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Abstract

Affymetrix microarrays are currently the most widely used microarray technol-

ogy. Due to the complexity of microarray experiments, the experimental data

is very noisy. Many summarization methods have been developed to provide

gene expression levels from Affymetrix probe-level data. Most of the currently

popular methods do not provide a measure of uncertainty for the estimated ex-

pression level of each gene. The use of probabilistic models can overcome this

limitation. This thesis extends a previously developed probabilistic model, mg-

MOS, to obtain an improved model, multi-mgMOS. This new model provides

improved accuracy and is more computationally efficient than other alternatives.

It also provides a level of uncertainty associated with the measured gene expres-

sion level. This probe-level measurement error provides useful information to

help in the downstream analysis of gene expression data.

In order to show the advantage of the probe-level probabilistic model, the

obtained uncertainty is propagated in two downstream analyses of gene expres-

sion data. One is detecting differential gene expression, another is clustering. A

Bayesian hierarchical model is proposed to include probe-level measurement error

into the detection of differential gene expression from replicated experiments and a

standard model-based clustering method is augmented to incorporate probe-level

measurement error. Due to the inclusion of the probe-level measurement error,

the downstream probabilistic models become more complicated or intractable. In

order to perform inference with these augmented models efficiently, various infer-

ence approximation approaches are compared in this thesis, including Maximum a

Posteriori, Laplace approximation, a variational method and Markov chain Monte

Carlo. Results from both benchmark data sets and a real-world data set demon-

strate that the incorporation of the probe-level measurement error improves the

performance of the downstream probabilistic analysis.
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Chapter 1

Introduction

1.1 Genomic Scale Biology

1.1.1 The Human Genome Project

The Human Genome Project was launched formally in 1990 to create a reference

of the entire human DNA sequence and identify all genes in the human genome.

The approach of the human genome project is sequencing, which is examining the

order of the basic building blocks of DNA (A, C, G and T in abbreviation) along

the human genome. The information provided by the human genome project is

expected to contribute to systems biology which aims to understand all processes

in cells, and in their development from genes up to phenotypes. Genomes are of

fundamental importance in the sense that they will revolutionise all biology and

biomedicine.

The project was completed in 2003 and discovered 20,000-25,000 estimated hu-

man genes (International Human Genome Sequencing Consortium, 2004). Along

with the process of human genome sequencing, the genomes of many other species

are now sequenced to provide helpful information used in different area, such as

some viruses and bacteria, Baker’s yeast, fruit fly, mouse, and so on. As the whole

genome of human and other organisms is completely sequenced, the next task is

to reveal how genes make life, what their functions are, what the relationship

between them is and how the changes in genes affect their functions. To fulfil

this task, it is necessary to understand the biological system of tens of thousands

of genes.

14
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Figure 1.1: The process of biological discovery involving microarray technology.

1.1.2 Microarray Technology

Microarray technology offers the ability to take global views of biological processes

by providing a systematic way to study DNA and RNA variation (Schena et al.,

1995; Lockhart et al., 1996). The central dogma of the molecular biology states

that genetic information flows from DNA to messenger RNA (mRNA) and from

RNA to proteins which perform gene functions (Crick, 1970), and this process is

called gene expression. The amount of RNA in this process indicates the level

of gene expression. Microarrays measure the gene expression level on a genomic

scale by examining the amount of mRNA in cell cultures or tissues and they

provide insight into gene function by quantitatively studying gene expression.

Over the last decade microarrays have become an increasingly important tool in

modern biomedical and life sciences research.

Affymetrix is one of the leading manufacturers of microarrays and its product

GeneChip R© is hugely popular (Lockhart et al., 1996). Using synthetic oligonu-

cleotide technology, Affymetrix microarrays are high-density DNA probe arrays

which contain millions of probe sequences. The expression level of each gene

is measured by multiple probes on the microarray (see Chapter 2). This thesis

focuses on the analysis of data produced by Affymetrix microarrays.

1.1.3 Process of Biological Study Using Microarrays

A typical microarray experiment is usually motivated by a biological question, like

“which genes show changes in expression between a healthy tissue and a diseased

one?”, or a more specific biological hypothesis, like “a certain group of genes are

responsible for the development of a particular disease”. The correct answer to

the question or the verification of the hypothesis will help with the diagnosis and

treatment of the particular disease. In order to answer the biological question, a

microarray experiment can be conducted following the experiment protocol (see
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Section 2.1.2). The general procedure of discovering biological knowledge using

microarrays is shown in Figure 1.1.

Microarrays quantitatively measure gene expression on a large scale. Enor-

mous amounts of gene expression data are generated from microarray experi-

ments. In order to obtain meaningful information for the organism being studied,

multiple levels of analyses are performed on the primary data. The first stage of

the analysis is probe-level analysis which summarises the raw data to obtain a

single expression value for each gene from the experimental data. The probe-level

analysis should provide reliable measurements of gene expression levels which can

be used in the high level analysis. The next stage of analysis (high level analy-

sis) performs various tasks on the measured gene expression resulting from the

probe-level analysis (Quackenbush, 2001; Slonim, 2002).

The high level analysis depends on the biological questions which motivate the

microarray experiment. It could simply be detecting differential gene expression,

which is the most basic aim of a microarray experiment involving two or more

microarrays. Alternatively, people may be interested in revealing the patterns of

gene expression and unknown gene functions across multiple conditions or time

points in a developmental process. Gene expression patterns can be discovered

by “bottom up” approaches and gene functions can be predicted by “top down”

approaches (Bassett et al., 1999). The “bottom up” approaches include principal

component analysis and clustering. These methods are applied on data solely and

do not involve any previous knowledge. Genes which have similar functions are

usually organised into the same cluster or stay close together in the visual rep-

resentation resulting from principal component analysis. With known biological

information, unknown gene functions can be revealed by examining the known

classes they fall in by “top down” analysis approaches (Pan, 2006). Inferring

gene regulatory networks is another important goal of high level analysis of gene

expression data (Segal et al., 2003; Friedman, 2004). Genes are interacting with

each other during the cell’s life. Inferring the interaction network of genes is

important for the understanding of the genetic mechanism of living organisms.

At the final stage of the discovery process, biological conclusions are drawn

based on the results obtained from the high level analysis. As a result, either new

biological knowledge is discovered or the original hypothesis is falsified. Every

step in the discovery process is vital to subsequent steps. Within a carefully

designed and performed experiment, analysis of the experimental data plays an



CHAPTER 1. INTRODUCTION 17

important role in making sound biological conclusions.

1.2 Probabilistic Microarray Data Analysis

The microarray experiment is a complicated multi-step procedure and variability

can be introduced at every experimental stage. The variability can be intrinsic

to the biological system and can also come from various sources during the ex-

perimental process. The variability caused by the experiment itself is referred to

as technical variability. The goal of a microarray experiment is to measure the

biological changes in the cell or tissue under investigation. Technical variability,

however, can obscure these biological changes. In order to reduce the technical

variability, replicated experiments are usually conducted (Lee et al., 2000). How-

ever, due to the high cost of the experiments, a small number of replicates is often

used (usually three or four).

Since variability exists in the whole procedure of the microarray experiment,

the estimated gene expression level is associated with a level of uncertainty which

reflects the significant sources of variability. Probability is a natural representa-

tion of uncertainty and is suitable for describing the noisy nature of gene ex-

pression data. Among the numerous methods for gene expression data analysis,

probabilistic approaches (Baldi and Long, 2001; Segal et al., 2001; Yeung et al.,

2001; Ghosh and Chinnaiyan, 2002; Friedman, 2004) have proved to be useful in

numerous applications.

The uncertainty of the gene expression measurement can be obtained from the

probe-level analysis and propagated into the downstream probabilistic analysis to

achieve a more reasonable interpretation of the experimental data (Sanguinetti

et al., 2005; Wang et al., 2006). However, for the probe-level analysis most

popular methods (Affymetrix, 2002; Li and Wong, 2001a; Irizarry et al., 2003;

Zhang et al., 2003; Wu et al., 2004) are not able to provide the credibility interval

associated with the gene expression measurement. Existing probabilistic models

(Milo et al., 2003; Hein et al., 2005; Milo et al., 2004) are capable of providing

credibility intervals but it is argued in this thesis that these are not sufficiently

accurate or are too computationally expensive to apply in practice.

For the downstream analysis, current probabilistic models use only a single

point estimate to represent a gene’s expression level and therefore completely

ignore much of the available evidence about the source of experimental variability.
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For example, in approaches to detect differential gene expression, like t-tests,

people have observed that the limited number of replicates leads to a significant

underestimate of signal variance (Baldi and Long, 2001; Delmar et al., 2005).

People therefore devised many methods to obtain a more reasonable estimate of

the uncertainty in the gene expression level (Baldi and Long, 2001; Delmar et al.,

2005; Medvedovic et al., 2004; Lin et al., 2004). However, few of these approaches

consider the uncertainty in probe-level measurements.

1.3 Aim of the Thesis

The multiple probes for each gene used in Affymetrix technology provide informa-

tion redundancy in the microarray experimental data. This rich information can

be used to measure experimental variability along with the measurement of gene

expression. By using probabilistic methods in probe-level analysis, it is possible

to associate gene expression measurements with levels of uncertainty to char-

acterise the noisy nature in the experimental data, especially for low expressed

genes whose measured expression levels are usually dominated by noise (Milo

et al., 2003; Hein et al., 2005; Milo et al., 2004). It is also possible to propagate

the probe-level variance into the high level probabilistic analysis to obtain more

reasonable results by considering the variance of observed data. It is argued in

this thesis that the probe-level measurement error can be propagated through

many of these methods in order to make the most efficient use of available data.

The aims of this thesis are:

1. To develop an improved probe-level model which accounts for Affymetrix

probe-level data more reasonably and is computationally efficient enough

for practical applications. The model should provide an accurate measure

of expression level with an associated level of uncertainty.

2. To augment the probabilistic methods in the high-level analysis to incorpo-

rate gene expression measurement uncertainty.

3. To test the hypothesis that by including gene expression measurement un-

certainty obtained from probe-level analysis, the high level analysis of mi-

croarray data will be improved.
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1.4 Thesis Outline

Based on the aims of the thesis described in Section 1.3, the work in this thesis

includes the development of an improved probabilistic probe-level analysis model,

multi-mgMOS (Liu et al., 2005), and the propagating of the probe-level uncer-

tainty into two higher level analyses, detecting differential gene expression and

clustering. The presentation of the work in this thesis is organised in the following

five chapters.

Chapter 2 introduces the basic biological and microarray technology background

to help with the understanding of this work. The key concepts and methods

of probabilistic inference used in this work are also introduced.

Chapter 3 , which focuses on probe-level analysis, reviews the currently popular

probe-level analysis methods, particularly existing probabilistic models, and

investigates the development of the new model used in multi-mgMOS. An

empirical comparison with other methods is also presented in this chapter.

Chapter 4 includes the extension of a Bayesian hierarchical model to detect

differential gene expression by incorporating probe-level uncertainty. When

considering the measurement error associated with gene expression mea-

surements, the standard Bayesian hierarchical model becomes intractable.

Several approximation methods are compared. The results on a benchmark

data set and a real data set show the improvement obtained by including

the probe-level measurement error.

Chapter 5 is an example of the augmentation of a model-based clustering method

to include probe-level measurement error. The comparison on simulated

data sets and a real mouse time-course data set shows the improvement of

the augmented standard Gaussian mixture model by incorporating probe-

level measurement error.

Chapter 6 gives the conclusion of this work and proposes possible directions for

future research.



Chapter 2

Background

This chapter introduces the foundations of microarray technology and describes

the key concepts and methods in probabilistic inference used in this thesis.

2.1 Biological Background

2.1.1 Protein-coding Genes

Cells are the basic functional elements of life. Chromosomes, large segments

of DNA (deoxyribonucleic acid), which carry the instructional information for

directing cell functions are contained in the nucleolus of cells. The biochemical

building blocks that make up DNA are nucleotides which consists of three different

biochemical components: a base, a sugar and a phosphate. Each nucleotide

contains one of four bases which are known as adenine (A), guanine (G), cytosine

(C) and thymine (T). DNA is in a double helix structure. Nucleotides are joined

together to build a linear sequence for each strand of the double helix. The two

strands are held together by base pairing between nucleotides within the two

different strands. A is always paired with T and C is always paired with G. The

chemical process by which the double strands are formed from two complementary

strands is called hybridisation, or binding, and this is the essential idea behind

microarray technology.

Analogously, it is the amino acids that act as the biochemical building blocks

used to make proteins which perform most life functions. There are 20 different

amino acids. Genetic information is stored in DNA sequences. The fundamental

unit of genetic information is called a codon which contains three successive

20
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nucleotides along a DNA sequence to specify an amino acid. There are 64 possible

combinations of the four nucleotides (43). Of the 64 possibilities, 61 codons specify

the 20 amino acids (in the canonical code) and the remaining 3 combinations code

the stop signal indicating protein termination.

RNA (ribonucleic acid) is the intermediary during the conversion of genetic

information from DNA to proteins. RNA is also made up of nucleotides and has a

similar linear structure to DNA, but differs from DNA in several ways. The sugar

contained in RNA nucleotides is different from that in DNA nucleotides and the

thymine base is replaced by uracil (U). Also, nearly all RNA molecules are single

stranded rather than in the double helix structure of DNA. Messenger RNA

(mRNA) is the carrier of genetic information from the nucleus, where DNA is

located, to the cytoplasm, where protein is synthesized. Each mRNA corresponds

to a specific gene contained in DNA sequences.

The process of genetic information flowing from DNA into RNA and from

RNA into protein is the process of gene expression and also is known as the

central dogma of molecular biology (Crick, 1970). There are three key steps in

the process of gene expression: transcription, splicing and translation. Figure 2.1

shows the steps of transcription and translation.

During the process of transcription, single-stranded mRNA is synthesized by

treating one strand of the DNA double helix as a template in the nucleus. The

synthesis is made by the complementary base paring mechanism of nucleotides.

A is transcribed from T, U is from A, and C is from G, and vice versa. There are

short DNA sequences called regulatory elements that control the expression of

genes. The two main regulatory elements are the promoter and the enhancer. A

promoter indicates the start site of the transcription for a gene. An enhancer reg-

ulates the transcriptional efficiency of a specific gene. Regulation occurs through

the action of the activator and repressor proteins binding to enhancers. The bind-

ing of activators to enhancer sites makes the corresponding genes produce more

mRNA molecules and the binding of repressors decreases the amount of produced

mRNA molecules (see Brown (2002) for a detailed account of gene regulation).

The amount of produced mRNA molecules, therefore, indicates the level of gene

expression. Measuring the abundance of mRNA molecules is the main task of

microarray technology.

For multicellular organisms, such as humans, primates, insects and so on,

genes contain two types of sequence segments, coding segments and non-coding
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Figure 2.1: The two main steps of gene expression, transcription and translation.

segments. Coding segments are called exons and carry the genetic information

to synthesize proteins, while non-coding segments are called introns and do not

carry genetic information for protein synthesis. Genes contain interleaving exons

and introns. At the splicing step, introns are removed from mRNA leaving a

shorter sequence of coding mRNA.

At the translation step, mRNA leaves the nucleus and enters the cytoplasm

to start the synthesis of proteins. The mRNA is read by the ribosomes which are

large cytoplasmic structures. The ribosome recognises the start codon (AUG)

and begins the translation by adding the first amino acid in the protein chain.

Translation proceeds codon by codon. At each codon, an amino acid carried by

tRNA is added to the growing protein chain by codon recognition. The translation

terminates when it encounters one of the three stop codons (UAA, UGA and
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Figure 2.2: The number of research papers related to microarray published in
recent years. Data are obtained from PubMed (http://www.pubmed.gov) which
is a service of the U.S. National Library of Medicine that includes over 16 million
citations for biomedical articles back to the 1950s.

UAG) in the mRNA sequence. Newly synthesized proteins fold into the correct

three-dimensional structure and perform biological functions of various types, e.g.

as enzymes, antibodies, transcription factors and so on.

The genome is the entire DNA content of a cell, including the nucleotides,

genes and chromosomes. The human genome is estimated to contain around

20,000-25,000 protein-coding gene loci (International Human Genome Sequencing

Consortium, 2004). Different organisms contain different genomes which config-

ure diverse life forms. Each organismal cell contains the same genome structure,

while different tissues of the same organism possess various functions and appear-

ance. This is due to the different gene expression resulting in different cellular

processes. The modification of gene sequences or gene expression levels can also

lead to uncontrolled cell growth and disease. People are therefore interested in

globally exploring the hidden genomic world. The microarray is a tool which en-

ables the rapid and quantitative analysis of gene expression on a genomic scale.

2.1.2 Microarray Technology

Microarrays measure gene expression levels on a genomic scale simultaneously

by monitoring the abundance of the intermediary mRNA (Schena et al., 1995;
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Lockhart et al., 1996). The large number of published papers in recent years

demonstrates that microarray technology is an extremely valuable tool in biomed-

ical and life sciences research. Figure 2.2 shows the quickly increasing number of

research articles with “microarray” in their abstracts published since 1995.

A microarray is “an ordered array of microscopic elements on a planar sub-

strate that allows the specific binding of genes or gene products” (Schena, 2003).

The key idea of microarray technology is binding or hybridisation, which is the

chemical process where the two complementary strands of DNA or RNA combine

to form a double strand under certain conditions. The “microscopic elements” are

single stranded nucleotide sequences, which are called probes, fixed to the surface

of microarrays. “Genes or gene products” are mRNA or total RNA molecules

isolated from the biological specimens. They are called targets in microarray ter-

minology. The conception of probes and targets here is consistent with nomencla-

ture in Phimister (1999). Targets are fluorescently labeled and mixed in solution.

The mixture of targets, known as sample, is then hybridised to the microarray.

The RNA sequences of the targets will bind to their complementary probes. After

a certain time allowed for hybridisation, the arrays are washed to get rid of the

extra sample and the arrays are scanned to obtain a two dimensional image. The

intensity at each probe position indicates the amount of RNA molecules bound

to the specific probe and provides a quantitative measurement of the expression

level of the related gene.

A typical microarray experiment involves the following steps:

1. Isolate RNA from the tissue of interest and prepare fluorescently labeled

targets.

2. Hybridise the labeled targets to the microarray.

3. Wash, process and scan the microarray.

4. Process the resulting image to obtain a quantitative measurement of the

intensity for each probe.

Among currently available microarray technologies, there are two widely used

classes, cDNA microarrays first developed at Stanford (Schena et al., 1995) and

synthetic oligonucleotide microarrays mainly produced by Affymetrix (Lockhart

et al., 1996). In this thesis, we focus on Affymetrix microarrays which are often

referred to as chips or arrays in abbreviation.
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2.1.3 Synthetic Oligonucleotide Microarrays

In Affymetrix microarray technology, probes are oligonucleotides which are short

single-stranded nucleotide sequences (DNA or RNA) and usually include 25 nu-

cleotides. According to the available sequence information, probes are chemically

synthesised from DNA and RNA building blocks, nucleotides, at a specific loca-

tion on the surface of arrays (Lockhart et al., 1996). The precise location where

each probe is synthesised is called a feature. One single high-density Affymetrix

array with typical size 1.28cm × 1.28cm contains millions of features. At each

feature position, the probe is present in millions of copies in order to capture the

unknown amount of target molecules with the complementary sequence in the

sample.

Apart from the synthetic oligonucleotides, another speciality of Affymetrix

microarray technology is the redundancy in the probe design (Figure 2.3). The

concept of redundancy is embodied in two aspects. One is that each gene cor-

responds to multiple probes on the array, another is that arrays contain pairs of

probes for each of the RNA sequences being monitored. For each gene, the ref-

erence sequence comes from its related spliced mRNA which contains only exons

and flanking RNA. A subset of exon-specific probes is specifically chosen in order

to detect the spliced mRNA in samples. The set of probes related to a particular

gene is called a probe-set.

There are two types of hybridisation occurring on the array during the bind-

ing of targets to probes, specific hybridisation and non-specific hybridisation

(Lockhart et al., 1996; Southern et al., 1999), also known as specific binding and

non-specific binding respectively. Specific hybridisation means that the double-

stranded molecule is formed from two perfectly complementary strands, one from

probe sequences and another from target sequences. Non-specific hybridisation,

sometimes also called cross-hybridisation in the literature, refers to the hybridi-

sation happening between two strands which are not perfectly complementary.

Each probe on the array that is perfectly paired with its target sequence is called

a perfect match (PM) probe. In order to identify the non-specific hybridisation,

for each PM probe on the array there is a mismatch (MM) probe which has the

identical nucleotide sequence as the PM probe except that the middle nucleotide

is changed to the complementary one. For example, A is changed to T and C is

changed to G, and vice versa. There are 11-20 PM/MM probe-pairs contained in

each probe-set. By design the MM probe detects the non-specific hybridisation
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Figure 2.3: The probe design and output of Affymetrix microarrays.

on its complementary PM partner, since with only one base replaced the MM

probe has a similar efficiency of binding to the non-specific target sequences as

the PM counterpart. The MM probes therefore serve as internal controls for hy-

bridisation specificity. In order to avoid minor defects in the hybridization image,

probes are scattered throughout the surface of the arrays.

Figure 2.4 shows the procedure of an Affymetrix microarray experiment. Dur-

ing the experiment, fluorescent labeled RNA molecules are fragmented and hy-

bridised to the array. The degree of hybridisation is assessed by monitoring flu-

orescent emission using a laser scanner. For each chip, a two dimensional image

is created with each probe being identified by its coordinates on the array and

measured for its fluorescent intensity. The measured intensity values represent

the expression level of the related gene and coordinates on the array are stored

in a cell intensity file (*.CEL) as the final results of the experiment. Each chip
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Figure 2.4: The procedure of Affymetrix microarray experiment.

corresponds to a CEL file. For each type of chip related to each particular organ-

ism, Affymetrix provides an array layout description file (*.CDF). The CDF file

describes the design of a chip defining which probes belong to which probe-sets.

By looking up the CDF file the intensity values for each probe-set can be ex-

tracted. The relationships between probe-sets and genes are also provided by the

manufacturer in the documentations. The probe-level analysis methods which

are described in Chapter 3 begin with the intensity measurements in CEL files.

2.2 Probabilistic Inference

Microarray experiments are associated with high variability and microarray data

are inherently noisy. Probabilistic models provide powerful tools to deal with

the uncertainty associated with this noisy data (Baldi and Brunak, 2001; Durbin

et al., 1998). The Bayesian framework is widely used to handle complicated

problems due to its flexibility and generality in probabilistic inference (Gelman

et al., 2004). In this thesis, we use Bayesian models to quantify the uncertainty

in microarray data by fitting data with parameters and hierarchical structures.

2.2.1 Data Likelihood

The aim of probabilistic inference is to reveal the implications behind the observed

data by constructing a model that describes the origin of the observed data.

Probabilistic theory is very useful in constructing models for data.
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The experimental data, D = {xi} where i = 1, 2, . . . , n, are the n observed val-

ues for the random variable X. A probabilistic model with unknown parameters

θ can be constructed to model the experimental data by assuming the probabil-

ity density function of the random variable is P (X|θ) given parameters θ. If the

observed data is assumed to be independently and identically distributed (i.i.d.),

the likelihood function is

P (D|θ) =
n∏

i=1

P (xi|θ) . (2.1)

In some problems, apart from the observed variables X there maybe un-

observed variables, H = {hi}, called latent or hidden variables. To obtain

the likelihood of a model containing latent variables, these variables should be

marginalised first,

P (D|θ) =
n∏

i=1

∑

H
P (xi,H|θ) . (2.2)

By maximising the likelihood function in (2.1) or (2.2) with respect to the

parameters θ, the maximum likelihood (ML) estimate of θ, θ̂, can be obtained.

For convenience, we usually maximise the log-likelihood L(θ) = log P (D|θ). The

resulting model with estimated parameters θ̂ then describes the observed data

with a high likelihood.

2.2.2 Bayesian Inference

In the maximum likelihood approach, the parameters are determined by finding

the maxima of the likelihood function. In the Bayesian approach, the unknown

parameters θ themselves are treated as random variables coming from the prior

distribution P (θ). The prior distribution expresses our degree of belief about the

value of θ before viewing the observed data.

After specifying the prior distribution P (θ), the data D is observed and is used

to calculate the posterior distribution of θ, P (θ|D). The posterior distribution

of θ is made up of both the prior information and the observed data. It is then

used to construct the estimator of the unknown parameters θ. The relationship

between the likelihood, the prior and the posterior distribution of θ is represented

by Bayes’ theorem,

P (θ|D) =
P (D|θ)P (θ)∫
P (D|θ)P (θ)dθ

. (2.3)
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The denominator, called the marginal likelihood or evidence, does not depend on

θ and can be considered as a constant with fixed data D. This constant ensures

the posterior distribution integrates to one over the allowed parameter space.

If we omit the constant in the denominator, we can obtain the unnormalised

posterior density,

P (θ|D) ∝ P (D|θ)P (θ) . (2.4)

To provide a more flexible model or to model hierarchical data which includes

multiple groups, hierarchical models can be defined by specifying the prior density

with further unknown parameters, P (θ|φ). The parameters φ are called hyper-

parameters in a hierarchical model and have their own prior distribution, P (φ).

The joint prior distribution is

P (θ, φ) = P (θ|φ)P (φ) , (2.5)

and the joint posterior distribution, ignoring the normalisation constant, is

P (θ, φ|D) ∝ P (D|θ, φ)P (θ, φ)

= P (D|θ)P (θ, φ) . (2.6)

The simplification of P (D|θ) in (2.6) comes from the fact that the distribution

of the data depends only on θ.

In the computation of Bayesian models, conjugacy, which means the posterior

distribution follows the same parametric form as the prior distribution, is very

important for computational convenience. For example, the beta prior distribu-

tion is a conjugate family for the binomial data likelihood. The advantages of

a conjugate prior are twofold: computational convenience and interpreting prior

information as additional data. When there is no prior information about the

values of parameters, a uniform or “flat” prior distribution can be used to make

inference based on available data. However, a uniform distribution for φ implies

a non-uniform distribution for any non-linear monotone transformation of φ. So

whether the prior is uniform will depend on the choice of parameterisation of

the likelihood function and therefore it is not always clear whether a flat prior is

non-informative or natural (Bernardo and Smith, 1994).
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2.2.3 Approximations to the Posterior

Maximum a Posteriori

A crude point estimator of parameters can be obtained by maximum a posteriori

(MAP), i.e. finding the posterior mode in (2.4) or (2.6),

θMAP = arg max
θ

h(θ) where h(θ) = log (P (D|θ)P (θ)) , (2.7)

is usually maximised. If a flat prior is used, the MAP estimate is equal to the

ML estimate maximising (2.1). This point estimate is reasonable since it gives

the single most likely choice for the parameters, and the computation of it is

convenient with numerous optimisation algorithms available. However, it may

not be representative especially when the posterior distribution of the parameters

has low probability density or the estimate is at the boundary of the parameter

space. The MAP estimator can be used as a reasonable starting point for more

accurate methods or as a comparable reference to check the validity of results

from other approaches.

Markov Chain Monte Carlo

The most frequently used approach to obtain accurate Bayesian inference for

complicated (e.g. non-conjugate) models is Markov chain Monte Carlo (MCMC).

Random draws from the posterior distribution of model parameters can be used to

summarise Bayesian inference. The key idea behind MCMC is drawing sequential

samples from the approximated posterior distribution of parameters and adjusting

the distribution for each draw. At each time t, the new sample θt depends only

on the draw at time t−1. For example, with the initial parameter values, θ0, θ1 is

drawn from P (θ|θ0, D) and θ2 is drawn from P (θ|θ1, D). The sequence of random

variables, θ1, θ2, · · ·, is called a Markov chain in the sense that the distribution of

θt given all previous θ’s depends only on the previous one, θt−1. As the sampling

goes on, the approximated posterior distribution, P (θ|θt, D), will converge to the

target true posterior, P (θ|D).

There are two widely used MCMC algorithms, the Gibbs sampler (Geman

and Geman, 1984; Gelfand and Smith, 1990) and the Metropolis-Hastings algo-

rithm (Metropolis et al., 1953; Hastings, 1970). The Gibbs sampler is based on
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iterative sampling from the conditional distribution of parameters. For a pa-

rameter vector θ = (θ1, · · · , θd), where θi is a subvector, at iteration t there are

d steps of sampling. At each step, only one subset of the parameter vector is

drawn from the conditional distribution P (θi|θt
1, · · · , θt

i−1, θ
t−1
i+1 , · · · , θt−1

d , D) given

all other subvectors at their latest values. If the conditional distributions have

standard form, it is convenient to sample directly from them.

For those conditional distributions which are not in standard form, the Metropolis-

Hastings algorithm can be used instead. This algorithm uses an acceptance/rejection

rule to make a random walk which eventually converges to the target distribu-

tion. With a starting draw θ0, the acceptance/rejection rule at iteration t can be

depicted as follows:

1. Draw a proposal θ∗ from a proposal distribution, J(θ∗|θt−1).

2. Calculate the ratio,

r =
P (θ∗|D)/J(θ∗|θt−1)

P (θt−1|D)/J(θt−1|θ∗) . (2.8)

3. Set

θt =





θ∗ with probability min(r, 1)

θt−1 otherwise.
(2.9)

The key fact is that

P (θ∗|D)

P (θt−1|D)
=

P (D|θ∗)P (θ∗)
P (D|θt−1)P (θt−1)

, (2.10)

so the denominator in (2.3), which is very difficult to compute in many cases,

cancels.

In practice, the Gibbs sampler and Metropolis algorithm can be combined to

approximate the posterior distribution in a complicated Bayesian model. For the

parameter subvectors which have standard distribution form, the Gibbs sampler

can be used, and for those which do not, the Metropolis-Hastings algorithm can

be used in the iterative updates.

The difficulty of MCMC implementation is the assessment of convergence of

the iterative simulation. The recommended approach in Gelman et al. (2004)

is to assess convergence based on multiple sequences with overdispersed starting

points. For each parameter of interest, θ, suppose there are m paralled simulated
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sequences, each of length n after discarding simulations at a burn-in stage. Let

θij denote the ith draw in the jth sequence. The between- and within-sequence

variances, B and W , can be calculated respectively by

B =
1

m− 1

m∑

j=1

(θ̄j − θ̄)2, W =
1

m

m∑

j=1

s2
j , (2.11)

where

θ̄j =
1

n

n∑

i=1

θij, θ̄ =
1

m

m∑

j=1

θ̄j, s2
j =

1

n− 1

n∑

i=1

(θij − θ̄j)
2 . (2.12)

The convergence of the simulation is monitored by estimating the root ratio of

between- and within-sequence variances,

R̂ =

√
B

W
, (2.13)

which is called the potential scale reduction by Gelman et al. (2004). The simu-

lation is considered to converge when R̂ of every parameter is close to 1.

Laplace Approximation

When MCMC is too computationally expensive for some problems, the Laplace

method can be used to approximate the posterior distribution. If the posterior in

(2.4) is highly peaked at the maximum, a useful approximation of the distribution

is a Gaussian centered at the MAP estimate, θMAP . Expanding (2.7) at θMAP ,

we have

P (θ|D) ' exp
(
h(θMAP ) +

1

2
(θ − θMAP )T V(θ − θMAP )

)

∝ exp
(
−1

2
(θ − θMAP )T (−V)(θ − θMAP )

)
(2.14)

∝ N (θ; θMAP , (−V)−1) ,

where N (µ, Σ) represents a Gaussian distribution with mean µ and covariance

matrix Σ and V is the Hessian matrix with elements defined as

Vij =
∂2

∂θi∂θj

h(θ)

∣∣∣∣∣
θ=θMAP

. (2.15)
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Variational methods

The Laplace approximation is only accurate if the posterior is well approximated

by a Gaussian centered at the MAP solution. Other approximate Bayesian meth-

ods have been developed. A popular choice which can be applied to hierarchical

or latent variable models is the variational approximation. The posterior can be

obtained by marginalising over the distribution of hyperparameters,

P (θ|D) =
∫

P (θ, φ|D)dφ . (2.16)

However, for some problems the integral is not tractable. In this case, the

ML or MAP estimate of φ, φML or φMAP , is useful to obtain P (θ|D, φML) or

P (θ|D, φMAP ). The ML or MAP estimate can be calculated by maximising the

marginal likelihood,

L(φ) = log P (D|φ) = log
∫

dθ P (D|θ, φ)P (θ|φ) , (2.17)

or the marginal posterior, when there is prior information about φ,

h(φ) = log(P (D|φ)P (φ)) = log
∫

dθ P (D|θ, φ)P (θ|φ) + log P (φ) . (2.18)

If the integral in (2.17) or (2.18) is tractable, the maximisation can be car-

ried out by standard numerical methods. If it is intractable, the Expectation-

Maximisation (EM) algorithm (Dempster et al., 1977) combined with a varia-

tional method (Ghahramani and Beal, 2001; Jordan et al., 1999) can be used

to optimise a lower bound on P (D|φ) and work out the posterior distribution

P (θ|D, φ) (Beal, 2003). Taking the ML estimate as an example, the distribution

Q(θ) over θ and Jensen’s inequality are used to get a lower bound on L(φ),

L(φ) = log
∫

dθ Q(θ)
P (D|θ, φ)P (θ|φ)

Q(θ)

≥
∫

dθ Q(θ) log
P (D|θ, φ)P (θ|φ)

Q(θ)

=
∫

dθ Q(θ) log P (D|θ, φ)P (θ|φ)−
∫

dθ Q(θ) log Q(θ) . (2.19)

The lower bound is known as the Kullback-Leibler (KL) divergence (except for an

additive constant) which measures the discrepancy between Q(θ) and P (θ|φ,D).

If there are no constraints on the form of Q(θ), optimising the KL-divergence
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results in

Q(θ) = P (θ|φ,D)

∝ P (D|θ, φ)P (θ|φ) . (2.20)

One can use an EM algorithm to optimise (2.19) with respect to Q(θ) and φ

iteratively. Starting from some initial hyper-parameters φ0:

E-step: Q(θ)t+1 = P (θ|φt, D) (2.21)

M-step: φt+1 = arg max
φ

∫
dθ Q(θ)t+1 log P (D|θ, φ)P (θ|φ) . (2.22)

In the case of MAP learning, the M-step is

M-step: φt+1 = arg max
φ

(∫
dθ Q(θ)t+1 log P (D|θ, φ)P (θ|φ) + log P (φ)

)
.

(2.23)

When the EM algorithm converges, Q(θ) provides an estimate of the posterior

distribution of parameter θ given φML or φMAP .

However, in practice it is difficult to determine the form of Q(θ). In order

to make progress, Q(θ) is approximated by a function which factorises across

disjoint subsets of θ. Take two disjoint subsets, θ1 and θ2, of θ for example,

Q(θ) = Q(θ1)Q(θ2) . (2.24)

Substituting (2.24) for Q(θ) in (2.19) and optimising with respect to Q(θ1) and

Q(θ2) results in

Q(θ1) ∝ exp
[∫

dθ2Q(θ2) log P (D|θ1, θ2, φ
t)P (θ1, θ2|φt)

]
(2.25)

Q(θ2) ∝ exp
[∫

dθ1Q(θ1) log P (D|θ1, θ2, φ
t)P (θ1, θ2|φt)

]
. (2.26)

The E-step in (2.21) is replaced by a sub-loop in which Q(θ1)
t+1 and Q(θ2)

t+1

are optimised iteratively by (2.25) and (2.26). The M-step in (2.22) is adjusted

accordingly as

φt+1 = arg max
φ

∫
dθ1dθ2 Q(θ1)

t+1Q(θ2)
t+1 log P (D|θ1, θ2, φ)P (θ1, θ2|φ) . (2.27)

It can be seen from (2.25) that Q(θ1) depends on the expectations under
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Q(θ2). When these expectations are intractable, an importance sampler can be

used to handle this intractability (Lawrence et al., 2004; Vermaak et al., 2003).

Supposing that Q(θi) can be factorised as the following form

Q(θi) = p(θi)f(θi) , (2.28)

where p(θi) is the density function of θi which has a standard form and f(θi) is a

function of θi, and drawing n samples of θi from p(θi), the estimated expectation

of a function g(θi) under Q(θi) is

∫
dθiQ(θi)g(θi) ≈

n∑

k=1

ωkg(θk
i ), where ωk =

f(θk
i )∑

k f(θk
i )

. (2.29)

2.2.4 Model Selection

Suppose there are a set of candidate models Mm, m = 1, · · · ,M , and correspond-

ing model parameters θm. If the models are fitted based on maximisation of a

log likelihood L(θm), we can choose the best model from them according to the

Akaike information criterion (AIC, Akaike (1973)) or the Bayesian information

criterion (BIC, Schwartz (1978)). The formula of AIC for model Mm is

AICm = −2L(θ̂m) + 2dm , (2.30)

where dm is the number of free parameters to be estimated in model Mm and θ̂m

is the ML or MAP estimate for parameters θm. The calculation of BIC is given

by

BICm = −2L(θ̂m) + dm log n , (2.31)

where n is the number of data points. The best model is selected by minimising

AICm or BICm.

Despite its similarity with AIC, BIC is slightly different and is motivated by

the Bayesian approach to model selection. Assuming the prior distribution for

the parameters of each model Mm is P (θm|Mm), the posterior distribution of a

given model is

P (Mm|D) ∝ P (Mm)P (D|Mm)

∝ P (Mm)
∫

dθmP (D|θm,Mm)P (θm|Mm) , (2.32)
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where P (Mm) is the prior probability of choosing Mm. The probability ratio

between Mm and Ml is

P (Mm|D)

P (Ml|D)
=

P (Mm)

P (Ml)

P (D|Mm)

P (D|Ml)
. (2.33)

The prior over models is usually assumed uniform, so the second ratio of evidence

for different models, which is called Bayes’ factor, shows how well the observed

data were predicted by Mm compared to Ml. The difficulty is to evaluate the

evidence P (D|Mm). Using the Laplace method in (2.14), the evidence of Mm

can be approximated as the following

P (D|Mm) ∝
∫

dθmP (D|θm,Mm)P (θm|Mm)

'
∫

dθm exp
(
h(θ̂m) +

1

2
(θm − θ̂m)T V (θm − θ̂m)

)

= exp
(
h(θ̂m)

)
(2π)dm/2| − V −1|1/2 , (2.34)

where h(·) and V are defined in (2.7) and (2.15) respectively. Thus

log(P (D|Mm)) ' h(θ̂m) +
dm

2
log(2π) +

1

2
log | − V −1| . (2.35)

Followed by some other simplifications (Ripley, 1996), the evidence in (2.35) can

be simplifed as

log(P (D|Mm)) ' L(θ̂m)− dm

2
log n , (2.36)

which is proportional to the BIC score in (2.31). It is also feasible to use (2.35)

directly for model selection.



Chapter 3

Probabilistic Probe-level Analysis

This chapter describes the development of an improved probabilistic probe-level

model, multi-mgMOS. After introducing the background information and related

work, multi-mgMOS is proposed and a comparison with other existing methods is

given, followed by the conclusion.

3.1 Affymetrix Probe Characteristics

The aim of probe-level analysis is to summarise the gene expression level from

a set of PM and MM probe intensity values as shown in Figure 3.1. As the

first stage of microarray data analysis, the probe-level analysis should provide

reliable gene expression values for the high level analysis. However, this work is

challenging due to the noisy nature of the probe-level data. The PM/MM probes

are designed so that PM probes measure the amount of specific hybridisation and

MM probes are a control for background and non-specific hybridisation. From

previous work on the characteristics of Affymetrix probe-level data, the following

key observations are obtained:

1. In spike-in studies it is observed that PM and MM intensities both increase

with concentration, although the increase in the MM intensities is less than

that of the PM intensities (Chudin et al., 2002; Irizarry et al., 2003). This

means both PM and MM probes measure the true specific signal to some

extent (see Figure 3.2).

2. The response of spike-in genes to increasing transcript concentration is not

always linear, especially for the low and high intensity probes (Chudin et al.,

37
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Figure 3.1: The process of probe-level data analysis. The probe data is from
probe-set 37777 at of Affymetrix HG-U95a spike-in data set (Appendix A.1) at
concentration 32pM. This probe-set contains 16 probe-pairs. In a spike-in study
mRNA extracts are spiked in at known concentrations.

2002; Antonellis et al., 2001) as shown in Figure 3.2. At the lower end

of transcript concentrations, the intensity of the PM probe is close to its

corresponding MM probe intensity and the nonlinearity of the response is

largely due to background effects (Chudin et al., 2002). The scanner effects

are likely to be more pronounced at the higher target concentrations, as

the response of the scanner photomultiplier is no longer in the linear range

(Antonellis et al., 2001). From Figure 3.3, which shows the density of

PM and MM intensities for 25 chips in a real mouse data set, most probe

intensities lie between 6 and 10 on a log scale. In other words, most probes

are associated with genes that are relatively low expressed. The correction

of the non-linear response of probes is therefore more important for the

lower concentration targets than the higher concentration targets.

3. About 10-30% of probe pairs (called negative probe pairs) have higher MM

probe intensity than their corresponding PM probe, especially in the low

intensity value probe-sets (Naef et al., 2002). An example can be seen

clearly in the upper-left plot in Figure 3.2. The curve of MM probe is higher

than the PM curve in the lower end. When the amount of mRNA is large,

PM intensities are typically significantly larger than the corresponding MM

intensities. However, it can be seen from Figure 3.3 that most probes are

relatively low expressed and when the mRNA concentration is low the PM

and MM intensities of the same probe-pair are very close to each other.

This is reasonable but makes the summarisation of expression values for

low expressed genes more difficult since stochastic error due to non-specific

binding and experimental variability dominates the signal in this regime.
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Figure 3.2: The logarithm of the intensity of the 16 probe pairs of the spike-in
gene 37777 at in Affymetrix HG-U95a spike-in data set (Appendix A.1) versus the
logarithm of transcript concentrations. The solid line represents PM intensities
and the dotted line represents MM intensities. A linear relationship between con-
centration and intensities is observed in the median range of the concentrations.

4. PM and MM probe intensities, and also differences between them, vary in

probe-specific ways (Li and Wong, 2001a; Irizarry et al., 2003; Wu et al.,

2004; Hein et al., 2005) as shown in Figure 3.4. The similarity of nucleotide

content between the PM probe and MM probe is thought to make the two

probes have correlated sensitivity to signal. The sensitivity of probes varies

within the probe-set and the pattern of the probe effect stays invariant

across different conditions. The variation due to probe effects is larger than

the variation across arrays (Li and Wong, 2001a). It can also be seen in

Figure 3.1 that there is high variability for the probe intensities within the

same probe-set.
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Figure 3.3: Density of probe intensities for the 25 chips in the mouse time-course
data set (Appendix A.3). (a) is for PM intensities, (b) is for MM intensities.
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specific effects.



CHAPTER 3. PROBABILISTIC PROBE-LEVEL ANALYSIS 41

3.2 Related Work

The noisy nature of microarray experiment data has motivated the development of

numerous algorithms for estimating gene expression values. These algorithms per-

form various transformations on the probe intensities, trying to enable researchers

to compare microarray outcomes of different genes quantitatively across separate

arrays. A variety of computational approaches are used in these algorithms.

3.2.1 Popular Statistical Methods

Statistical methods have been developed to summarise gene expression values. It

is difficult to account for all characteristics of probe data described in Section

3.1 in a single model. Therefore, most models handle the experimental data in

several steps such as background correction, normalization and summarization.

Affymetrix Microarray Suite Software version 5.0, MAS 5.0 (Affymetrix, 2002),

overcomes the large proportion of negative probe-pairs by modifying the intensi-

ties of MM probes to make the difference between PM and MM probe intensities

always positive. A robust average of the probe-pair intensity differences for each

probe-set is then calculated as the expression level of the probe-set. Finally, a

global scaling normalisation is performed on the estimated expression values so

that the signal for each chip has the same average value.

The model-based expression index, MBEI (Li and Wong, 2001a), normalises

probe data based on an invariant set of probes that belong to non-differentially

expressed genes. In order to find the invariant set, it is assumed that the in-

tensity ranks of a probe from an invariant gene in two arrays are similar. A

piecewise linear running median line is then calculated and used as the nor-

malisation curve. MBEI models probe effects as a probe-specific multiplicative

component in the computation of the expression level on the raw intensity scale.

The existence of negative probe pairs is prone to make MBEI produce nega-

tive expression values. In order to reduce the negative expression values MBEI

excludes all negative probe pairs or uses only PM probe intensities as an op-

tion for the users (Li and Wong, 2001b). The software MBEI is available from

http://www.biostat.harvard.edu/complab/dchip.

The robust multi-array average, RMA (Irizarry et al., 2003), uses only PM

values to fit a linear model on the log intensity scale. Before fitting the model,

the true signal and the background is modeled to follow an exponential and
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Gaussian distribution respectively. The true signal is then normalised using the

quantile normalisation algorithm (Bolstad et al., 2003). In quantile normalisation,

the probes for each array are sorted according to their intensities. The average

intensity of probes over different arrays which have the same rank is assigned to

these probes, so that the normalised probe intensities for each array have exactly

the same density. The probe affinity effect is modeled as an additive component

in the linear model at the summarisation step. The modified version of RMA,

GCRMA (Wu et al., 2004), assumes the non-specific hybridisation tends to be

directly related to it GC-content and removes the non-specific background signal

based on a model using GC-content. GCRMA is implemented as an R package

gcrma and is available from http://www.bio-conductor.org.

Most of these statistical methods only measure the gene expression level and

do not provide a level of uncertainty of this measurement. To account for the

uncertainty, MAS 5.0 calculates p-values to determine whether the transcript of a

particular gene is present in single array analysis or to tell whether the expression

level of a gene on one chip changes with respect to the other chip. However,

there is no approach to account for this uncertainty in further more complicated

downstream analysis, such as detecting differential gene expression with replicates

available or clustering of gene expression. MBEI is able to provide a standard

error (SE) of the estimated gene expression level (Li and Wong, 2001a), but

it is calculated by fixing the probe effects as constants and this thus ignores the

variability in the estimation of probe effects. As for the application of the obtained

SE, a statistical test is constructed for finding differential gene expression between

two single chips and bootstrap resampling is used in hierarchical clustering. No

approach is provided to propagate this estimate of uncertainty into more general

analyses.

3.2.2 Probabilistic Models

BGX (Bayesian gene expression index)

BGX (Hein et al., 2005) is a probabilistic model derived from a fully Bayesian

hierarchical model. It allows for the binding of a fraction of the specific signal

to the MM probes. For probe-set g on replicate r at condition c, it assumes the

observed intensity of PM probe j, ygjcr, is a sum of specific signal, sgjcr, and

background and non-specific signal, hgjcr, and the corresponding observed MM
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intensity, mgjcr, is modelled as a fraction, φ ∈ (0, 1), of the specific hybridization

and non-specific hybridization. The first level of BGX is summarized below:

ygjcr ∼ N (hgjcr + sgjcr, τ
2
cr)

mgjcr ∼ N (hgjcr + φsgjcr, τ
2
cr) , (3.1)

where τ 2
cr is the chip-specific variance. The fraction of specific hybridization

binding to the MM probes is shared for all probes across all chips. The second

level of BGX is

log(sgjcr + 1) ∼ TN(µgc, σ
2
gc)

log(hgjcr + 1) ∼ TN(λcr, η
2
cr) , (3.2)

where TN is a truncated Gaussian distribution to account for the fact that

log(sgjcr + 1) is always positive. The distribution of the specific signal is probe-

set specific. The distribution of the background and non-specific signal is chip-

specific. The model is worked out by a computationally intensive Markov chain

Monte Carlo (MCMC) method (see Section 2.2.3).

The advantages of BGX are that it uses both PM and MM probes for extract-

ing specific hybridization intensities, while at the same time allowing for gene and

probe specific background correction in the non-specific hybridization term. The

problems with BGX are mainly in two aspects. The model does not account for

the different binding energies of nucleotide pairs (Zhang et al., 2003; Naef and

Magnasco, 2002) and the slow MCMC implementation of the model, especially

for low expressed genes which need more iterations for the burn-in step in order

to obtain accurate estimates. It is not clear which genes should be considered

as low expressed, so this makes it difficult to predict the correct burn-in. The

software BGX is available from http://www.bgx.org.uk/software.html.

gMOS and mgMOS

The gamma model for oligonucleotide signal, gMOS (Milo et al., 2003), is a

probabilistic model assuming an underlying gamma distribution for the PM and

MM probe intensities. For a probe-set g in one chip, the model assumes,

ygj = sgj + h1
gj (3.3)
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mgj = h2
gj , (3.4)

for the PM and MM intensity of probe j in probe-set g. The specific binding

signal for the jth probe pair sgj is assumed to follow a gamma distribution, sgj ∼
Ga(αg, bg), where Ga(a, b) represents the gamma distribution with parameters a

and b,

p(sgj) =
bαg
g

Γ(αg)
s

αg−1
gj exp(−bgsgj) , (3.5)

where Γ(·) is the gamma function. The background and non-specific signal hi
gj for

both the PM and MM intensity are different random variables but assumed to be

drawn from the same gamma distribution, hi
gj ∼ Ga(ag, bg), with the same inverse

scale parameter bg as sgj. If gamma distributed random variables X1, X2, · · · , Xn

have parameters (α1, θ), (α2, θ), · · · , (αn, θ), then
∑

i Xi is distributed as gamma

with parameters (
∑

i αi, θ). Since the intensity of the jth PM probe is the sum

of sgj and h1
gj, it also follows a gamma distribution. Therefore, gMOS can be

described as

ygj ∼ Ga(ag + αg, bg)

mgj ∼ Ga(ag, bg) . (3.6)

The parameter ag accounts for the background and non-specific signal and αg

accounts for the specific hybridisation.

In gMOS, the PM and MM probe intensities are independently sampled from

two gamma distributions. Milo et al. (2004) improve the original gMOS to the

modified gMOS (mgMOS) by modelling the correlation between PM and MM

intensities within a probe-set. mgMOS assumes PM and MM intensities are

drawn from a joint probability density

P (ygj,mgj) =
∫

dbgj p(bgj)P (ygj,mgj|ag, αg, bgj) , (3.7)

where bgj ∼ Ga(cg, dg). The bgj are latent variables reflecting the different binding

affinity of probes within the probe-set. This modified distribution accurately

captures the correlated changes in the binding affinity of probe-pairs within the

probe-set due to the similar content of the PM and MM probe sequences within

the probe-pair.

mgMOS has been shown to be an efficient and accurate model (Milo et al.,
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Figure 3.5: Relationships between probe-level probabilistic models.

2004). However, two significant problems remain with the model:

1. The existing model is a single chip model and does not account for the fact

that the latent variables bgj are modelling the same information for every

chip in the data set. The estimated bgj for the same probe-pair on the same

type of chip may differ and cannot reflect an intrinsic characteristic of probe

sequences.

2. The intensities of MM probes are taken as background and non-specific

hybridisation, so they cannot account for presence of true signal in the MM

probes. This causes improper estimates of the non-specific binding from

MM intensities.

3.3 Multi-mgMOS

3.3.1 Model

To overcome the limitations of BGX and mgMOS a multiple chip model, multi-

mgMOS, is proposed. Relationships between multi-mgMOS and its previous mod-

els are shown in Figure 3.5. multi-mgMOS assumes

ygjc = s1
gjc + h1

gjc

mgjc = φs2
gjc + h2

gjc , (3.8)

where ygjc and mgjc represent respectively the PM and MM intensities of the

jth probe-pair in the gth probe-set on the cth chip. sgjc and hgjc are the corre-

sponding specific binding signal and non-specific background signal. Similar to

the approach in BGX, a fraction of the true signal, φ, is allowed to bind to MM

probes.
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The true signal sgjc and the non-specific signal hgjc are assumed to follow

gamma distributions

si
gjc ∼ Ga(αgc, bgj) (3.9)

hi
gjc ∼ Ga(agc, bgj) . (3.10)

Both sgjc and hgjc have the same inverse scale parameter bgj which is a latent

variable. The parameter bgj is also assumed to follow a gamma distribution,

bgj ∼ Ga(cg, dg), with parameters cg and dg which are both probe-set specific.

This scale parameter is shared across chips for each probe-pair and therefore

captures the sequence-dependent nature of the binding affinity. Parameters αgc

and agc are related to the amount of specific and non-specific signal binding

to the probe-set g of chip c. It is possible to share the parameter αgc across

replicates as in BGX (Hein et al., 2005). However, in most cases here a different

α parameter for each chip is used since this is more robust to outliers and between-

chip experimental variation.

For φ = 0, ygjc and mgjc are simple combinations of gamma distributed vari-

ables representing signal and noise. For φ > 0, the distribution of φsgjc is

φsgjc ∼ Ga(αgc, bgj/φ) . (3.11)

If the distribution of φsgjc is the gamma in (3.11), there is no standard distribution

for mgjc in (3.8). An approximated distribution of φsgjc is then adopted,

φsgjc ∼ Ga(φαgc, bgj) , (3.12)

which ensures the same mean effect of true signal binding to each MM probe. The

approximation in (3.12) is reasonable and is useful to keep the model tractable.

Using the additive property of gamma distributed random variables, multi-

mgMOS can be described as

ygjc ∼ Ga(agc + αgc, bgj)

mgjc ∼ Ga(agc + φαgc, bgj) . (3.13)

The shape parameters of the two gamma distributions are different and are com-

prised of two parts: the background term agc and the true specific hybridisation
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signal term αgc which are probe-set and chip specific. The parameter φ is then

shared by all probes. In practice this is an approximation as it can be observed

that the parameter φ varies between probe-pairs. In Section 3.4 this assumption

is relaxed and φ is allowed to be probe-specific.

3.3.2 Parameter Estimation

The log-likelihood of the observed PM and MM intensities for each probe-set g is

Lg(ag, φ, αg, cg, dg) = log P (Yg,Mg)

=
∑

j

log
∫

dbgjP (bgj|cg, dg)
∏
c

P (ygjc,mgjc|agc, φ, αgc, bgj)

=
∑

j

log


 dcg

g Γ(qg)

Γ(cg)w
qg

gj

∏
c

y
agc+αgc−1
gjc m

agc+φαgc−1
gjc

Γ(agc + αgc)Γ(agc + φαgc)


 , (3.14)

where αg = [αgc], ag = [agc], Yg = [ygjc], Mg = [mgjc], qg =
∑

c(2agc + (1 +

φ)αgc) + cg and wgj =
∑

c(ygjc + mgjc) + dg. The parameters agc, φ, αgc, cg and

dg can be estimated iteratively using maximum likelihood. Firstly, with fixed φ,

agc, αgc, cg and dg are fitted for each probe-set, then using the fitted agc, αgc, cg

and dg, φ is estimated. This process is iterated until all parameters reach stable

values.

It is found that the model has a flat likelihood for a range of parameters. In

order to make the model parameters uniquely identifiable, the empirical knowl-

edge of φ, which can be estimated from spike-in data, is adopted. It is assumed

that for highly expressed spike-in genes the background and non-specific hybridi-

sation can be ignored. Therefore, in (3.13) agc is set to be zero and one finds

φ ' 〈mgjc〉/〈ygjc〉, which means the difference between log(MM) and log(PM)

for each probe-pair is approximately equal to the constant log(φ) shown in Fig-

ure 3.6 (a). Using the experimental data from all known spike-in genes whose

spiked concentrations are above 50 pM the fitted log-normal distribution for φ is

obtained and shown in Figure 3.6 (b). A log-normal prior for φ is introduced to

obtain the maximum a posteriori (MAP) estimate of φ. The posterior distribution

of φ is

P (φ|{ygjc,mgjc}) ∝ P ({ygjc,mgjc}|φ)P (φ) . (3.15)

The logarithm of the posterior probability of φ is then (ignoring an irrelevant
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Figure 3.6: (a) The logarithm of the intensity of one probe pair of the spike-in
gene 37777 at in Affymetrix Latin Square spike-in data set (described in Section
A.1) versus the logarithm of transcription concentrations. The solid and dotted
lines represent PM and MM intensities respectively. (b) The histogram and fitted
log-normal distribution of φ, which measures the fractional amount of specific
binding to the MM probe, estimated from the highly expressed spike-in genes.

constant term)

h(φ) =
∑
g

Lg(φ) + log(P (φ)) . (3.16)

This is the quantity that is maximised to estimate φ.

3.3.3 Distribution of Gene Expression Level

Once the parameters have been estimated the distribution of signal sgjc for probe-

pair j in probe-set g of chip c is

P (sgjc|α̂gc, ĉg, d̂g) =
∫

dbgjP (sgjc|α̂gc, bgj)P (bgj|ĉg, d̂g)

=
Γ(ĉg + α̂gc)d̂

ĉg
g s

α̂gc−1
gjc

Γ(α̂gc)Γ(ĉg)(d̂g + sgjc)ĉg+α̂gc
, (3.17)

where α̂gc, ĉg and d̂g are the ML estimates of αgc, cg and dg respectively. The

expected log true probe signal and the variance of log signal for the gth probe-set

are respectively given by,

〈log(sgjc)〉 = log(d̂g) + Ψ(α̂gc)−Ψ(ĉg) , (3.18)

Var[log(sgjc)] = Ψ
′
(α̂gc) + Ψ

′
(ĉg) ,
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Figure 3.7: Posterior probability density of estimated log(α) for spike-in probe-
set 37777 at in Affymetrix Latin Square spike-in data set (described in Section
A.1) at zero concentration. The density is flat and the plot is cut at -180 to aid
the clarity.

where Ψ is the digamma function which is the derivative of the logarithm of the

gamma function and Ψ
′
is the first derivative of the digamma function.

In (3.18) cg and dg are characteristic of the probe-set for a specific type of

chip, while 〈log(sgjc)〉 varies with αgc over different chips in the data set. So the

posterior distribution of log(sgjc) is of interest given αgc and fixing cg and dg at

the ML estimates, P (log(sgjc)|αgc, ĉg, d̂g).

3.3.4 Approximation to the Posterior Distribution of αg

The posterior distribution of αgc is found to be unimodal and the value of αgc is

always positive, so it was initially thought that it would be reasonable to obtain

the Laplace approximation of the posterior distribution of log(αgc). However, for

low expressed genes the density of log(αgc) has very low probability mass as shown

in Figure 3.7 and the Gaussian approximation is not suitable for this case. A

truncated Gaussian is thus used to directly approximate the posterior distribution

of αgc and it will be shown that this provides a reasonable approximation.
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MAP Approximation

Parameters αg are assumed to be independent of each other so that the posterior

distribution of αg factorizes as a product of independent distributions for each

αgc. At the ML solution of (3.14), α̂gc, which is equal to the MAP estimate under

a uniform prior on αgc, assume

L′g(α̂gc) =
dLg(αgc)

dαgc

∣∣∣∣∣
α̂gc

L′′g(α̂gc) =
d2Lg(αgc)

dα2
gc

∣∣∣∣∣
α̂gc

, (3.19)

where Lg(αgc) is the log likelihood function of αgc given other parameters fixed

at their modal values. Expanding P (αgc|D) at the ML estimates, the following

can then be obtained for αgc > 0,

P (αgc) ∝ exp
(
L′g(α̂gc)(αgc − α̂gc) +

1

2
L′′g(α̂gc)(αgc − α̂gc)

2)
)

= TN(αgc; µgc, σ
2
gc) . (3.20)

The gradient term is only non-zero when α̂gc is zero and then the mean µgc is

below zero. From (3.20), the mean and variance of the approximating truncated

Gaussian are

µgc =
(
L′g(α̂gc)

)
σ2

gc + α̂gc (3.21)

σ2
gc =

(
−L′′g(α̂gc)

)−1
. (3.22)

Since αgc is positive, the Gaussian in (3.20) left truncated at zero is used to

approximate the posterior distribution of αgc. The normalisation constant C for

the truncated Guassian is

C =
2

1− erf
(
− µgc

σgc

√
2

) , (3.23)

where erf(·) is the error function which is defined as

erf(x) =
2√
π

∫ x

0
dt exp(−t2) . (3.24)
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Laplace Approximation

If the dependence of the components of αg is considered, a multivariate Gaussian

can be used to approximate the posterior distribution of αg,

P (αg) ∝ exp
(
L′g(α̂g)

T (αg − α̂g) +
1

2
(αg − α̂g)

T Hg(αg − α̂g))
)

= N (αg; µg, Σg) , (3.25)

where the element of the Hessian matrix Hg is

Hg
ij =

∂2Lg(αg)

∂αgi∂αgj

∣∣∣∣∣
αg=α̂g

. (3.26)

The mean of the approximated multivariate Gaussian is calculated by

µg = ΣgL′g(α̂g) + α̂g , (3.27)

where the covariance matrix Σg is calculated from

Σ̂g = (−Ĥg)−1 . (3.28)

The components of αg are constrained to be positive and therefore a truncated

multivariate Gaussian should be used. However, it is not possible to find an

analytical expression for the truncated multivariate distribution due to the dif-

ficulty of normalisation. Instead, the marginal distribution of αgc is obtained

by assuming a standard Gaussian and this marginal distribution is normalised.

The correlation between chips is only significant for highly expressed genes (see

Figure 3.10), where the truncation is irrelevant, so this approximation works well

in practice.

MCMC

In order to verify the goodness of the MAP approximation and Laplace approxi-

mation, standard Markov chain Monte Carlo (MCMC) can be applied to approx-

imate the true posterior distribution of αg. Given the assumption of the uniform
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prior on αgc and fixing other parameters at the modal values, the posterior dis-

tribution of αg is

P (αg|D) ∝ ∏

j

∫
dbgjP (bgj|cg, dg)

∏
c

P (ygjc,mgjc|agc, φ, αgc, bgj)

∝ ∏

j


Γ(qg)

w
qg

gj

∏
c

y
αgc

gjc m
φαgc

gjc

Γ(agc + αgc)Γ(agc + φαgc)


 . (3.29)

There is no standard form for the distribution of αgc, so the Metropolis algorithm

is adopted to update αgc iteratively. The proposal distribution is a truncated

Gaussian with the mean being the current value of αgc and the variance being

proportional to the variance in (3.22) for MAP approximation,

αt
gc ∼ TN(αt−1

gc , k2σ̂gc) , (3.30)

where the scale k is set to 2.4 empirically (Gelman et al., 2004). The initial value

of αg is the ML estimate, α̂g. At each Metropolis-Hasting random walk, if a non-

positive value of αt
gc is drawn from the Gaussian N (αt−1

gc , k2σ̂gc), it is rejected.

Once a positive value is drawn, the acceptance/rejection rule in (2.8) and (2.9)

is used.

The posterior distribution of αgc at different concentrations for spike-in gene

37777 at in Affymetrix Latin Square spike-in data set is shown in the upper panel

of Figure 3.8. For the Laplace approximation the marginal distribution of α at

each concentration is shown. Presumably Laplace and MCMC methods obtain

broader densities than MAP approximation since they include the variability

of αgc across all chips. For the lower and median concentration (columns 1-3)

both the MAP and Laplace approximations are close to simulations from the

MCMC method. For high concentration, which is related to highly expressed

genes (column 4), the difference between different methods gets larger due to

higher correlation between chips. Note that modes of P (〈log(sgjc)〉) from the two

approximated methods are the same, but they are different from MCMC. This is

because the two Gaussian approximations of MAP and Laplace to the posterior

of αgc have the same modes and the densities are symmetrical, and this leads to

the same mode under the transformation of (3.18). However, P (αgc) from MCMC

is right skewed, so the mode of P (〈log(sgjc)〉) changes and is different from the

two Gaussian approximated methods.
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Figure 3.8: Posterior probability density function of estimated α (upper panel)
and log expression levels (lower panel) for spike-in gene 37777 at in the Affymetrix
Latin Square spike-in data set (described in Section A.1) at concentration (a)
0, (b) 2, (c) 32 and (d) 512 pM. The thin solid lines are MAP approximation
in (3.20), the dash-dotted lines are Laplace approximation in (3.25) and the
histograms are from the MCMC method.

With the posterior distribution of αgc, it is then straightforward to calculate

the percentiles and credibility intervals. The expression in (3.18) and the per-

centiles of αgc can be used to calculate the percentiles of 〈log(sgjc)〉 since these are

invariant under the transformation of (3.18). The approximated distribution of

measured expression level at various concentrations of the spike-in gene 37777 at

in the Affymetrix spike-in data set is shown in the lower panel of Figure 3.8. Sim-

ilar to the distribution of α, the difference between distributions from the three

methods increases with the concentration.

It can be seen from Figure 3.8 that the difference between the two different

approximations of the distribution of αgc, MAP and Laplace, is not obvious for

the genes at lower and medium concentrations. Figure 3.9 shows the estimated

〈log(s)〉 calculated in (3.18) for 25 chips of the mouse data set. It can be seen that

the logged expression level for most genes lies below 10, which we refer to as low

and medium expressed, so the cases like the fourth column in Figure 3.8 are not

common. Moreover, the MAP approximation method assumes the independence

of the gene expression level on each chip while the Laplace and MCMC method
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Figure 3.9: Density of estimated expression level from multi-mgMOS for 25 chips
in the mouse time-course data set (described in Appendix A.3).

consider the correlation between expression level measured by different chips. In

the downstream analysis, if the Laplace method is used to measure the uncertainty

of gene expression measurements, the correlation between different chips should

be considered in the downstream analysis model and this will introduce extra

complexity into the model. In the further downstream analysis, where possible,

the correlation between chips is ignored to simplify the model since the difference

between the two approximation methods is negligible for most genes.

Under the circumstance where the variability of αgc across chips is ignored,

the goodness of the MAP approximation is examined by comparing it with the

numerically calculated histogram as shown in Figure 3.10. The dash-dotted lines

are calculated from P (αgc|{Yg,Mg}) under the uniform prior for αgc when fixing

the other parameters at the modal values. The lower panel shows the corre-

sponding density of 〈log(sgjc)〉 under the transformation of (3.18). It can be seen

that the MAP approximation is very close to the numerically calculated density.

Therefore the MAP approximation is used in the rest of the thesis.

3.3.5 Approximation of the Distribution of 〈log(s)〉
In the downstream probabilistic analysis of microarray data, such as Bayesian

methods, it is useful to provide a Gaussian approximation of the estimated log
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Figure 3.10: Posterior probability density function of estimated α (upper panel)
and log expression levels (lower panel) for spike-in gene 37777 at in the Affymetrix
Latin Square spike-in data set (described in Section A.1) at concentration (a) 0,
(b) 2, (c) 32 and (d) 512 pM. The thin solid lines are MAP approximation in
(3.20) and the dash-dotted lines are from numerically calculated histograms.

expression level since it is straightforward to plug a Gaussian noise into other

probabilistic models. The indices of genes and conditions are omitted for brevity

and the Gaussian approximation is assumed

〈log(sj)〉 ∼ N (µs, σ
2
s) . (3.31)

The delta method (Oehlert, 1992) is used to obtain such a Gaussian distribution.

From (3.18) the estimated log expression level, 〈log(sj)〉, is a function of the

random variable α,

g(α) = 〈log(sj)〉 = log(d) + Ψ(α)−Ψ(c) . (3.32)

When ignoring the index of genes and conditions, the distribution of α is the

Gaussian with mean µ and variance σ2 in (3.20) truncated at zero. The mean of

the truncated Gaussian, α̂, and the variance σ̂2 are

α̂ = C

[
σ√
2π

exp

(
− µ2

2σ2

)
+

µ

2
− µ

2
erf

(
− µ√

2σ

)]
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Figure 3.11: Approximated posterior probability density function of estimated
log expression levels for spike-in gene 37777 at in Affymetrix Latin Square spike-
in data set (described in Section A.1) at concentration (a) 0, (b) 2, (c) 32 and
(d) 512 pM. The thin solid lines are from the MAP approximation and the thick
dash-dotted lines are from the delta approximation.

σ̂2 = C

[
1

2

(
σ2 + (µ− α̂)2

) (
1− erf

(
− µ√

2σ

))
+

σ√
2π

(µ− 2α̂) exp

(
− µ2

2σ2

)]
,

where C is the normalisation constant defined in (3.23). Using the second order

Taylor series expansion of g(α) about α̂, the mean of g(α) can be obtained by,

µs ≈ g(α̂) +
σ̂2

2

∂2g(α)

∂α2

∣∣∣∣∣
α=α̂

. (3.33)

Using the first order Taylor series expansion, the approximated variance of g(α)

is

σ2
s ≈ σ̂2

(
∂g(α)

∂α

∣∣∣∣∣
α=α̂

)2

. (3.34)

Figure 3.11 shows the approximation of gene expression level from the delta

method compared to the MAP approximation calculated according to the invari-

ant percentiles of the posterior of α and 〈log(sj)〉 under the transformation of

(3.18). For the low expressed genes, the long tail of the distribution to the left is

chopped off, and for high expressed genes, the delta method obtains a very good

approximation to the MAP result.

3.3.6 Implementation

This model is the original version described in Liu et al. (2005) and implemented

in the R package, mmgmos, for public use of the model. This package uses the

fast C program donlp2 (Spellucci, 1998) for parameter optimisation. Since the
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Figure 3.12: Estimated φ for each of 64 possible middle triple bases of PM probes
from all known spike-in genes which are spiked in at high concentration (above
50 pM) in the data sets in Appendix A.1 and A.2.

publication of Liu et al. (2005), the software has been updated several times. The

main updates are setting φ zero when there is no empirical distribution available

and adding a global scaling normalisation option after the gene expression values

have been calculated.

3.4 Possible Improvements of φ Estimate

In Section 3.3, the single value of φ is shared for all probe-pairs. As shown in

Figure 3.6 (b) φ varies over probe-pairs. The single value may not be representa-

tive of the sensitivity to true signal for different MM probes. In this section, two

possible ways are discussed to include more information in order to make φ more

representative.

3.4.1 Estimating φ for Different Probe Content

It has been shown in previous studies that the GC-content of a probe affects

its binding efficiency and therefore its associated intensity (Naef and Magnasco,

2002; Zhang et al., 2003). Since the PM and MM probes have a mismatch central

base, the intensity difference for a PM probe and its corresponding MM probe

is largely due to the central triple bases of a probe. It is thus assumed that φ

is mostly determined by the middle triple bases. Using probe intensities at high

concentration (above 50 pM) of all known spike-in genes in data sets described

in Appendices A.1 and A.2, and assuming that the background is negligible at

high concentrations, the value of φ (∼ MM/PM) for probes with the same
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middle triple bases is modelled using a generalised linear model (Dobson, 1990).

Figure 3.12 shows the calculated φ for each of 64 possible middle triple bases

of PM probes and associated 95% confidence levels. Probe-pairs with different

central bases have different φ. For the probe-pairs with central bases A and G,

the estimated φ is larger than the probe-pairs with middle bases C and T. This

shows that there is more true signal binding to MM probes if the corresponding

PM probes have A or G as the middle base. The obtained values of φ in Figure

3.12 can be directly plugged into the model of multi-mgMOS in (3.13) according

to the different central triple bases of each PM probe.

Zhang et al. (2003) find similar results by considering the average of log ratio

of PM and MM intensities and explain this phenomenon by the different stacking

energy related to the central three bases in a probe-pair. The result here is

consistent with their results. The results in Naef and Magnasco (2002) also show

that the MM intensities of probe-pairs with A or G as PM middle base are in

general higher than the probe-pairs with C or T as middle base of the PM probe.

The explanation in Naef and Magnasco (2002) is that in the experiment base C

and T carry the fluorescent labels and these labels interfere with binding of the

target to the probes causing the various brightness difference between PM and

MM probes. The findings in Naef and Magnasco (2002) are also consistent with

the values of φ shown in Figure 3.12.

3.4.2 Integrating the Histogram of φ into multi-mgMOS

Suppose the fraction of true signal binding to MM probe of probe-pair j is φj and

the true value of φj should vary across different probe-pairs. Instead of treating

φj as a single value, the empirical distribution of φj, P (φj) in Figure 3.6 (b)

can be introduced into the model as the prior and approximated by a histogram.

Assuming φjk is the central point of the kth bin of the histogram of P (φj) and

n(φjk) is the area of the kth bin, the joint distribution of probe-pair j is

P (ygjc, mgjc|agc, αgc, cg, dg)

=
∫

dφP (φj)
∫

dbgjP (bgj|cg, dg)
∏
c

P (ygjc,mgjc|agc, φj, αgc, bgj)

≈ ∑

k=1

n(φjk)
∫

dbgjP (bgj|cg, dg)
∏
c

P (ygjc,mgjc|agc, φjk, αgc, bgj)

=
∑

k

n(φjk)d
cg
g Γ(qgk)

Γ(cg)w
qgk

gj

∏
c

y
agc+αgc−1
gjc m

agc+φjkαgc−1
gjc

Γ(agc + αgc)Γ(agc + φjkαgc)
, (3.35)
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where qgk =
∑

c(2agc + (1 + φjk)αgc) + cg and wgj =
∑

c(ygjc + mgjc) + dg. This

approach also considers the variability of φj, but the sum in the joint distribution

in (3.35) introduces additional computational complexity into the model.

3.5 Results and Discussion

In this thesis, multi-mgMOS I is used to denote the model of multi-mgMOS in

(3.13) which optimises φ from the data, multi-mgMOS II to represent the model

using pre-estimated φ according to the middle triple bases in PM probes and

multi-mgMOS III the variant integrating the histogram of φ in (3.35). During

the developmental stage, these models are implemented in Matlab using the op-

timisation toolbox SNOPT (Gill et al., 2002).

3.5.1 Performance on Spike-in Data Sets

Data sets

The simplified GeneLogic spike-in data set (Appendix A.2), denoted as Data set

A, is used to compare the three variants of multi-mgMOS with other alternative

probabilistic models BGX (Hein et al., 2005) and mgMOS (Milo et al., 2004).

The performance of other popular statistical methods on data set A is shown

in Hein et al. (2005). Data set A is the same one used by Hein et al. (2005)

to evaluate BGX. It is a subset of the GeneLogic spike-in data set and includes

only 1011 probe-sets for each chip. Data set A includes six chips for conditions a

and k and each condition has three replicates. According to differences between

spiked in concentrations in the two conditions, ranks of the difference between

expression levels for the 11 spike-in genes are shown in Table 3.1.

In order to further demonstrate the accuracy of the multi-mgMOS variants,

they are also compared with the most popular statistical models, MAS 5.0

(Affymetrix, 2002), MBEI (Li and Wong, 2001a) and GCRMA (Wu et al., 2004)

using a larger data set B. Data set B is a subset of the Affymetrix Latin Square

spike-in data set (Appendix A.1). It includes 14 chips for the 14 conditions

(conditions a–m and q) out of replicate group 1521. This data set includes all of

the 12,626 probe-sets on each chip.
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Figure 3.13: Scatter plots of gene expression measures of the two conditions in
data set A from (a) multi-mgMOS I, (b) multi-mgMOS II, (c)multi-mgMOS III,
(d) BGX and (e) mgMOS. For mgMOS and multi-mgMOS, the mean estimated
gene expression levels for each condition over the three replicates are used.
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Spike-in gene 2 1 3 5 6 9 7 8 4 10 11
True rank 1 2 3/4 3/4 5 6 7 8 9 10 11
BGX 1 2 3 6 4 8 9 7 862 10 5
mgMOS 1 2 3 6 4 8 9 7 756 10 5
multi-mgMOS I 1 2 3 7 4 8 9 6 737 10 5
multi-mgMOS II 1 2 3 7 4 8 9 6 479 10 5
multi-mgMOS III 2 1 3 5 4 6 13 8 870 43 11

Table 3.1: The ranks of the 11 spike-in genes in data set A, with respect to the
degree of differences between expression levels under two conditions, obtained
with the different probabilistic methods. All models rank 10 of 11 spike-in genes
in the top 10 except multi-mgMOS III.

Comparison of BGX with mgMOS and multi-mgMOS

Figure 3.13 shows scatter plots of gene expression values from BGX, mgMOS and

multi-mgMOS I–III for data set A. The dotted points represent the non-spike-in

genes and the star points represent the spike-in genes. Since the expression levels

of non-spike-in genes in the two samples is identical, the dotted points should

follow the diagonal. From Figure 3.13 multi-mgMOS III is obviously worse than

the other four models. For non-spike-in genes, the correlation coefficient between

gene expression levels for the two conditions estimated with BGX, mgMOS and

multi-mgMOS I–III are 0.9919, 0.9926, 0.9934, 0.9916 and 0.9855 respectively,

demonstrating that multi-mgMOS I is most consistent for these genes. The spike-

in genes are spiked in at different concentrations under the two conditions, so the

star points should be away from the diagonal. Except for one spike-in gene which

is spiked-in inappropriately in the experiment, all the other 10 spike-in genes lie

away from the diagonal. Table 3.1 shows results for the estimated ranks of 11

spike-in genes from the three models. All the models rank 10 of 11 spike-in genes

in the top 10 and show similar performance except multi-mgMOS III which failed

for spike-in genes 7 and 10, although multi-mgMOS I and II seem to show slightly

worse performance in identifying the rank of spike-in genes 5 and 8. The results

on this small data set are rather inconclusive and it is difficult to distinguish

between the three methods. The difference in performance of these models is

investigated on the larger data set B below.
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Figure 3.14: Curves of logarithm of gene expression values obtained from different
methods for the 12 spike-in genes in the data set B against the log transforma-
tion of transcription concentrations: (a) multi-mgMOS I, (b) multi-mgMOS II,
(c) multi-mgMOS III, (d) BGX, (e) mgMOS, (f) MAS 5.0, (g) MBEI and (h)
GCRMA. The slope of the average fitted straight line is added at each plot. The
ideal slope of curves is one.
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Sensitivity to Variation in Concentration

Figure 3.14 shows curves of log expression values for 12 spike-in genes in data set

B from eight methods against log transformed concentrations which are scaled

to (1,14). Following instructions of Affymetrix, two spike-in genes, 407 at and

36889 at, in data set B are excluded due to the poor performance of certain

probe-pairs. For variants of multi-mgMOS and mgMOS the negative log expres-

sion levels are truncated at -0.5 and negative values obtained from other methods

are truncated at zero. Ideally curves for spike-in genes should have a slope of one

since the difference in the concentration should result in an identical difference in

measured expression level. The slope of the average fitted line for each method

is shown in each plot in Figure 3.14. For highly expressed spike-in genes, all

methods obtain similar results, but for low expressed spike-in genes, the slopes

of curves of multi-mgMOS I and II, mgMOS and GCRMA are closest to one,

showing high sensitivity to the variation in concentrations. For two genes multi-

mgMOS III obtains relatively high expression values at the lower expressed end.

BGX estimates the non-specific hybridisation signal equally over the whole chip

without taking probe effects into consideration. This seems unreasonable in prac-

tice since PM and MM share very similar oligo sequences. Consequently, BGX

has poor performance in the low expressed area where non-specific binding has the

strongest effect. The inability of mgMOS to share probe-specific effects across

chips results in reduced accuracy for some genes. This can be observed from

some spike-in genes at low concentrations where the expression measurements

seem higher than true concentrations. GCRMA uses the GC content of probes in

order to obtain improvement for the lower end, but the slope is still slightly less

than one. The same problem exists for other popular statistical methods which

get relatively large expression measures for those weakly expressed genes.

From the comparison above, multi-mgMOS III does not perform as well as

multi-mgMOS I and II and it especially obtains spurious results on data set A.

It is therefore not considered in the remainder of the thesis.

3.5.2 Performance on a Real Data set

For more practical assessment of the new probe-level analysis method, the real

mouse time-course data set which is PCR validated (see Appendix A.3) is used to

show the performance of the proposed models, multi-mgMOS I,II. For the mouse
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Figure 3.15: Temporal profile of gene Dab2 which contains three probe-sets in col-
umn (a), (b) and (c) from mouse data set using five models: MAS 5.0, GCRMA,
BGX, gMOS and multi-mgMOS I,II. The qr-PCR profile is the dotted line in
each plot. The first row shows the results from MAS 5.0 (dashed lines) and
GCRMA (solid lines). The second, third and fourth rows show the profile from
BGX, mgMOS and multi-mgMOS respectively. The 5-95% credibility intervals
are also plotted for each time point for the probabilistic models BGX, mgMOS
and multi-mgMOS. The credibility intervals are truncated at 2.0 and -4.0 in order
to make plots clear.
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data set, the profiles of the eight PCR confirmed genes are obtained from MAS

5.0, GCRMA, BGX, mgMOS and multi-mgMOS I,II. As an example, Figure 3.15

shows results from the six models for three probe-sets measuring the expression

of gene Dab2 in the first hair-growth synchronous cycle. The data from one

randomly selected replicate is shown. In order to show the profile pattern for

each probe-set, the measured expression level is normalised to have zero mean

and unit standard deviation across the five time points. For the first probe-set,

GCRMA does not correctly identify the anti-hair-growth pattern as shown in the

leftmost plot of the first row. MAS 5.0, BGX, mgMOS and multi-mgMOS I,II

obtain more reasonable cycle patterns for all three probe-sets. However, BGX

is less confident in capturing the cycle pattern for the first probe-set due to the

large credibility intervals for expression levels at day 17 and 23.

Table 3.2 shows the Root Mean Square Error (RMSE) of estimated profiles for

eight hair-cycle associated genes. The RMSE to qr-PCR data is shown in the top

row of Table 3.2 and measures the difference between the estimated profiles and

the corresponding qr-PCR results for three common time points (day 1, 17 and 23)

in the first hair-growth cycle for all three mice. This is computed using all probe-

sets for the eight genes. It is found that mgMOS and multi-mgMOS I obtain the

best values of RMSE and the reason for this becomes apparent when looking in

detail at the profiles from each probe-set. Hair-growth patterns obtained from

mgMOS and multi-mgMOS are consistent with the qr-PCR results for all eight

genes. Profiles from BGX are significantly different from the corresponding qr-

PCR data for two probe-sets associated with genes Elf5 and Wnt11. Profiles

from MAS 5.0 are inconsistent with qr-PCR profiles for two probe-sets related to

gene Fbln1. Profiles from GCRMA are inconsistent for one and two probe-sets

respectively from genes Dab2 and Fbln1. multi-mgMOS II obtains very similar

profiles to multi-mgMOS I.

There are three PCR confirmed genes (Junb, Dab2 and Fbln1) that have

multiple probe-sets, and they have 2, 3 and 4 probe-sets respectively. Profiles of

these nine probe-sets for three mice are used to calculate the RMSE to the same

gene probe-set (bottom row of Table 3.2) and this shows that multi-mgMOS I

identifies the most consistent quantities for probe-sets associated with the same

gene.

It was found that the performance of the new method was most impressive on

this real data set and it is believed that it is important to validate new methods



CHAPTER 3. PROBABILISTIC PROBE-LEVEL ANALYSIS 66

RMSE I II mgMOS BGX MAS 5.0 GCRMA

To qr-PCR 0.601 0.605 0.601 0.721 0.656 0.694
To same gene 0.233 0.237 0.245 0.274 0.360 0.370

Table 3.2: The Root Mean Square Error (RMSE) of profiles from multi-mgMOS
I,II, mgMOS, MAS 5.0 and GCRMA for hair-growth associated genes in the
mouse data set. The first row is the RMSE to profiles from qr-PCR data and the
second row is the RMSE between probe-sets measuring the same gene. I, II are
the abbreviation of multi-mgMOS I and II.

for normalisation and probe-level analysis on real experimental data as well as

on spike-in data. Most spike-in data have the unrealistic property that almost

all genes have identical expression levels in different experiments. This property

may be better suited to some methods than others. For example, the quantile

normalisation (Bolstad et al., 2003) used in RMA and GCRMA works under the

assumption that gene expression levels have the same distribution in different

experiments. This assumption is especially well-suited to the analysis of arti-

ficial spike-in data sets in which the distribution of expression levels between

experiments is almost identical. It is unclear how well this assumption holds in

general.

3.5.3 Model Selection

mgMOS, multi-mgMOS I and multi-mgMOS II have quite similar performance in

terms of accuracy, however there are often quite substantial differences in terms of

the inferred posterior signal distribution and corresponding error bars. Therefore

one would like to determine which model has the most statistical support by

using standard model selection methods (see Section 2.2.4). Akaike’s Information

Criterion (AIC) and the Bayesian Information Criterion (BIC) can be computed

to select the most appropriate model. However, sharing bgj across chips makes the

dimension of data points large and leads to the BIC score providing an inaccurate

approximation to the model evidence. The inverse of the Hessian matrix in

the approximated evidence in (2.35) is also difficult to compute due to its huge

dimension in multi-mgMOS I. The formula of AIC in (2.30) is therefore used

to select between the models of mgMOS and multi-mgMOS I. Because multi-

mgMOS II uses the extra spike-in data to pre-estimate φ, it is not comparable

with mgMOS and multi-mgMOS I. The values of AIC are divided by the number
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Data set mgMOS multi-mgMOS I
A 2184 2092
B 5130 4488

Mouse 9790 8865

Table 3.3: Results of AIC model selection criteria per gene for mgMOS and
multi-mgMOS I on the three data sets.

of genes in each data set in order to avoid producing very large numbers as shown

in Table 3.3. For the two models, mgMOS and multi-mgMOS I, the number of

free parameters, dm, is

dmgMOS = 4× no of genes× no of chips

dmulti mgMOS I = no of genes× (2× no of chips + 2) + 1 . (3.36)

According to the results of AIC, multi-mgMOS I provides a better explanation

of these three data sets. This may explain why, in Figure 3.15, multi-mgMOS I

typically obtains more confident results when compared to mgMOS. The selection

between multi-mgMOS I and II is discussed in Section 3.6.

3.5.4 Computational Efficiency

A major advantage of multi-mgMOS over BGX is that the likelihood can be writ-

ten in closed form and with the use of an efficient optimisation package SNOPT

(Gill et al., 2002) the parameters can be obtained much faster than BGX. The

different computation times for BGX, mgMOS and multi-mgMOS I and II for

the three data sets used in this study are shown in Table 3.4. As a multiple chip

model, multi-mgMOS is expected to perform better on relatively large data sets

and its computational efficiency makes it applicable in practice. multi-mgMOS

II is faster than the original version multi-mgMOS I because it does not require

the φ parameter to be estimated.

3.5.5 Credibility of Expression Measures

In order to demonstrate the advantages of the probabilistic approach, some prob-

abilistic quantities of interest in the results, such as the credibility in both the

expression measures and the signal log-ratios, are shown in this section.
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Model Prog. language Data set A Data set B Mouse Data set

BGX C++ 70 mins 32.5 hours 70.5 hours
mgMOS Matlab & Fortran 12 mins 7 hours 12.5 hours
I Matlab & Fortran 4 mins 80 mins 5 hours
II Matlab & Fortran 2 mins 40 mins 50 mins

Table 3.4: The computation time of BGX, mgMOS and multi-mgMOS I and II
on different data sets. Computation time is obtained on a 1.8GHz AMD Opteron
machine. BGX used 32,768 sweeps after a burn-in of 8,192 sweeps as suggested
in Hein et al. (2005).

One spike-in gene 37777 at from data set B is randomly selected and the prob-

ability density function of estimated expression levels at concentrations 0, 8 and

512 pM respectively is shown in the lower panel of Figure 3.8. The upper panel is

the related posterior distribution of α. As the concentrations increase, the most

likely expression level increases and the variance of the expression measurement

decreases to obtain more and more confidence in the estimated expression levels.

Figure 3.16 shows 2.5-97.5% credibility intervals of expression levels for 12 spike-

in genes in data set B from multi-mgMOS I. As concentration increases, more

confidence with the expression estimates is obtained.

A key use of microarrays is identifying differentially expressed genes from dif-

ferent experimental samples. With the proposed model it is easy to carry out this

task. For data set A with technical replicates whose sample comes from the same

fragmented complex cRNA, it is assumed that the variation between chips is low

enough to share α across replicates (methods where α is not shared will be dis-

cussed in Chapter 4). Using the delta method (see Section 3.3.5) to approximate

the posterior distribution of 〈log(sgjc)〉, the distribution of the difference between

the expression levels for each gene in data set A is obtained. Figure 3.17 shows

the median and 5-95% credibility of the differences between the estimated expres-

sion levels for all genes (a) and 52 genes (b) under two conditions from data set

A, using multi-mgMOS I. For the spike-in genes, except gene 1004 which is not

spiked in properly, the credibility intervals do not include zero which means the

spike-in genes are differentially expressed with high probabilities. The credibility

intervals of all but five non-spike-in genes include zero. With increased credibil-

ity intervals, the error bars of the false positives under 5-95% credibility intervals

embrace zero gradually while the true positives remain significant. Notice that in

some cases the credibility intervals are very large. This is because the log-ratio
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Figure 3.16: 2.5-97.5% credibility intervals of expression levels for 12 spike-in
genes in data set B from multi-mgMOS I. The expression levels and the credibility
intervals are truncated at -0.5 to aid clarity. As an aid to the eye, the thin grey
bars used to illustrate the credibility intervals have been slightly displaced along
the horizontal axis.
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of signal is essentially unidentifiable for very low expressed genes. However, this

does not present a problem for the method since a significant log-ratio is inferred

when the credibility intervals do not include zero. Applications to identifying

differential expression will be discussed in greater detail in Chapter 4.

3.5.6 Results on Affycomp

The multi-mgMOS I method was submitted to the benchmark, Affycomp, de-

scribed by Cope et al. (2004) on 15 June, 2005. This is a popular benchmark for

evaluating probe-level analysis methods. At the time of submission the method

ranked top of all methods in 4 out of 15 criteria in the original assessment (Table

B.1 and B.2) and top in 3 out of 14 criteria in the two newer assessments (Table

B.3–B.6).

The model showed excellent sensitivity to variation in concentration which

is consistent with the results in Section 3.5.1. The evaluation methods in this

benchmark use a simple fold-change rule to identify differentially expressed genes

and do not consider approaches that make use of credibility intervals, such as

those proposed in Section 3.5.5. This leads to an underestimate of the area under

ROC curve for probabilistic models. A median posterior estimate of 〈log(s)〉
is used as the point estimate of log concentration and this estimator has a low

bias. However, for weak signals this estimator is naturally associated with a large

variance and this leads to some large point estimates of fold-change for weakly

expressed genes. These are considered “false positives” by Cope et al. (2004)

but the method as described in Section 3.5.5 would reject most of these large

fold-changes as insignificant by taking their associated credibility intervals into

account. The point estimate of signal must be combined with a credibility interval

in order to get sensible results for weakly expressed genes. One could reduce the

typical size of these large fold-changes by, for example, using 〈log(s + c)〉 for

some positive constant c as a signal estimate. This would reduce variance but

at the cost of increased bias and reduced accuracy in measuring concentration.

Therefore, criteria that are solely based on point estimates of fold-change are

inappropriate for the evaluation of probabilistic methods.

In Chapter 4 the probability of positive log-ratio is used to rank genes and

this is a more sensible ranking for probabilistic methods. However, the current

version of Affycomp (Irizarry et al., 2006) only allows submitters to provide point

estimates of expression level.
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3.6 Conclusion

A new probabilistic model was presented for probe-level analysis of Affymetrix

microarray data. The model showed competitive performance compared with

other models on commonly used benchmarks and shows very impressive results on

a real time-course data set. The likelihood function can be written in closed form

and the computation is therefore very fast which allows the potential application

to large data sets. Probe effects are shared across all chips of the same type

and this improves the accuracy as well as the model’s support. Moreover, as

a probabilistic model multi-mgMOS provides a measure of confidence for the

inferred true signal and this will be very useful in downstream analyses, especially

those adopting Bayesian methods.

According to the comparison on the two spike-in data sets and the real mouse

time-course data set, multi-mgMOS I is better than other methods in terms of

accuracy and sensitivity to concentration changes. The difference between the

three variants of multi-mgMOS is the different way of modelling the parameter φ,

which is the fraction of specific hybridisation detected by MM probes. The model

of multi-mgMOS II obtains very similar results to multi-mgMOS I. However, the

pre-estimated φ related to the middle triple base of probes is obtained from a

limited number of spike-in genes and under a limited number of conditions, and

it may not be representative of the true sequence specific φ. The other variant,

multi-mgMOS III, plugs in the histogram of empirical φ which is obtained by the

limited number of spike-in genes and therefore is probably not reliable enough.

It seems to be more appropriate to use it as a prior on φ as in multi-mgMOS I.

From the comparison of computational efficiency in Table 3.4, the computa-

tion of multi-mgMOS II is very fast compared with other probabilistic models.

However, the pre-estimated φ comes from the spike-in data of HG-U95a chips.

It is not clear whether this result is suitable for other types of chips. Therefore,

multi-mgMOS I is more reasonable since it uses the empirical information of φ

obtained from data of the HG-U95a chip as a prior and optimises it using the

new observed experimental data. The parameter bgj in (3.13) is probe-specific

which already accounts for the specificity of the GC-content of a probe. So multi-

mgMOS I is more robust in practice especially for non-human chips although it

needs more time to optimise φ than multi-mgMOS II. multi-mgMOS I has been

implemented in an R package, mmgmos, to provide the public use of the model
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for the community. In the remainder of the thesis, multi-mgMOS refers to multi-

mgMOS I.



Chapter 4

Detecting Differential Gene

Expression

In this chapter, the probe-level measurement error of gene expression level is

propagated into a hierarchical Bayesian model in order to detect differential gene

expression. After the background information and related work on detecting dif-

ferential gene expression are introduced, the augmented hierarchical model is pro-

posed. The performance of this model is tested on a spike-in data set and a real

mouse time-course data set.

4.1 Background

Finding differentially expressed genes is a fundamental objective of a microarray

experiment. Due to the high variability in microarray data, replicate arrays are

often used to obtain improved accuracy and reproducibility. Because of the high

cost of the experiment, the number of chips for each condition is usually small,

typically 2-4 replicates. There are two main reasons that make the detection of

differential gene expression difficult in this context:

1. Microarray experiments are associated with low precision probe-level mea-

surements, especially for weakly expressed genes (probe-level measurement

error).

2. The small number of replicates makes it difficult to obtain an accurate vari-

ance estimate for each gene across replicates (between-replicate variance).

74
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Each gene on the Affymetrix array has 11-20 probe-pairs and these provide use-

ful information about probe-level measurement error which can be estimated as

described in Chapter 3. In Section 3.5.5 differentially expressed genes are found

by including credibility intervals. Technical replicates were used there in which

the replicate sample comes from the same fragmented complex cRNA. It was

therefore reasonable to assume that between-replicate variance is negligible and

all variability is technically caused by the experiment itself. However, in practice

biological replicates are usually used. In this case, the replicate sample comes

from a different specimen and biological variance exists among replicates in addi-

tion to technical variability. Thus, the between-replicate variance which is related

to biological variability cannot be neglected.

4.2 Related Work

The simplest method to detect differential gene expression is by ranking based on

the fold change (FC) or ratio in gene expression means between two conditions,

1 and 2 for example. For each gene, let m̄1 and m̄2 denote the mean logged gene

expression over replicates under the two conditions. The difference between the

two means m̄1 − m̄2 is called the log-ratio. Ranking genes according the log-

ratio implicitly assumes equal expression variance for every gene. A widely used

alternative method is a t-test. The t-statistic is defined as

t =
m̄1 − m̄2√

σ2
1/n1 + σ2

2/n2

, (4.1)

where σ2
i and ni, i = 1, 2, is the variance of the expression and the number of

replicates respectively under the two conditions.

The primary drawback of the t-test is that the variance of each condition may

be inaccurate due to the small number of replicates and an underestimate will

result in over-confidence. Many different approaches have been devised to address

this problem, such as the widely used methods Cyber-T (Baldi and Long, 2001)

and SAM (Tusher et al., 2001), and some newly devised methods, K5M (Najarian

et al., 2004), varMixt (Delmar et al., 2005) and DEDS (Yang et al., 2005). These

methods are based on single point estimates of gene expression values that can

be obtained from popular probe-level analysis methods for Affymetrix arrays.

Cyber-T implements a regularized t-test and SAM adds a regularising constant
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to the gene-specific standard deviation. K5M combines K-means clustering and

an EM algorithm to optimise a mixture model of t-test statistic scores. varMixt

uses groups of genes to estimate the expression variance of individual genes.

DEDS integrates different statistics to achieve robust statistical properties.

Cyber-T is a popular probabilistic model and uses a similar hierarchical model

to the approach proposed in this chapter. For each gene g, a Gaussian distribution

of logged expression level across replicates is commonly assumed (Baldi and Long,

2001; Delmar et al., 2005; Najarian et al., 2004; Krohn et al., 2005),

xgij ∼ N (µgj, λ
−1
gj ) , (4.2)

where i is the index of replicate and j is the index of condition. The parameter

µgj is the mean logged expression level under condition j and λgj is the inverse

of the between-replicate variance (this form is used because it is more natural

to place a prior on λgj). Each gene is treated independently on the array and

each individual gene is focused on, so the index of the gene, g, is omitted in

the following equations. Since a dependence between µj and λ−1
j is observed in

microarray data, Cyber-T uses the following conjugate prior on µj and λj,

µj ∼ N (µ0,
1

λjλ0

)

λj ∼ Ga(a0, b0) . (4.3)

The advantage of this model, with parameters θ = {µj, λj} and hyperparame-

ters φ = {µ0, λ0, a0, b0}, is that it can be solved in closed form since the conjugate

prior is used. The point estimator of the posterior distribution of θ is combined

with a t-test to provide an inference approach which performs better than simple

t-test or fold change methods and partly compensates for the lack of replication.

The shortcoming of these methods is that they do not consider the probe-

level measurement error, and it is shown here that further improvement can be

obtained by including this information.

4.3 Methods

The model in (4.2) can be augmented to take the probe-level measurement error

εij into consideration. Suppose xij is the true expression level for replicate i



CHAPTER 4. DETECTING DIFFERENTIAL GENE EXPRESSION 77

under condition j. The observed expression level x̂ij can be expressed as x̂ij =

xij + εij. A zero-mean Gaussian measurement noise is assumed, εij ∼ N (0, ν−1
ij ),

with variance ν−1
ij obtained from the probe-level analysis described in Chapter

3. After including the probe-level measurement variance in the model (4.2) the

distribution of the observed gene expression level is

x̂ij ∼ N (µj, λ
−1
j + ν−1

ij ) . (4.4)

The probabilistic probe-level analysis obtains a logged gene expression level x̂ij

for each gene on each single chip, together with a measurement variance ν−1
ij

which is treated as a known parameter. The parameters θj = {µgj, λgj} are to

be estimated from this data.

4.3.1 Likelihood and Prior

A full Bayesian approach is considered for the combination of replicate signals.

With the absence of probe-level measurement variances it has been widely ac-

cepted that µj and λ−1
j should be dependent variables. However, it is unclear

whether this remains true when probe-level measurement error is accounted for.

A prior assumption is therefore made that µj and λ−1
j are independent and a

Gaussian prior over µj is selected,

µj ∼ N (µ0, η
−1
0 ) , (4.5)

where µ0 and η0 are hyperparameters. In practice, there are tens of thousands of

genes to be processed in each experiment. In order to make the model simple for

efficient computation, noninformative hyperpriors on µ0 and η0 are used.

The parameter λ−1
j is assumed to be shared across different conditions and

measures the gene specific variability. The common variance is denoted as λ−1.

In practice many experiments consider only a small number of conditions with a

small number of replicates. To reduce the effect of the small size of data set, a

conjugate gamma prior over λ is selected,

λ ∼ Ga(α, β) , (4.6)

where Ga(·) denotes the Gamma distribution with hyperparameters α and β.
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The different contributions to the variance play similar roles to the contribu-

tions in Rocke and Durbin’s two-component model (Rocke and Durbin, 2001).

In their model the additive measurement noise dominates for weakly expressed

genes, similar to the probe-level measurement variance ν−1
ij , while the multiplica-

tive component in their model corresponds to the replicate variance parameter

λ−1 which dominates for highly expressed genes. The difference here is that the

internal probe replication on Affymetrix arrays is used to estimate ν−1
ij .

A hierarchical model is now obtained with parameters θ = {µ, λ} and hyper-

parameters φ = {µ0, η0, α, β}, where µ represents the set of all µj. The posterior

distribution P (µj|D, φ), which summarises the information about the mean ex-

pression value of replicates under each condition, is of interest. With the assump-

tion of the independence of observations, the likelihood of the observed data D

is

P (D|θ) =
c∏

j=1

rj∏

i=1

P (x̂ij|µj, λ)

∝
c∏

j=1

rj∏

i=1

p
1
2
ij exp

(
−1

2
(x̂ij − µj)

2 p−1
ij

)
, (4.7)

where pij = (λ−1 + ν−1
ij )−1, c is the number of conditions and rj is the number of

replicates under condition j. The prior on parameters is given by

P (θ|φ) = P (λ|α, β)
c∏

j=1

P (µj|µ0, η
−1
0 )

∝ λα−1 exp


−η0

2

∑

j

(µj − µ0)
2 − βλ


 . (4.8)

4.3.2 Parameter Estimation

With the introduction of measurement error in (4.4), Bayesian inference becomes

intractable. Various parameter estimation methods are used here and compared

in terms of efficiency and accuracy. MAP is used for crude estimation, a varia-

tional method for approximate Bayesian inference and MCMC for more accurate

Bayesian inference.
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MAP Approximation

With the selected priors on θ in (4.8) there is no closed form solution for the

marginal likelihood P (D|φ). By maximising the joint posterior distribution

P (θ, φ|D) ∝ P (D|θ)P (θ|φ), (4.9)

the posterior mode θ∗, φ∗ can be found. Based on MAP solutions a rough estimate

of the posterior P (θ, φ|D) can be obtained (Gelman et al., 2004). For simple

analyses, the conditional posterior of µj, P (µj|λ∗, φ∗, D), given other parameters

fixed at their modal values, is

P (µ|λ∗, φ∗, D) ∝ P (D|µ, λ∗)P (µ|λ∗, φ∗)

=
∏

j

N

µj;

∑
i p
∗
ijx̂ij + η∗0µ

∗
0∑

i p
∗
ij + η∗0

,

( rj∑

i

p∗ij + η∗0

)−1

 . (4.10)

where p∗ij =
(
(λ∗)−1 + ν−1

ij

)−1
. The crude estimates are calculated simply and

efficiently (see Gelman et al., 2004, p. 276), but discard the variability in the

parameters.

Variational Inference

In order to account for variability in parameters, the EM algorithm combined

with a variational method is used to optimise a lower bound on P (D|φ) and work

out an approximation to the posterior distribution P (θ|D,φ).

The log marginal likelihood, L(φ), of data D is a function of φ,

L(φ) = log P (D|φ) = log
∫

dθ P (D|θ, φ)P (θ|φ) . (4.11)

The integral is intractable, so the EM algorithm in (2.21) and (2.22) is used to

get a lower bound on L(φ).

At the E-step the posterior distribution P (θ|D, φt) is not tractable, however by

introducing constraints on the form of Q(θ) the distribution can be approximated.

In variational inference a factorisation constraint on distribution Q is often used.

Instead of optimising (2.19) over the whole Q, one can optimise with respect to

the distribution of disjoint subsets of θ. For this model, it has been assumed

that λ is independent of µj a priori, so a reasonable approximation should be to
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assume Q(θ) factorises as

Q(θ) = Q(λ)Q(µ) . (4.12)

The factorised Q distribution is substituted into (2.19) and optimised with

respect to Q(µ) and Q(λ) respectively. The optimal expressions for Q(µ) and

Q(λ) are

Q(µ) ∝ exp
∫

dλ Q(λ) log P (D|θ, φt)P (θ|φt)

=
∏

j

N

µj;

∑
i〈pij〉x̂ij + ηt

0µ
t
0∑

i〈pij〉+ ηt
0

,

( rj∑

i=1

〈pij〉+ ηt
0

)−1

 , (4.13)

(4.14)

Q(λ) ∝ exp
∫ 


c∏

j=1

dµj Q(µj)


 log P

(
D|θ, φt

)
P

(
θ|φt

)

= Ga
(
λ; αt, βt

) ∏

ij

Ga
(
pij;

3

2
,
1

2
〈(x̂ij − µj)

2〉
)

= Ga
(
λ; αt, βt

)
f(λ) , (4.15)

where 〈·〉 denotes the expectation of a function with respect to Q(λ) or Q(µ) and

f(λ) denotes
∏

ij Ga
(
pij;

3
2
, 1

2
〈(x̂ij − µj)

2〉
)
. In the variational approach, when

there is no standard form for the Q distribution, importance sampling can be

used to obtain the required expectations (see Section 2.2.3).

At each E-step the distributions Q(µ) and Q(λ) are calculated iteratively

until the parameters have converged when parameter changes are small enough

per iteration. When the whole EM algorithm in (2.22) converges, Q(µ) in (4.13)

is the approximated posterior distribution P (µ|D, φ) of mean gene expression

level. From the density function of Q(µ) in (4.13) it can be seen that the µj’s are

independent of each other. For condition j, the mean and variance of µj is

〈µj〉 =

∑
i〈pij〉x̂ij + ηt

0µ
t
0∑

i〈pij〉+ ηt
0

(4.16)

Var[µj] =

( rj∑

i=1

〈pij〉+ ηt
0

)−1

. (4.17)

From (4.17) it can be seen that as the number of replicates increases, more con-

fidence in the mean expression level is obtained since the inverse variance grows
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with the number of replicates.

MCMC

Intractable hierarchical Bayesian models are usually solved by random sampling

from the posterior distribution of model parameters. Standard MCMC is applied

to summarise the Bayesian inference of the model by assuming a flat uniform

prior on µ0 and flat Gamma priors on λ and η0 with shape and inverse scale both

0.001. The joint posterior distribution of all parameters is

P (µ, λ, µ0, η0|D) ∝ P (λ)P (µ0)P (η0)
∏

j

P (µj|µ0, η0)
∏

i

∏

j

P (x̂ij|µj, λ) . (4.18)

Gibbs Sampler The conditional posterior distribution of each µj, µ0 and η0 is in

standard form. Gibbs sampling can therefore be used to update these parameters.

The conditional posterior distributions of these parameters are,

P (µj|λ, µ0, η0, D) ∝ P (µj|µ0, η0)
∏

i

P (x̂ij|µj, λ)

= N
(∑

i pijx̂ij + η0µ0∑
i pij + η0

, (
∑

i

pij + η0)
−1

)
, (4.19)

P (µ0|µ, λ, η0, D) ∝ P (µ0)
∏

j

P (µj|µ0, η0)

= N

1

c

∑

j

µj,
1

cη0


 , (4.20)

P (η0|µ, λ, µ0, D) ∝ P (η0)
∏

j

P (µj|µ0, η0)

= Ga


 c

2
+ 0.001,

1

2

∑

j

(µj − µ0)
2 + 0.001


 , (4.21)

where c is the number of conditions.

The starting point of µj is

µ0
j =

1

rj

∑

i

x̂ij , (4.22)
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and the starting point of µ0 is

µ0
0 =

1

c

∑

j

µ0
j . (4.23)

Given the starting points of µj and µ0, the starting point η0 can be drawn from

the density in (4.21).

Metropolis Algorithm The conditional distribution of λ is

P (λ|µ, µ0, η0, D) ∝ P (λ)
∏

ij

P (x̂ij|µj, λ)

∝ λ0.001−1
∏

ij

p
1
2
ij exp


−0.001λ− 1

2

∑

ij

pij (x̂ij − µj)
2


 , (4.24)

which has no standard form, so the Metropolis algorithm is adopted to update

log(λ) using a Gaussian proposal distribution, N (µλ, σ
2
λ), with µλ being the cur-

rent value of log(λ) and the initial variance σ2
λ0 coming from the second derivative

of the logged conditional posterior distribution in (4.24) with respect to log(λ),

σ2
λ0 = k2

(
− d2

d (log (λ))2 log (P (λ|µ, µ0, η0, D))

∣∣∣∣∣
λ0

)−1

, (4.25)

where λ0 is the starting value for λ. The optimal scale k is set to 2.4 (Gelman

et al., 2004). During the first half of the simulation, σ2
λ0 can be increased or

decreased to tune the simulation efficiency. In the second half, the shape of the

Gaussian should be fixed to avoid converging to the wrong distribution.

Given the starting point of µ, µ0 and η0, the starting point of λ is obtained

at the mode of the density in (4.24). At time t, µt, µt
0 and ηt

0 are drawn from

the distributions in (4.19), (4.20) and (4.21) respectively, a proposal λ̃ from the

Gaussian proposal distribution is sampled, and the ratio of the densities can be

calculated,

r =
P (λ̃|µt, µt

0, η
t
0, D)

P (λt−1|µt, µt
0, η

t
0, D)

. (4.26)

Then one can set

λt =





λ̃ with probability min(r, 1)

λt−1 otherwise.
(4.27)
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4.3.3 Significance of Differential Expression

Once the posterior distribution P (µ|D, φ) is obtained, it is possible to compute

the significance of differential expression between any two conditions. Taking a

treatment and a control (indicated by 1 and 2 respectively), for instance, the

probability of positive log-ratio (PPLR), P (µ1 > µ2|D, φ), can be calculated by

P (µ1 > µ2|D, φ) =
∫ +∞

0
d(µ1 − µ2) P (µ1 − µ2|D, φ) . (4.28)

Equation (4.28) gives the posterior probability of increased expression in a treat-

ment compared with a control. One can find the up-regulated genes by setting

a level of confidence, like an α-level in a conventional statistical test. Down-

regulated genes can also be found using a similar equation to (4.28) by calculating

the integral of P (µ1 − µ2|D, φ) over (−∞, 0).

4.3.4 Implementation and Computation Time

During the developmental stage of the model, all three parameter estimation ap-

proaches were implemented in Matlab. For importance sampling in the variational

method, 1000 samples were drawn once at each EM iteration. At each E-step,

Q(µ) and Q(λ) were considered to have converged when parameters change by less

than 10−6 per iteration. For the implementation of MCMC 10 parallel sequences

are simulated, each of length 200. The convergence of the iterative simulation is

monitored by estimating the potential scale reduction R̂ (Gelman et al., 2004)

for all parameters. If R̂ > 1.1, another 200 samples for each sequence are drawn.

After discarding the first half of the simulations and mixing the remaining sim-

ulated sequences, the length of the effective simulations are between 1000 and

3000 for most genes.

To process the golden spike-in data set (described in Appendix A.4), the MAP

approximation, variational inference and MCMC take around 5 minutes, 4 hours

and 50 hours respectively using a 1.8 GHz AMD Opteron machine with 512M

RAM. It is concluded that MCMC is too computationally expensive to use in

practice although it is useful to compare with other methods as a gold standard.

Variational inference is a good compromise between computational efficiency and

accuracy. MAP estimation is very fast, but less accurate (see Section 4.4.2),

so it is recommended for crude inference. For more accurate and applicable

inference, one can choose to use the variational method. The MAP estimation
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Figure 4.1: Histogram shows probability of positive log-ratio (PPLR) between
(a) C1 and S1, and (b) replicated condition C and S in the golden data set. The
histogram is a stack of non-spike-in genes and spike-in genes. The white is for
non-spike-in genes and the shade is for the spike-in genes.

and variational inference have been implemented in an R package, pplr, for public

use of the model.

4.4 Results and Discussion

The new method is compared with one of the most popular approaches, Cyber-T

(Baldi and Long, 2001), to show the improvement obtained by including probe-

level measurement variance. Two data sets are used to perform this comparison.

One is a wholly defined spike-in data set called the golden spike-in data set (see

Appendix A.4). The other is the real-world mouse time-course data set (Appendix

A.3) which was used to identify hair-cycle associated genes by Lin et al. (2004).

4.4.1 Making Use of Measurement Error

Before the Bayesian hierarchical model is applied on replicated data, the useful-

ness of the measurement error from multi-mgMOS in a single chip experiment

is shown here. Chip C1 and S1 are selected from the golden data set as the

control and treatment chips. Since all spiked-in genes in S1 are up-regulated,

the equation in (4.28) is used to calculate PPLR in S1 compared with C1 using

the measured gene expression values and variances from multi-mgMOS. The his-

togram of PPLR is shown in Figure 4.1 (a). The PPLRs of most spike-in genes
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Figure 4.2: 5-95% credibility intervals of positive log-ratio between S1 and C1 in
the golden data set. The left figure shows the top 50 most significantly differ-
entially expressed genes ranking by log-ratio and the right is the ranking by the
probability of positive log-ratio (PPLR) between S1 and C1. Stars represent the
mean of log-ratio. Spike-in genes are indicated by a square box. Credibility inter-
vals are small in (b) and cannot be seen. Without considering the measurement
error, log-ratio ranking (on the left) obtains a much larger false positive rate than
PPLR ranking (on the right).

are close to 1 which shows the high confidence of the increasing gene expression

in S1. This is consistent with the golden data where all spike-in genes are up-

regulated. Most invariant genes have PPLR close to 0.5 and there is no obvious

evidence for these genes to be differentially expressed. Figure 4.2 shows the top 50

differential expression ranking between chip C1 and S1 by (a) simple fold-change

and (b) PPLR. Without considering the measurement variance, multi-mgMOS

obtains a large number of false positives by fold-change ranking. After taking the

credibility intervals into account, there are now no false positives in the top 50

positions.

For the golden spike-in data set, the true differentially expressed genes are

known, so for any given cut-off value of the test statistic (such as fold change,
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Figure 4.3: ROC curves for (a) all nine possible single chip-pairs, and (b) repli-
cated conditions in golden data set. Three methods are used in each case, (a)
simple fold-change of multi-mgMOS and cMAS 5.0 gene expression, and probabil-
ity of positive log-ratio (PPLR) of multi-mgMOS gene expression measurements
together with measurement error, (b) multi-mgMOS combined with Bayesian hi-
erarchical model and Cyber-T respectively, and cMAS 5.0 with Cyber-T. Curves
from Cyber-T are obtained using a Bayesian t-test and the curve from the
Bayesian hierarchical model is plotted by calculating PPLR between sample S
and sample C.

p-value and so on), the true positive rate and the false positive rate can be

calculated. By moving this cut-off value along the whole range of the test statistic,

one can obtain a set of true and false positive rate pairs. Based on these true

and false positive rate pairs, a Receiver Operator Characteristic (ROC) curve

can be drawn. If the true differentially expressed genes are ideally identified by

the ranking based on the test statistic, the area under the ROC curve (AUC) is

one. Otherwise, AUC is less than one. The ROC curve is a useful tool to judge

rankings based on different test statistics and it can be used to compare methods

of detecting differentially expressed genes. Methods with higher AUC are often

considered better although the shape of the curve is also informative.

The golden data set has three replicates for each of the C and S condition. The

average ROC curves for all nine possible single chip-pairs between condition C and

S are plotted in Figure 4.3 (a). As well as the two methods using multi-mgMOS,

as shown in Figure 4.2, a combined method suggested in Choe et al. (2005) is also

included. This method is denoted as cMAS 5.0 here because the major procedures

in this method (background correction and PM adjustment) come from MAS
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5.0 (Affymetrix, 2002). The results in Choe et al. (2005) show that cMAS 5.0

performs best among current statistical methods, including RMA(Irizarry et al.,

2003) and GCRMA(Wu et al., 2004), on the golden spike-in data set. The same

form of loess normalisation for all methods in Choe et al. (2005) is used here based

on the 2,532 invariantly expressed probe-sets, in order to make results comparable.

The area under ROC curves are 0.9226, 0.8062 and 0.7869 for PPLR of multi-

mgMOS, fold-change of cMAS 5.0 and fold-change of multi-mgMOS respectively.

Notice that at the upper-right part of ROC curves PPLR obtains a slightly lower

true positive rate than the other two methods. In practice people are often more

concerned with obtaining a low false positive rate. For a reasonable number of

false positives, on the left of the ROC curves, PPLR is much better than the

other two alternatives. These results show that the uncertainty of the estimated

expression level helps in detecting differential gene expression where there is only

a single chip for each condition.

4.4.2 Combining Replicates

In practice, people usually use replicates to estimate a level of uncertainty with

the estimated gene expression level. The proposed Bayesian hierarchical method

includes the measurement error of replicates to improve the estimation of the

uncertainty of gene expression measurements.

Comparison of Estimation Accuracy

MCMC simulation obtains reliable results when it converges. The results from

MCMC are used as a gold standard to evaluate the accuracy of MAP estimation

and variational inference. Figure 4.4 shows the distribution of signal log ratio

between days 14 and 1 for two probe-sets in the mouse time-course data set.

The distribution shown in (a) is for one probe-set of gene Dab2 which is a known

hair-growth associated gene. The estimated expression levels of this probe-set are

variable over different time points. MAP approximation and variational inference

obtain similar accuracy for this probe-set. The probe-set shown in (b) is randomly

selected and is not obviously hair-growth related, so the signal log ratio is not as

high as for the probe-set in (a). For this probe-set, the variational method is closer

than the MAP approximation to MCMC. In general, the posterior estimates of

the variational approach are found to be closer than those provided by the MAP
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Figure 4.4: Distribution of log ratio of expression level between days 14 and 1
for (a) one probe-set of gene Dab2 and (b) a randomly selected probe-set in the
mouse time-course data set. Three different parameter estimation methods are
used: MAP estimation, variational approximation and MCMC.

approximation to MCMC results. The variational method is therefore used in

the following examples.

Performance on an Artificial Data set

Figure 4.1 (b) shows the histogram of PPLR between replicated condition C and

S in the golden spike-in data set. In addition to more spike-in genes moving close

to one, non-spike-in genes get tighter around 0.5 compared with the histogram of

PPLR between C1 and S1 in Figure 4.1 (a). More confidence is therefore obtained

in the up-regulated genes and the invariant genes. ROC curves (Figure 4.3 (b))

are plotted on the golden spike-in data set to show the ability of the proposed

combination method compared with the widely used approach Cyber-T which

does not consider the probe-level measurement variance. From Figure 4.3 (b)

it can be seen that the inclusion of measurement error does improve the ability

of multi-mgMOS to detect differentially expressed genes. The area under ROC

curves for the Bayesian hierarchical method and Cyber-T on results from multi-

mgMOS are 0.9431 and 0.9310 respectively, and 0.9306 for cMAS 5.0 combined
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Figure 4.5: Temporal profile of one probe-set of gene Dab2 in the mouse time-
course data set. Thin solid lines are the estimated results from multi-mgMOS
for three replicate chips and the thick solid line is the combined result from the
hierarchical Bayesian model. At each time point 2.5-97.5% credibility intervals
are shown. The dotted line is the quantitative real-time PCR profile.

with Cyber-T. PPLR obtains the best result. More results from popular statistical

methods combined with Cyber-T on the golden spike-in data set are presented in

Choe et al. (2005).

Performance on a Real Data set

In order to examine the method in an application on a real-world experiment, the

method is applied to the mouse time-course data set. Figure 4.5 is the temporal

profile of one probe-set related to gene Dab2 in this data set. The first hair-

growth cycle is shown, which is covered by five time points (day 1, 6, 14, 17 and

23). It can be seen that the combined signal obtains more confidence for each

condition compared with the signal from each individual replicate and remains

consistent with the qr-PCR profile.

The qr-PCR data in the mouse time-course data set has three measurements

at each time point. These replicate values can be processed using Cyber-T at

those time points that were also measured by microarray data (day 1, 17 and 23).

Using the obtained statistical values of qr-PCR data, the PPLR calculated from

the proposed method is validated and compared with the results from Cyber-T
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using expression measurements obtained from cMAS 5.0 and the popular probe-

level processing method GCRMA (Wu et al., 2004). The results generated from

Cyber-T are associated with a p-value which does not have the same meaning

as for PPLR and cannot be compared with PPLR directly. In order to make

them comparable, different credibility levels are selected so that methods obtain

a similar number of significant genes. For PPLR the significance level is set

at 0.06, while the p-values for the other methods are set at 0.01. The number

of significant genes at the different credibility levels for different methods are

shown in the lower part of Table 4.1. A global scaling normalisation is used for

results from multi-mgMOS and cMAS 5.0 at the probe-set level, and GCRMA

uses quantile normalisation at the probe level, in order to obtain the best result

for each method. The eight PCR validated genes have 14 associated probe-

sets shown in Table 4.1. The differential gene expression between two pairs of

time points, (day 1, 17) and (day 17, 23), is found. Day 1 of gene Crisp1 is

excluded due to the absence of replicate measurements of qr-PCR data at this

time point. There are 27 tests altogether in this data. From these 27 tests PPLR

obtains two inconsistent results with qr-PCR, while cMAS 5.0+Cyber-T and

GCRMA+Cyber-T obtain three. Results from the new method therefore show

more consistency with results from qr-PCR data, although this is a relatively

small set of comparisons.

4.5 Conclusion

This chapter has presented a Bayesian hierarchical model using probe-level mea-

surement error in order to improve the detection of differential gene expression.

The introduction of an additional variance term makes Bayesian hyper-parameter

estimation intractable. Three different computation methods, MAP approxima-

tion, a variational method and MCMC, are compared to solve the intractability

in the model. The MAP approximation is very efficient, but cannot provide ac-

curate inference. MCMC is accurate, but is computationally expensive and not

applicable for large data sets. The variational inference is relatively efficient and

provides a good approximation to the MCMC results. This model is described in

Liu et al. (2006) and for public use of the method, the MAP approximation and

the variational inference are implemented in an R package, pplr.

This approach makes full use of information in microarray experimental data
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and performs relatively efficient and accurate inference based on this rich infor-

mation. Results on a spike-in data set and a real time-course data set show that

the inclusion of probe-level measurement error improves the accuracy of finding

differentially expressed genes, especially when there are few replicate chips for

conditions.
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Probe-set Time qr-PCR multi-mgMOS cMAS 5.0 GCRMA
ID points p-value 0.01 PPLR 0.06 p-value 0.01 p-value 0.01

160647 at 1,17 0.0 S 0.0 S 0.0 S 0.0 S
17,23 0.0 S 0.0 S 0.0 S 0.0 S

93122 at 17,23 0.0 S 0.0 S 0.0 S 0.0 S
103283 at 1,17 0.0 S 0.0 S 0.0 S 0.0 S

17,23 0.0 S 0.0 S 0.0 S 0.0 S
102362 i at 1,17 0.0 S 0.0 S 0.0 S 0.0 S

17,23 0.0 S 0.0 S 0.0 S 0.0 S
102363 r at 1,17 0.0 S 0.0 S 0.0 S 0.0 S

17,23 0.0 S 0.0 S 0.0 S 0.0 S
103048 at 1,17 0.0 S 0.001 S 0.0 S 0.0 S

17,23 0.409 N 0.079 N 0.002 S 0.278 N
103490 at 1,17 0.0 S 0.0 S 0.0 S 0.0 S

17,23 0.0 S 0.0 S 0.0 S 0.0 S
98044 at 1,17 0.0 S 0.0 S 0.0 S 0.0 S

17,23 0.0 S 0.080 N 0.045 N 0.154 N
98045 s at 1,17 0.0 S 0.0 S 0.0 S 0.0 S

17,23 0.0 S 0.0 S 0.0 S 0.0 S
104633 at 1,17 0.0 S 0.0 S 0.0 S 0.0 S

17,23 0.0 S 0.0 S 0.0 S 0.0 S
94307 at 1,17 0.0 S 0.002 S 0.0 S 0.0 S

17,23 0.0 S 0.0 S 0.0 S 0.0 S
94308 at 1,17 0.0 S 0.002 S 0.0 S 0.002 S

17,23 0.0 S 0.174 N 0.686 N 0.769 N
94309 g at 1,17 0.0 S 0.0 S 0.0 S 0.0 S

17,23 0.0 S 0.029 S 0.008 S 0.0 S
161628 r at 1,17 0.0 S 0.0 S 0.0 S 0.0 S

17,23 0.0 S 0.0 S 0.0 S 0.273 N

Significant 1,17 - 3660 3566 3599
genes 17,23 - 4288 4034 4450

Table 4.1: Finding differential gene expression among eight qr-PCR validated
genes in a mouse time-course data set. qr-PCR data, cMAS 5.0 and GCRMA
expression measurements are processed by Cyber-T to obtain p-values and multi-
mgMOS estimates are processed by the Bayesian hierarchical model to calculate
the probability of positive log-ratio (PPLR). For Cyber-T results a credibility level
at α = 0.01 is set. ‘S’ stands for significant differential expression, and ‘N’ not
significant. For comparison with p-value, min(PPLR, 1−PPLR) is shown in the
table. A comparable credibility for PPLR, α = 0.06, is used which means genes
which have at least 94% probability of signal change are considered as significantly
differentially expressed. The numbers of significant genes for different methods
at different credibility levels are shown in the lower part of the table.



Chapter 5

Propagating Uncertainty in

Model Based Clustering

In this chapter a method is developed for propagating the probe-level measure-

ment error into gene expression clustering using standard model-based methods.

After background information and related work on model-based clustering are in-

troduced, the augmented standard Gaussian mixture model is proposed. The per-

formance of this model is tested on two simulated data sets and a real mouse

time-course data set.

5.1 Introduction

In addition to the detection of differential gene expression, clustering is another

important method in the analysis of gene expression data. By clustering, the

large number of genes are divided into a smaller number of categories according

to their expression patterns that may reflect their similar function or common

regulation. By exploring and studying the obtained gene clusters, the function

of unknown genes can be inferred from other known genes in the same cluster.

Unsupervised clustering is currently the most frequently used approach for ex-

ploring gene function. The properties of the data is directly inferred without the

help of the correct response since the truth of the data is unknown.

There are many unsupervised algorithms which have been applied to cluster

gene expression data, including the most popular hierarchical clustering (Eisen

et al., 1998) and k-means (Tavazoie et al., 1999) based on similarity measures,

and self-organising maps (Tamayo et al., 1999). Most of these algorithms are

93



CHAPTER 5. PROPAGATING UNCERTAINTY IN CLUSTERING 94

largely heuristically motivated and rely on the similarity measures and the spe-

cific data they work on. It is hard to say which one is generally better than

others (D’haeseleer, 2005) and these methods lack the capability to deal with the

variability in the gene expression data in a principled way. Furthermore, there is

no formal way to determine the number of clusters for these algorithms. Proba-

bilistic models provide a principled alternative to these heuristic-based methods.

In particular, model-based approaches have been proposed to cluster gene expres-

sion data in a probabilistic way (Fraley and Raftery, 2002b; Yeung et al., 2001;

Siegmund et al., 2004; Lin et al., 2004). Probabilistic models also adopt model

selection methods to determine the number of clusters (see Section 2.2.4). The

advantage of model-based approaches over heuristic methods has been demon-

strated by Yeung et al. (2001).

In spite of the clear advantages of model-based methods, existing methods do

not consider the probe-level measurement error associated with gene expression

levels and discard this rich information about variability. This may lead to bio-

logically irrelevant clusters, especially due to the noisy nature of the data. The

model developed in Chapter 3, multi-mgMOS, provides accurate gene expression

measurements along with the associated uncertainty in this measurement. It has

been shown in Chapter 4 and by Sanguinetti et al. (2005) that the probe-level

measurement error can be propagated through the downstream probabilistic anal-

ysis, thereby improving the performance of the analysis. This chapter describes

an approach to propagating probe-level measurement error into model-based clus-

tering to improve performance over current standard clustering methods.

5.2 Methods

5.2.1 Mixture Model

The mixture model is a useful tool for revealing the inherent structure of data.

In a mixture model with K components, the data is generated by

p(xi) =
K∑

k=1

P (k)p(xi|k; θk) , (5.1)

where P (k) denotes the probability of selecting the kth component with parame-

ters θk and θ = {θ1, θ2, · · · , θK , P (k)} is the complete parameter set of the mixture
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model. The parameters k are latent variables determining which cluster the data

belongs to.

Mixture models are usually solved by maximum likelihood using an

Expectation-Maximisation (EM) algorithm (Dempster et al., 1977). With the

initialised parameters at t = 0, the values of parameters can be determined

iteratively through an E-step and M-step:

• E-step: Compute

P t(k|xi) = P (k|xi; θ
t) (5.2)

for each data point xi and each component k.

• M-step:

θt+1 = arg max
θ

∑

i

∑

k

P t(k|xi) log(p(xi|k; θk)P (k)) (5.3)

with constraint
∑

k P (k) = 1.

5.2.2 Standard Gaussian Mixture Model

For mixture component distributions from the exponential family, like the Gaus-

sian, both steps are exactly tractable. In a Gaussian mixture model, each com-

ponent k is modeled by a Gaussian distribution with mean µk and covariance

matrix Σk,

p(xi|k; θk) = N (si|µk, Σk)

=
1√

(2π)p|Σk|
exp

(
−1

2
(xi − µk)

T Σ−1
k (xi − µk)

)
, (5.4)

where | · | denotes determinant and p is the dimension of the data. As well as

changing the number of components in the mixture, the covariance matrix Σk can

be constrained to determine the flexibility of the model. The most constrained

model is parameterised by Σk = σ2I with only one free parameter in the co-

variance matrix for all components. The unconstrained model has full rank Σk

with p(p+1)/2 free parameters in the covariance matrix for each component. All

representations of the covariance matrix are explored by Banfield and Raftery

(1993). Allowing the number of free parameters in the covariance matrix to vary

leads to various models accommodating varying characteristics of data. All of

these models are implemented in MCLUST (Fraley and Raftery, 2002a).



CHAPTER 5. PROPAGATING UNCERTAINTY IN CLUSTERING 96

5.2.3 Propagating Measurement Uncertainty into a

Gaussian Mixture Model

From a probabilistic probe-level model, such as multi-mgMOS, for each data

point xi one can obtain the measurement error, βi, which is also a vector with

each element as the variance of the measured expression level on each chip if

one assumes the independence of the gene expression measurement on each chip.

When the mixture model accounts for the measurement error of each data point,

βi, the Gaussian component can be augmented as

p(xi) =
K∑

k=1

P (k)p(xi|k; µk, Σk + diag(βi)) , (5.5)

where diag(βi) represents the diagonal matrix whose diagonal entries starting in

the upper left corner are the elements of βi. Ideally, the covariance matrix should

be of full rank to obtain the largest flexibility of the model. However, this will

increase the complexity of the model. Since in (5.5) the additive measurement

error diag(βi) accounts for inherent variability in the data, especially for extremely

noisy gene expression data, the unequal volume spherical model (VI) described

in Yeung et al. (2001) with the covariance Σk = σ2
kI is adopted. This model

allows the spherical components to have different variances which accounts for

the variability within different gene function groups. Therefore, in this model the

gene-specific variance βi is known and obtained from a probabilistic probe-level

analysis model, and the function-specific variance σ2
k is to be estimated from

the mixture model via the EM algorithm. The parameters are denoted θk =

{µk, σ
2
k} for Gaussian component k and θ = {θ1, θ2, · · · , θK} for all components,

where K is the number of components. The augmented clustering model in (5.5)

is denoted PUMA–CLUST (Propagating Uncertainty in Microarray Analysis –

CLUSTering).

Using the simple K-means algorithm, one can obtain the initial parameters

θ0 for all components. Equal probability of the component prior is also assumed

for the initial value of P (k), P 0(k). At the E-step, for each data point xi the

posterior of the mixture is calculated by

P t(k|xi) = P t(k|xi; θ
t−1)

=
P (xi|θt−1

k )P t−1(k)
∑

k P (xi|θt−1
k )P t−1(k)

. (5.6)
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At the M-step, the component prior and the parameters of components are opti-

mised,

P t(k) =
1

N

N∑

n=1

P t(k|xi) (5.7)

θt = arg max
θ

∑

i

∑

k

P t(k|xi) log(p(xi|θk)P
t(k)) . (5.8)

The parameter θ cannot be solved analytically in (5.8) due to the incorporation of

βi in the variance terms. However, with fast optimisation methods available such

as SNOPT (Gill et al., 2002) and donlp2 (Spellucci, 1998), it is easy to calculate

the optimal parameters numerically at the M-step.

5.2.4 Model Selection

In Section 5.2.3 the covariance matrix of the Gaussian mixture model is specified

and the parameters are worked out via an EM algorithm for a given K. In

practice the most appropriate number of clusters should also be determined. In

mixture models, the Bayesian Information Criterion (BIC, described in Section

2.2.4) is usually used to decide the appropriate number of clusters. For model m

with the number of clusters K, the calculation of BIC is

BICm = −2 log(p(D|θ̂m) + dm log(n) , (5.9)

where dm is the number of free parameters to be estimated in model m, n is

the number of genes and θ̂m is the estimated parameters θm obtained by the

EM algorithm. For the unequal volume spherical model (VI), the number of free

parameters is dm = K(p + 2)− 1. The model with optimum K has the minimum

BIC value.

5.3 Results and Discussion

The performance of the extended Gaussian mixture model on two simulated data

sets and a real-world mouse time-course data set (see Appendix A.3) are exam-

ined. The simulated data sets are generated to reflect the noise commonly seen in

real microarray experiments. The extended mixture model is compared with the

standard Gaussian mixture model implemented in MCLUST (Fraley and Raftery,
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2002a), which includes all variants of standard Gaussian mixture models in terms

of the representation of the covariance matrix. However, these models do not

take the probe-level measurement error into consideration.

The performance of different clustering methods on data sets with known

structures can be evaluated by using the adjusted Rand index (Milligan and

Cooper, 1986). The adjusted Rand index (Hubert and Arabie, 1985) is a tech-

nique for measuring the similarity of two clusterings on a data set and it is widely

used by the clustering research community (Yeung et al., 2001, 2003; Bolshakova

and Azuaje, 2003; Medvedovic et al., 2004). The adjusted Rand index lies be-

tween 0 and 1, and is calculated based on whether pairs are placed in the same

or different clusters in two partitionings. A higher adjusted Rand index means

better agreement between two clusterings.

For the simulated data sets, since the true structure of the data is known,

one can use the adjusted Rand index to evaluate the different partitioning ability

of the extended mixture model which incorporates the probe-level measurement

error and the standard mixture model. For the real mouse time-course data set,

biological interpretation is used to examine the different clusterings from the two

clustering methods.

5.3.1 Clustering on Simulated Data Sets

Simulated Periodic Data

Periodic patterns are often observed in real-world time-course microarray data

(Lin et al., 2004; Tu et al., 2005). However, the true structure of the real data sets

is unavailable. Simulated periodic data with the noise coming from the real data

can be generated instead. Similar to the methods used by Yeung et al. (2003)

and Medvedovic et al. (2004), the simulated data is generated by the following

four steps.

At the first step, the logged gene expression within each known group is

generated. There are six groups and 600 genes in the data set. Each group has

100 genes. The first four groups have a periodic sine pattern. The expression of

gene i in group q, q = 1, 2, 3, 4, is generated by

xqij = Ai sin(2πj/10− πq/2) + S , (5.10)

where j = 1, 2, · · · , J and J is the number of conditions or time points. Ai is
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a random scaling factor which is sampled from U(0, 7), where U represents the

uniform distribution. S is a shifting factor which is set as 7. The assignment of

Ai and S is to make the gene expression level lie between 0 and 14 which is the

normal range of the logged gene expression level from real data sets. The gene

expression levels of group 5 and group 6 are generated by linear functions

xqij = jAqi/J and xqij = −jAqi/J + S , (5.11)

respectively, where Aqi is sampled from U(0, 14) and S = 14 when q = 6 so

as to ensure that the simulated expression level lies within the accepted logged

expression range.

The simulated data from the first step follows perfectly the same sine wave

within the same group except for a different magnitude. However, in practice

there is biological and technical noise in the experiment distorting the true sine

wave (see Section 1.2). At the second step, the real mouse data set (see Appendix

A.3) is used to obtain the combined noise of biological and technical sources

which is related to the variance of observed gene expression level from replicated

experiments. The mouse data set has three or four replicates for each condition.

Using the gene expression summaries from MAS 5.0, the combined noise can

be obtained from Cyber-T (see Section 4.2). Since the gene expression level is

correlated with its variance, the combined noise, σ2
qij, is sampled from a subset

of variances calculated from Cyber-T whose corresponding expression levels are

close to xqij. Thus, the final simulated expression level, x̂qij, is

x̂qij = xqij + εqij , (5.12)

where εqij is drawn from N (0, σ2
qij). When J = 10, the simulated expression level

for group three is shown in Fig 5.1 (a). It can be seen that there is more noise

for the lower expressed genes than the highly expressed ones which is commonly

observed in real data sets.

At the third step, in order to show the clustering improvement by includ-

ing probe-level measurement error the corresponding probe-level variance of the

simulated expression level is sampled from the real mouse data set processed by

multi-mgMOS. Similar to the second step, since the gene expression level is highly

correlated with its measurement error, the standard deviation for each simulated

expression value, σ̂qij is sampled from a subset of standard deviation calculated
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Figure 5.1: Simulated expression profiles for one group under 10 conditions. (a)
is on log scale and (b) is the normalised profiles with zero mean and standard
deviation one.

from multi-mgMOS whose corresponding expression levels are close to x̂qij. Fig

5.2 (a) shows the scatter plot of the sampled standard deviation against the sim-

ulated expression level for one randomly selected condition. It can be seen that

the variance of the gene expression for the low expressed genes is generally larger

than that for the highly expressed genes which is commonly observed in real data

sets.

At the final step, the simulated expression level for each gene over all condi-

tions is normalised by subtracting the mean expression level and dividing by the

standard deviation such that the profile of each gene has zero mean and standard

deviation one. The simulated standard deviation is also divided by the standard

deviation of the expression level to show the corresponding measurement error of

the normalised expression level. The normalised profile is shown in Fig 5.1 (b)

when J = 10.

Since the true partition of the simulated data set is known, the agreement

of the clustering results from different methods with the true partition can be

assessed by the adjusted Rand index. The true number of groups, six, is selected

arbitrarily for both MCLUST and PUMA-CLUST. Three sets of data sets are
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Figure 5.2: Scatter plots of standard deviation against the simulated gene ex-
pression level. The standard deviation in (a) is the sampled from multi-mgMOS
results of the mouse data set, the standard deviation is randomly changed by
adding a noise drawn from (b) N (0, 0.01), (c) N (0, 0.1) and (d) N (0, 0.2).

generated to evaluate the different performance of PUMA-CLUST with MCLUST

with number of conditions 10, 20 and 30. For each set, 10 random simulated data

sets are randomly generated. The average adjusted Rand index from PUMA-

CLUST and MCLUST are shown in the first column of Fig 5.3. For the three

sets of simulated data sets, PUMA-CLUST obtains obviously better performance

compared with MCLUST. This shows the improvement of model-based clustering

by including the variance of the each data point.
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Including a Noise Group

In a real-world microarray data set, there are usually a certain fraction of genes

whose expression levels are mainly random noise. These genes do not belong

to any pattern group in the data set (Medvedovic et al., 2004). To assess the

performance of PUMA-CLUST on this kind of data set, a group of random noise

is added into the previously simulated data sets. The first generating step of the

gene expression level for group seven is

xqij = Aqi , (5.13)

where Aqi is sampled from U(0, 14). The following steps of the simulation are

the same as those for the former six groups. Three sets of simulated data sets

with 10 randomly generated data sets for each set are also sampled and the

average adjusted Rand index for three cases with condition 10, 20, and 30 are

shown in the second column of Fig 5.3. The number of groups for both MCLUST

and PUMA-CLUST is arbitrarily assigned to seven. From the three plots it can

be seen that the performance of the clustering from both PUMA-CLUST and

MCLUST decreases with the inclusion of the group of noise, but PUMA-CLUST

still outperforms MCLUST over all three noise levels with the three different data

dimensions.

Testing the Robustness to Misspecified Technical Variance

The uncertainty of the gene expression in the simulated data sets generated above

is sampled from multi-mgMOS results from the real mouse data set. It was as-

sumed that the level of uncertainty is known but in practice it would be esti-

mated using multi-mgMOS. An amount of noise was therefore added into the

sampled standard deviation, σ̂qij to test robustness to errors in estimating the

measurement error variance. For the cases of six-group data sets and seven-group

data sets, three kinds of random noise are added by sampling from N (0, 0.01),

N (0, 0.1) and N (0, 0.2). If the error-added variance is negative, its absolute

value is used. The scatter plots of the error-added standard deviation against

the simulated gene expression are shown in Fig 5.2 (b) – (d). Fig 5.3 gives the

average adjusted Rand index of the clustering results from PUMA-CLUST on

the error-added standard deviation for various cases. In the case of PC.01, the

added noise is quite small so that the clustering results of PC.01 are very close
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to the clustering results on the original simulated data. As the added noise gets

higher, the performance of PUMA-CLUST decreases. This shows that clustering

is most accurate when the measurement uncertainty is known, but is quite robust

to errors in the estimate.

5.3.2 Clustering on a Real Mouse Time-course Data set

The improved performance of the new model, PUMA-CLUST, over the standard

Gaussion mixture model on simulated data sets was shown in the previous section.

Here, the performance of PUMA-CLUST is evaluated on the real periodic mouse

data set (see Appendix A.3) compared to the standard mixture model, MCLUST.

Both PUMA-CLUST and MCLUST are applied on the first five time points

which belong to the synchronised cycle and include 15 chips. For MCLUST

the raw mouse data set is processed using the popular and accurate probe-level

method GCRMA. For PUMA-CLUST the raw data is processed by multi-mgMOS

as descried in Chapter 3. The clustering is performed on the 2,461 potential hair

cycle-associated genes which were selected by Lin et al. (2004). The obtained

expression level for each probe-set from both probe-level methods are normalised

to have zero mean and standard deviation one. The calculation of BIC in Section

5.2.4 is used to determine the number of clusters for both methods. The calculated

BICs at various number of clusters for the two methods are shown in Figure 5.4.

It can be seen that the optimal BIC for PUMA-CLUST is obtained at K=22 and

the optimal BIC for MCLUST is obtained at K=30. In order to make different

clustering methods comparable, the number of clusters for each method should

be the same. Therefore, the 22-cluster and the 30-cluster cases are compared

separately. The 22 clusters obtained from PUMA-CLUST and MCLUST are

shown in Figure 5.5 and Figure 5.6, and the 30 clusters obtained are shown in

Figure 5.7 and Figure 5.8, respectively. For visualisation, the average expression

level at each time point over replicates is shown for both the gene profile and the

cluster center.

To assess if biologically-relevant clusters are created using the two methods,

gene-annotation (GO) enrichment analysis is systematically performed for the

individual clusters using DAVID 2006 (The Database for Annotation, Visualiza-

tion and Integrated Discovery, Dennis et al. (2003)). The GO enrichment analysis

allows the direct assessment of the biological significance for gene clusters found

based on the enrichment of genes belonging to a specific GO functional category.
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A meaningful GO enrichment analysis is to examine enriched categories of GO

Biological Process at term level 5 and to select an enrichment cutoff at a p-value

of 0.05.

From the GO enrichment analysis on the 22-cluster results for the two meth-

ods, PUMA-CLUST produced more clusters (21 of 22) with at least one en-

riched GO category in comparison to MCLUST (17 of 22), as shown in Figure

5.9 (a). A visual inspection of these MCLUST clusters without an enriched

GO category indicates that four out of five of these clusters (Cluster #1,6,8,15)

contain heterogeneous temporal expression profiles (i.e. not tightly clustered).

Since the number of enriched GO categories found varies greatly among clusters

(shown in Figure 5.10 (a)), the average number (13.1) of categories among the

22 PUMA-CLUST clusters is only slightly greater than the average among the

MCLUST clusters (11.5). Hence, a more meaningful indicator of the distribution

differences is the median number of categories: PUMA-CLUST clusters (14) and

MCLUST clusters (7). The same enrichment analysis method was repeated using

the 30 clusters from both methods, and the results still clearly indicate that the

PUMA-CLUST method results in more biologically-meaningful clusters than the

MCLUST method. Using 30 clusters, all clusters generated by PUMA-CLUST

have at least one enriched GO categories, in comparison to only 21 out of 30

clusters created by MCLUST as shown in Figure 5.9 (b). The median number

of enriched categories for PUMA-CLUST and MCLUST are 8 and 1, respec-

tively, as shown in Figure 5.10 (b). Based on this GO enrichment analysis, it

is evident that the PUMA-CLUST method generated more biologically-relevant

clusters than the MCLUST method.

The MCLUST results on MAS5.0 and multi-mgMOS gene expression mea-

surements were also tried and the performance was similar to results presented

here with GCRMA, indicating that the probe-level summary method did not

make a big difference. The improved performance of PUMA-CLUST is therefore

due to the inclusion of probe-level measurement error.

5.4 Conclusion

This chapter demonstrates the usefulness of the measurement error in model-

based clustering of gene expression data. A Gaussian mixture model with an
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unequal volume spherical covariance matrix is augmented to incorporate probe-

level measurement error. Results from simulated data sets and a real mouse time-

course data set show that the inclusion of probe-level measurement error results

in biologically meaningful clustering of gene expression data. The augmented

clustering model has been implemented in an R package, pumaclust, for public

use of the method.
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Figure 5.3: The average adjusted Rand index of the clustering results from
PUMA-CLUST and MCLUST on the simulated data. The first column is for
the six-group data set and the second column is for the seven-group data set
with one noise group added. The upper panel shows results on data sets with
10 conditions, the middle panel is for 20 conditions and the lower panel is for 30
conditions. PC represents PUMA-CLUST results on the original simulated data.
PC.01, PC.1 and PC.2 represent the PUMA-CLUST results on the data sets with
added noise drawn from N (0, 0.01), N (0, 0.1) and N (0, 0.2) respectively. The av-
erage adjusted Rand index is calculated over 10 simulated data sets for each plot
and the range of the adjusted Rand index of each case is shown by error bars.
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Figure 5.4: BIC for (a) PUMA-CLUST and (b) MCLUST at various number
of clusters on the 2,461 potential hair growth-associated genes from the mouse
time-course data set. PUMA-CLUST obtains the minimum BIC at K=22 and
MCLUST obtains at K=30.
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Figure 5.5: Expression pattern clusters of the expression patterns from PUMA-
CLUST on the 2,461 potential hair-growth-associated genes of the mouse time-
course data set when K=22. The expression pattern for each probe-set is shown
in dark line for five time points. The light line on each plot is the clustering
center for each group. At each time point, the expression value is the average of
the three replicated measurements.
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Figure 5.6: Expression pattern clusters of the expression patterns from MCLUST
on the 2,461 potential hair-growth-associated genes of the mouse time-course data
set when K=22. The expression pattern for each probe-set is shown in dark line
for five time points. The light line on each plot is the clustering center for each
group. At each time point, the expression value is the average of the three
replicated measurements.
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Figure 5.7: Expression pattern clusters of the expression patterns from PUMA-
CLUST on the 2,461 potential hair-growth-associated genes of the mouse time-
course data set when K=30. The expression pattern for each probe-set is shown
in dark line for five time points. The light line on each plot is the clustering
center for each group. At each time point, the expression value is the average of
the three replicated measurements.
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Figure 5.8: Expression pattern clusters of the expression patterns from MCLUST
on the 2,461 potential hair-growth-associated genes of the mouse time-course data
set when K=30. The expression pattern for each probe-set is shown in dark line
for five time points. The light line on each plot is the clustering center for each
group. At each time point, the expression value is the average of the three
replicated measurements.
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Figure 5.9: Comparison of the number of clusters found with the indicated ranges
of enriched categories for MCLUST and PUMA-CLUST clusters using (a) 22
clusters and (b) 30 clusters. For both comparisons, the enriched categories were
found using GO Biological Process term level 5, enrichment cutoff at p-value of
0.05, and mouse (Mus Musculus) as the population background.
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Figure 5.10: Boxplot of the number of enriched categories for MCLUST and
PUMA-CLUST clusters using (a) 22 clusters and (b) 30 clusters. The boxes
show the lower quartile, median, and upper quartile values. The dotted lines
show the extent of the rest of the data. The number of enriched categories for
MCLUST has larger variance than that for PUMA-CLUST.



Chapter 6

Conclusion

6.1 Thesis Summary

Microarray data analysis is challenging due to the huge amount of variability

existing in the process of the experiment. This hinders the discovery of biologi-

cal knowledge from microarray experiments. Many methods have been proposed

to handle the noise in microarray data at various levels of the analysis. For the

probe-level analysis of microarray data, most methods provide only a single point

estimate of gene expression level discarding the uncertainty of this measurement.

Consequently, existing methods for the downstream analysis do not consider the

measurement error of expression level and this may result in inaccurate biological

conclusions. Because of their natural representation of uncertainty, probabilistic

models were developed in this thesis to handle the noise associated with microar-

ray data.

In Chapter 3, a probabilistic probe-level analysis model, multi-mgMOS, was

proposed based on the previously developed models, gMOS and mgMOS. Com-

pared with the existing probabilistic probe-level model, BGX, the likelihood func-

tion of multi-mgMOS can be written in a closed form and thus the ML estimate

is calculated more efficiently than the MCMC implementation of BGX. Probe-

specific effects are an important characteristic of probe-level microarray data. As

a multi-chip model, multi-mgMOS shares the probe effect across all chips of the

same type and obtains more accurate results than its previous single chip ver-

sions, gMOS and mgMOS. The uncertainty associated with the estimated gene

expression level is also shown to be useful in the downstream analysis.

114
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In Chapter 4, a Bayesian hierarchical model was presented to detect differ-

ential gene expression. The uncertainty obtained from multi-mgMOS was in-

cluded in the model. Due to the variance added to each data point the model

is intractable. Three methods were used to the handle the intractability of the

model: MAP approximation, a variational method and MCMC. The MAP ap-

proximation cannot obtain accurate results and MCMC is too computationally

demanding. The variational method is therefore adopted to calculate the model

since it obtains relatively fast computation and more accurate results than MAP

estimation. The new model is compared with the popular method Cyber-T on a

spike-in data set and a real time-course data set. Results showed that the incor-

poration of the probe-level measurement error improves the accuracy of detecting

differential gene expression.

In Chapter 5, it was demonstrated that the measurement error improved the

performance of the model-based clustering of gene expression data. A Gaussian

mixture model with unequal volume spherical covariance matrix is augmented

to incorporate probe-level measurement error. Unlike the intractability of the

Bayesian model in Chapter 4, the computation of the augmented Gaussian mix-

ture model is straightforward by using the standard EM algorithm for mixture

models. Results from simulated data sets and a real mouse time-course data set

show that the inclusion of probe-level measurement error leads to biologically

meaningful clustering of the gene expression data.

In summary, the redundancy in the probe-level microarray data makes it

possible to obtain a level of uncertainty for the gene expression measurement using

an improved probabilistic model, multi-mgMOS. The inclusion of uncertainty for

each data point in the probabilistic models (a Bayesian hierarchical model and a

mixture model) for data analysis obtains better results when the data is noisy.

However, a disadvantage is that the models often become more complicated or

intractable since there is an additional term to handle the uncertainty. In these

cases, advanced machine learning techniques can be used to solve this problem.

With the various inference approximation approaches and advanced optimisation

methods available, the augmented models in this thesis are computed and improve

upon the performance of the original models which do not include the probe-level

measurement error. The software implemented in this thesis is available from

http://umber.sbs.man.ac.uk/resources/puma/.
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6.2 Future Work

6.2.1 Improving the Computation Time of multi-mgMOS

Although the computational efficiency of multi-mgMOS over the other previously

developed alternatives is shown to be favorable in Chapter 3, for very large data

sets, especially for those involving non-human chips, the method still takes time

due to the iteration for the optimisation of φ. The reason for this is that the prior

distribution of φ is obtained from the spike-in data set of the human chip and it

reflects the characteristics of this type of chip. For other types of chip, there are

no spike-in data sets available to estimate a proper prior for φ and φ therefore

needs more iterations to be estimated. In order to accelerate the computation

speed of the software, the current version of the R package mmgmos sets φ zero

when non-human chips are used to avoid the large number of iterations for the

estimation of φ.

It is obvious that setting φ to an arbitrary value affects the accuracy of results.

In the long term, φ should be pre-calculated using well designed spike-in data

sets or using the data set which is under study. For example, using the filtered

high expressed probe-pairs the prior distribution of φ can be obtained. This

prior should be more appropriate for the data set of interest and accelerate the

iteration for estimating φ. Since the performance of multi-mgMOS II is very close

to multi-mgMOS I in many cases, but more computationally efficient, one can also

pre-calculate the value of φ using the data under study according to the middle

three bases in each probe-pair. A similar strategy has been used in GCRMA

where sequence-specific probe effects are computed and PDNN (Zhang et al.,

2003) where the sequence-specific hybridisation energy is pre-calculated. This

approach can also be adopted into multi-mgMOS to accelerate the computation.

6.2.2 Improving Background Correction of multi-mgMOS

In the assumption of multi-mgMOS in (3.8), hgjc is the non-specific binding and

background of the jth probe-pair. It is assumed in (3.10) that hgjc follows a

gamma distribution with probe-specific inverse scale parameter bgj. Therefore,

hgjc is assumed to be probe-specific. It is reasonable to assume that the non-

specific hybridisation is probe-specific. However, the overall background is chip-

specific and should be independent of the probe sequence. It can be seen from
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Figure 3.2 that for high expressed genes the specific and non-specific signal is

much higher than the background signal, so the effects of the background is

negligible. For the weakly expressed genes, the effects of the background is more

important. Treating background and the non-specific hybridisation in the same

way might lead to inaccurate expression measurements, especially for those lower

expressed genes.

From the “No RNA” experiment in Wu et al. (2004) where the sample had no

target RNA and all observed intensities represent the background optical noise,

the overall logged background fits well a Gaussian distribution with mean 5 and

variance 0.1. Due to the small variance of the fitted Gaussian, Wu et al. (2004)

treats the background as constant and estimates it with the minimum intensity

on each chip. The latest version of the R package, mmgmos, also subtracts such a

constant from the intensity of each probe to eliminate the effect of the background.

In the future, a more principled approach can be devised to address this problem.

6.2.3 Improving Data Fit of multi-mgMOS

The improved performance of the new probabilistic model multi-mgMOS has been

shown in Chapter 3 in terms of the accuracy of the measured gene expression level.

The usefulness of the measurement error associated with the expression level has

also been demonstrated in Chapter 4 and 5. However, when the consistency of

the model is examined, some deficiencies can be seen, as shown in Figure 6.1.

The solid loess smooth line shows the average relationship between probe-level

measurement (i.e. technical) error and the expression level. The dashed loess

smooth line gives an estimate of the average tendency of total error against the

expression level. The total variance includes technical and biological components.

Theoretically, the dashed line should be above the solid line. However, this fact

holds only for high expressed genes. At the lower end, the average total variance

is less than the related technical variance. It is possible that the technical variance

for low expressed genes is over-estimated by multi-mgMOS and this leads to the

low estimates of the total variance. Alternatively, the mean estimate may be

biased and this could result in reduced variance over replicates.

The inconsistency of the model may be explained by Figure 6.2 which shows

the contours of the joint distribution of PM and MM intensities for one probe-set

after the parameters of multi-mgMOS are estimated. For the low expressed case

shown in (a), there are almost no data points within the first contour level which
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Figure 6.1: The loess fits to the technical error as a function of expression level
(solid line) and to the total error of the expression level (dashed line) for data
set A in Chapter 3. The blue dots are the average technical error against the
average expression level over three replicates for condition 1. The yellow dots are
the total error of the expression level against the same expression level as the
blue dots.

shows high density of the joint distribution. Also, the fitted joint distribution

spreads more than the observed data. It can be seen that the model does not

fit the data well in this case. For the high expressed case of the same gene in

(b), the fit of the model to the observed data is better than for the low expressed

genes. The misfit of the model may be caused by the assumption of the model

that PM and MM intensities follow gamma distributions. It is possible that the

gamma distributions cannot account well for the observed data on the raw scale.

The Gaussian distribution on a log scale may fit the data better but it is then

harder to model the joint distribution of PM and MM intensities, since a sum of

two log-normal distribution does not lead to a simple distribution.
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Figure 6.2: Contours of the joint distribution of PM and MM intensities of spike-
in gene 1 in data set A of Chapter 3 at concentration (a) 0.5 and (b) 100 pM after
the parameters of multi-mgMOS are estimated. The stars show the observed PM
and MM intensities.

6.2.4 Integrating Nomalisation in Downstream Analysis

In the microarray experiment involving multiple chips, different amounts of RNA

sample may be used for different chips due to the variability existing in the

sample preparation. This will lead to a different overall brightness for different

chips. For this reason, normalisation is usually conducted in order to perform

the analysis across different chips. In the description of multi-mgMOS in (3.13),

the normalisation can be partly accounted for by the shared parameters bgj and

φ across chips. However, the data may not be well normalised in some cases.

Currently, an additional global scaling normalisation is therefore adopted before

the further downstream analysis is performed. The expression values are centered

at the same mean or median for each chip and the measurement error of the

expression value is adjusted accordingly.

More principally, the normalisation can be integrated in the downstream anal-

ysis models. In Chapter 4 and 5, the observed logged expression level x̂gc for gene

g under condition c can be expressed as x̂gc = xgc + εgc, where xgc is the true

expression level and εgc is the zero-mean Gaussian measurement error. When the

normalisation is considered in the downstream analysis, the observed expression

level can be expressed as

x̂gc = xgc + δc + εgc , (6.1)
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where δc is the chip-specific normalisation factor. Equation (6.1) can be plugged

in downstream probabilistic analysis models. By treating δc as a random variable,

the normalisation can be performed among the further analysis.

6.2.5 Possible Improvement of PUMA-CLUST

In order to obtain confidence in the gene expression measurements, replicates are

usually used in experiments. If each chip is treated as an individual condition

in the data, the clustering will become increasingly difficult with the increase

in the number of chips used in the experiment due to the noisy nature of the

data. The approach in Chapter 5 augments the standard model which treats each

individual chip as a single independent data point. This standard model does not

consider the replicate information where repeated measurements are available for

time points. Clustering on repeated measurements has been considered by Yeung

et al. (2003), Lin et al. (2004) and Medvedovic et al. (2004), but all of these

approaches do not include the probe-level measurement error. So including both

probe-level noise and replicate information in the clustering is the focus of future

work.

One solution may be to use the Bayesian hierarchical model (described in

Chapter 4), which combines replicated measurements for each condition by con-

sidering probe-level measurement error, to obtain a single value of gene expres-

sion measurement for each condition, x̃ij, along with the measurement error, β̃ij,

where j indexes the different conditions or time points. As a result of this model,

the probe-level measurements, xijr, are generated from the Gaussian distribution

N (x̃ij, β̃ij), and r is the index of replicates for condition j. We can then cluster

on x̃ij and β̃ij using the augmented mixture model in (5.5).

The multiple step process of the clustering on replicated gene expression data

may be questioned in terms of introducing new variability to the original data.

Another possible approach is to augment the mixture model in Lin et al. (2004),

which is able to deal with replicated measurements within the mixture model,

p(xi|k, θk) =
∫

e
de

∏

jr

p(xijr|ej, s
2
kj)p(ej|µkj, σ

2
kj) , (6.2)

where ej are the true expression levels, which are unobserved variables, and s2
kj is

the gene-independent between-replicate variance for condition j. Each Gaussian

component in this model has different variance for each condition which reflects
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the variability of the data. The complete set of parameters is θ = {µ, σ2, s2, P (k)}.
The model in (6.2) can be augmented to incorporate the probe-level measurement

error,

p(xi|k, θk) =
∫

e
de

∏

jr

p(xijr|ej, s
2
i + βijr)p(ej|µkj, σ

2
k) . (6.3)

Similar to the Bayesian hierarchical model in Chapter 4, the between-replicate

variance s2
i for each gene is shared over conditions. Since the between-replicate

variance is gene-specific, the number of free parameters is much larger than that

of the original model in (6.2). In order to work out this model, a modified M-step

in the standard EM algorithm in Chapter 5 may be adopted. This strategy is

still under research.

6.2.6 Modelling the Measurement Error As an Unknown

Variable

The approaches in this thesis are to produce the measured expression and the

associated measurement variance in the probe-level analysis, then to include the

estimated measurement variance in the high level analysis. Since the measure-

ment error is not known exactly and it is estimated in the low level analysis, it

is itself associated with error (as discussed in Section 5.3.1). Therefore, instead

of using the estimated measurement uncertainty in the high level analysis, the

uncertainty can also be modelled by a prior distribution.

For example, in the hierarchical Bayesian model in (4.4) νij is the estimated

measurement error associated with the measured expression level xij for gene i.

Considering the estimated error of νij , it can be modelled with a prior,

νij ∼ Ga(ai, bi/xij) , (6.4)

where ai and bi are the unknown hyper-parameters, and the scaling factor xij is

introduced to model the dependence between νij and xij. Therefore, the prior

is a conditional gamma distribution. Obviously, this approach introduces more

parameters and model complexity. However, the advantage of the Bayesian frame-

work is that it can deal with such problems. With the various advanced machine

learning techniques available, it may then be possible to model the data more ap-

propriately and possibly improve the performance of the current models further.
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Appendix A

Data Sets

A.1 Affymetrix HG-U95a Spike-in Data Set

This data set was provided by Affymetrix for the purposes of developing and com-

paring expression algorithms. It was used to develop and validate the Affymetrix

MAS 5.0 expression algorithm. This data set contains 14 spiked-in transcripts in

14 experimental groups (conditions) with a Latin Square design. The concentra-

tion of the 14 experiment groups in the first experiment is 0, 0.25, 0.5, 1, 2, 4, 8,

16, 32, 64, 128, 256, 512 and 1024 picoMolar (pM). Each subsequent experiment

rotates the concentrations by one group. Among the 14 spiked-in transcripts

probe-set 407 at is an exception which doesn’t follow the original Latin square.

Table A.1 shows how the spike-in concentrations are arranged for each of the

experimental groups. The data set consists of 59 arrays and there are three repli-

cate arrays for each group except group c for which there was only two replicates.

Replicates are divided into three groups, 1521, 1532 and 2353. For example, the

three replicates of experimental group a is 1521a, 1532a and 2353a. Affymetrix

states that two of the probe-sets, 407 at and 36889 at, have poorly behaving probe

pairs and should be excluded from the analysis. This data set is available at

http://www.affymetrix.com/support/technical/sample data/datasets.affx. The

known concentrations of the 14 transcripts give the true information of the ex-

pression level for the related 14 probe-sets and this is the standard to judge the

performance of different expression algorithms.
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Group 37777 at 684 at 1597 at 38734 at 39058 at 36311 at 36889 at
a 0 0.25 0.5 1 2 4 8
b 0.25 0.5 1 2 4 8 16
c 0.5 1 2 4 8 16 32
d 1 2 4 8 16 32 64
e 2 4 8 16 32 64 128
f 4 8 16 32 64 128 256
g 8 16 32 64 128 256 512
h 16 32 64 128 256 512 1024
i 32 64 128 256 512 1024 0
j 64 128 256 512 1024 0 0.25
k 128 256 512 1024 0 0.25 0.5
l 256 512 1024 0 0.25 0.5 1

m,n,o,p 512 1024 0 0.25 0.5 1 2
q,r,s,t 1024 0 0.25 0.5 1 2 4
Group 1024 at 36202 at 36085 at 40322 at 407 at 1091 at 1708 at

a 16 32 64 128 0 512 1024
b 32 64 128 256 0.25 1024 0
c 64 128 256 512 0.5 0 0.25
e 128 256 512 1024 1 0.25 0.5
e 256 512 1024 0 2 0.5 1
f 512 1024 0 0.25 4 1 2
g 1024 0 0.25 0.5 8 2 4
h 0 0.25 0.5 1 16 4 8
i 0.25 0.5 1 2 32 8 16
j 0.5 1 2 4 64 16 32
k 1 2 4 8 128 32 64
l 2 4 8 16 256 64 128

m,n,o,p 4 8 16 32 512 128 256
q,r,s,t 8 16 32 64 1024 256 512

Table A.1: The Latin square arrangement of Affymetrix HG-U95a spike-in data
set. Concentrations are in picoMolar (pM). Experiments n, o and p are replicates
of experiment m and experiments r, s and t are replicates of experiment q.
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Gene No 1 2 3 4 5 6 7 8 9 10 11
Group BioB-

5 at
BioB-
M at

BioB-
3 at

BioC-
5 at

BioC-
3 at

BioDn-
3 at

DapX-
5 at

DapX-
M at

DapX-
3 at

CreX-
5 at

CreX-
3 at

a 0.5 37.5 25 75 100 50 1.5 1 3 2 5
b 1 50 37.5 100 3 75 2 1.5 5 25 12.5
c 1.5 75 50 3 5 100 25 2 12.5 37.5 0.5
e 2 100 75 5 12.5 3 37.5 25 0.5 50 1
e 3 1.5 1 25 37.5 2 12.5 5 50 0.5 75
f 5 2 1.5 37.5 50 25 0.5 12.5 75 1 100
g 12.5 25 2 50 75 37.5 1 0.5 100 1.5 3
h 37.5 5 3 0.5 1 12.5 75 50 1.5 100 2
i 50 12.5 5 1 1.5 0.5 100 75 2 3 25
j 75 0.5 12.5 1.5 2 1 3 100 25 5 37.5
k 100 1 0.5 2 25 1.5 5 3 37.5 12.5 50

Table A.2: GeneLogic Latin square design with complex cRNA from AML cell
line. There are 11 experimental groups (conditions) in this experiment. Each
group had three replicates except group B which had two replicates.

A.2 GeneLogic AML Spike-in Data

In this data set 11 control cRNAs were spiked into a hybridization mix to prepare

11 samples as described in Table A.2. Each hybridization mixture was hybridized

to multiple Affymetrix HG-U95a arrays. The concentrations used were 0.5, 1, 1.5,

2, 3, 5, 12.5, 25, 37.5, 50, 75 and 100 pM, arranged in a Latin square experiment.

This Latin square experiment was carried out in the presence of complex cRNA

prepared from an acute myeloid leukemia (AML) tumor cell line. Each concen-

tration appeared once in each row and column. The probe-set BioC-5 at was not

spiked-in appropriately and can be considered as an invariant probe-set. This

data set is available at http://www.genelogic.com/newsroom/studies/.

A.3 Mouse Time-course Data Set

This time-course data set profiles the gene expression changes during the hair

growth cycle, which is synchronised for the first two cycles following birth. Af-

ter the two cycles the hair growth is unsynchronised. Lin et al. (2004) used

Affymetrix microarray MG-U74Av2 to profile mRNA expression in mouse back

skin from eight representative time points to discover regulators in hair-follicle

morphogenesis and cycling. The microarray data set utilised a total of 25 chips

with each time point consisting of three or four replicates. The first five time
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Cycle Time point Microarray qr-PCR
day 1

√ √
day 5

√
day 6

√
day 8

√
1st synchronous day 12

√
day 14

√
day 15

√
day 17

√ √
day 19

√
day 23

√ √
day 25

√
day 29

√
day 31

√
2nd synchronous day 34

√
day 37

√
day 41

√
day 44

√
week 9

√
asynchronous month 5

√
year 1

√

Table A.3: The time points covered by the microarray experiment and the qr-
PCR experiment. The common time points are day 1, 17 and 23 in the first
synchronous cycle.

points (day 1, 6, 14, 17 and 23) cover the first synchronised cycle and the last

three time points (week 9, month 5 and year 1) belong to the asynchronous cy-

cles. Lin et al. (2004) identified 2,461 hair cycle-associated genes using statistical

methods. There are eight genes not previously known to be hair-cycle associated

that were identified by their temporal and spatial expression patterns during the

hair-growth cycle. A quantitative real-time PCR (qr-PCR) experiment is con-

ducted to confirm the discovery of these eight new hair cycle-associated genes.

The qr-PCR experiment includes 15 time points and covers the first two syn-

chronous cycles, and there are three replicates at each time point. The time

points covered by the microarray experiment and the qr-PCR experiment are

shown in Table A.3. For the first asynchronous cycle there are three time points

in common (day 1, 17 and 23) for the two types of experiments. The eight genes

and the 14 related probe-sets in the microarray data are shown in Table A.4.

This data set is available at http://www.ncbi.nlm.nih.gov/projects/geo/.
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Gene symbol Probe-set ID
Car 6 160647 at

Crisp 1 93122 at
Elf5 103283 at
Junb 102362 i at, 102363 i at

Nmyc1 103048 at
Wnt11 103490 at
Dab2 98044 at, 98045 s at, 104633 at
Fbln1 94307 at, 94308 at, 94309 at, 161628 at

Table A.4: The related probe-sets of the eight discovered hair cycle-associated
genes in Lin et al. (2004).

A.4 Golden Spike-in Data set

The golden spike-in data set is designed in Choe et al. (2005) for the purpose of

evaluating methods for identifying differential gene expression between two sets

of replicated experiments. This data set includes two conditions each of which

has three replicate chips. This data set contains a large number of differentially

expressed genes with known fold-change, 1.2 to 4-fold. Unlike the spike-in data

sets described in Appendix A.1 and A.2 which include small numbers of spike-in

genes, 14 and 11 respectively, this spike-in data set provides a large number of true

positives to obtain adequate statistics. The two conditions, control and spike, are

labelled as ‘C’ and ‘S’ respectively. The S sample contains the same cRNAs as

the C sample except that 1309 individual cRNAs are present at a defined different

increasing concentration in the S sample which leads to 1,331 up-regulated probe-

sets. The remaining sample contains 2,551 RNA species presenting at identical

concentration in both experiments and this leads to 2,535 invariant probe-sets

which can be very good normalisation background. Among the remaining probe-

sets, 10,131 are empty probe-sets which have no targets in the sample and 13 are

mixed probe-sets which match to more than one clone.



Appendix B

Affycomp Results

Affycomp (Cope et al., 2004) is a web-based benchmark for estimating Affymetrix

microarray expression measurements. Tables B.1–B.6 are the copy of entries listed

in order of submission for assessment from http://affycomp.biostat.jhsph.edu on

15 June, 2005. The bottom line in each table is the results from multi-mgMOS.

Tables B.1 and B.2 show the original 15 assessments of dilution and spike-in

hgu95 studies. Tables B.3 and B.4 show the new 14 assessments of the spike-

in hgu95 study. Tables B.5 and B.6 are copies of the new 14 assessments of

the spike-in hgu133 study. The best result for each entry is shown in bold.

For the representation of the score component for each entry, please refer to

http://affycomp.biostat.jhsph.edu/ for more information.

135
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N Method 1 2 3 4 5 6 7 8

0 (perfection) 0 1 1 1 1 1 1 0
1 MAS 5.0 0.29 0.89 0.73 0.85 0.71 0.86 0.36 3108.99
2 RMA 0.09 0.99 0.94 0.87 0.63 0.80 0.82 15.84
3 dChip 0.09 0.99 0.91 0.77 0.53 0.85 0.67 36.91
4 ZAM2NBG 0.07 0.99 0.94 0.72 0.57 0.77 0.84 2.44
5 qn.p5 0.11 0.98 0.56 0.06 0.42 0.50 0.62 20.30
6 vsn scal 0.08 0.99 0.96 1.00 0.77 0.81 0.85 6.69
7 vsn 0.06 0.99 0.96 0.76 0.51 0.81 0.85 0.40
8 RMAVSN 0.09 0.99 0.94 0.89 0.61 0.81 0.83 17.87
9 RMA NBG 0.04 1.00 0.91 0.56 0.48 0.81 0.85 0.13

10 GSVDmin 0.05 0.98 0.97 0.59 0.50 0.83 0.81 4.87
11 PLIER 0.13 0.09 0.01 0.84 0.71 0.91 0.02 596.77
12 GSVDmod 0.05 1.00 0.97 0.55 0.51 0.85 0.84 0.79
13 PLIER+16 0.08 0.99 0.88 0.64 0.65 0.91 0.81 8.42
14 GCRMA 0.09 0.99 0.89 0.72 0.97 0.84 0.82 7.62
15 ChipMan 0.31 0.99 0.94 1.26 0.88 0.82 0.67 183.99
16 ProbePro 0.16 0.70 0.58 0.84 1.45 0.47 0.17 2087.07
17 MMEI 0.02 1.00 0.92 0.52 0.45 0.80 0.86 0.12
18 PM 0.05 0.99 0.97 0.53 0.46 0.87 0.84 1.39
19 RMA:GNV 0.09 0.99 0.98 0.68 0.62 0.80 0.82 15.86
20 GL 0.05 0.99 0.92 0.56 0.48 0.81 0.83 0.15
21 MAS5+32 0.07 0.98 0.93 0.71 0.60 0.88 0.72 20.56
22 gMOS v.1 0.32 0.97 0.81 0.64 0.95 0.75 0.54 1358.01
23 rsvd - - - - 0.66 0.90 0.81 2.63
24 ZL 0.34 0.99 0.04 0.23 0.57 0.65 0.79 21.99
32 gltran 0.04 0.99 0.94 0.64 0.51 0.78 0.84 1.46
33 UM-Tr-Mn - - - - 0.68 0.87 0.51 1399.72
34 GS RMA - - - - 0.63 0.80 0.82 15.86
35 GS GCRMA - - - - 0.84 0.91 0.84 6.53
36 gcrma113 - - - - 0.87 0.91 0.85 3.89
41 mgMOS gs 0.21 0.96 0.88 0.80 0.76 0.82 0.57 1061.31
42 mmgMOSgs 0.23 0.96 0.82 0.86 1.03 0.80 0.59 1616.01

Table B.1: Copy of entries 1–8 listed in order of submission for original assessment
from http://affycomp.biostat.jhsph.edu/AFFY2/TABLES/0.html on 15 June,
2005.
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N Method 9 10 11 12 13 14 15

0 (perfection) 16 0 1 1 1 0 16
1 MAS 5.0 12.82 2.66 0.69 0.65 0.07 3072.18 3.71
2 RMA 11.98 0.31 0.61 0.36 0.54 1.00 1.71
3 dChip 11.43 0.45 0.52 0.32 0.17 28.64 1.25
4 ZAM2NBG 11.70 0.24 0.57 0.32 0.61 0.57 1.14
5 qn.p5 9.58 0.38 0.43 0.14 0.24 15.75 1.39
6 vsn scal 12.23 0.23 0.75 0.28 0.66 0.43 3.89
7 vsn 10.83 0.15 0.50 0.19 0.66 0.21 1.11
8 RMAVSN 11.79 0.25 0.60 0.32 0.59 0.50 1.61
9 RMA NBG 10.45 0.12 0.47 0.15 0.68 0.11 1.04

10 GSVDmin 11.09 0.21 0.49 0.24 0.56 2.43 1.00
11 PLIER 12.85 4.03 0.72 0.65 0.02 589.96 3.57
12 GSVDmod 11.19 0.19 0.50 0.24 0.60 0.54 1.11
13 PLIER+16 12.34 0.34 0.65 0.46 0.46 5.07 2.04
14 GCRMA 12.97 0.35 0.92 0.66 0.54 7.07 5.29
15 ChipMan 13.03 0.67 0.87 0.44 0.20 159.86 5.11
16 ProbePro 12.53 15.70 1.33 1.93 0.07 2046.46 4.93
17 MMEI 10.41 0.12 0.45 0.16 0.69 0.11 1.00
18 PM 10.67 0.15 0.45 0.18 0.64 0.68 1.00
19 RMA:GNV 11.99 0.31 0.61 0.36 0.54 1.00 1.71
20 GL 10.42 0.14 0.47 0.16 0.66 0.11 1.18
21 MAS5+32 11.76 0.51 0.59 0.33 0.18 19.18 1.68
22 gMOS v.1 12.75 2.15 0.94 1.04 0.10 1319.07 5.36
23 rsvd 12.14 0.35 0.66 0.41 0.49 2.04 2.89
24 ZL 11.98 0.24 0.57 0.36 0.42 37.57 2.36
32 gltran 11.09 0.19 0.50 0.22 0.65 0.68 1.04
33 UM-Tr-Mn 12.56 1.76 0.67 0.54 0.07 1385.00 2.64
34 GS RMA 11.98 0.31 0.61 0.36 0.54 0.93 1.71
35 GS GCRMA 13.15 0.41 0.82 0.65 0.58 3.00 4.71
36 gcrma113 13.16 0.37 0.86 0.68 0.61 2.57 4.89
41 mgMOS gs 13.12 1.37 0.75 0.90 0.07 1028.61 4.14
42 mmgMOSgs 13.65 1.79 1.02 1.40 0.09 1570.11 6.71

Table B.2: Copy of entries 9–15 listed in order of submission for original
assessment from http://affycomp.biostat.jhsph.edu/AFFY2/TABLES/0.html on
15 June, 2005.
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N Method 1 2 3 4 5 6 7

0 (perfection) 0.00 0.00 0.00 1.00 1.00 1.00 1.00
1 MAS 5.0 0.63 0.85 4.48 0.86 0.71 0.72 0.80
2 RMA 0.11 0.19 0.57 0.80 0.63 0.29 0.73
3 dChip 0.13 0.20 1.44 0.85 0.53 0.25 0.64
4 ZAM2NBG 0.09 0.16 0.50 0.77 0.57 0.25 0.66
5 qn.p5 0.12 0.22 1.09 0.50 0.42 0.11 0.44
6 vsn scal 0.09 0.15 0.43 0.81 0.77 0.21 0.82
7 vsn 0.06 0.10 0.29 0.81 0.51 0.14 0.55
8 RMAVSN 0.09 0.16 0.48 0.81 0.61 0.25 0.71
9 RMA NBG 0.04 0.08 0.24 0.81 0.48 0.12 0.50

10 GSVDmin 0.08 0.13 0.60 0.83 0.50 0.17 0.58
11 PLIER 0.19 0.33 123.27 0.91 0.71 0.76 0.84
12 GSVDmod 0.07 0.13 0.44 0.85 0.51 0.18 0.60
13 PLIER+16 0.13 0.21 0.83 0.91 0.65 0.45 0.78
14 GCRMA 0.09 0.16 0.77 0.84 0.97 0.73 1.19
15 ChipMan 0.27 0.33 2.26 0.82 0.88 0.36 1.04
16 ProbePro 0.31 0.47 18.75 0.47 1.45 1.26 1.73
17 MMEI 0.04 0.06 0.23 0.80 0.45 0.11 0.49
18 PM 0.05 0.09 0.40 0.87 0.46 0.14 0.52
19 RMA:GNV 0.11 0.19 0.58 0.80 0.62 0.29 0.73
20 GL 0.05 0.08 0.25 0.81 0.48 0.12 0.50
21 MAS5+32 0.14 0.23 1.07 0.88 0.60 0.31 0.68
22 gMOS v.1 0.29 0.00 3.35 0.75 0.95 0.82 1.22
23 rsvd 0.00 0.00 0.58 0.90 0.66 0.31 0.84
24 ZL 0.22 0.12 0.52 0.65 0.57 0.39 0.67
32 gltran 0.07 0.12 0.42 0.78 0.51 0.19 0.57
33 UM-Tr-Mn 0.32 0.51 2.92 0.87 0.68 0.53 0.82
34 GS RMA 0.11 0.19 0.57 0.80 0.63 0.29 0.73
35 GS GCRMA 0.10 0.07 0.79 0.91 0.84 0.51 1.02
36 gcrma113 0.08 0.04 0.74 0.91 0.87 0.52 1.06
41 mgMOS gs 0.36 0.55 2.86 0.82 0.76 0.77 0.89
42 mmgMOSgs 0.40 0.58 3.27 0.80 1.03 1.21 1.26

Table B.3: Copy of hgu95a entries 1–7 listed in order of submission for newer as-
sessment from http://affycomp.biostat.jhsph.edu/AFFY2/TABLES.hgu/0.html
on 15 June, 2005.
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N Method 8 9 10 11 12 13 14

0 (perfection) 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 MAS 5.0 0.45 0.69 0.65 0.07 0.00 0.00 0.05
2 RMA 0.47 0.61 0.36 0.51 0.91 0.64 0.60
3 dChip 0.39 0.52 0.32 0.21 0.43 0.16 0.26
4 ZAM2NBG 0.47 0.57 0.32 0.57 0.95 0.74 0.66
5 qn.p5 0.52 0.43 0.14 0.09 0.43 0.46 0.17
6 vsn scal 0.70 0.75 0.28 0.53 0.97 0.86 0.64
7 vsn 0.47 0.50 0.19 0.53 0.97 0.86 0.64
8 RMAVSN 0.46 0.60 0.32 0.52 0.94 0.70 0.62
9 RMA NBG 0.46 0.47 0.15 0.55 0.97 0.92 0.65

10 GSVDmin 0.41 0.49 0.24 0.39 0.87 0.65 0.51
11 PLIER 0.46 0.72 0.65 0.04 0.00 0.00 0.03
12 GSVDmod 0.42 0.50 0.24 0.47 0.94 0.74 0.59
13 PLIER+16 0.46 0.65 0.46 0.61 0.83 0.46 0.66
14 GCRMA 0.55 0.92 0.66 0.62 0.94 0.59 0.69
15 ChipMan 0.68 0.87 0.44 0.21 0.50 0.24 0.28
16 ProbePro 0.39 1.330 1.93 0.05 0.04 0.00 0.05
17 MMEI 0.46 0.45 0.16 0.57 0.98 0.94 0.67
18 PM 0.43 0.45 0.18 0.47 0.93 0.83 0.59
19 RMA:GNV 0.47 0.61 0.36 0.50 0.91 0.64 0.60
20 GL 0.46 0.47 0.16 0.58 0.96 0.88 0.67
21 MAS5+32 0.44 0.59 0.33 0.04 0.28 0.08 0.10
22 gMOS v.1 0.42 0.94 1.04 0.07 0.04 0.00 0.06
23 rsvd 0.40 0.66 0.41 0.54 0.93 0.54 0.64
24 ZL 0.45 0.57 0.36 0.65 0.87 0.73 0.70
32 gltran 0.45 0.50 0.22 0.55 0.94 0.80 0.65
33 UM-Tr-Mn 0.42 0.67 0.54 0.11 0.00 0.00 0.08
34 GS RMA 0.47 0.61 0.36 0.51 0.91 0.64 0.60
35 GS GCRMA 0.55 0.82 0.65 0.64 0.94 0.56 0.72
36 gcrma113 0.56 0.86 0.68 0.68 0.97 0.63 0.75
41 mgMOS gs 0.43 0.75 0.90 0.25 0.04 0.00 0.20
42 mmgMOSgs 0.45 1.02 1.40 0.36 0.07 0.00 0.29

Table B.4: Copy of hgu95a entries 8–14 listed in order of submission for newer as-
sessment from http://affycomp.biostat.jhsph.edu/AFFY2/TABLES.hgu/0.html
on 15 June, 2005.
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N Method 1 2 3 4 5 6 7

0 (perfection) 0.00 0.00 0.00 1.00 1.00 1.00 1.00
1 MAS 5.0 0.29 0.47 4.01 0.91 0.77 0.58 0.73
2 RMA 0.07 0.13 0.40 0.90 0.68 0.20 0.71
8 RMAVSN 0.02 0.04 0.15 0.89 0.12 0.06 0.13

23 rsvd 0.14 0.12 0.73 0.94 0.74 0.31 0.78
25 rsvd.pm 0.06 0.11 0.34 0.89 0.53 0.12 0.53
26 rma-tog 0.07 0.13 0.40 0.90 0.68 0.20 0.71
27 rma-sep 0.18 0.28 0.96 0.90 0.71 0.27 0.72
28 LW1 0.08 0.14 1.18 0.91 0.59 0.19 0.62
29 LW2 0.14 0.25 13.88 0.56 1.08 1.50 0.80
30 rsvd.bgc 0.08 0.14 0.52 0.89 0.58 0.16 0.59
31 cor523 0.02 0.03 0.12 0.88 0.12 0.06 0.13
33 UM-Tr-Mn 0.15 0.25 1.86 0.93 0.70 0.36 0.72
34 GS RMA 0.07 0.13 0.40 0.90 0.68 0.20 0.71
35 GS GCRMA 0.07 0.09 0.65 0.93 0.93 0.37 0.96
36 gcrma113 0.06 0.04 0.61 0.91 1.00 0.25 1.13
37 rsvd2 0.17 0.28 1.74 0.91 0.75 0.46 0.74
38 W237 0.02 0.04 0.17 0.87 0.12 0.05 0.13
39 RMA NBG 0.01 0.02 0.06 0.90 0.09 0.02 0.09
40 RMAVSN 0.02 0.04 0.15 0.89 0.12 0.06 0.13
41 mgMOS gs 0.24 0.34 2.02 0.92 0.81 0.58 0.78
42 mmgMOSgs 0.24 0.34 2.71 0.89 1.03 0.88 0.98

Table B.5: Copy of hgu133 entries 1–7 listed in order of submission for newer as-
sessment from http://affycomp.biostat.jhsph.edu/AFFY2/TABLES.hgu/0.html
on 15 June, 2005.
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N Method 8 9 10 11 12 13 14

0 (perfection) 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 MAS 5.0 0.77 0.77 0.64 0.09 0.00 0.00 0.06
2 RMA 0.80 0.68 0.31 0.57 0.91 0.96 0.65
8 RMAVSN 0.10 0.12 0.08 0.46 0.59 0.43 0.49

23 rsvd 0.73 0.74 0.43 0.53 0.73 0.71 0.58
25 rsvd.pm 0.77 0.53 0.16 0.42 0.90 0.96 0.54
26 rma-tog 0.80 0.68 0.31 0.57 0.91 0.96 0.65
27 rma-sep 0.84 0.71 0.39 0.38 0.53 0.63 0.42
28 LW1 0.74 0.59 0.25 0.23 0.47 0.55 0.29
29 LW2 0.68 1.08 1.45 0.19 0.00 0.00 0.14
30 rsvd.bgc 0.79 0.58 0.22 0.38 0.80 0.90 0.49
31 cor523 0.10 0.12 0.08 0.54 0.77 0.61 0.60
33 UM-Tr-Mn 0.70 0.70 0.44 0.18 0.10 0.10 0.16
34 GS RMA 0.80 0.68 0.30 0.56 0.91 0.96 0.65
35 GS GCRMA 0.96 0.93 0.55 0.59 0.87 0.90 0.66
36 gcrma113 0.97 1.00 0.48 0.45 0.91 0.92 0.57
37 rsvd2 0.81 0.75 0.52 0.29 0.16 0.21 0.26
38 W237 0.10 0.12 0.07 0.35 0.54 0.39 0.39
39 RMA NBG 0.10 0.09 0.04 0.54 0.90 0.93 0.63
40 RMAVSN 0.10 0.12 0.08 0.46 0.59 0.43 0.49
41 mgMOS gs 0.77 0.81 0.68 0.33 0.08 0.12 0.27
42 mmgMOSgs 0.79 1.03 1.05 0.37 0.02 0.01 0.28

Table B.6: Copy of hgu133 entries 8–14 listed in order of submission for newer as-
sessment from http://affycomp.biostat.jhsph.edu/AFFY2/TABLES.hgu/0.html
on 15 June, 2005.


