats the unweighted Frobenius norm.
Theorem 2.3. The normwise condition number κP (α, β) of a simple eigenvalue

(α, β) is given by

κP (α, β) =

(
m∑
i=0

|α|2i|β|2(m−i)ω2
i

)1/2
‖y‖2‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x

∣∣ .(2.5)

As a check, we note that the expression (2.5) is independent of the choice of
representative of (α, β) and of the scaling of x and y. Note also that for a simple
eigenvalue the denominator terms y∗P ′(λ)x in (2.2) and y∗(β̄Dα − ᾱDβ)P |(α,β)x in
(2.5) are both nonzero, as shown in [1, Thm. 3.2] for the former and [3, Thm. 3.3(iii)]
for the latter.

To summarize, κP (λ) and κP (α, β) are two different measures of the sensitivity of
a simple eigenvalue. The advantage of κP (λ) is that it is an immediate generalization
of the well-known Wilkinson condition number for the standard eigenproblem [18,
p. 69] and it measures the relative change in an eigenvalue, which is a concept readily
understood by users of numerical methods. In favor of κP (α, β) is that it elegantly
treats all eigenvalues, including those at zero and infinity; moreover, it provides the
bound (2.3) for the angular error, which is an alternative to the relative error bound
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that κP (λ) provides. Both condition numbers are therefore of interest and we will
treat both in the next section.

We note that in MATLAB 7.0 (R14) the function polyeig that solves the polyno-
mial eigenvalue problem returns the condition number κP (α, β) as an optional output
argument.

3. Eigenvalue conditioning of linearizations. We now focus on the condition
numbers κL(λ) and κL(α, β) of a simple eigenvalue of a linearization L(λ) = λX +
Y ∈ DL(P ). Our aim is to obtain expressions for these condition numbers with two
properties: they separate the dependence on P from that of the vector v and they have
minimal explicit dependence on X and Y . In the next section we will consider how
to minimize these expressions over all v. Note the distinction between the condition
numbers κL of the pencil and κP of the original polynomial. Note also that a simple
eigenvalue of L is necessarily a simple eigenvalue of P , and vice versa, in view of (1.2).

We first carry out the analysis for κL(α, β). Let x and y denote right and left
eigenvectors of P , and z and w denote right and left eigenvectors of L, all correspond-
ing to the eigenvalue (α, β). Recalling that λ = α/β, define

L(α, β) = αX + βY = βL(λ),

Λα,β = [αm−1, αm−2β, . . . , βm−1]T = βm−1Λ.

In view of the relations in section 1 we can take

w = Λα,β ⊗ y, z = Λα,β ⊗ x.(3.1)

(These expressions are valid for both finite and infinite eigenvalues.)
The condition number that we wish to evaluate is obtained by applying Theo-

rem 2.3 to L:

κL(α, β) =
√
|α|2ω2

X + |β|2ω2
Y

‖w‖2‖z‖2∣∣w∗(β̄DαL− ᾱDβL)|(α,β)z
∣∣ ,(3.2)

where an obvious notation has been used for the weights in (2.4).
We can rewrite the condition in (1.5) that characterizes a member of L1 as

L(α, β)(Λα,β ⊗ In) = v ⊗ P (α, β),(3.3)

where for the moment α and β denote variables. Differentiating with respect to α
gives

DαL(α, β)(Λα,β ⊗ In) + L(α, β)(DαΛα,β ⊗ In) = v ⊗DαP (α, β).(3.4)

Now evaluate this equation at an eigenvalue2 (α, β). Multiplying on the left by w∗

and on the right by 1 ⊗ x, and using (3.1), we obtain

w∗(DαL)|(α,β)z = ΛT
α,βv ⊗ y∗(DαP )|(α,β)x

= ΛT
α,βv · y∗(DαP )|(α,β)x.(3.5)

Exactly the same argument leads to

w∗(DβL)|(α,β)z = ΛT
α,βv · y∗(DβP )|(α,β)x.(3.6)

2Strictly speaking, here and later we are evaluating at a representative of an eigenvalue. All the
condition number formulae are independent of the choice of representative.
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Hence, from (3.5) and (3.6),

w∗(β̄DαL− ᾱDβL)|(α,β)z = ΛT
α,βv · y∗(β̄DαP − ᾱDβP )|(α,β)x.

The first factor on the right can be viewed as a homogeneous scalar polynomial in α
and β, so we introduce the notation

p(α, β; v) := vTΛα,β =

m∑
i=1

viα
m−iβi−1 = ΛT

α,βv.(3.7)

Noting, from (3.1), that ‖w‖2 = ‖Λα,β‖2‖y‖2 and ‖z‖2 = ‖Λα,β‖2‖x‖2, we obtain
an alternative form of (3.2) that clearly separates the dependence on P from that on
the vector v that defines the linearization. Now we write κL(α, β; v) to indicate the
dependence of κL on the vector v ∈ C

m that defines the linearization.
Theorem 3.1. Let (α, β) be a simple eigenvalue of P with right and left eigen-

vectors x and y, respectively. Then, for any pencil L(α, β) = αX + βY ∈ DL(P ) that
is a linearization of P ,

κL(α, β; v) =

√
|α|2ω2

X + |β|2ω2
Y

|p(α, β; v)| · ‖Λα,β‖2
2 ‖y‖2‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x

∣∣ ,(3.8)

where v is the vector in (3.3).
Now we give a similar analysis for the condition number κL(λ) of a finite, nonzero

λ. In view of (2.2), our aim is to obtain an expression for |w∗L′(λ)z|. Since L ∈ L1,

L(λ)(Λ⊗ In) = v ⊗ P (λ).(3.9)

Differentiating (3.9) with respect to λ gives

L′(λ)(Λ⊗ In) + L(λ)(Λ′ ⊗ In) = v ⊗ P ′(λ).(3.10)

Evaluating at an eigenvalue λ, premultiplying by w∗ = ΛT ⊗ y∗, postmultiplying by
1 ⊗ x, and using (3.1), gives

w∗L′(λ)z = ΛT v ⊗ y∗P ′(λ)x = ΛT v · y∗P ′(λ)x.

Analogously to (3.7), we write

p(λ; v) := vTΛ =

m∑
i=1

viλ
m−i = ΛT v

for the polynomial defined by v with variable λ.
Theorem 3.2. Let λ be a simple, finite, nonzero eigenvalue of P with right and

left eigenvectors x and y, respectively. Then, for any pencil L(λ) = λX +Y ∈ DL(P )
that is a linearization of P ,

κL(λ; v) =
(|λ|ωX + ωY )

|p(λ; v)| · ‖Λ‖
2
2‖y‖2‖x‖2

|λ| |y∗P ′(λ)x| ,(3.11)

where v is the vector in (3.9).
The expression (3.8) shows that κL(α, β) is finite if and only if (α, β) is not a zero

of p(α, β; v), and (3.11) gives essentially the same information for λ �= 0,∞. This is
consistent with the theory in [13] which shows, as noted in section 1, that L(λ) is
a linearization for P (λ) if and only if no eigenvalue of P (including ∞) is a root of
p(λ; v).
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4. Minimizing the condition numbers κL(α, β) and κL(λ). A pencil L(λ) ∈
DL(P ) is uniquely defined by the vector v in (1.5). Our aim is to minimize the
condition numbers κL(λ) and κL(α, β) over all v ∈ C

m, thereby identifying a best
conditioned linearization for a particular eigenvalue.

A technical subtlety is that the minimum of κL(α, β) over v could potentially
occur at a v for which L is not a linearization, since we are minimizing for a particular
eigenvalue, whereas the property of being a linearization is a property concerning all
the eigenvalues. In this case formulas (3.8) and (3.11) are not valid. However, such
“bad” v form a closed, nowhere dense set of measure zero [13, Thm. 6.8] and an
arbitrarily small perturbation to v can make L a linearization.

Expressions (3.8) and (3.11) have similar forms, with dependence on v confined
to the p(·) terms in the denominator and the ω terms in the numerator. For most of
this section we work with the condition number (3.8) for the pencil in homogeneous
form; we return to κL(λ) at the end of the section.

For the weights we will take the natural choice

ωX = ‖X‖2, ωY = ‖Y ‖2.(4.1)

Since the entries of X and Y are linear combinations of the entries of v [13, Thm. 5.3],
this choice makes the condition numbers independent of the scaling of v.

We consider first the v-dependence of ‖X‖2 and ‖Y ‖2.
Lemma 4.1. For L(λ) = λX + Y ∈ DL(P ) defined by v ∈ C

m we have

‖v‖2‖Am‖2 ≤ ‖X‖2 ≤ mr1/2 max
i

‖Ai‖2‖v‖2,(4.2)

‖v‖2‖A0‖2 ≤ ‖Y ‖2 ≤ mr1/2 max
i

‖Ai‖2‖v‖2,(4.3)

where r is the number of nonzero entries in v.
Proof. Partition X and Y as block m × m matrices with n × n blocks. From

[7, Sect. 3.3] or [13, Thm. 3.5] we know that the first block column of X is v ⊗ Am

and the last block column of Y is v⊗A0. The lower bounds are therefore immediate.
From [7, Sect. 3.3] or [13, Thm. 5.3] it can be seen that each block of X has the form

Xij =

m∑
k=1

skvkA�k
,(4.4)

where sk ∈ {−1, 0, 1} and the indices �k are distinct. Hence

‖Xij‖2 ≤ max
k

‖Ak‖2

m∑
k=1

|vk| = max
k

‖Ak‖2‖v‖1 ≤ r1/2 max
k

‖Ak‖2‖v‖2.

The upper bound on ‖X‖2 follows on using

‖X‖2 ≤ mmax
i,j

‖Xij‖2,(4.5)

which holds for any block m × m matrix. An identical argument gives the upper
bound for ‖Y ‖2.

Hence, provided the ‖Ai‖2 values vary little in magnitude with i, the numerator
of (3.8) varies little in magnitude with v if ‖v‖2 is fixed. Under this proviso, we will
approximately minimize the condition number κL(α, β) if we maximize the p(α, β; v)
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term. We therefore restrict our attention to the denominator of the expression (3.8)
for κL and maximize |p(α, β; v)| = |ΛT

α,βv| subject to ‖v‖2 = 1, for a given eigenvalue
(α, β). By the Cauchy–Schwarz inequality, the maximizing v, and the corresponding
value of the polynomial, are

v∗ =
Λα,β

‖Λα,β‖2
, |p(α, β; v∗)| = ‖Λα,β‖2.(4.6)

Two special cases that play an important role in the rest of this paper are worth
noting:

(α, β) = (1, 0), λ = ∞ ⇒ v∗ = e1,
(α, β) = (0, 1), λ = 0 ⇒ v∗ = em.

The next theorem compares the condition numbers for v = e1 and v = em with
the optimal condition number. Define

ρ =
maxi ‖Ai‖2

min(‖A0‖2, ‖Am‖2)
≥ 1.(4.7)

When we write infv κL(α, β; v) the infimum is understood to be taken over v for which
L is a linearization.

Theorem 4.2. Let (α, β) be a simple eigenvalue of P and consider pencils L ∈
DL(P ). Take the weights (4.1) for κL. Then

κL(α, β; e1) ≤ ρm3/2 inf
v
κL(α, β; v) if A0 is nonsingular and |α| ≥ |β|,(4.8)

κL(α, β; em) ≤ ρm3/2 inf
v
κL(α, β; v) if Am is nonsingular and |α| ≤ |β|.(4.9)

Proof. Note first that the conditions that A0 and Am are nonsingular ensure that
0 and ∞, respectively, are not eigenvalues of P , and hence that v = e1 and v = em,
respectively, yield linearizations.

Since κL(α, β; v) is invariant under scaling of v, we can set ‖v‖2 = 1. In view of

the bounds in Lemma 4.1, the v-dependent term
√
|α|2ω2

X + |β|2ω2
Y in the numerator

of (3.8) is bounded below by min(‖A0‖2, ‖Am‖2)
√
|α|2 + |β|2 for any v, and bounded

above by mmaxi ‖Ai‖2

√
|α|2 + |β|2 when v = ei for some i. Hence to prove (4.8) it

suffices to show that

max
‖v‖2=1

|p(α, β; v)| ≤
√
m |p(α, β; e1)| for |α| ≥ |β|.(4.10)

This inequality is trivial for β = 0, so we can assume β �= 0 and divide through by
βm−1 to rewrite the desired inequality as

max
‖v‖2=1

|p(λ; v)| ≤
√
m |p(λ; e1)| for |λ| ≥ 1.

But this inequality follows from

|p(λ; v)| = |ΛT v| ≤ ‖Λ‖2 ≤
√
m |λm−1| =

√
m |p(λ; e1)|.

The proof of (4.9) is entirely analogous.
Theorem 4.2 says that for matrix polynomials with coefficient matrices of roughly

equal norm, one of the two pencils with v = e1 and v = em will always give a near
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optimal condition number κL for a given eigenvalue; moreover, which pencil is nearly
optimal depends only on whether that eigenvalue is greater than or less than 1 in
modulus. Note, however, that taking the wrong choice of v = e1 or v = em can be
disastrous:

κL(0, β; e1) = ∞, κL(α, 0; em) = ∞(4.11)

(and in these situations the pencils are not linearizations); see the final example in
section 8.

For the quadratic polynomial Q(λ) = λ2A + λB + C, the pencils corresponding
to v = e1 and v = em(= e2) are, respectively (from (1.8)),

L1(λ) = λ

[
A 0
0 −C

]
+

[
B C
C 0

]
, L2(λ) = λ

[
0 A
A B

]
+

[
−A 0
0 C

]
.(4.12)

These pencils were analyzed by Tisseur [16], along with a companion form linearization
(which belongs to L1 but not DL). She showed that if ‖A‖2 = ‖B‖2 = ‖C‖2 = 1 then
κL1

(λ) ≤ κL2
(λ) for |λ| ≥

√
2 and κL1

(λ) ≥ κL2
(λ) for |λ| ≤ 2−1/2. Our analysis

in Theorem 4.2 implies that analogous inequalities hold for arbitrary degrees m and
arbitrary ρ. In fact, working directly from Lemma 4.1 we can show that

κL(α, β; e1) ≤ κL(α, β; em) if |α| ≥ (ρm)
1

m−1 |β|,
κL(α, β; em) ≤ κL(α, β; e1) if |β| ≥ (ρm)

1
m−1 |α|,

with entirely analogous inequalities holding for κL(λ).
Now we compare the optimal κL(α, β; v) with κP (α, β), the condition number of

the eigenvalue for the original polynomial.
Theorem 4.3. Let (α, β) be a simple eigenvalue of P . Then

1

ρ
≤ infv κL(α, β; v)

κP (α, β)
≤ m2ρ,

where the weights are chosen as ωi ≡ ‖Ai‖2 for κP and as in (4.1) for κL.
Proof. From Theorem 2.3,

κP (α, β) =

(∑m
i=0 |α|2i|β|2(m−i) ‖Ai‖2

2

)1/2 ‖y‖2‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x
∣∣ .

On the other hand, for v = v∗ in (4.6) we have, from Theorem 3.1,

κL(α, β; v∗) =

√
|α|2‖X‖2

2 + |β|2‖Y ‖2
2 ‖Λα,β‖2‖y‖2‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x

∣∣ .(4.13)

If L is not a linearization for v = v∗ then we need to interpret v∗ as an arbitrarily
small perturbation of v∗ for which L is a linearization. Using (4.2) and (4.3) and∑m

i=0 |α|2i|β|2(m−i) ‖Ai‖2
2 ≥ (|α|2m + |β|2m) min(‖A0‖2, ‖Am‖2)

2, it is easy to see
that

κL(α, β; v∗)

κP (α, β)
≤ ρm3/2f(α, β),
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where

f(α, β) =

√
|α|2 + |β|2

(∑m
i=1 |α|2(i−1)|β|2(m−i)

)1/2√
|α|2m + |β|2m

.

From (A.1) in Lemma A.1 we have f(α, β) ≤
√
m. The upper bound follows since

infv κL(α, β; v) ≤ κL(α, β; v∗). For the lower bound we have, for any v with ‖v‖2 = 1,

κL(α, β; v)

κP (α, β)
=

√
|α|2‖X‖2

2 + |β|2‖Y ‖2
2 ‖Λα,β‖2

2(∑m
i=0 |α|2i|β|2(m−i)‖Ai‖2

2

)1/2 |p(α, β; v)|

≥
√
|α|2 + |β|2 min(‖A0‖2, ‖Am‖2)‖Λα,β‖2(∑m

i=0 |α|2i|β|2(m−i)
)1/2

maxi ‖Ai‖2

≥ 1

ρ

√
|α|2 + |β|2

(∑m
i=1 |α|2(i−1)|β|2(m−i)

)1/2(∑m
i=0 |α|2i|β|2(m−i)

)1/2 =:
1

ρ
g(α, β),

since |p(α, β; v)| ≤ ‖Λα,β‖2 by the Cauchy–Schwarz inequality. From (A.2), g(α, β) ≥
1, and the lower bound follows.

Now we state the analogues of Theorem 4.2 and 4.3 for κL(λ). Recall that ρ is
defined in (4.7).

Theorem 4.4. Let λ be a simple, finite, nonzero eigenvalue of P and consider
pencils L ∈ DL(P ). Take the weights (4.1) for κL. Then

κL(λ; e1) ≤ ρm3/2 inf
v
κL(λ; v) if A0 is nonsingular and |λ| ≥ 1,(4.14)

κL(λ; em) ≤ ρm3/2 inf
v
κL(λ; v) if Am is nonsingular and |λ| ≤ 1.(4.15)

Proof. The proof is entirely analogous to that of Theorem 4.2.

Theorem 4.5. Let λ be a simple, finite, nonzero eigenvalue of P . Then(
2
√
m

m + 1

)
1

ρ
≤ infv κL(λ; v)

κP (λ)
≤ m2ρ,

where the weights are chosen as ωi ≡ ‖Ai‖2 for κP and as in (4.1) for L.

Proof. The proof is very similar to that of Theorem 4.3, but with slightly different
f and g having the form of f3 and f4 in Lemma A.1.

Theorems 4.3 and 4.5 show that for polynomials whose coefficient matrices do not
vary too much in norm, the best conditioned linearization in DL(P ) for a particular
eigenvalue is about as well conditioned as P itself for that eigenvalue, to within a
small constant factor. This is quite a surprising result, because the condition numbers
κL(α, β) and κL(λ) permit arbitrary perturbations in L(λ) = λX + Y that do not
respect the zero and repeated block structure of X and Y (as exhibited for two
particular instances for m = 2 in (4.12)). Under the same assumptions on the ‖Ai‖2,
by combining Theorems 4.2 and 4.3, or Theorems 4.4 and 4.5, we can conclude that,
for any given eigenvalue, one of the two pencils with v = e1 and v = em will be about
as well conditioned as P itself for that eigenvalue.
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4.1. Several eigenvalues. Suppose now that several eigenvalues (α1, β1), . . . ,
(αr, βr) are of interest and that neither |αi| ≥ |βi| for all i nor |αi| ≤ |βi| for all i.
A reasonable way to define a single pencil that is best for all these eigenvalues is by
maximizing the 2-norm of the r-vector of the reciprocals of the eigenvalue condition
numbers for the pencil. This vector can be written, using Theorem 3.1, as

diag
(
(|αi|2ω2

X + |βi|2ω2
Y )1/2 ‖Λαi,βi

‖2
2‖yi‖2‖xi‖2

)−1

× diag(|y∗i (β̄iDαP − ᾱiDβP )|(αi,βi)xi|)

⎡⎢⎣ ΛT
α1,β1

...
ΛT
αr,βr

⎤⎥⎦ v =: Bv.

Assume that ρ = O(1), so that ωX and ωY in (4.1) are roughly constant in ‖v‖2.
Then we can set ωX = ωY = 1 and define the optimal v as the right singular vector
corresponding to the largest singular value of B. This approach requires knowledge
of the eigenvectors xi and yi as well as the λi. If the eigenvectors are not known then
we can simplify B further to

diag
(
(|αi|2 + |βi|2)1/2 ‖Λαi,βi‖2

2

)−1

⎡⎢⎣ ΛT
α1,β1

...
ΛT
αr,βr

⎤⎥⎦ .

So far we have implicitly assumed that we have a good estimate of the eigenvalues
of interest. Suppose, instead, that we know only a region S of the complex plane
in which the eigenvalues of interest lie. In this case a natural approach is to try to
minimize the v-dependent part of the eigenvalue condition number over S. Continuing
to assume ρ = O(1), and working now with κL(λ; v), the problem becomes to find the
v that achieves the maximum in the problem

max
‖v‖2=1

min
λ∈S

|p(λ; v)|.

This uniform (or Chebyshev) complex approximation problem can be expressed as a
semi-infinite programming problem and solved by numerical methods for such prob-
lems [14, sect. 2.3].

5. Quadratic polynomials. We now concentrate our attention on quadratic
polynomials, Q(λ) = λ2A + λB + C, as these are in practice the most important
polynomials of degree 2 or higher. Write

a = ‖A‖2, b = ‖B‖2, c = ‖C‖2.(5.1)

The quantity ρ in Theorems 4.2–4.5 is now

ρ =
max(a, b, c)

min(a, c)
.

Clearly, ρ is of order 1 if

b <∼ max(a, c) and a ≈ c.

If these conditions are not satisfied then we can consider scaling Q. Write λ = μγ,
γ ∈ R and

Q(λ) = λ2A + λB + C = μ2(γ2A) + μ(γB) + C =: μ2Ã + μB̃ + C̃ =: Q̃(μ).(5.2)



CONDITIONING OF MATRIX POLYNOMIAL LINEARIZATIONS 1017

The γ that minimizes max(‖Ã‖2/‖B̃‖2, ‖C̃‖2/‖B̃‖2) = max(γa/b, c/(γb)) is easily
seen to be

γ =
√
c/a,(5.3)

and it yields

‖Ã‖2 = c, ‖B̃‖2 = b
√
c/a, ‖C̃‖2 = c.

Hence, for the scaled problem,

ρ = max(1, b/
√
ac).

This scaling is intended to improve the conditioning of the linearizations, but what
does it do to the conditioning of the quadratic itself? It is easy to see that κP (λ) is
invariant under scaling when ωi = ‖Ai‖2, but that κP (α, β) is scale-dependent. We
note that the scaling (5.2) and (5.3) is used by Fan, Lin, and Van Dooren [4]; see
section 7.

With these observations we can combine and specialize Theorems 4.4 and 4.5 as
follows.

Theorem 5.1. Let λ denote a simple eigenvalue of Q(λ) = λ2A + λB + C or of

the scaled quadratic Q̃ defined by (5.2) and (5.3). Take the weights (4.1) for κL(λ).
With the notation (5.1), assume that either

• b <∼ max(a, c) and a ≈ c, in which case let P = Q and L ∈ DL(Q), or

• b <∼
√
ac, in which case let P = Q̃ and L ∈ DL(Q̃).

Then if C is nonsingular and |λ| ≥ 1, the linearization with v = e1 has κL(λ; e1) ≈
κP (λ), while if A is nonsingular and |λ| ≤ 1, the linearization with v = e2 has
κL(λ; e2) ≈ κP (λ).

If we think of Q as representing a mechanical system with damping, then the
near-optimality of the v = e1 and v = e2 linearizations holds for Q that are not too
heavily damped. One class of Q for which b <∼

√
ac automatically holds is the elliptic

Q [8], [11]: those for which A is Hermitian positive definite, B and C are Hermitian,
and (x∗Bx)2 < 4(x∗Ax)(x∗Cx) for all nonzero x ∈ C

n.
An analogue of Theorem 5.1 for κL(α, β) can be obtained from Theorems 4.2 and

4.3.

6. Connection with linearization of reversal of P . Consider the quadratic
Q(λ) = λ2A+λB+C and the “reversed” quadratic revQ(λ) = λ2C +λB+A, whose
eigenvalues are the reciprocals of those of Q. Tisseur [16, Lem. 10] shows that if λ
is a simple, finite, nonzero eigenvalue of Q and μ = 1/λ the corresponding simple
eigenvalue of revQ then, with the weights (4.1), κ

L̃1
(μ) = κL2

(λ) and κ
L̃2

(μ) =

κL1
(λ), where L1 and L2 are the pencils corresponding to v = e1 and v = e2 given

in (4.12) and L̃1 and L̃2 are the corresponding pencils for revQ. In essence this
result says that one cannot improve the condition of an eigenvalue of a linearization
by regarding it as the reciprocal of an eigenvalue of the reversed quadratic. In this
section we generalize this result in three respects: to any vector v (not just v = e1 or
e2), to arbitrary degree polynomials, and to zero and infinite eigenvalues.

Define

revP (λ) = λmP (1/λ),
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where P has degree m, which is the polynomial obtained by reversing the order of
the coefficient matrices of P . Let L(λ) = λX + Y ∈ DL(P ) with vector v and

L̃(λ) = λX̃ + Ỹ ∈ DL(revP ) with vector Rv, where

R =

[
1

. .
.

1

]
∈ R

m×m.

Lemma 6.1. L is a linearization for P if and only if L̃ is a linearization for
revP .

Proof. The roots of p(λ;Rv) are the reciprocals of the roots of p(λ; v), while the
eigenvalues of revP are the reciprocals of the eigenvalues of P . The result now follows
from [13, Thm. 6.7].

We now work with the condition number κL(α, β). Note that (α, β) is an eigen-
value of P with right and left eigenvectors x and y if and only if (β, α) is an eigenvalue
of revP with right and left eigenvectors x and y. Also note that in homogeneous vari-
ables revP (α, β) = P (β, α).

Lemma 6.2. If the weights ωX and ωY for L and weights ω
X̃

and ω
Ỹ

for L̃ satisfy
ωX = ω

Ỹ
and ωY = ω

X̃
then κL(α, β) = κ

L̃
(β, α).

Proof. We have, from (3.8),

κL(α, β) =

√
|α|2ω2

X + |β|2ω2
Y

|p(α, β; v)| · ‖Λα,β‖2
2 ‖y‖2‖x‖2∣∣y∗(β̄DαP − ᾱDβP )|(α,β)x

∣∣ ,
κ
L̃
(β, α) =

√
|β|2ω2

X̃
+ |α|2ω2

Ỹ

|p(β, α;Rv)| · ‖Λβ,α‖2
2 ‖y‖2‖x‖2∣∣y∗(ᾱDαrevP − β̄DβrevP )|(β,α)x

∣∣ .
We show that each of the four terms in the first expression equals the corresponding
term in the second expression. The assumptions on the weights clearly imply equality
of the square root terms. Next, Λβ,α = RΛα,β , so Λβ,α and Λα,β have the same
2-norm, while p(α, β; v) ≡ p(β, α;Rv). Finally,

(ᾱDαrevP − β̄DβrevP )|(β,α) = ᾱ(DαrevP )|(β,α) − β̄(DβrevP )|(β,α)

= ᾱ(DβP )|(α,β) − β̄(DαP )|(α,β)

= −(β̄DαP − ᾱDβP )|(α,β),

which implies the equality of the final two denominator terms.
Do the conditions ωX = ω

Ỹ
and ωY = ω

X̃
hold for the natural choice of weights

ωX ≡ ‖X‖2, ωY ≡ ‖Y ‖2? The next lemma shows that they do, and shows an even

stronger relationship between L and L̃.
Lemma 6.3. We have

L̃(λ) = (R⊗ In)revL(λ)(R⊗ In),(6.1)

and so X̃ = (R⊗ In)Y (R⊗ In) and Ỹ = (R⊗ In)X(R⊗ In). Hence ‖X̃‖ = ‖Y ‖ and

‖Ỹ ‖ = ‖X‖ for any unitarily invariant norm.

Proof. L̃ is defined as the unique pencil in DL(revP ) = L1(revP ) ∩ L2(revP )
corresponding to the vector Rv. Therefore to establish (6.1) it suffices to show that
the pencil (R ⊗ In)revL(λ)(R ⊗ In) belongs to both L1(revP ) and L2(revP ) with
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vector Rv, that is, it satisfies the appropriate versions of properties (1.5) and (1.6).
The other results then follow.

Recall that revP (λ) = λmP (1/λ) and note that λm−1Λ(1/λ) = RΛ, where Λ(λ) ≡
Λ is defined in (1.4). If L ∈ L1(P ) with vector v then

L(λ) · (Λ⊗ In) = v ⊗ P (λ)

⇒ L(1/λ) · (Λ(1/λ) ⊗ In) = v ⊗ P (1/λ)

⇒ λL(1/λ) · (λm−1Λ(1/λ) ⊗ In) = v ⊗ λmP (1/λ)

⇒ revL(λ) · (RΛ⊗ In) = v ⊗ revP (λ)

⇒ (R⊗ In)revL(λ)(R⊗ In) · (Λ⊗ In) = (R⊗ In)(v ⊗ revP (λ)) = Rv ⊗ revP (λ),

which means that (R⊗ In)revL(λ)(R⊗ In) ∈ L1(revP ) with vector Rv.
Similarly, it can be shown that L ∈ L2(P ) with vector v implies that (R ⊗

In)revL(λ)(R⊗ In) ∈ L2(revP ) with vector Rv.
Combining the previous three lemmas we obtain the following generalization of

Tisseur [16, Lem. 10].
Theorem 6.4. Let (α, β) be a simple eigenvalue of P , so that (β, α) is a simple

eigenvalue of revP . Suppose L ∈ DL(P ) with vector v is a linearization of P . Then

L̃ ∈ DL(revP ) with vector Rv is a linearization of revP and, if the weights are chosen
as in (4.1), κL(α, β) = κ

L̃
(β, α).

An analogue of Theorem 6.4 stating that κL(λ) = κ
L̃
(1/λ) for finite, nonzero λ

can also be derived.

7. Companion linearizations. Associated with P are two companion form
pencils, C1(λ) = λX1 + Y1 and C2(λ) = λX2 + Y2, called the first and second com-
panion forms [12, sect. 14.1], respectively, where

X1 = X2 = diag(Am, In, . . . , In),

Y1 =

⎡⎢⎢⎢⎢⎣
Am−1 Am−2 . . . A0

−In 0 . . . 0
...

. . .
. . .

...
0 . . . −In 0

⎤⎥⎥⎥⎥⎦ , Y2 =

⎡⎢⎢⎢⎢⎢⎣
Am−1 −In . . . 0

Am−2 0
. . .

...
...

...
. . . −In

A0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦ .

The pencil C1 belongs to L1(P ) with v = e1 in (1.5), while C2 belongs to L2(P ) with
w = e1 in (1.6). Neither pencil is in DL(P ), but both are always linearizations [12,
sect. 14.1].

We wish to compare the conditioning of C1 and C2 with that of P and of an
appropriate DL(P ) linearization. Our first result shows that it suffices to analyze the
conditioning of C1, because any results about the conditioning of C1 translate to C2

simply by transposing the coefficient matrices Ai.
Lemma 7.1. Let λ, or (α, β) in homogeneous form, be a simple eigenvalue of P ,

and take ωi = ‖Ai‖2. Then

κP (α, β) = κPT (α, β), κP (λ) = κPT (λ).

Moreover,

κC2(P )(α, β) = κC1(P
T )(α, β), κC2(P )(λ) = κC1(P

T )(λ),
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where Ci(P ), i = 1, 2, denotes the ith companion linearization for P , and PT denotes
the polynomial obtained by transposing each coefficient matrix Ai.

Proof. If (λ, x, y) is an eigentriple for P then (λ, y, x) is an eigentriple for PT .
The first two equalities follow by considering the formulae (2.2) and (2.5). It is easy
to see that C2(P ) = C1(P

T )T . The second pair of equalities are therefore special
cases of the first.

For the rest of the section we work with λ and κ(λ); for (α, β) and κ(α, β) anal-
ogous results hold. We first obtain a formula for left eigenvectors w∗ of C1.

Lemma 7.2. The vector y ∈ C
n is a left eigenvector of P corresponding to a

simple, finite, nonzero eigenvalue λ if and only if

w =

⎡⎢⎢⎣
I

(λAm + Am−1)
∗

...
(λm−1Am + λm−2Am−1 + · · · + A1)

∗

⎤⎥⎥⎦ y(7.1)

is a left eigenvector of C1 corresponding to λ.
Proof. Since C1 is a linearization of P , λ is a simple eigenvalue of C1. The proof

therefore consists of a direct verification that w∗C1(λ) = 0.
Lemma 7.2 shows that, even though C1 �∈ L2(P ), a left eigenvector of P can be

recovered from one of C1—simply by reading off the leading n components.
Since C1 ∈ L1(P ), we know that the right eigenvectors z and x of C1 and P are

related by z = Λ ⊗ x. Evaluating (3.10) (which holds for any member of L1) with
L = C1 at an eigenvalue λ, then multiplying on the left by w∗ and on the right by
1 ⊗ x = x, we obtain

w∗C ′
1(λ)z = w∗(v ⊗ P ′(λ)x).

Using the formula (7.1) for w and the fact that v = e1 gives

w∗C ′
1(λ)z = y∗P ′(λ)x.

By applying Theorem 2.1 to C1 we obtain the following analogue of Theorem 3.2.
Theorem 7.3. Let λ be a simple, finite, nonzero eigenvalue of P with right and

left eigenvectors x and y, respectively. Then, for the first companion linearization
C1(λ) = λX1 + Y1,

κC1
(λ) =

(|λ|ωX1
+ ωY1

) ‖w‖2‖Λ‖2‖x‖2

|λ| |y∗P ′(λ)x| ,

where w is given by (7.1).
Now we can compare the condition number of the first companion form with that

of P . We have

κC1
(λ)

κP (λ)
=

‖w‖2

‖y‖2
·
(|λ|ωX1

+ ωY1
) ‖Λ‖2∑m

i=0 |λ|iωi
.

We choose the weights ωX1
= ‖X1‖2, ωY1

= ‖Y1‖2, and ωi = ‖Ai‖2 in (2.2). We
therefore need bounds on the norms of X1 and Y1. These are provided by the next
lemma, which is similar to Lemma 4.1.

Lemma 7.4. For C1(λ) = λX1 + Y1 we have ‖X1‖2 = max(‖Am‖2, 1) and

max
(
1, max

i=0:m−1
‖Ai‖2

)
≤ ‖Y1‖2 ≤ mmax

(
1, max

i=0:m−1
‖Ai‖2

)
.(7.2)
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Proof. The proof is straightforward, using (4.5).
For notational simplicity we will now concentrate on the quadratic case, m = 2.

With the notation (5.1), we have

ψ

21/2

‖w‖2

‖y‖2
≤

κC1
(λ)

κP (λ)
≤ 2ψ

‖w‖2

‖y‖2
,(7.3)

where

ψ =
(1 + |λ|)

(
max(a, 1)|λ| + max(b, c, 1)

)
a|λ|2 + b|λ| + c

≥ 1

and

‖w‖2

‖y‖2
=

∥∥∥∥[ I
(λA + B)∗

]
y

∥∥∥∥
2

‖y‖2
=

∥∥∥∥[ I
(λ−1C)∗

]
y

∥∥∥∥
2

‖y‖2
(7.4)

satisfies

1 ≤ ‖w‖2

‖y‖2
≤ min

(
(1 + (|λ|a + b)2)1/2, (1 + c2/|λ|2)1/2

)
.

Therefore κC1
(λ) will be of the same order of magnitude as κP (λ) only if both ψ and

‖w‖2/‖y‖2 are of order 1. It is difficult to characterize when these conditions hold.
However, it is clear that, unlike for the DL(P ) linearizations, the condition of C1 is
affected by scaling Ai ← γAi, i = 0:m, as might be expected in view of the mixture of
identity matrices and Ai that make up the blocks of X1 and Y1. Indeed if a, b, c � 1,
then ψ � 1, while if a, b, c � |λ| ≥ 1, then ‖w‖2/‖y‖2 � 1, unless y is nearly a null
vector for (λA + B)∗ and C∗. The only straightforward conditions that guarantee
κC1

(λ) ≈ κP (λ) are a ≈ b ≈ c ≈ 1: then ψ ≈ 1 and one of the two expressions for
‖w‖2/‖y‖2 in (7.4) is clearly of order 1 (the first if |λ| ≤ 1, otherwise the second).
The predilection of the first companion form for coefficient matrices of unit 2-norm
was shown from a different viewpoint by Tisseur [16, Thm. 7]: she proves that when
a = b = c = 1, applying a backward stable solver to the companion pencil is backward
stable for the original quadratic.

It is natural to scale the problem to try to bring the 2-norms of A, B, and C close
to 1. The scaling of Fan, Lin, and Van Dooren [4], which was motivated by backward
error considerations, has precisely this aim. It converts Q(λ) = λ2A + λB + C to

Q̃(μ) = μ2Ã + μB̃ + C̃, where

λ = γμ, Q(λ)δ = μ2(γ2δA) + μ(γδB) + δC ≡ Q̃(μ),(7.5a)

γ =
√
c/a, δ = 2/(c + bγ).(7.5b)

This is the scaling γ we used in section 5 combined with the multiplication of each
coefficient matrix by δ.

Now we compare κC1
(λ) with κL(λ; v∗), where v∗ for λ is defined analogously to

v∗ for (α, β) in (4.6) by

v∗ =
Λ

‖Λ‖2
, |p(λ; v∗)| = ‖Λ‖2.
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We have, from (3.11),

κL(λ; v∗) =
(|λ|ωX + ωY )‖Λ‖2‖y‖2‖x‖2

|λ| |y∗P ′(λ)x| ,

and so

κC1
(λ)

κL(λ; v∗)
=

‖w‖2

‖y‖2
·
|λ|ωX1

+ ωY1

|λ|ωX + ωY

.

Again, specializing to m = 2, and using Lemmas 4.1 and 7.4, we have

‖w‖2

‖y‖2
·
(
max(a, 1)|λ| + max(b, c, 1)

)
23/2 max(a, b, c)(1 + |λ|) ≤

κC1
(λ)

κL(λ; v∗)
(7.6)

≤ ‖w‖2

‖y‖2
·
(
max(a, 1)|λ| + 2 max(b, c, 1)

)
a|λ| + c

.

If a ≈ b ≈ c ≈ 1 then we can conclude that κC1
(λ) ≈ κL(λ; v∗). However, κC1

(λ) �
κL(λ; v∗) if ‖w‖2/‖y‖2 � 1 or if (for example) a, b, c � 1.

Our results for the companion forms are not as neat as those in section 4 for the
DL(P ) linearizations, which focus attention on a single, easily computed or estimated,
scalar parameter ρ. The conditioning of the companion forms relative to P and to the
class DL(P ) depends on both (a) the ratios of norms of left eigenvectors of C1 and
P , and (b) rational functions of the coefficient matrix norms and λ. It does not seem
possible to bound the norm ratio in a useful way a priori. Therefore the only easily
checkable conditions that we can identify under which the companion forms can be
guaranteed to be optimally conditioned are ‖Ai‖2 ≈ 1, i = 0:m (our proof of this fact
for m = 2 is easily seen to generalize to arbitrary m).

Finally, we note that the bounds (7.3) and (7.6) remain true when “λ” is replaced
by “α, β,” with just minor changes to the constants.

8. Numerical experiments. We illustrate the theory on four quadratic eigen-
value problems. Our experiments were performed in MATLAB 7, for which the unit
roundoff is 2−53 ≈ 1.1 × 10−16. To obtain the angular error θ((α, β), (α̃, β̃)) for a

computed eigenvalue (α̃, β̃), we took as exact eigenvalue (α, β) the value computed
in MATLAB’s VPA arithmetic at 40 digit precision. In our figures, the x-axis is the
eigenvalue index and the eigenvalues are sorted in increasing order of absolute value.
We compare the condition numbers of the quadratic Q, the first companion form, and
the DL(Q) linearizations with v = e1 and v = e2. All our problems have (real) sym-
metric coefficient matrices so we know from Lemma 7.1 that the second companion
form has exactly the same condition numbers as the first companion form. In two of
the problems we apply the scaling given by (7.5). Table 8.1 reports the problem sizes,
the coefficient matrix norms, and the values of ρ in (4.7) before and after scaling.

Our first problem shows the benefits of scaling. It comes from applying the
Galerkin method to a PDE describing the wave motion of a vibrating string with
clamped ends in a spatially inhomogeneous environment [5], [8]. The quadratic Q is
elliptic; the eigenvalues are nonreal and have absolute values in the interval [1, 25].
Figure 8.1 shows the condition numbers κL(α, β) for the DL(Q) linearization with
v = e1 and the first companion linearization, the condition number κP (α, β) for Q,
and the angular errors in the eigenvalues computed by applying the QZ algorithm
to the two linearizations. Figure 8.2 shows the corresponding information for the
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Table 8.1

Problem statistics.

Problem Wave Nuclear Mass-spring Acoustics
n 25 8 50 107

Unscaled Scaled Unscaled Scaled Unscaled Unscaled Scaled
‖A‖2 1.57e0 1.85e0 2.35e8 1.18e0 1.00e0 1.00e0 2.00e0
‖B‖2 3.16e0 1.49e-1 4.35e10 8.21e-1 3.20e2 5.74e-2 3.64e-5
‖C‖2 9.82e2 1.85e0 1.66e13 1.18e0 5.00e0 9.95e6 2.00e0
ρ 6.25e2 1.00e0 7.06e4 1.00e0 3.20e2 9.95e6 1.00e0
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Fig. 8.1. Wave problem, unscaled; v = e1, ρ = 625.

scaled problem. Since the eigenvalues are all of modulus at least 1, we know from
Theorem 4.3 that for every eigenvalue, the DL(Q) linearization with v = e1 has
condition number within a factor 4ρ = 2500 of the condition number for Q. The
actual ratios are between 3.5 and 266. Since this problem is elliptic, we know from
Theorem 5.1 that for the scaled problem, whose eigenvalues lie between 0.04 and 1 in
modulus, the DL(Q̃) linearization with v = e2 will have condition number similar to

that of Q̃ for every eigenvalue. This is confirmed by Figure 8.2; the maximum ratio of
condition numbers is 3.3. The benefit of the smaller condition numbers after scaling
is clear from the figures: the angular error of the computed eigenvalues is smaller by
a factor roughly equal to the reduction in condition number. The behavior of the
companion linearization is very similar to that of the DL(Q) linearizations, and this
is predicted by our theory since the term ψ‖w‖2/‖y‖2 in (7.3) varies from 3.7 to 511
without scaling and only 1.0 to 4.5 with scaling.

The next problem is a simplified model of a nuclear power plant [9], [17]. There
are 2 real and 14 nonreal eigenvalues, with absolute values in the interval (17, 362).
Since ρ = 7 × 104, it is not surprising that the DL(Q) linearization with v = e1 has
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Fig. 8.2. Wave problem, scaled; v = e2, ρ = 1.
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Fig. 8.3. Nuclear power plant problem, unscaled; v = e1, ρ = 7 × 104.
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Fig. 8.4. Nuclear power plant problem, scaled; v = e2, ρ = 1.

eigenvalue condition numbers up to 369 times as large as those of Q, as Figure 8.3
indicates. Although the problem is not elliptic, ‖B‖2 ≤

√
‖A‖2‖C‖2, and so our the-

ory says that scaling will make the DL(Q) linearization with v = e2 (since the scaled
eigenvalues have modulus at most 1) optimally conditioned. This prediction is con-
firmed in Figure 8.4. Scaling also brings a dramatic improvement in the conditioning
and accuracy of the companion linearization; again, this is predicted by our theory
since the scaled problem has coefficient matrices of norm approximately 1, and the
magnitude of the reduction is explained by the term ψ‖w‖2/‖y‖2 in (7.3), which has
a maximum of 2 × 1010 without scaling and 1.5 with scaling. Scaling results in an
increase in the condition numbers κP (α, β) by factors ranging from 1.2 to 173.

Our third problem is a standard damped mass-spring system, as described in [17,
sect. 3.9]. The matrix A = I, B is tridiagonal with super- and subdiagonal elements
all −64 and diagonal 128, 192, 192, . . . , 192, and C is tridiagonal with super- and
subdiagonal elements all −1 and diagonal 2, 3, . . . , 3. Here, ρ = 320. The eigenvalues
are all negative, with 50 eigenvalues of large modulus ranging from −320 to −6.4 and
50 small modulus eigenvalues approximately −1.5 × 10−2. Figures 8.5 and 8.6 show
the results for v = e1 and v = e2, respectively. Our theory suggests that for the
eigenvalues of large modulus the linearization with v = e1 will have nearly optimal
conditioning, while for eigenvalues of small modulus the linearization with v = e2

will be nearly optimal. This behavior is seen very clearly in the figures, with a sharp
change in condition number at the three order of magnitude jump in the eigenvalues.
This example also clearly displays nonoptimal conditioning of the first companion
linearization for small eigenvalues: for the 50 eigenvalues of small modulus, κC1

(α, β)
exceeds κP (α, β) and κL(α, β; e2) by a factor at least 103, and again this is accurately
reflected in the bounds (7.3). For this problem, scaling has essentially no effect on
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Fig. 8.5. Damped mass-spring system, unscaled; v = e1, ρ = 320.
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Fig. 8.6. Damped mass-spring system, unscaled; v = e2, ρ = 320.
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the two DL(Q) linearizations, but for the companion linearization it increases the
condition number for the large eigenvalues and decreases it for the small eigenvalues,
with the result that all the condition numbers lie between 3.6 and 13.

Finally, we describe an example that emphasizes the importance in our analysis
of the condition that the pencil L ∈ DL(P ) is a linearization of P . The problem
is a quadratic of dimension 107 arising from an acoustical model of a speaker box
[10]. After scaling, ρ = 1. The computed eigenvalues from the companion form have
moduli of order 1, except for two eigenvalues with moduli of order 10−5. We found
the pencil with v = e2 to have eigenvalue condition numbers of the same order of
magnitude as those of Q (namely from 106 to 1013)—as predicted by the theory.
But for v = e1 the conditioning of L was orders of magnitude worse than that of
Q for every eigenvalue, which at first sight appears to contradict the theory. The
explanation is that this problem has a singular A0 and hence a zero eigenvalue; L is
therefore not a linearization for v = e1, as we noted earlier: see the first sentence of
the proof of Theorem 4.2 and (4.11). In fact, since L ∈ DL(P ) is not a linearization
for v = e1 it is a nonregular pencil [13, Thm. 4.3]. This example is therefore entirely
consistent with the theory.

Appendix A.
The following lemma is needed in the proofs of Theorems 4.3 and 4.5. We omit

the proof.
Lemma A.1. Consider the functions

f1(x) =
(1 + x2)(1 + x2 + x4 + · · · + x2(m−1))

1 + x2m
,

f2(x) =
(1 + x2)(1 + x2 + x4 + · · · + x2(m−1))

1 + x2 + x4 + · · · + x2m
,

f3(x) =
(1 + x)2(1 + x2 + x4 + · · · + x2(m−1))

(1 + xm)2
,

f4(x) =
(1 + x)2(1 + x2 + x4 + · · · + x2(m−1))

(1 + x + x2 + · · · + xm)2
.

The functions f1, f2, f3, and f4 are all unimodal on [0,∞), with a unique interior
extreme point at x = 1 and another extreme point at x = 0. In particular, we have
the following sharp bounds:

1 ≤ f1(x) ≤ m,(A.1)

1 ≤ f2(x) ≤ 2m

m + 1
,(A.2)

1 ≤ f3(x) ≤ m,(A.3)

4m

(m + 1)2
≤ f4(x) ≤ 1.(A.4)
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