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Abstract. Perturbation bounds in numerical linear algebra are traditionally
derived and expressed using norms. Norm bounds cannot reflect the scaling

or sparsity of a problem and its perturbation, and so can be unduly weak.
If the problem data and its perturbation are measured componentwise, much
smaller and more revealing bounds can be obtained. A survey is given of

componentwise perturbation theory in numerical linear algebra, covering linear
systems, the matrix inverse, matrix factorizations, the least squares problem,
and the eigenvalue and singular value problems. Most of the results described
have been published in the last five years.

Our hero is the intrepid, yet sensitive matrix A.

Our villain is E, who keeps perturbing A.

When A is perturbed he puts on a crumpled hat: eA = A + E.

G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory (1990)

1. Introduction

Matrix analysis would not have developed into the vast subject it is today with-
out the concept of representing a matrix by a single symbol. Similarly, perturbation
theory would not be such a rich and useful area if it were not for norms. A norm
compresses the mn numbers in an m×n matrix into a single scalar measure of size,
enabling a perturbation result to be presented in a form that is easy to interpret
and gives insight. In the recent book Matrix Perturbation Theory [71] by Stewart
and Sun, norms are exploited throughout.
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2 NICHOLAS J. HIGHAM

Although a great deal can be achieved with norms, they have two main failings.
First, norms ignore structure in the form of both scaling and sparsity. Norms can
tell us the overall size of a perturbation but not how that size is distributed among
the elements it perturbs, and this information can be important when the data is
badly scaled or contains many zeros. The second failing is that norm bounds can
lack sharpness (particularly in a rounding error analysis), because they are often
the result of several applications of the triangle inequality and the submultiplicative
inequality, in not all of which there can be equality simultaneously.

It is for these reasons that an alternative style of analysis has become popular,
in which the use of norms is kept to a minimum (but not abandoned altogether); it
is known as componentwise analysis. The idea is not new. Its history can be very
roughly outlined as follows (more details are given in the following sections).

Wilkinson frequently obtained componentwise backward error results as inter-
mediate steps in an error analysis, but usually stated the final result in normwise
form. Some of the earliest examples are contained in his 1960 paper [79] and 1963
book [80]. In 1964, Oettli and Prager [54] obtained a formula for the componentwise
backward error of an approximate solution to a linear system. Bauer [8] applied
componentwise perturbation analysis to linear systems and to matrix inversion in
1966. Stoer and Bulirsch gave a componentwise error analysis of Gaussian elimina-
tion in the original 1972 German edition of Introduction to Numerical Analysis [72].
In a series of papers Skeel explored componentwise perturbation analysis for linear
systems and componentwise error analysis for Gaussian elimination, obtaining new
results about the stability of Gaussian elimination and the behaviour of iterative re-
finement [63], [64], [65]. Skeel’s papers did not attract immediate attention in the
numerical linear algebra community, but gradually came to be appreciated during
the 1980s. Since the mid 1980s componentwise analysis has been widely used for
linear systems and linear system solvers, and componentwise perturbation theory
and error analysis has been developed for eigenproblems and eigensolvers. Perhaps
the best indication of the utility of componentwise analysis is that it has been fully
exploited in the development of LAPACK, the state-of-the-art package of Fortran
programs for solving linear equation and eigenvalue problems [1].

Although the componentwise approach is now well known, at least among nu-
merical analysts, it is hardly represented in current textbooks. For example, Golub
and Van Loan [34] and Stewart and Sun [71] give componentwise error analysis
for linear equations but not for eigenvalue problems, while Horn and Johnson [47],
[48] give no componentwise perturbation results at all.

In this paper we survey componentwise perturbation theory in numerical linear
algebra. We do not consider rounding error analysis, except briefly when it helps
to illuminate the perturbation theory. No survey of componentwise rounding error
analysis is currently available, but some relevant references for standard problems,
which themselves include further references, are as follows:

• [41] for substitution for triangular systems,
• [43] for Gaussian elimination,
• [19] for Cholesky factorization,
• [25] for matrix inversion,
• [46] for stationary iterative methods,
• [44] for QR factorization and its application to least squares problems,
• [22] for underdetermined system solvers,
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• [23] for the QR algorithm for the bidiagonal SVD problem,
• [24] for Jacobi’s method for the symmetric eigenproblem and SVD.

In §2 we consider backward and forward perturbation bounds for square linear
systems. The matrix inverse is considered in §3. Section 4 is concerned with
the least squares problem, for which both normwise and componentwise results
have recently been obtained; underdetermined systems are also discussed in this
section. Matrix factorizations are discussed in §5. The active area of componentwise
perturbation theory for eigenvalue and singular value problems is described in §6.
Finally, some concluding remarks are given in §7.

It is possible to develop probabilistic perturbation theory for all the problems
considered here, by making assumptions about the statistical distribution of the
perturbations. We do not consider this approach, but refer the interested reader to
the papers by Fletcher [29] and Stewart [69].

2. Linear Systems

Throughout this section we are concerned with a linear system Ax = b, where
A ∈ IRn×n. In the context of uncertain data or inexact arithmetic there are two
important questions:

(1) How much do we have to perturb the data A and b for an approximate
solution y to be the exact solution of the perturbed system—in other words, what
is the backward error of y?

(2) How much does x change if we perturb A and b, that is, how sensitive is
the solution to perturbations in the data?

When we use norms to measure size, the answers are given by the following
classical results. We denote by ‖ · ‖ any vector norm and the corresponding sub-
ordinate matrix norm, and κ(A) = ‖A‖‖A−1‖ is the matrix condition number.
The matrix E and the vector f have nonnegative entries and represent tolerances
against which the perturbations are measured (their role becomes clear when we
consider componentwise results).

The first theorem is due to Rigal and Gaches [58], and was also given by
Kovarik [52].

Theorem 2.1 (Rigal and Gaches). The normwise backward error

ηE,f (y) := min{ǫ : (A + ∆A)y = b + ∆b, ‖∆A‖ ≤ ǫ‖E‖,(2.1)

‖∆b‖ ≤ ǫ‖f‖}
is given by

(2.2) ηE,f (y) =
‖r‖

‖E‖‖y‖ + ‖f‖ ,

where r = b − Ay.

Proof. It is straightforward to show that the right-hand side of (2.2) is a lower
bound for η(y). This lower bound is attained for the perturbations

(2.3) ∆Amin =
‖E‖‖y‖

‖E‖ ‖y‖ + ‖f‖rzT , ∆bmin = − ‖f‖
‖E‖ ‖y‖ + ‖f‖r,

where z is a vector dual to y, that is,

zT y = ‖z‖D‖y‖ = 1, where ‖z‖D = max
v 6=0

|zT v|
‖v‖ . �
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For the particular choice E = |A| and f = |b|, the quantity ηE,f (y) is called
the normwise relative backward error.

The next result measures the sensitivity of the system.

Theorem 2.2. Let Ax = b and (A+∆A)y = b+∆b, where ‖∆A‖ ≤ ǫ‖E‖ and
‖∆b‖ ≤ ǫ‖f‖, and assume that ǫ‖A−1‖‖E‖ < 1. Then

(2.4)
‖x − y‖
‖x‖ ≤ ǫ

1 − ǫ‖A−1‖‖E‖

(‖A−1‖‖f‖
‖x‖ + ‖A−1‖‖E‖

)
,

and this bound is attainable to first order in ǫ.

Proof. The bound (2.4) is straightforward to derive. It is attained to first
order in ǫ for ∆A = ǫ‖E‖‖x‖wvT and ∆b = −ǫ‖f‖w, where ‖w‖ = 1, ‖A−1w‖ =
‖A−1‖, and v is a vector dual to x. �

Associated with the way of measuring perturbations used in these two theorems
is the normwise condition number

κE,f (A, x) := lim
ǫ→0

sup
{ ‖∆x‖

ǫ‖x‖ : (A + ∆A)(x + ∆x) = b + ∆b,

‖∆A‖ ≤ ǫ‖E‖, ‖∆b‖ ≤ ǫ‖f‖
}
.

Because the bound of Theorem 2.2 is sharp, it follows that

κE,f (A, x) =
‖A−1‖‖f‖

‖x‖ + ‖A−1‖‖E‖.

For the choice E = |A| and f = |b| (where |A| denotes the matrix (|aij |)), we have
κ(A) ≤ κE,f (A, x) ≤ 2κ(A), and the bound (2.4) can be weakened slightly to yield
the familiar form

‖x − y‖
‖x‖ ≤ 2ǫκ(A)

1 − ǫκ(A)
.

A numerical example illustrates the above results. Let A be the 8 × 8 Vander-
monde matrix with (i, j) element j2(i−1), and let b = e1, the first unit vector, so
that x is the first column of A−1. We take y to be the approximate solution to
Ax = b computed by Gaussian elimination with partial pivoting. All our experi-
ments are performed in Matlab, for which the unit roundoff u ≈ 1.1 × 10−16. We
find that η∞(y) = 3.05 × 10−21 for E = |A| and f = |b|, and κ∞(A) = 1.68 × 1013.
This is an admirably small backward error, but it may be uninformative for two
reasons. First, the elements of A vary over 12 orders of magnitude, so while our
backward error perturbations are small compared with the large elements of A, we
may be making large perturbations in the small elements (indeed we are in this
particular example). Second, we are perturbing the zero elements of b (as can be
seen from (2.3) together with the fact that for this example the residual r has no
zero entries); this is unsatisfactory if we wish to regard y as the first column of the
inverse of a perturbed matrix.

Next, let b = Ae, where e = [1, 1, . . . , 1]T , and let z be the solution to the
perturbed system (A + ∆A)z = b + ∆b, where ∆A = tol|A| and ∆b = tol|b|, with
tol = 8u. We find that

(2.5)
‖x − z‖∞
‖x‖∞

= 2.40 × 10−12,
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while the corresponding bound from (2.4) with ǫ = tol, E = |A| and f = |b| is
3.03 × 10−2. Thus the normwise forward error bound is extremely pessimistic for
this special choice of perturbation.

To obtain a more satisfactory backward error measure and a sharper perturba-
tion bound, we need componentwise analysis.

The componentwise backward error is defined as

(2.6) ωE,f (y) = min{ǫ : (A + ∆A)y = b + ∆b, |∆A| ≤ ǫE, |∆b| ≤ ǫf},

where inequalities between matrices hold componentwise. In this definition each
element of a perturbation is measured relative to its individual tolerance, so, unlike
in the normwise definition, we are making full use of the n2 + n parameters in E
and f .

How should E and f be chosen? The most common choice of tolerances is
E = |A| and f = |b|, which yields the componentwise relative backward error. For
this choice

aij = 0 ⇒ ∆aij = 0 and bi = 0 ⇒ ∆bi = 0

in (2.6), and so if ωE,f (y) is small then y solves a problem that is close to the
original one in the sense of componentwise relative perturbations and has the same
sparsity pattern. Another attractive property of the componentwise relative back-
ward error is that it is insensitive to the scaling of the system: if Ax = b is scaled
to (S1AS2)(S

−1
2 x) = S1b, where S1 and S2 are diagonal, and y is scaled to S−1

2 y,
then ω remains unchanged.

The choice E = |A|eeT , f = |b| gives a row-wise backward error. The constraint
|∆A| ≤ ǫE is now |∆aij | ≤ ǫαi, where αi is the 1-norm of the ith row of A, so
perturbations to the ith row of A are being measured relative to the norm of that
row. A columnwise backward error can be formulated in a similar way.

The third natural choice of tolerances is E = ‖A‖eeT and f = ‖b‖e, for which
ωE,f (y) is the same as the normwise backward error ηE,f (y), up to a constant.

As for the normwise backward error in Theorem 2.1, there is a simple formula
for ωE,f (y).

Theorem 2.3 (Oettli and Prager [54]). The componentwise backward error is
given by

(2.7) ωE,f (y) = max
i

|ri|
(E|y| + f)i

,

where r = b − Ay, and ξ/0 is interpreted as zero if ξ = 0 and infinity otherwise.

Proof. It is easy to show that the right-hand side of (2.7) is a lower bound
for ω(y), and that this bound is attained for the perturbations

(2.8) ∆A = D1ED2, ∆b = −D1f,

where D1 = diag
(
ri/(E|y| + f)i

)
and D2 = diag

(
sign(yi)

)
. �

The next result gives a forward error bound corresponding to the component-
wise backward error. It is a straightforward generalization of a result of Skeel
[63, Theorems 2.1 and 2.2]. A monotonic norm is one for which |x| ≤ |y| implies
‖x‖ ≤ ‖y‖, which can be shown to be equivalent to ‖ |x| ‖ = ‖x‖ [71, p. 52].



6 NICHOLAS J. HIGHAM

Theorem 2.4. Let Ax = b and (A + ∆A)y = b + ∆b, where |∆A| ≤ ǫE and
|∆b| ≤ ǫf , and assume that ǫ‖ |A−1|E ‖ < 1, where ‖·‖ is a monotonic norm. Then

(2.9)
‖x − y‖
‖x‖ ≤ ǫ

1 − ǫ‖ |A−1|E ‖
‖ |A−1|f + |A−1|E|x| ‖

‖x‖ ,

and for the ∞-norm this bound is attainable to first order in ǫ.

Proof. The bound (2.9) is straightforward to derive. For the ∞-norm it
is attained, to first order in ǫ, for ∆A = ǫD1ED2 and ∆b = −ǫD1f , where
D2 = diag(sign(xi)) and D1 = diag(ξj), where ξj = sign(A−1)kj and ‖ |A−1|f +
|A−1|E|x| ‖∞ =

(
|A−1|f + |A−1|E|x|

)
k
. �

When the components of x vary widely in magnitude, the bound (2.9) can be
weak for the smaller components. It is possible to obtain perturbation bounds for
individual solution components by refraining from taking norms in the analysis.
Chandrasekaran and Ipsen present this type of analysis [14]; see also the condition
number (2.14) below. Componentwise solution bounds for Markov chains are ob-
tained by Ipsen and Meyer [49], who measure the perturbation matrix normwise,
and by O’Cinneide [53], who measures the perturbation matrix componentwise.

Theorem 2.4 implies that the condition number

condE,f (A, x) := lim
ǫ→0

sup
{ ‖∆x‖∞

ǫ‖x‖∞
: (A + ∆A)(x + ∆x) = b + ∆b,

|∆A| ≤ ǫE, |∆b| ≤ ǫf
}

is given by

(2.10) condE,f (A, x) =
‖ |A−1|f + |A−1|E|x| ‖∞

‖x‖∞
.

For the special case E = |A| and f = |b| we have the condition numbers introduced
by Skeel [63]:

cond(A, x) :=
‖ |A−1||A||x| ‖∞

‖x‖∞
,

which differs from cond|A|,|b|(A, x) by at most a factor 2, and

(2.11) cond(A) := cond(A, e) = ‖ |A−1||A| ‖∞ ≤ κ∞(A).

Note that cond(A) is invariant under row scaling Ax = b → (DA)x = Db, where D
is diagonal, and for this reason it can be arbitrarily smaller than κ∞(A). In fact,
it is straightforward to show that

(2.12) min{κ∞(DA) : D diagonal } = cond(A),

where the optimal scaling D equilibrates the rows of A, that is, DA has rows of
unit 1-norm.

How does cond compare with κ? Chandrasekaran and Ipsen [14] note the
following inequalities. First, if DR equilibrates the rows of A (DR|A|e = e) then

κ∞(A)

κ∞(DR)
≤ cond(A) ≤ κ∞(A)

(these inequalities imply (2.12)). Thus cond(A) can be much smaller than κ∞(A)
only when the rows of A are badly scaled. Second, if DC equilibrates the columns
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of A (eT |A|DC = eT ) then

κ1(A)

nκ∞(DC)
min

j

‖A−1ej‖∞
‖A−1‖1

≤ cond(A, x) ≤ κ∞(A).

These inequalities show that cond(A, x) can be much smaller than κ∞(A) only
when the columns of A are badly scaled or the columns of A−1 are badly scaled.

Returning to our numerical example, we find that ωE,f (y) = 1.10 × 10−12 for

E = |A| and f = |b| or f = 0. This tells us that for y to be the first column of the
inverse of a perturbed matrix we must make relative changes to A four orders of
magnitude larger than the unit roundoff. For the perturbed system, Theorem 2.4
with ǫ = tol, E = |A| and f = |b| gives the bound

‖x − z‖∞
‖x‖∞

≤ 4.08 × 10−10,

which is eight orders of magnitude smaller than the normwise bound from Theo-
rem 2.2, and only a factor 170 larger than the actual forward error (2.5).

A numerical example of Kahan [51] is also instructive. Let

A =




2 −1 1

−1 ǫ ǫ
1 ǫ ǫ



 , b =




2(1 + ǫ)

−ǫ
ǫ



 ,

where 0 < ǫ ≪ 1, so that x = [ǫ,−1, 1]T . The normwise condition number κ∞(A) =
2(1 + ǫ−1), so the system is very sensitive to arbitrary perturbations in A and b.
Moreover,

|A−1||A| =





1 ǫ ǫ
2ǫ + 1

2ǫ
1 1

2ǫ + 1

2ǫ
1 1



 ,

so cond(A) = 3+(2ǫ)−1, which implies that the system is also very sensitive to com-
ponentwise perturbations for some right-hand sides. However, cond(A, x) = 5/2+ǫ,
so for this particular b the system is very well-conditioned under componentwise
perturbations.

We mention in passing another interesting role of the matrix |A−1||A|. Recall
from (2.12) that minD κ∞(DA) = ‖ |A−1||A| ‖∞. Bauer [7] shows that for two-sided
scalings

(2.13) min{κ∞(D1AD2) : D1, D2 diagonal } ≥ ρ(|A−1||A|),

where ρ is the spectral radius, and he characterizes the minimizing D1 and D2

as diag(x1)
−1 and diag(x2)

−1, where x1 and x2 are Perron vectors of |A||A−1| and
|A−1||A|, respectively (thus the minimum is achieved whenever these Perron vectors
have positive entries, which is guaranteed if A is irreducible—see Businger [13]).
For the Kahan example,

ρ(|A−1||A|) ≈ 2.62 + 1.79ǫ ≪ 3 + (2ǫ)−1 = ‖ |A−1||A| ‖∞,

and, in fact, κ∞(DAD) = 3 for D = diag(ǫ1/2, ǫ−1/2, ǫ−1/2), so a symmetric two-
sided scaling is nearly optimal in this case.
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2.1. Further notes and references. It is clear from Bauer’s comments in [8]
that the bound (2.9), with E = |A| and f = |b|, was known to him, though he does
not state the bound. This is the earliest reference we know in which componentwise
analysis is used to derive forward perturbation bounds (for more details of Bauer’s
paper see §3).

Theorems 2.1 and 2.3 both remain valid when A is rectangular. Componentwise
backward error for rectangular A was considered by Oettli, Prager and Wilkin-
son [55], but their results are subsumed by those of Oettli and Prager [54] and
Rigal and Gaches [58].

The componentwise analyses can be generalized in three main ways:
(1) We can use more general measures of size for the data and the solution.

Higham and Higham [39] measure ∆A, ∆b and ∆x by νp([(∆aij/eij) (∆bi/fi)])

and νp((∆xi/gi)), where νp(A) =
(∑

i,j |aij |p
)1/p

, 1 ≤ p ≤ ∞, and the eij , fi and

gi are tolerances. In [39] the corresponding backward error is shown to be given
by the explicit formula ∥∥∥

( rj

‖Dj

[
y
−1

]
‖q

)∥∥∥
p
,

where r = b − Ay, Dj = diag(ej1, . . . , ejn, fj) and p−1 + q−1 = 1; bounds for the
corresponding condition number are also obtained. Theorem 2.3, and Theorem 2.4
with the ∞-norm, correspond to p = ∞ and gi ≡ ‖x‖∞. If we take p = ∞ and
g = |x|, we are measuring the change in the solution in a componentwise relative
sense, and the condition number is [39]

(2.14) ‖diag(|xi|)−1|A−1|(E|x| + f)‖∞.

This latter case has also been considered by Rohn [59] and Gohberg and Koltra-
cht [32].

(2) The analysis can be extended to systems with multiple right-hand sides [39].
For the general νp measure described in (1), the backward error can be computed
by finding the minimum p-norm solutions to n underdetermined linear systems.

(3) Structure in A and b can be preserved in the analysis. For example, if A
is symmetric or Toeplitz then its perturbation can be forced to be symmetric or
Toeplitz too, while still using componentwise measures. References include Higham
and Higham [38] and Gohberg and Koltracht [32] for linear structure, and Bartels
and D. J. Higham [6] for Vandermonde structure. A symmetry-preserving normwise
backward error is explored by Bunch, Demmel and Van Loan [12], and symmetry-
preserving normwise condition numbers are considered by D. J. Higham [37].

Practical issues associated with the use of componentwise backward error and
perturbation bounds in the context of sparse matrices are considered by Arioli,
Demmel and Duff [2]. In particular, they show how to estimate the condition
number (2.10) cheaply, given a factorization of A. Their approach avoids explicit
computation of A−1 by manipulating the condition number into a form that can
be estimated using a matrix norm estimator of Hager [36] and Higham [40]. This
approach can be adapted to estimate virtually any form of componentwise condition
number for a linear system.

Finally, we mention how the analysis of this section is reflected in LAPACK.
The LAPACK expert driver routine xGESVX

1 solves a linear system Ax = b by

1The leading ‘x’ in routine names stands for the Fortran data type: single precision (S),
double precision (D), complex (C) or double precision complex (Z).
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Gaussian elimination with partial pivoting and then applies iterative refinement in
fixed precision. The main termination criterion for the refinement is ω|A|,|b|(x̂) ≤ u,
where x̂ is the current iterate and u is the unit roundoff. This routine returns as a
forward error estimate the upper bound in

‖x − x̂‖∞
‖x‖∞

≤ ‖ |A−1|(|r̂| + ξ) ‖∞
‖x‖∞

,

where r̂ = fl(b − Ax̂) and ξ = (n + 1)u(|A||x̂| + |b|) bounds the rounding errors
in forming r̂. This a posteriori bound is used in preference to (2.9) because it is
expected to be smaller in general, since less inequalities are used in its derivation.

3. The Matrix Inverse

Much of the analysis in §2 can be adapted to the matrix inverse. If A ∈ IRn×n

and A + ∆A are nonsingular then, writing X ≡ A−1 and X + ∆X ≡ (A + ∆A)−1,
we have ∆X = −A−1∆AA−1 − A−1∆A∆X. Therefore derivation of perturba-
tion bounds and condition numbers involves consideration of the first-order term
A−1∆AA−1. For normwise measures it is well known that the condition num-
ber for inversion is the usual matrix condition number κ(A). This result can be
stated in a precise and general way as follows [37]: for the mixed subordinate norm
‖A‖α,β = max ‖Ax‖β/‖x‖α,

µα,β(A) := lim
ǫ→0

sup
{ ‖∆X‖β,α

ǫ‖X‖β,α
: ‖∆A‖α,β ≤ ǫ‖A‖α,β } = ‖A‖α,β‖A−1‖β,α.

Note that this definition uses the ‖ · ‖α,β norm on the data space and the ‖ · ‖β,α

norm on the solution space, as is natural. A componentwise condition number is

µE(A) := lim
ǫ→0

sup
{ ‖∆X‖∞

ǫ‖X‖∞
: |∆A| ≤ ǫE

}
≤ ‖ |A−1|E|A−1| ‖∞

‖A−1‖∞
.

In general, the inequality is strict, but there is equality when |A−1| = D1A
−1D2

for Di of the form diag(±1), [30, Theorem 1.10], [31]. For perturbations satisfying
|∆A| ≤ ǫ|A|, Bauer [8, p. 413] obtains the bound

|∆X| ≤ (I − ǫ|A−1||A|)−1|A−1||A||A−1|ǫ,
and makes various deductions from it.

Measuring ∆X componentwise relative to X, and taking E = |A|, gives the
condition number

µ2(A) := lim
ǫ→0

sup
{

max
i,j

|∆xij |
|xij |

: |∆A| ≤ ǫ|A|
}

= max
i,j

(
|A−1||A||A−1|

)
ij(

|A−1|
)
ij

.

This condition number appears in a perturbation bound of Bauer [8, p. 413] and
was derived by Rohn [59].

The natural definition of backward error of an approximate inverse Y of A is
a smallest ∆A such that (A + ∆A)Y = I. If Y is nonsingular there is a unique
∆A satisfying this equation and the problem of computing the backward error is
trivial.

It is well known that the normwise matrix condition number is the reciprocal
of the relative distance to singularity. Specifically, Kahan [51, pp. 775–76] shows
that

min
{ ‖∆A‖α,β

‖A‖α,β
: A + ∆A singular

}
= µ−1

α,β .
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The componentwise distance to singularity,

dE(A) = min{ ǫ : A + ∆A singular, |∆A| ≤ ǫE },

has been characterized by Rohn [60], [61] as

dE(A) =
1

maxS1,S2
ρ0(S1A−1S2E)

,

where the maximum is taken over all signature matrices Si = diag(±1) and where

ρ0(X) = max{ |λ| : λ is a real eigenvalue of A }.

This formula involves 4n eigenproblems, so is computationally intractable (in fact
it is NP-hard [57]).

Demmel [20] shows by complexity arguments that there can be no simple re-
lationship between dE(A) and the quantity ‖ |A−1|E ‖∞, which is an upper bound
for µE(A). He also presents evidence for the conjecture that

1

ρ(|A−1||A|) ≤ d|A|(A) ≤ γn

ρ(|A−1||A|)
for a constant γn. The lower bound always holds and Demmel identifies several
classes of matrices for which the upper bound holds. This conjecture is both plausi-
ble and aesthetically pleasing because d|A|(A) is invariant under two-sided diagonal

scalings of A and ρ(|A−1||A|) is the minimum condition number achievable by such
scalings, as shown by (2.13).

4. The Least Squares Problem

In this section we consider the least squares (LS) problem minx ‖Ax − b‖2,
where A ∈ IRm×n (m ≥ n) has full rank. Normwise perturbation theory for the LS
problem has been developed by various authors. The earliest bounds were obtained
by Golub and Wilkinson [33]. The following theorem of Wedin is taken from [78,
Theorem 5.1]. Here, κ2(A) = ‖A‖2‖A+‖2, where A+ is the pseudo-inverse.

Theorem 4.1 (Wedin). Let A ∈ IRm×n (m ≥ n) and A + ∆A both be of full
rank, and let

‖Ax − b‖2 = min, r = b − Ax,

‖(A + ∆A)y − (b + ∆b)‖2 = min,

‖∆A‖2 ≤ ǫ‖A‖2, ‖∆b‖2 ≤ ǫ‖b‖2.

Provided that κ2(A)ǫ < 1,

(4.1)
‖x − y‖2

‖x‖2
≤ κ2(A)ǫ

1 − κ2(A)ǫ

(
1 +

‖b‖2

‖A‖2‖x‖2
+ κ2(A)

‖r‖2

‖A‖2‖x‖2

)
. �

Bounds can also be given for the change in the residual, but we do not consider
them here.

The bound (4.1) is usually interpreted as saying that the sensitivity of the LS
problem is measured by κ2(A) when the residual is small or zero and by κ2(A)2

otherwise. For further discussion see standard textbooks (for example, [34, pp. 230–
231]).
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Surprisingly, it is easier to derive componentwise perturbation bounds than
normwise ones for the LS problem. The key idea is to express the LS solution and
its residual as the solution of the augmented system

(4.2)

[
I A

AT 0

] [
r
x

]
=

[
b
0

]
,

which is simply another way of writing the normal equations, AT Ax = AT b. This is
a square nonsingular system, so standard techniques can be applied. The perturbed
system of interest is

(4.3)

[
I A + ∆A

(A + ∆A)T 0

] [
s
y

]
=

[
b + ∆b

0

]
,

where we assume that

(4.4) |∆A| ≤ ǫE, |∆b| ≤ ǫf.

From (4.2) and (4.3) we obtain
[

I A
AT 0

] [
s − r
y − x

]
=

[
∆b − ∆Ay
−∆AT s

]
.

Premultiplying by the inverse of the matrix on the left gives
[

s − r
y − x

]
=

[
I − AA+ (A+)T

A+ −(AT A)−1

] [
∆b − ∆Ay
−∆AT s

]
.

From the second block component we obtain

(4.5) |y − x| ≤ ǫ(|A+|(f + E|y|) + |(AT A)−1|ET |s|).
This yields the following theorem.

Theorem 4.2. Let A ∈ IRm×n (m ≥ n) and A + ∆A be of full rank. For the
perturbed LS problem described by (4.3) and (4.4) we have

(4.6)
‖x − y‖
‖x‖ ≤ ǫ

‖ |A−1|(f + E|y|) ‖ + ‖ |(AT A)−1|ET |s| ‖
‖x‖ ,

for any monotonic norm. �

For a square system, s = 0, and we essentially recover Theorem 2.4. Note,
however, that the right-hand side of (4.6) contains the perturbed vectors y and s.
For theoretical analysis it may be preferable to use an alternative bound in which
x and r replace y and s and there is an extra factor

(
1 − ǫ

∥∥∥∥

[
|I − AA+| |(A+)T |

|A+| |(AT A)−1|

] [
0 E

ET 0

]∥∥∥∥

)−1

,

where the term in parentheses is assumed to be positive. For practical computation
(4.6) is unsatisfactory because we do not know s = b + ∆b− (A + ∆A)y. However,
as Stewart and Sun observe [71, p. 159], r̂ = b − Ay is computable and

|s| ≤ |r̂| + ǫ(f + E|y|),
and using this bound in (4.6) makes only a second-order change.

A componentwise bound of the form (4.6) was first derived by Björck in 1988
and variations of it have been given by Arioli, Duff and de Rijk [3], Björck [11] and
Higham [42].
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Apart from its increased sharpness over (4.1), the bound (4.6) has better scaling
properties. It is not invariant under row or column scalings, but it is less sensi-
tive to these scalings than (4.1). In [42] we examined the famous Longley test
problem—a regression problem which has a notoriously ill-conditioned 16× 7 coef-
ficient matrix with κ2(A) ≈ 5×109. We found that (4.5) gives tight bounds for the
effect of random componentwise relative perturbations of the problem generated in
experiments of Beaton, Rubin and Barone [10]. Thus componentwise perturbation
bounds are potentially useful in regression analysis, as an alternative to the existing
statistically-based techniques.

Although Wilkinson proved in the 1960s that a specific method for solving
the LS problem, namely the QR factorization method, yields a small normwise
backward error [81], it has long been an open problem to obtain a formula for
the backward error of an arbitrary approximate solution. Stewart [68] discusses
the problem and offers some backward perturbations that are candidates for being
of minimal norm. Little progress had been made towards solving this problem
until very recently when Waldén, Karlson and Sun [77] found an extremely elegant
solution. We will denote by λmin and σmin the smallest eigenvalue of a symmetric
matrix and the smallest singular value of a general matrix, respectively.

Theorem 4.3 (Waldén, Karlson and Sun). Let A ∈ IRm×n (m ≥ n), b ∈ IRm

and r = b − Ay. The normwise backward error

(4.7) ηF (y) = min{ ‖[∆A, θ∆b]‖F : ‖(A + ∆A)y − (b + ∆b)‖2 = min }
is given by

ηF (y) =






‖r‖2

‖y‖2

√
γ, λ∗ ≥ 0,

(‖r‖2
2

‖y‖2
2

γ + λ∗

)1/2

, λ∗ < 0,

where

λ∗ = λmin

(
AAT − γ

rrT

‖y‖2
2

)
, γ =

θ2‖y‖2
2

1 + θ2‖y‖2
2

. �

The backward error (4.7) is not a direct generalization of the one in (2.1)
because it minimizes ‖[∆A, θ∆b]‖F instead of max{‖∆A‖2/‖E‖2, ‖∆b‖2/‖f‖2}.
However, the parameter θ allows us some flexibility: taking the limit θ → ∞ gives
the case where only A is perturbed.

Theorem 4.3 can be interpreted as saying that if λ∗ ≥ 0 then the backward
error is essentially that given by Theorem 2.1 for a consistent system. If λ∗ < 0,
however, the nearest perturbed system of which y is the LS solution is inconsistent.
A sufficient condition for λ∗ < 0 is r 6∈ range(A) (assuming γ 6= 0).

The formulae given in Theorem 4.3 are unsuitable for computation because
they can suffer from catastrophic cancellation when λ∗ < 0. Instead, the following
alternative formula derived in [77] should be used:

ηF (y) = min

{‖r‖2

‖y‖2

√
γ, σmin

([
A,

√
γ
‖r‖2

‖y‖2

(
I − ryry

T

‖r‖2
2

) ])}
.

To illustrate Theorem 4.3, we consider an LS problem with a 25 × 15 Van-
dermonde matrix A = (pj−1

i ), where the pi are equally spaced on [0, 1], and a
right-hand side b with elements equally spaced on [0, 1]. The condition number
κ2(A) = 1.47 × 109. We solved the LS problem in Matlab in two different ways:
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by using the normal equations with Cholesky factorization, to give x̂NE , and via
Householder QR factorization, obtaining x̂QR. We found that

ηF (x̂NE)|θ=1

‖[A, b]‖F
= 2.37 × 10−10,

ηF (x̂NE)|θ=∞

‖A‖F
= 2.56 × 10−10,

ηF (x̂QR)|θ=1

‖[A, b]‖F
= 2.97 × 10−17,

ηF (x̂QR)|θ=∞

‖A‖F
= 3.22 × 10−17.

Thus, as would be expected from known backward error analysis, x̂QR is a backward
stable solution but x̂NE is not. In this example it makes little difference whether
or not we perturb b.

Componentwise backward error for the LS problem has been investigated by
Arioli, Duff and de Rijk [3], Björck [11] and Higham [42]. The simplest approach
is to apply the componentwise backward error ωE,f (y) of (2.6) to the augmented

system (4.2), setting

E =

[
0 EA

ET
A 0

]

so as not to perturb the diagonal blocks I and 0 of the augmented system coefficient
matrix. However, this approach allows A and AT to undergo different perturba-
tions ∆A1 and ∆A2 with ∆A1 6= ∆AT

2 , so does not give a true backward error.
This problem can be overcome by using the structured componentwise backward
error of [38] to force symmetry of the perturbations; see [38] for details. One prob-
lem remains: as far as the backward error of y is concerned, the vector r in the
augmented system is a vector of free parameters, so to obtain the true component-
wise backward error we have to minimize the structure-preserving componentwise
backward error over all r. This is a nonlinear optimization problem to which no
closed-form solution is known. Experiments in [38] and [44] show that when y is a
computed LS solution, r = b−Ay is often a good approximation to the minimizing
r.

4.1. Underdetermined systems. Perturbation theory is also available for
the minimum 2-norm solution to an underdetermined system. Wedin’s result, The-
orem 4.1, is still valid when m < n and x and y are interpreted as minimum 2-norm
solutions of Ax = b and (A+∆A)y = b+∆b. Of course, r = 0, so there is no κ2(A)2

term in the bound. A componentwise bound is given by Demmel and Higham [22].

Theorem 4.4 (Demmel and Higham). Let A ∈ IRm×n (m ≤ n) be of full rank
and 0 6= b ∈ IRm. Suppose

|∆A| ≤ ǫE, |∆b| ≤ ǫf,

where ǫ‖E‖2 < σmin(A). If x and y are the minimum norm solutions to Ax = b
and (A + ∆A)y = b + ∆b, respectively, then

‖x − y‖2

‖x‖2
≤

(
‖ |I − A+A| · ET · |A+T

x| ‖2 + ‖ |A+| · (f + E|x|) ‖2

) ǫ

‖x‖2
+ O(ǫ2).

The bound is attainable to within a constant factor depending on n. �

Note that ‖I − A+A‖2 = min(1, n − m), so again there is no κ2(A)2 effect in
the bound. This theorem is used in [22], with different choices of E and f , to
investigate the stability of standard methods for computing the minimal 2-norm
solution to an underdetermined system.
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5. Matrix Factorizations

Perturbation theory for matrix factorizations has been an active area of research
in recent years. The aim of such analysis is to determine bounds for the changes in
the factors of a matrix when the matrix is perturbed. Most of the existing results
are norm-based. One of the first results was that of Stewart [67]. He showed that
if A ∈ IRm×n has rank n and

A = QR and A + ∆A = (Q + ∆Q)(R + ∆R)

are QR factorizations, then, for sufficiently small ∆A,

‖∆R‖F

‖R‖F
≤ cnκF (A)

‖∆A‖F

‖A‖F
,

‖∆Q‖F ≤ cnκF (A)
‖∆A‖F

‖A‖F
,

where cn is a modest constant.
Similar analyses for Cholesky, LDLT, LU and QR factorizations are given by

Barrlund [5], Stewart [70], and Sun [73].
Componentwise analyses have been given by Zha [82] for the QR factorization

and Sun [74] for the Cholesky, LDLT, LU and QR factorizations. Sun’s results
are rather complicated to state and interpret. Zha’s bounds can be summarized as
follows, with the same assumptions and notation as for Stewart’s result above. Let
|∆A| ≤ ǫG|A|, where G is nonnegative with |gij | ≤ 1. Then, for sufficiently small
ǫ,

‖∆R‖∞
‖R‖∞

≤ cm,nǫ
(
cond(R−1) + cond(RT )

)
+ O(ǫ2),

‖∆Q‖∞ ≤ cm,nǫ
(
cond(R−1) + cond(RT )

)
+ O(ǫ2),

where cond is defined in (2.11). The quantity φ(A) = cond(R−1) + cond(RT ) can
therefore be thought of as a condition number for the QR factorization under the
columnwise class of perturbations considered. Note that φ is independent of the
column scaling of A. Zha [82] shows how this perturbation result can be used
together with a componentwise rounding error analysis to bound the difference

Q − Q̂ between the exact QR factor Q and the computed one from Householder
QR factorization.

6. Eigenvalue and Singular Value Problems

Perturbation theory for eigenvalue problems is inherently more difficult than for
linear equations because the mapping from data to solution is no longer a rational
map. Normwise perturbation theory for eigenproblems is well developed (see, for
example, Stewart and Sun’s comprehensive presentation [71]) but componentwise
results have been obtained only in the last five years or so.

Existing results are not easy to present in an organized fashion because they
cover different problems (standard or generalized, symmetric positive definite or in-
definite), make different assumptions, and measure perturbations in different ways.
We give a selected summary, concentrating on the standard eigenvalue and singu-
lar value problems and noting which results have counterparts for the generalized
problem. We do not necessarily state results in their most general form, or use their
authors’ original notation. In particular, the roles of A and H are reversed between
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our presentation and those of most of the references, because it seems natural to
denote the original matrix, whose eigenvalues or singular values we seek, by A.

Most of the eigenvalue results are for symmetric matrices, but we begin with the
nonsymmetric case. It is a standard result that if A ∈ IRn×n has a simple eigenvalue
λ with corresponding right and left eigenvectors x and y, then for sufficiently small
‖∆A‖ there is an eigenvalue µ of A + ∆A with

(6.1) µ = λ +
y∗∆Ax

y∗x
+ O(‖∆A‖2).

(See, for example, [71, Theorem 4.2.3] or [81, Chapter 2]). If we assume that
‖∆A‖ ≤ ǫ‖E‖, then we have the perturbation bound

(6.2) |µ − λ| ≤ ǫ‖E‖‖y‖D‖x‖
|y∗x| + O(ǫ2),

which is sharp to first order (equality is attained for ∆A an appropriate multiple
of uvT , where u is dual to y and v is dual to x). On the other hand, if we assume
that |∆A| ≤ ǫE, we obtain the componentwise perturbation bound

(6.3) |µ − λ| ≤ ǫ
|y∗|E|x|
|y∗x| + O(ǫ2)

of Geurts [31], for which equality to first order is attained for

∆A = ǫdiag(sign(y))E diag(sign(x)),

where, for possibly complex α, sign(α) = α/|α| (or 1 if α = 0). The first-order
terms in the bounds (6.2) and (6.3) yield condition numbers under the respective
classes of perturbations. One interesting implication of (6.3) is that the Perron root
of an irreducible nonnegative matrix is perfectly conditioned under componentwise
relative perturbations (|∆A| ≤ ǫE = ǫA), for the eigenvectors corresponding to the
Perron root have positive elements and so the bound is |µ−λ| ≤ ǫλ+O(ǫ2). In fact,
this bound holds for any ǫ ≤ 1 without the second-order term [27, Theorem 1].

Corresponding eigenvector perturbation results can also be obtained. We state
condition numbers in the form given by Chatelin [15] and Frayssé [30], whose
analysis extends earlier analysis by Wilkinson [81], Stewart [66] and Geurts [31];
see also the book by Saad [62, pp. 95–97]. With the same notation as above (with
λ simple), a condition number of x under perturbations measured normwise by
‖∆A‖ ≤ ǫ‖E‖ is

‖E‖‖P‖,
where P = X(B − λI)−1Y ∗ is a partial inverse for Y in the space range(y)⊥, and
where

Z−1AZ =

[
λ cT

0 B

]
, Z = [x X ] , Z−1 =

[
y∗

Y ∗

]
.

Note that ‖P‖ depends on the particular choice of X and Y . This freedom stems
from the nonuniqueness of an eigenvector up to scalar multiplication, which means
that there is not a unique way to measure the perturbation in an eigenvector. What
measure is appropriate depends on the application (see [71, p. 241] for a discussion
and example). The minimum condition number in the 2-norm is obtained when X
and Y are orthonormal and is

‖P‖2 = ‖(B − λI)−1‖2 = sep(B, λ)−1.
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A condition number for perturbations measured componentwise by |∆A| ≤ ǫE,
with the ∞-norm on the output space, is

‖ |P|E|x| ‖∞
‖x‖∞

.

In the special case where A is diagonalizable we can take B to be diagonal and
X and Y to comprise right and left eigenvectors. Then it is clear that the size
of P depends on both the separation of λ from the other eigenvalues and on the
individual eigenvalue sensitivities.

Another classical eigenvalue perturbation result is a theorem of Bauer and
Fike [9, Theorem 3a], which says that if µ is an eigenvalue of A + ∆A ∈ IRn×n and
X−1AX = diag(λ1, . . . , λn) then

min
λ∈λ(A)

|λ − µ| ≤ κp(X)‖∆A‖p,

for any Hölder p-norm. As Deif [17] shows, it is trivial to strengthen this result to

min
λ∈λ(A)

|λ − µ| ≤ ‖ |X−1||∆A||X| ‖,

for any monotonic norm.
In the rest of this section we describe the new-style componentwise perturba-

tion results, developed initially by Demmel and his co-workers. For the eigenvalue
problem, most of these results require that A be symmetric positive definite. We
therefore let A ∈ IRn×n be symmetric positive definite and consider a symmetric
perturbation A+∆A. Let the eigenvalues of A and A+∆A be ordered λn ≤ · · · ≤ λ1

and λ′
n ≤ · · · ≤ λ′

1, respectively. From classical perturbation results for the sym-
metric eigenproblem we know that

|λi − λ′
i| ≤ ‖∆A‖2

(specifically, this follows from Weyl’s inequality [71, p. 203], which itself is a conse-
quence of the Courant–Fischer minimax theorem [71, p. 201]). For λ1 = ‖A‖2 this
bound says that |λ1 − λ′

1|/λ1 ≤ ‖∆A‖2/‖A‖2, so this largest eigenvalue undergoes
a relative change no larger than that in A. But eigenvalues with λi ≪ λ1 can
undergo a large relative change, and the best relative perturbation bound that can
be deduced for all i is

(6.4)
|λi − λ′

i|
λi

≤ ‖∆A‖2

λi
≤ ‖∆A‖2

λn
= κ2(A)

‖∆A‖2

‖A‖2
.

This bound is sharp, in that for any A there is a perturbation ∆A for which equality
is attained with i = n. However, by restricting the class of perturbations, tighter
bounds can be obtained. Demmel and Veselić [24, Theorems 2, 3] derive a poten-
tially much smaller bound for the case of componentwise relative perturbations.

Theorem 6.1 (Demmel and Veselić). Let A ∈ IRn×n be symmetric positive def-
inite and write A = DHD, where D = diag(A)1/2. Let the symmetric perturbation
∆A = D∆HD satisfy ‖∆H‖2 ≡ ǫ < λn(H). Then

(6.5)
|λi − λ′

i|
λi

≤ κ2(H)ǫ.

In particular, if |∆A| ≤ (ǫ/n)|A|, so that |∆hij | ≤ ǫ/n, then ‖∆H‖2 ≤ ǫ and the
bound (6.5) holds if ǫ < λn(H). �
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The key idea in this theorem is to factor out the diagonal of A to leave a
symmetric positive definite matrix H with unit diagonal. A famous result of van
der Sluis [75, Theorem 4.1] states that

κ2(H) ≤ n min
F diagonal

κ2(FAF ),

so D is nearly a condition-minimizing diagonal scaling. It follows that κ2(H) ≤
nκ2(A) and that κ2(H) ≪ κ2(A) is possible if A is badly scaled.

The proof of Theorem 6.1 in [24] is quite short and is based on the following
lemma.

Lemma 6.2. Let A ∈ IRn×n be symmetric positive definite and write A = Y HY ,
where Y is any nonsingular matrix. Let the symmetric perturbation ∆A = Y ∆HY
satisfy |zT ∆Hz| ≤ η zT Hz for all z. Then

1 − η ≤ λ′
i

λi
≤ 1 + η.

Proof. Note first that

|xT ∆Ax|
xT Ax

=
|xT Y ∆HY x|

xT Y HY x
≡ |zT ∆Hz|

zT Hz
≤ η.

From the Courant–Fischer minimax theorem we have

λ′
i = max

dim(S)=i
min
x∈S

xT (A + ∆A)x

xT x

= max
dim(S)=i

min
x∈S

xT (A + ∆A)x

xT Ax
· xT Ax

xT x

≤ (1 + η) max
dim(S)=i

min
x∈S

xT Ax

xT x
= (1 + η)λi.

The lower bound is proved similarly, starting with the max–min expression for
λi. �

Proof of Theorem 6.1. We have

|zT ∆Hz|
zT Hz

=
|zT ∆Hz|

zT z

zT z

zT Hz
≤ ǫ

λn(H)
.

We obtain (6.5) on applying Lemma 6.2 with Y = D and η = ǫ/λn(H) = ǫ‖H−1‖2,
and using the inequality ‖H‖2 ≥ maxi,j |hij | = 1. �

A weakness of Theorem 6.1 is that it gives the same relative perturbation bound
for each eigenvalue, yet some eigenvalues may be much less sensitive than others.
Furthermore, λ1 is insensitive to perturbations, yet the bound (6.5) can be large
even for i = 1. Demmel and Veselić note that, under the same conditions as in
Theorem 6.1, one can show, using (6.1), that

|λi − λ′
i|

λi
≤ ǫ

‖Dvi‖2
2

λi
+ O(ǫ2),

where Avi = λivi with ‖vi‖2 = 1, and that this bound is attained, to first order,
for ∆A = ǫD2. This bound depends on i, and can be much smaller than (6.5), but
it is a first-order bound only.

Demmel and Veselić show, via rounding error analysis, that Jacobi’s method
(with a suitable stopping criterion), the bisection method, and inverse iteration (the
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latter two methods both applied to the original matrix) all compute the eigenvalues
of a symmetric positive definite matrix to within the accuracy specified by the
bound of Theorem 6.1 (with ǫ the machine precision). By contrast, any method
that begins by tridiagonalizing the matrix (for example, the QR algorithm) cannot
achieve this level of accuracy.

We turn now to eigenvectors. Standard perturbation theory (for which a classic
reference is [16]) is expressed in terms of the absolute gap for eigenvalues, defined
by

absgapi = min
j 6=i

|λi − λj |
‖A‖2

.

Let y be a unit eigenvector of A + ∆A with Rayleigh quotient α = yT Ay. Let
λi be the eigenvalue of A closest to α and xi the corresponding unit eigenvector.
Denoting by θ(xi, y) the acute angle between xi and y, we have (by rewriting the
bound of [56, Theorem 11-7-1])

(6.6) | sin θ(xi, y)| ≤ 4

absgapi

‖∆A‖2

‖A‖2
.

Demmel and Veselić [24, Theorem 2.5] derive a potentially much smaller bound.

Theorem 6.3 (Demmel and Veselić). Let A = DHD be as in Theorem 6.1,
and define A(ǫ) = D(H + ǫE)D, where E with ‖E‖2 = 1 is an arbitrary symmetric
matrix. Let λi(ǫ) be the ith eigenvalue of A(ǫ) and assume that λi(0) is simple, so
that the corresponding unit eigenvector vi(ǫ) is well defined for sufficiently small ǫ.
Then

(6.7) ‖vi(ǫ) − vi(0)‖2 ≤ (n − 1)1/2κ2(H)ǫ

relgapi

+ O(ǫ2),

where the relative gap is defined by

relgapi = min
j 6=i

|λi − λj |
|λiλj |1/2

. �

The new bound (6.7) contains an extra factor κ2(H) compared with (6.6), but
the important difference is that the relative gap in the denominator of (6.7) is much
larger than the absolute gap in (6.6) for a small eigenvalue that is in a cluster of
eigenvalues. For example, if λ1 = 1, λ2 = 2 × 10−10 and λ3 = 10−10, then

absgap(1: 3) = 1 − 2 × 10−10, 10−10, 10−10,

relgap(1: 3) = 2−1/2(105 − 2 × 10−5), 2−1/2, 2−1/2.

How sharp are these bounds? For any A, approximate equality is attained
for some i in the bound (6.5) for a perturbation ∆A satisfying the conditions of
Theorem 6.1 [24, Prop. 2.10]. This implies that the only symmetric positive definite
matrices whose eigenvalues are determined to high relative accuracy by the matrix
elements are those A = DHD where H is well conditioned. A weaker sharpness
result holds for (6.7) [24, Prop. 2.11].

We mention another interesting result that can be proved by Rayleigh quotient
manipulations similar to those in the proof of Lemma 6.2. This result adds further
information to the straightforward inequalities λn ≤ aii ≤ λ1, by showing that the
eigenvalues of A differ from the diagonal elements by at most a factor κ2(H).
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Theorem 6.4 (Demmel and Veselić [24, Prop. 2.7]). Let A ∈ IRn×n be sym-
metric positive definite and write A = DHD, where D = diag(A)1/2. Let αnn ≤
· · · ≤ α11 be the diagonal entries of A arranged in decreasing order. Then

λn(H) ≤ λi

αii
≤ λ1(H) ≤ n. �

Analogous results to Theorem 6.1 and 6.3 hold for singular values and singular
vectors. Let A ∈ IRm×n, where there is no restriction on m and n. We denote
the singular values of A and A + ∆A by σmin ≤ · · · ≤ σ1 and σ′

min ≤ · · · ≤ σ′
1,

respectively.

Theorem 6.5 (Demmel and Veselić [24, Theorem 2.14]). Let A ∈ IRm×n have
full rank and write A = BD, where D is diagonal and the columns of B have unit
2-norm. Let ∆A = ∆BD satisfy ‖∆B‖2 ≡ ǫ < σmin(B). Then

(6.8)
|σi − σ′

i|
σi

≤ κ2(B)ǫ.

In particular, if |∆A| ≤ (ǫ/
√

n)|A| then ‖∆B‖2 ≤ ǫ and the bound (6.8) holds if
ǫ < σmin(B). �

We will not state the corresponding theorem giving a perturbation bound for
the singular vectors; it involves a relative gap defined differently than for the eigen-
value case as relgapi = minj 6=i |σi − σj |/(σi + σj) (see [18], [24]). As for The-
orem 6.1, the bound in Theorem 6.5 is attainable, though not necessarily for a
componentwise perturbation of B (that is, approximate equality is attained for a
perturbation that satisfies ‖∆B‖2 = ǫ < σmin(B) but does not necessarily satisfy
|∆A| ≤ (ǫ/

√
n)|A|) [24, Prop. 2.21].

The earliest componentwise eigenvalue perturbation results were obtained by
Kahan in 1966 [50]. His results were slightly strengthened in [4] and [23].

Theorem 6.6 (Kahan). Let A ∈ IRn×n be a symmetric tridiagonal matrix with
zero diagonal elements, and let the symmetric perturbation ∆A satisfy |∆A| ≤ ǫ|A|.
Then

λi

τ2n−1
≤ λ′

i ≤ τ2n−1λi,

where τ = max(1 + ǫ, 1/(1 − ǫ)). �

Thus relative perturbations of size ǫ in the elements of A change the eigenvalues
by relative amounts at most (2n − 1)ǫ + O(ǫ2).

Corollary 6.7. Let B ∈ IRn×n be bidiagonal and let |∆B| ≤ ǫ|B|. Then
σi

τ2n−1
≤ σ′

i ≤ τ2n−1σi,

where τ = max(1 + ǫ, 1/(1 − ǫ)). �

Proof. Use the facts that the eigenvalues of C =
[

0
BT

B
0

]
are plus and minus

the singular values of B, and that C can be permuted to a symmetric tridiagonal
matrix with zero diagonal. �

Corollary 6.7 states that the singular values of a bidiagonal matrix are deter-
mined to approximately the same relative accuracy as the elements of the matrix.
Demmel and Kahan [23] use this result, together with rounding error analysis, to
show that a zero-shift version of the QR algorithm computes the singular values



20 NICHOLAS J. HIGHAM

of a bidiagonal matrix to high relative accuracy. Fernando and Parlett [28] have
developed a shifted quotient-difference algorithm that satisfies even smaller error
bounds than the algorithm of Demmel and Kahan, and is at least as fast.

Barlow and Demmel [4] were interested in finding classes of matrices other
than those in Theorem 6.6 or Corollary 6.7 that determine their eigenvalues or
singular values to high relative accuracy. Their main result shows that such a class
is the class of “scaled diagonally dominant” symmetric positive definite matrices
A: those for which ‖H − I‖2 = γ < 1, where A = DHD with D = diag(A)1/2.
For this class the relative eigenvalue perturbations are bounded by a multiple of
(1−γ)−1. Barlow and Demmel also obtained an analogous result for the generalized
symmetric positive definite eigenproblem. As Demmel and Veselić later showed,
the assumption on diagonal dominance is unnecessary: Theorem 6.1 shows that
it is only necessary that κ2(H) is not large for the eigenvalues to be accurately
determined. Indeed, for a scaled diagonally dominant matrix, κ2(H) < (1+γ)/(1−
γ). Barlow and Demmel also gave perturbation results for the eigenvectors of scaled
diagonally dominant matrices; these revealed, for the first time, the role of the
eigenvalue relative gap in measuring eigenvector sensitivity.

Demmel and Gragg [21] consider the question “for which sparsity patterns do
small componentwise relative perturbations to the matrix cause small relative per-
turbations to the singular values?” From Corollary 6.7 we know that one allowable
sparsity pattern is that of a bidiagonal matrix. Demmel and Gragg give a very
elegant answer to the question: a sparsity pattern has this property if and only if
its associated bipartite graph is acyclic. Examples of such acyclic sparsity patterns
are, in addition to the bidiagonal pattern,





× ×
× ×

× ×
× ×

× ×
×




,





× ×
× ×

× ×
× ×

× ×
×




.

Eisenstat and Ipsen [26] answer an open question raised in [21] by obtaining, for the
singular vectors of a matrix with an acyclic sparsity pattern, a perturbation bound
that involves a relative gap for the singular values. They also use a theorem of
Ostrowski to give new, elegant proofs of Theorem 6.6 and of Demmel and Gragg’s
componentwise perturbation bound for the singular values of a matrix with an
acyclic sparsity pattern.

The results of Demmel and Veselić have been generalized to indefinite sym-
metric matrices by two pairs of authors. Veselić and Slapnic̆ar make use of the
polar decomposition A = US ∈ IRn×n, where U is orthogonal and S = (AT A)1/2

is symmetric positive semidefinite.

Theorem 6.8 (Veselić and Slapnic̆ar [76, Theorem 2.13]). Let A ∈ IRn×n be
symmetric, with the polar decomposition A = US, and write A = DHD, where
D = diag(S)1/2. Let the symmetric perturbation ∆A satisfy |∆A| ≤ ǫ|A| and
assume that ν(A)ǫ < 1, where ν(A) = ‖ |H| ‖2‖DS−1D‖2. Then

|λi − λ′
i| ≤ ν(A)ǫ|λi|. �

If A is positive definite then S = A, so κ2(H) ≤ ν(A) ≤ √
nκ2(H), and

Theorem 6.8 essentially reduces to Theorem 6.1. Veselić and Slapnic̆ar also prove
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an eigenvector perturbation result and a generalization of Theorem 6.8 for the
symmetric generalized eigenproblem.

Gu and Eisenstat [35] give results for indefinite matrices that have a form very
different from those of Veselić and Slapnic̆ar. To state a sample result we need
the notation that µ0(A) = |λ|, where λ is the eigenvalue of smallest absolute value
among all eigenvalues of principle submatrices of A.

Theorem 6.9 (Gu and Eisenstat [35, Corollary 5]). Let A ∈ IRn×n be symmet-
ric with µ0(H) > 0, where A = DHD with D a positive definite diagonal matrix.
Let the symmetric perturbation ∆A = D∆HD satisfy ‖∆H‖2 ≡ ǫ < µ0(H). Then

|λi − λ′
i| ≤ |λi|ǫ

(2µ0(H) − ǫ)

(µ0(H) − ǫ)2
. �

If A is positive definite then µ0(H) = λn(H), and if we take D = diag(A)1/2

the bound is

|λi − λ′
i| ≤ 2ǫλi/λn(H) + O(ǫ2) ≤ 2ǫλiκ2(H) + O(ǫ2),

which is asymptotically the same as the bound (6.5) in Theorem 6.1, to within a
factor 2. Gu and Eisenstat also give an eigenvector perturbation bound for indefinite
A involving the relative gap, and a singular value perturbation result that allows
two-sided diagonal scalings.

The componentwise bounds described in this section are reflected in several
LAPACK routines. For example, the LAPACK routines xSTEBZ and xPTEQR for
finding the eigenvalues of a symmetric (positive definite) tridiagonal matrix achieve
the accuracy shown possible by Theorem 6.1. And the singular values of a bidiag-
onal matrix are computed to high relative accuracy by xBDSQR (cf. Corollary 6.7).

We conclude with a numerical example involving the “ipjfact” matrix from the
Test Matrix Toolbox [45], for which aij = (i+j)!. This matrix is symmetric positive
definite but badly scaled and ill conditioned. For n = 10, κ2(A) = 3.00×1021, while
κ2(H) = 6.04 × 108 and

absgapn = 1.33 × 10−20, relgapn = 6.24.

Therefore, for perturbations satisfying |∆A| ≤ ǫ|A|, the new bound (6.5) is smaller
than the traditional bound (6.4) by a factor of order 1012, and is able to guarantee
some unchanged digits in all the eigenvalues if ǫ < 10−10. Similarly, the new eigen-
vector perturbation bound (6.7) is of the order 1012 times smaller than traditional
bound (6.6). Finally, the sorted diagonal elements αii of A and the eigenvalues λi

of A are shown in Table 1. The maximum value of αii/λi is 3.59 × 103 (occurring
for i = 5), which is less than 1.30 × 108 = λn(H)−1, illustrating Theorem 6.4.

7. Concluding Remarks

Componentwise perturbation results are now available for most of the standard
problems in numerical linear algebra. The forward perturbation results vary in their
form and underlying assumptions, but most have the following property: when the
problem data is badly scaled and the perturbations are measured in a component-
wise relative fashion, the bounds can be much smaller than the traditional normwise
bounds.

There are several reasons why componentwise bounds do not feature strongly
in the literature of the 1960s and 1970s. In the first place, many (dense) problems
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αii λi αii/λi

2.00e+00 8.12e-04 2.46e+03
2.40e+01 3.32e-02 7.22e+02
7.20e+02 5.72e-01 1.26e+03
4.03e+04 1.28e+01 3.15e+03
3.63e+06 1.01e+03 3.59e+03
4.79e+08 2.21e+05 2.17e+03
8.72e+10 1.12e+08 7.79e+02
2.09e+13 1.25e+11 1.67e+02
6.40e+15 3.23e+14 1.98e+01
2.43e+18 2.44e+18 9.97e−01

Table 1. Sorted diagonal elements versus eigenvalues.

that arise in practice are well scaled, and for these, normwise bounds are adequate.
Second, badly scaled problems can be equilibrated prior to being solved, and various
equilibration algorithms have been developed over the years. However, how best
to scale a matrix is a tricky question for which there is no simple answer (see [68]
for a discussion). A third reason is that normwise bounds tend to be “simpler”
than componentwise ones, with the dependence on the matrix A often appearing
only through κ(A). A fourth reason is that the most impressive applications of
componentwise analysis are in proving results that were not contemplated until
relatively recently. Examples of such results are that to improve the stability of a
solution to a linear system by iterative refinement it suffices to compute the residual
in the working precision [64], and that the singular values of a bidiagonal matrix
can be computed to the precision to which they are determined by the matrix
entries [23].
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