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SUMMARY

The most common way of solving the quadratic eigenvalue problem (QEP) (λ2M+λD+K)x = 0 is to
convert it into a linear problem (λX+Y )z = 0 of twice the dimension and solve the linear problem by
the QZ algorithm or a Krylov method. In doing so, it is important to understand the influence of the
linearization process on the accuracy and stability of the computed solution. We discuss these issues
for three particular linearizations: the standard companion linearization and two linearizations that
preserve symmetry in the problem. For illustration we employ a model QEP describing the motion
of a beam simply supported at both ends and damped at the midpoint. We show that the above
linearizations lead to poor numerical results for the beam problem, but that a two-parameter scaling
proposed by Fan, Lin and Van Dooren cures the instabilities. We also show that half of the eigenvalues
of the beam QEP are pure imaginary and are eigenvalues of the undamped problem. Our analysis
makes use of recently developed theory explaining the sensitivity and stability of linearizations, the
main conclusions of which are summarized. As well as arguing that scaling should routinely be used, we
give guidance on how to choose a linearization and illustrate the practical value of condition numbers
and backward errors.
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1. INTRODUCTION

The purpose of this paper is to emphasize the importance of scaling the coefficient matrices
of second order systems before numerically computing the eigenvalues via linearization. Our
discussion is illustrated with a simple but nontrivial example consisting of a slender beam
simply supported at both ends and damped at the midpoint, as shown in Figure 1. The
equation of motion governing the transverse displacement u(x, t) of the beam has the form

ρA
∂2u

∂t2
+ c(x)

∂u

∂t
+ EI

∂4u

∂x
4

= 0, (1)

where ρA is the mass per unit length, c(x) ≥ 0 represents the external damping and EI is the
bending stiffness. The boundary conditions are u(0, t) = u′′(0, t) = 0 and u(L, t) = u′′(L, t) =
0, where L is the length of the beam. Note that this beam model does not include the effect
of shear gradients or rotary inertia. Making the separation hypothesis u(x, t) = eλtv(x) yields
the boundary-value problem for the free vibrations

λ2ρAv(x) + λc(x)v(x) + EI
d4

dx4
v(x) = 0, (2)

v(0) = v′′(0) = v(L) = v′′(L) = 0.

Since the beam system is perfectly symmetric, its vibration behaviour divides into two distinct
sets of modes: the symmetric and the anti-symmetric. The symmetric modes lie in the
eigenspace associated with the eigenvalue +1 of the reflection-across-the-midpoint symmetry of
the system. At the midpoint they have zero slope and (to avoid triviality) nonzero displacement.
Anti-symmetric modes are ones lying in the eigenspace corresponding to the eigenvalue −1
of the reflection-across-the-midpoint symmetry of the system, and hence must have zero
displacement and nonzero slope at the midpoint. The damper is irrelevant to anti-symmetric
modes since they all have zero displacement at the midpoint. Thus these modes feel zero
damping, which implies that the corresponding eigenvalues λ are pure imaginary.

We discretize the boundary-value problem (2) by finite elements using cubic Hermite
polynomials as interpolation shape functions. This gives the finite-dimensional quadratic
eigenvalue problem (QEP)

Q(λ)x = (λ2M + λD +K)x = 0. (3)

The resulting mass matrix M and stiffness matrix K are symmetric positive definite (M > 0,
K > 0) by construction and D is symmetric positive semidefinite (D ≥ 0). As a consequence,
the roots of the quadratic equation x∗Q(λ)x = 0 have nonpositive real parts for all vectors x.
This implies that all the eigenvalues of (3) lie in the closed left half plane and the beam problem
is (weakly) stable [13]. The finite element discretization that we use preserves the property of
the continuous problem of having all the modes either symmetric or anti-symmetric (see the
proof of Theorem I.1 in Appendix I.1).

The standard approach to the numerical solution of the QEP is to convert the quadratic
Q(λ) = λ2M + λD +K into a linear polynomial

L(λ) = λX + Y

of twice the dimension of Q but with the same spectrum. The resulting generalized
eigenproblem L(λ)x = 0 is usually solved by the QZ algorithm for small to medium size
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Figure 1. Beam simply supported at both ends and damped at the midpoint.

problems or by a Krylov method for large sparse problems [1], [17]. A common choice of L in
practice is the first companion form, given by

C1(λ) = λ

[
M 0
0 I

]
+

[
D K
−I 0

]
. (4)

It can be shown that C1(λ) is always a linearization in the sense that it satisfies

E(λ)C1(λ)F (λ) =

[
Q(λ) 0

0 I

]

for some E(λ) and F (λ) with constant, nonzero determinants [6, Sec. 7.2]. This implies that
α det(C1(λ)) = det(Q(λ)) for some nonzero constant α, so that C1 and Q have the same
spectrum. When K and M , respectively, are nonsingular the two pencils

L1(λ) = λ

[
M 0
0 −K

]
+

[
D K
K 0

]
(5)

and

L2(λ) = λ

[
0 M
M D

]
+

[
−M 0

0 K

]
(6)

are other possible linearizations [5], [13], [15]. Note that when M , D and K are symmetric,
the pencils L1 and L2 are symmetric.

We computed the eigenvalues of the discretized beam problem in (3) for the following
geometric and material properties:

E = 7 × 1010 Nm−2, I = 0.05×0.0053

12 m4, (7a)

L = 1m, ρAL = 0.674kg, c = 5kgs−1. (7b)

We used 100 beam elements, which result in matrices M , D and K of dimension n = 200.
The eigenvalues were computed by calling MATLAB’s function eig, which implements the
QZ algorithm, on each of the three linearizations (4)–(6). The first three plots in Figure 2
display those computed eigenvalues having real parts in the interval [−16, 4]; it follows from
the analysis below that the real parts of the exact eigenvalues all lie in this range. Since (4)–(6)
are all linearizations of Q, the first three plots should be identical, but in fact they are very
different, and none of them correctly displays the real part of the spectrum of Q to visual
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Figure 2. Beam problem discretized with 100 finite elements. Computed eigenvalues λ with
Re(λ) ∈ [−16, 4] of the linearizations C1(λ), L1(λ) and L2(λ) defined in (4)–(6).
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accuracy. These three plots have one feature in common: some eigenvalues lie in the right
half plane, therefore implying that the discretized beam problem is unstable and seeming to
contradict the theory.

Now let us convert Q(λ) = λ2M + λD +K to Q̃(µ) = δQ(γµ) = µ2M̃ + µD̃ + K̃, where

λ = γµ, M̃ = γ2δM, D̃ = γδD, K̃ = δK, (8a)

γ =
√
k/m, δ = 2/(k + dγ) (8b)

and

m = ‖M‖2, d = ‖D‖2, k = ‖K‖2 (9)

(the 2-norm is defined in Section 2). This scaling, with its two parameters γ and δ, was
proposed by Fan, Lin, and Van Dooren [4]. Note that the scaling does not affect any sparsity

of M , D and K. The eigenvalues µ of Q̃(µ) are then computed by calling eig on each of the

three linearizations (4)–(6) with the scaled matrices M̃ , D̃ and K̃ in place of M , D and K.

The eigenvalues of Q(λ) are recovered from those of Q̃(µ) via λ = γµ. The last plot in Figure
2 shows the spectrum of Q(λ) computed using the linearization L2 after scaling; all three
linearizations (4)–(6) yield similar plots after scaling. Note that all the eigenvalues are now in
the left half-plane and that many of the eigenvalues appear to be pure imaginary, as expected
by the theory. Indeed we prove in Appendix I.1 that for the discretized beam problem half of
the eigenvalues of Q are pure imaginary and that they coincide with half of the eigenvalues of
the undamped quadratic λ2M +K. It is therefore reasonable to believe—and we will be able
to conclude from our analysis—that the fourth plot in Figure 2 is a good approximation of the
spectrum of Q, unlike the first three plots.

In the rest of this paper we give a theoretical explanation of these somewhat surprising
numerical results by making use of some recently developed theory concerning the sensitivity
and stability of linearizations. We hope to convince the engineering community of

• the importance of scaling quadratic eigenvalue problems before computing the
eigenvalues via linearization,

• the practical value of condition numbers and backward errors for understanding the
quality of the computed results.

The results herein are not confined to the beam problem but apply to any quadratic eigenvalue
problem.

2. SENSITIVITY AND STABILITY OF LINEARIZATIONS

Backward errors and condition numbers play an important role in modern numerical linear
algebra. A condition number measures the sensitivity of the solution of a problem to
perturbations in the data, whereas a backward error measures how far a problem has to be
perturbed for an approximate solution to be an exact solution of the perturbed problem. Thus
conditioning is a property of the problem, while backward error characterizes the stability of a
method for solving the problem. Backward error and conditioning are complementary concepts:
when combined with a backward error estimate, a condition number provides an approximate
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upper bound on the error in a computed solution. Indeed with consistent definitions we have
the rule of thumb that

error in solution <∼ condition number × backward error. (10)

For a given quadratic Q, infinitely many linearizations exist (of which (4)–(6) are just
three) [15]. They can have widely varying eigenvalue condition numbers [9], and approximate
eigenpairs of Q(λ) computed via linearization can have widely varying backward errors [8].
Ideally, we would like the linearization L that we use to be as well conditioned as the original
quadratic Q and for it to lead, after recovering an approximate eigenpair of Q from one of L,
to a backward error of the same order of magnitude as that for L. In the following subsections
we will define the terms condition number and backward error more precisely and investigate
their size for different linearizations of a quadratic. Then we show how the scaling (8) can
improve both conditioning and backward error.

We will use the 2-norm, defined for a vector x by ‖x‖2 = (x∗x)1/2 and for a matrix A by
‖A‖2 = maxx6=0 ‖Ax‖2/‖x‖2.

2.1. EIGENVALUE CONDITION NUMBER

A normwise relative condition number of a simple, finite, nonzero eigenvalue λ of Q with
corresponding right eigenvector x and left eigenvector y can be defined by

κQ(λ) = lim
ǫ→0

sup
{ |∆λ|
ǫ|λ| :

(
Q(λ+ ∆λ) + ∆Q(λ+ ∆λ)

)
(x+ ∆x) = 0,

‖∆M‖2 ≤ ǫm, ‖∆D‖2 ≤ ǫd, ‖∆K‖2 ≤ ǫk
}
,

where ∆Q(λ) = λ2∆M + λ∆D + ∆K and, as in (9), m = ‖M‖2, d = ‖D‖2, k = ‖K‖2. The
eigenvalue condition number κL(λ) for the pencil L(λ) = λX + Y is defined in a similar way.
Explicit formulae for these condition numbers are given by [16, Thm. 5]

κQ(λ) =

(
|λ|2m+ |λ|d+ k

)
‖y‖2‖x‖2

|λ||y∗(2λM +D)x| , κL(λ) =

(
|λ|‖X‖2 + ‖Y ‖2)‖w‖2‖z‖2

|λ||w∗Xz| . (11)

Here w and z denote left and right eigenvectors of L corresponding to λ. (For a very readable
introduction to eigenvalue condition numbers for the standard eigenvalue problem Ax = λx
see Davis and Moler [3].)

Higham, Mackey and Tisseur [9] have recently investigated the conditioning of a large class
of linearizations for matrix polynomials of arbitrary degree. Define φL(λ) by

κL(λ) = φL(λ)κQ(λ).

φL can be regarded as a growth factor in the translation from conditioning forQ to conditioning
for L. Ideally we would like φL(λ) ≈ 1. From the analysis in [9] we obtain for the three
linearizations (4)–(6) explicit approximations for φL(λ) (see Appendix I.2.1). From these, we
give in Table I conditions that guarantee κL(λ) ≈ κQ(λ). Here the quantity

ρ :=
max(m, d, k)

min(m, k)
(12)
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Table I. Sufficient conditions for κQ ≈ κL; m, d, k are as in (9), ρ is defined in (12).

Linearization Eigenvalue Condition

C1 in (4) No restriction m ≈ d ≈ k ≈ 1

L1 in (5)
|λ| >∼ 1
|λ| ≪ 1

ρ ≈ 1
“not available”

L2 in (6)
|λ| >∼ 1
|λ| ≪ 1

“not available”
ρ ≈ 1

Table II. Approximations (26)–(28) to growth factors φL(λ) for the beam problem.

φC1
(λ) φL1

(λ) φL2
(λ)

|λ| = 102 1 × 102 1 × 104 1 × 104

|λ| = 104 1 × 104 1 × 108 1 × 108

|λ| = 106 2 × 105 2 × 1011 2 × 1011

measures the scaling of the problem. Table I shows that for well-scaled problems (i.e., ρ ≈ 1)
the two symmetric linearizations L1 and L2 are optimally conditioned for large |λ| and small
|λ|, respectively. Note that the sufficient condition m ≈ d ≈ k ≈ 1 for C1 to be optimally
conditioned is more stringent than the requirement ρ ≈ 1.

For the particular instance of the beam problem described in section 1 the matrices vary
widely in norm: the norms of the mass, damping and stiffness matrices are

m = 6.7 × 10−3, d = 5, k = 1.7 × 109.

Thus ρ = 2.6 × 1011, and so the beam problem is badly scaled. The moduli of the eigenvalues
lie in the interval (7× 101, 4× 106). Approximate values of φL(λ) are given in Table II for |λ|
ranging from 102 to 106; they indicate that the eigenvalues of all three linearizations (4)–(6)
are much more sensitive to perturbations than those of the original quadratic Q(λ).

To understand how the theory relates to the results in Figure 2, note that from the definition
of κL(λ) a relative perturbation of order ǫ in L(λ) can perturb λ by

|∆λ| <∼ ǫ|λ|κL(λ) = ǫ|λ|φL(λ)κQ(λ).

From Table II, for L = L1 and |λ| = 106, and with ǫ ≈ 10−16, which represents the perturbation
introduced by the QZ algorithm in MATLAB’s floating point arithmetic, we have

|∆λ| <∼ 10−16 × 106 × 1011 × κQ(λ) = 10κQ(λ).

Since κQ(λ) ≈ 106 for the largest eigenvalues of Q, we see that the eigenvalues on the imaginary
axis can be perturbed by a large distance into the right half-plane (and the perturbations in
Figure 2 are far from the worst case).
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The values in Table II show that the first companion linearization C1 is better conditioned
than the two symmetric linearizations L1 and L2. This explains the slightly better looking plot
for C1 in Figure 2.

2.2. BACKWARD ERROR

Consider an approximate eigenpair (x̂, λ̂) of Q(λ) with λ̂ finite. We can interpret (x̂, λ̂) as the
exact eigenpair of a perturbed quadratic (Q+∆Q)(λ) = λ2(M+∆M)+λ(D+∆D)+K+∆K,
where there are many possible choices of ∆M , ∆D and ∆K. We define the backward error of
(x̂, λ̂) to be the size of the smallest of all such perturbations:

ηQ(x̂, λ̂) = min
{
ǫ : (Q+ ∆Q)(λ̂)x̂ = 0, ‖∆M‖2 ≤ ǫm, ‖∆D‖2 ≤ ǫd, ‖∆K‖2 ≤ ǫk

}
.

An analogous definition holds for the backward error ηL(ẑ, λ̂) of an approximate eigenpair

(ẑ, λ̂) of the pencil L(λ). The explicit formulae [16, Thm. 1]

ηQ(x̂, λ̂) =
‖Q(λ̂)x̂‖2(

|λ̂|2m+ |λ̂|d+ k
)
‖x̂‖2

, ηL(ẑ, λ̂) =
‖L(λ̂)ẑ‖2(

|λ̂|‖X‖2 + ‖Y ‖2

)
‖ẑ‖2

(13)

show that the backward errors of (x̂, λ̂) and (ẑ, λ̂) are scaled residuals.
Two main factors affect the backward error. First, because L is usually highly structured

(see for instance (4)–(6)), perturbations to L cannot directly be interpreted as equivalent
perturbations to Q. Second, the “short” eigenvectors of Q can be recovered from the “long”
eigenvectors of L in many ways, with differing implications on the backward error for Q. For
all the linearizations in (4)–(6) the right eigenvectors z of the linearization have the form

z =

[
λx
x

]
, (14)

where x is a right eigenvector of Q, hence we can recover eigenvectors of Q from either of the
components

z1 = z(1 : n) (if λ 6= 0), z2 = z(n+ 1: 2n).

In the analysis below we will make the reasonable assumption that (14) remains approximately
true for the approximate eigenpair, to the extent that the ratio ‖ẑ‖2/‖ẑi‖2 is of order 1 for

i = 1 when |λ̂| ≥ 1 and for i = 2 when |λ̂| ≤ 1.
The backward error properties of a large class of linearizations have recently been

investigated by Higham, Li and Tisseur [8]. For the linearizations (4)–(6) they obtain bounds
of the form

1

2
≤ ηQ(ẑi, λ̂)

ηL(ẑ, λ̂)
≤ cψ

(i)
L

|λ|2 + 1

|λ|2m+ |λ|d+ k

‖ẑ‖2

‖ẑi‖2
, i = 1, 2 (15)

(see Appendix I.3 for explicit expressions for ψL), where c is a constant of order 1 that depends
on the linearization, and they derive the sufficient conditions for ηQ ≈ ηL that are summarized
in Table III. We see that for well-scaled problems (i.e., ρ ≈ 1) the two symmetric linearizations
L1 and L2 are optimally stable for large |λ| and small |λ|, respectively. This is entirely consistent
with the sufficient conditions for optimal conditioning given in Table I. Note that which portion
of z must be used to recover the eigenvector of Q depends on the size of |λ|, as specified in the
third column of the table.
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Table III. Sufficient conditions for ηQ ≈ ηL; ρ is defined in (12) and m, d, k in (9).

Linearization Eigenvalue
Right

eigenvector
Condition

C1 in (4)
|bλ| ≥ 1

|bλ| ≤ 1

bz1

bz2
d ≤ m ≈ k ≈ 1

L1 in (5)
|bλ| ≥ 1

|bλ| ≤ 1

bz1

bz2

ρ ≈ 1
ρ max

`
1, (m + d)‖K−1‖2

´
≈ 1

L2 in (6)
|bλ| ≥ 1

|bλ| ≤ 1

bz1

bz2

ρ max
`
1, (d + k)‖M−1‖2

´
≈ 1

ρ ≈ 1

For our beam problem example, ψ
(i)
L ≫ 1, i = 1, 2, for all the linearizations (4)–(6),

indicating that these three linearizations are potentially unstable. We found that for all three
linearizations ηL(ẑ, λ̂) ≤ 10−15 ≈ nu for all computed eigenpairs, where u ≈ 1.1 × 10−16 is
the unit roundoff. This is not surprising since the QZ algorithm for the generalized eigenvalue
problem is backward stable. However, we found that the ratio ηQ(ẑ1, λ̂)/ηL(ẑ, λ̂) can be as
large as 107 for the companion linearization and as large as 1012 for the other linearizations.
Therefore none of the three linearizations produces computed eigenpairs with satisfactory
backward error for the beam example, which again is consistent with the poor results observed
in Figure 2.

2.3. SCALED QUADRATICS

In view of the sufficient conditions for κL ≈ κQ and ηL ≈ ηQ given in Tables I and III it is
natural to scale the problem to try to bring the 2-norms of M , D, and K close to 1 in order
to ameliorate any sensitivity or instability induced by the linearization process. The scaling of
Fan, Lin, and Van Dooren [4] defined in (8) has precisely this aim. Note that κQ(λ) = κ eQ(µ)

and ηQ(x, λ) = η eQ(x, µ), where Q̃(µ) = µ2M̃ + µD̃ + K̃ is the scaled quadratic in (8) and
λ = γµ, so this scaling has no effect on the condition number and backward error for the
quadratic; its purpose is to improve the condition number of the linearization L and backward
error of the eigenpairs of Q obtained from L. That it might do so is clear from the fact that
scaling generally decreases ρ: it can be shown [8] that ρ̃ defined as in (12) for the scaled problem
satisfies ρ̃ = max(1, τ) ≤ ρ, where

τ :=
d√
mk

.

For the scaled quadratic Q̃(µ) the analyses of Sections 2.1 and 2.2 simplify. We define the
key quantity

ω(µ) :=
1 + τ

1 + |µ|
1+|µ|2 τ

. (16)

Let (ẑ, µ̂) be an approximate eigenpair of a linearization for Q̃ with ẑ partitioned as ẑ =
[

bz1

bz2

]

9



and µ, µ̂ are assumed to be finite. For the linearizations (4)–(6) we can show that

κL(µ)

κ eQ(µ)
≈ φ̃L(µ) =





ω(µ), L = C1,

1 + |µ|
|µ| ω(µ), L = L1,

(1 + |µ|)ω(µ), L = L2,

(17)

and
η eQ(ẑk, µ̂)

ηL(ẑ, µ̂)
<∼ ψ̃L(ẑk)

‖ẑ‖2

‖ẑk‖2
, (18)

where
ψ̃C1

(ẑk) = ω(µ̂), k = 1: 2,

ψ̃L1
(ẑk) =

{
ω(µ̂), k = 1,

‖K̃−1‖2 ω(µ̂), k = 2,

ψ̃L2
(ẑk) =

{
‖M̃−1‖2 ω(µ̂), k = 1,

ω(µ̂), k = 2.

(19)

The values for φ̃L(µ) are obtained from (26)–(28) using |µ|2m̃+ |µ|d̃ + k̃ = 2(1 + |µ|2)/ω(µ),

where m̃ = ‖M̃‖2, d̃ = ‖D̃‖2 and k̃ = ‖K̃‖2 can be shown to satisfy m̃ = k̃ = 2/(1 + τ),

d̃ = 2τ/(1 + τ). The values for ψ̃L(µ̂) come from [8, Thm. 5.1]. Hence we conclude that for
the companion linearization C1, and for L1 (if |µ| ≥ 1) or L2 (if |µ| ≤ 1), both backward error
and conditioning are essentially optimal for the scaled problem if ω(µ) = O(1). The quantity
ω(µ) satisfies the bounds

1 ≤ ω(µ) ≤ min

{
1 + τ,

1 + |µ|2
|µ|

}
. (20)

Hence, ω(µ) = O(1) if τ = O(1) or if |µ| = O(1). Note that if

d <∼
√
mk (21)

then τ <∼ 1 and hence we are guaranteed that ω = O(1). In the terminology of systems
originating from mechanical systems with damping, the condition (21) holds for systems that
are not too heavily damped. A class of problems for which (21) is satisfied is the elliptic Q
[12], [14]: those for which M is Hermitian positive definite, D and K are Hermitian, and
(x∗Dx)2 < 4(x∗Mx)(x∗Kx) for all nonzero x ∈ C

n.
The following bounds on |µ| (expressed in terms of the unscaled matrices) can be derived

from [11, Lemma 3.1]:

1

2
τ
(
− 1 +

√
1 + 4/(τ2κ2(K))

)
≤ |µ| ≤ 1

2
τκ2(M)

(
1 +

√
1 + 4/(τ2κ2(M))

)
. (22)

These bounds depend on the condition numbers κ2(M) = ‖M‖2‖M−1‖2 and κ2(K) =
‖K‖2‖K−1‖2. In particular, if M is well-conditioned and τ = O(1), the upper bound is close
to 1 and we can safely use the symmetric linearization L2.

Turning to the beam problem, the Fan, Lin and Van Dooren scaling (8) yields

‖M̃‖2 = ‖K̃‖2 ≈ 2, ‖D̃‖2 ≈ 3 × 10−3.
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For this problem the scaling does not quite reach its aim of bringing the norms of all three
matrices to 1. Nevertheless, since the problem is not too heavily damped, (21) holds, so that
ω(µ) = O(1). Thus the theory above guarantees optimal conditioning and optimal stability for
the companion linearization. Because M is ill-conditioned with κ2(M) = 2.6 × 106, the upper
bound in (22) is not very informative. But if we apply (22) to the diagonally scaled quadratic

HQ̃H (which has the same eigenvalues as Q̃), where H = diag(m̃
1/2
11 , . . . , m̃

1/2
22 ), then (22)

produces the surprisingly good bounds

1.4 × 10−5 ≤ |µ| ≤ 7.25,

the correct interval being [1.43 × 10−4, 7.2461]. This tells us that the symmetric linearization
L2 in (6) is optimal in terms of both conditioning and stability. Finally, we can use the rule of
thumb (10) to bound the errors in our computed eigenvalues. The condition numbers κQ(λ) in
(11) are readily computed and are found to be at most 108. Since ηQ ≈ ηL ≈ 10−15 for C1 and
L2 on the scaled problem, we know that the relative error is at most about 108×10−15 = 10−7.
Thus without knowing the exact eigenvalues we can be sure that all the computed eigenvalues
have relative error at most about 10−7, confirming that the last plot in Figure 2 is correct to
(much more than) visual accuracy.

3. CONCLUSIONS

Through the specific example of the beam problem we have shown that solving a QEP
by linearization can yield unsatisfactory computed eigenvalues, both quantitatively and
qualitatively. To improve the quality of computed eigenvalues in general we recommend an
initial scaling of the quadratic using the scaling (8) of Fan, Lin and Van Dooren. Although this
scaling employs only two parameters we have shown that it can produce essentially optimal
backward error and conditioning properties of the linearization. Indeed this scaling usually
reduces (and never increases) the scaling factor ρ in (12), which is a key quantity in measuring
the sensitivity and stability of the linearization process. For the beam problem we have shown
that while the computed eigenvalues of the unscaled problem have large errors in the “eyeball
norm”, scaling achieves optimal backward error and conditioning for C1 and L2 and leads
to computed eigenvalues with at least 7 correct significant digits, the improvements being
clear from Figure 2. Scaling requires approximations of the 2-norms of the mass, damping and
stiffness matrices; these can be obtained by the power method or the Lanczos method [1], or
simply by computing a different norm, such as the Frobenius norm ‖A‖F = (

∑
i,j |aij |2)1/2.

Turning to the choice of linearization once the QEP is scaled, the theory summarized in (17)–
(19) shows that the companion form for all eigenvalues, L1 for large eigenvalues, and L2 for
small eigenvalues all satisfy essentially the same conditioning and backward error bounds, and
that these bounds are optimal for QEPs that are not too heavily damped. The companion form
has the advantage that it is always a linearization. If preserving symmetry is an issue for reasons
of storage or computational cost then L1 and L2 are attractive. These two linearizations have
the weakness that in general they favour large and small eigenvalues, respectively. However, if
the condition number of K or M is small (these condition numbers can be estimated without
explicitly computing the inverses [7, Chap. 15], [10]) then L1 or L2, respectively, can safely be
used to stably obtain all the eigenpairs, as shown by the conditions in (19).

11



ACKNOWLEDGEMENTS

We thank Nils Wagner of the Institute of Applied and Experimental Mechanics at the University
of Stuttgart for bringing to our attention the instabilities in solving the unscaled beam problem by
linearization. We also thank Timo Betcke and Marta Betcke for their useful comments.

APPENDIX

I.1. ON THE SPECTRUM OF THE BEAM PROBLEM

The fourth plot in Figure 2 strongly suggests that many of the eigenvalues of the QEP (3) for the beam
problem lie on the imaginary axis. We prove in this appendix that this is indeed the case, thereby
providing further evidence that this plot accurately portrays the true eigenvalues of (3). To do this
we need a more precise description of the structure of the matrices in (3).

The mass and stiffness matrices are obtained by a finite element discretization of (2). The beam is
divided into ℓ (even) elements. Each beam element has two end nodes and four degrees of freedom.

These degrees of freedom are collected in the node displacement vector [u1 θ1 u2 θ2 ]T , where
u1, u2 are the transverse displacements and θ1, θ2 the slopes of the displacements at node 1 and
node 2, respectively. Cubic Hermite polynomials are used as interpolation shape functions. The beam
element stiffness matrix Ke and the beam element consistent mass matrix Me are well known [2]:

Ke =
2(EI)

L3
e

2
64

6 3Le −6 3Le

3Le 2L2
e −3Le L2

e

−6 −3Le 6 −3Le

3Le L2
e −3Le 2L2

e

3
75 ,

Me =
ρALe

420

2
64

156 22Le 54 −13Le

22Le 4L2
e 13Le −3L2

e

54 13Le 156 −22Le

−13Le −3L2
e −22Le 4L2

e

3
75 ,

where Le is the length of the finite element e. Now we assume that the ℓ beam elements are all of
equal length. With the unknowns ordered as

[ θ1 u2 θ2 . . . uℓ θℓ θℓ+1 ]T

the global stiffness and mass inertia matrices are obtained by assembling Ke and Me, e = 1: ℓ, as
follows. Expressing Ke in block form

Ke =

»
A B
BT C

–
, AT = A, CT = C, (23)

where the blocks A,B,C are 2 × 2 and setting n = 2ℓ, the (n + 2) × (n + 2) “augmented” stiffness
matrix is given by

K̆ =

2
66664

A B
BT C +A B

. . .
. . .

. . .
BT C +A B

BT C

3
77775

(n+2)×(n+2)

.

Then the n × n global stiffness matrix K in (3) is obtained from K̆ by deleting the first row and
column and the next-to-last row and column, thus accounting for the boundary conditions (u1 = 0
and uℓ+1 = 0). The global mass matrix M is constructed from the 4 × 4 element mass matrix Me in
an analogous way. Finally the global damping matrix D is the n× n rank-one matrix

D = ceℓe
T
ℓ , c > 0.

We can now show that half of the 2n eigenvalues of (3) lie on the imaginary axis.
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Theorem I.1. For the damped problem Q(λ) = λ2M + λD + K and n × n matrices M , D and
K constructed as above, consider the quadratic Qu(λ) = λ2M + K for the corresponding undamped
problem. Q(λ) and Qu(λ) have n eigenvalues (and n eigenvectors in the semisimple case) in common.

Note that since by construction M > 0 and K > 0, the eigenvalues of λ2M +K are pure imaginary,
and so the theorem implies that Q(λ) must have n pure imaginary eigenvalues.

Proof. Let R =
ˆ

1
0

0
−1

˜
and observe that the blocks of Ke in (23) satisfy the relations

C = RAR, BT = RBR. (24)

As a consequence we see that Ke commutes with the matrix
ˆ

0
R

R

0

˜
, which can be interpreted as

representing a symmetry that interchanges the two nodes of the element. Similar relations also hold
for Me and its blocks.

Letting

S̆ =

2
64

R
. .

.

R
R

3
75

(n+2)×(n+2)

,

one can use the relations (24) to show that S̆ commutes with K̆. Deleting the first row and column

and the next-to-last row and column of S̆ then produces an n× n matrix

S =

2
6664

−1
R

. .
.

R
−1

3
7775

n×n

that commutes with K and M . This S can be viewed as a left/right mirror image symmetry of the
beam that interchanges node pairs that are symmetrically placed with respect to the midpoint of the
beam.

The fact that S commutes with K and M can now be exploited to simultaneously block-diagonalize
K and M . Observe that S is diagonalizable since S = ST , and has only the eigenvalues λ = ±1 since
S2 = I. Thus R

n decomposes as the orthogonal direct sum of the two eigenspaces of S, the λ = 1
eigenspace comprising the “symmetric modes” of the discretized beam problem, and the λ = −1
eigenspace corresponding to the “anti-symmetric modes”. Now since trace(S) = 0 there are ℓ = n/2
eigenvalues 1 and ℓ eigenvalues −1. Let {u1, u2, . . . , uℓ} and {v1, v2, . . . , vℓ} be any orthonormal bases
for the λ = −1 and λ = 1 eigenspaces of S, respectively, and let W denote the orthogonal matrix

W = [u1 u2 . . . uℓ | v1 v2 . . . vℓ ]
n×n

(25)

with columns ui and vj .
It is well known that when two matrices commute any eigenspace of one matrix is necessarily an

invariant subspace of the other. Thus the S-eigenspaces span{u1, u2, . . . , uℓ} and span{v1, v2, . . . , vℓ}
are invariant subspaces for K and M , and consequently similarity by W will simultaneously block-
diagonalize K and M as direct sums of ℓ× ℓ matrices. This gives us a way to decouple the undamped
problem Qu(λ), but what happens to the damping matrix D in Q(λ) under this similarity? The
significant feature of D = ceℓe

T
ℓ for this question is that eℓ is itself an eigenvector of S (provided ℓ

is even, which we have been assuming from the start). This is because for even ℓ (and hence an odd
number of R blocks in S), there is a middle R-block in S that lines up along the diagonal at the
intersection of the ℓth and (ℓ+ 1)st rows and columns,

S([ℓ, ℓ+ 1], [ℓ, ℓ+ 1]) = R =

»
1 0
0 −1

–
.

Thus we see that eℓ is in the λ = 1 eigenspace span{v1, v2, . . . , vℓ} of S and hence orthogonal to each
ui, so that

WTDW = WT (ceℓe
T
ℓ )W = c(WT eℓ)(e

T
ℓ W ) = czzT,
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where zT has the form [ 0 . . . 0 | ∗ . . . ∗ ], the 0 block being of length ℓ. Hence

WTDW =

»
0 0
0 D2

–
,

where all the blocks are ℓ× ℓ. So not only do we find that WTDW is block-diagonal, but the damping
is isolated in just one block. In summary, similarity by W decouples both Qu(λ) and Q(λ),

WTQu(λ)W =

»
λ2M1 +K1 0

0 λ2M2 +K2

–
,

WTQ(λ)W =

»
λ2M1 +K1 0

0 λ2M2 + λD2 +K2

–
,

and these decoupled forms have a common leading principal ℓ × ℓ block λ2M1 + K1. Since M1 =
WT

1 MW1 and K1 = WT
1 KW1, where W1 comprises the first ℓ columns of W1, M1 and K1 are both

symmetric positive definite. Thus Qu(λ) and Q(λ) have the n = 2ℓ pure imaginary eigenvalues of
λ2M1 +K1 in common (as well as the n corresponding eigenvectors in the semisimple case).

Numerical computations show that the eigenvalues of λ2M1 +K1 and those of λ2M2 +K2 interlace,
as expected from the physics of the problem.

I.2. TECHNICAL BOUNDS

I.2.1. GROWTH FACTOR φL(λ)

The growth factor φL(λ) is defined by κL(λ) = φL(λ)κQ(λ). From the analysis in [9] we can show
that for the three linearizations (4)–(6),

φC1
(λ) <

∼ (1 + |λ|)

`
max(m, 1)|λ| + max(d, k, 1)

´

m|λ|2 + d|λ| + k
×

min

 
p

1 + (|λ|m+ d)2,

s
1 +

k2

|λ|2

!
, (26)

φL1
(λ) ≈

1 + |λ|2

|λ|

`
max(m, k)|λ| + max(d, k)

´

m|λ|2 + d|λ| + k
, (27)

φL2
(λ) ≈ (1 + |λ|2)

`
max(m, d)|λ| + max(m, k)

´

m|λ|2 + d|λ| + k
, (28)

where the bound and the equalities are correct to within a constant factor of order 1.

I.3. EXPRESSIONS FOR ψL

Let (bz, bλ) be an approximate eigenpair of a linearization L(λ) of Q(λ). Partition bz as
ˆ

bz1

bz2

˜
where bz1

and bz2 have the same dimension. It is shown in [8] that for the linearizations (4)–(6),

ηQ(bzi, bλ)

ηL(bz, bλ)
≤ cψ

(i)
L

|bλ|2 + 1

|bλ|2m+ |bλ|d+ k

‖bz‖2

‖bzi‖2
, i = 1, 2,

where
ψ

(i)
C1

= max
`
1,m, d, k

´2
, i = 1, 2, (29)

ψ
(1)
L1

= max(m, d, k), ψ
(2)
L1

= max(m, d, k) max(1, (m+ d)‖K−1‖2), (30)

ψ
(1)
L2

= max(m, d, k) max(1, (d+ k)‖M−1‖2), ψ
(2)
L2

= max(m, d, k), (31)

and c is constant of order 1 that depends on the linearization.
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