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Abstract

We outline a new class of robust and e$cient methods for solving subproblems that arise in the linearization and
operator splitting of Navier–Stokes equations. We describe a very general strategy for preconditioning that has two basic
building blocks; a multigrid V-cycle for the scalar convection–di:usion operator, and a multigrid V-cycle for a pressure
Poisson operator. We present numerical experiments illustrating that a simple implementation of our approach leads to
an e:ective and robust solver strategy in that the convergence rate is independent of the grid, robust with respect to the
time-step, and only deteriorates very slowly as the Reynolds number is increased. c© 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The underlying goal here is to compute solutions of incompressible ,ow problems modelled by
the Navier–Stokes equations in a ,ow domain �⊂Rd (d = 2 or 3) with a piecewise smooth
boundary @�:

@u
@t

+ u ·�u − ��2u +�p = 0 in W ≡ � × (0; T ); (1.1)

� · u = 0 in W; (1.2)
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together with boundary and initial conditions of the form

u(x; t) = g(x; t) on GW ≡ @� × [0; T ]; (1.3)

u(x; 0) = u0(x) in �: (1.4)

We use standard notation: u is the ,uid velocity, p is the pressure, �¿ 0 is a speciJed viscosity
parameter (in a nondimensional setting it is the inverse of the Reynolds number), and T ¿ 0 is some
Jnal time. The initial velocity Jeld u0 is typically assumed to satisfy the incompressibility constraint,
that is, � · u0 = 0. The boundary velocity Jeld satisJes

∫
@� g · n ds = 0 for all time t, where n is the

unit vector normal to @�.
If the aim is to simply compute steady-state solutions of (1.1)–(1.2) then time accuracy is not

an issue. In other cases however, having an accurate solution at each time-step is important and
the requirements of the time discretisation will be more demanding; speciJcally, an accurate and
unconditionally stable time-discretisation method is necessary to adaptively change the time-step to
re,ect the dynamics of the underlying ,ow. We will not attempt to describe the many possibilities
— the recent monographs of Gresho and Sani [14] and Turek [29] are worth consulting in this
respect — but will restrict attention here to the simplest unconditionally stable approach using a
one-stage Jnite di:erence discretisation, as given below.

Algorithm 1. Given u0; � ∈ [1=2; 1]; >nd u1; u2; : : : ; un via

(un+1 − un)
Mt

+ u∗ ·� un+� − ��2un+� +�pn+� = 0;

� · un+� = 0 in �;

un+� = gn+� on @�:

(1.5)

Here un+� =�un+1 +(1−�)un and pn+� =�pn+1 +(1−�)pn. Note that p0 is required if � �= 1 so the
Algorithm 1 is not self-starting in general. In this case an approximation to p0 must be computed
explicitly by manipulation of the continuum problem, or alternatively it must be approximated by
taking one (very small) step of a self-starting algorithm (e.g., with � = 1 above).

Algorithm 1 contains the well-known nonlinear schemes of backward Euler and Crank–Nicolson.
These methods are given by (un+� = un+1; u∗ = un+1); (un+� = un+1=2; u∗ = un+1=2), and are Jrst and
second-order accurate, respectively. In either case, a nonlinear problem must be solved at every
time-level. A well-known linearization strategy is to set u∗ = un above. This does not a:ect the
stability properties of the time discretisation, but it does reduce the Crank–Nicolson accuracy to Jrst
order as Mt → 0 (the Jrst order accuracy of backward Euler is unchanged). To retain second-order
accuracy in a linear scheme the Simo–Armero scheme [24] given by setting un+� = un+1=2 with
u∗ = (3un − un−1)=2 in Algorithm 1 is recommended, see [26] for further details.

Using linearized backward Euler or the Simo-Armero scheme, a frozen-coe$cient Navier–Stokes
problem (or generalised Oseen problem) arises at each discrete time step: given a divergence-free
vector Jeld w(x) (which we will refer to as the “wind”), the aim is to compute u(x) and p(x) such
that

1
Mt
u + w ·�u − ��2u +�p = f in � (1.6)
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� · u = 0 in �; (1.7)

u = g on @�: (1.8)

Notice that since (1.6)–(1.8) represents a linear elliptic PDE problem, the existence and uniqueness
of a solution (u; p) can be established under very general assumptions. The development of e$cient
methods for solving discrete analogues of (1.6)–(1.8) is the focal point of this work.

An outline is as follows. The spatial discretisation of the generalised Oseen problem is discussed in
Section 2. Some standard Krylov iteration methods that are applicable to the (nonsymmetric-) systems
that arise after discretisation are brie,y reviewed in Section 3. Our general preconditioning approach
is then developed in Section 4. This approach builds on our research e:ort over the last decade on
developing e:ective preconditioners for limiting cases of the Oseen problem (1.6)–(1.8): speciJcally
steady-state Stokes problems (Mt → ∞; w → 0) [22]; generalised Stokes problems (w → 0), see
Silvester and Wathen [23]; and steady Oseen problems (Mt → ∞) [5,6,16]. Some computational
experiments that demonstrate the power of our solution methodology are presented in Section 5.
Implementation of “pure” multigrid methods seems to be relatively complicated, and performance
seems to be (discretisation-) method dependent by comparison. The derivation of analytic bounds
on convergence rates for the general preconditioner is an ongoing project which will be treated in
a forthcoming paper [7]; in the Jnal section we give a ,avour of the analysis by quoting results
that we have established in two special cases; potential ,ow (w = 0 and � = 0) and generalised
Stokes ,ow (w= 0). These cases typically arise using time-stepping methods for (1.1)–(1.2) based
on operator splitting — showing the inherent generality of the preconditioning approach.

2. Spatial discretisation

Given that we would like to solve our model problem (1.6)–(1.8) over irregular geometries,
the spatial discretisation will be done using Jnite element approximation (this also gives us more
,exibility in terms of adaptive reJnement via a posteriori error control, see, e.g., [17]). We note that
the algorithm methodology discussed in the paper applies essentially verbatim to Jnite di:erence and
Jnite volume discretisations. In the remainder of this section we brie,y review the error analysis
associated with mixed Jnite element approximation of (1.6)–(1.8). For full details see [13].

The weak formulation of (1.6)–(1.8) is deJned in terms of the Sobolev spaces H 1
0 (�) (the

completion of C∞
0 (�) in the norm || · ||1) and L2

0(�) (the set of functions in L2(�) with zero mean
value on �). DeJning a velocity space X ≡ (H 1

0 (�))d and a pressure space M ≡ L2
0(�), it is easy

to see that the solution (u; p) of (1.6)–(1.8) satisJes

1
Mt

(u; C) + (w ·�u; C) + �(�u;�C) − (p;� · C) = ( f ; C) ∀C ∈ X ; (2.1)

(� · u; q) = 0 ∀q ∈ M; (2.2)

where (·; ·) denotes the usual vector or scalar L2(�) inner product. Since � is bounded and connected
there exists a constant � satisfying the continuous inf–sup condition:

sup
w∈X

(p;� · w)
||w||1 ¿�||p|| ∀p ∈ M: (2.3)
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Furthermore, since w is divergence-free, the bilinear form c(·; ·) given by

c(u; C) =
1

Mt
(u; C) + (w ·�u; C) + �(�u;�C) (2.4)

is coercive and bounded over X ;

c(C; C)¿�||�C||2 ∀C ∈ X ; (2.5)

|c(u; C)|6Cw||�u||||�C|| ∀u ∈ X ;∀ C ∈ X : (2.6)

Existence and uniqueness of a solution to (2.1)–(2.2) then follows from a generalisation of the
usual Lax–Milgram lemma [13].

To generate a discrete system we take Jnite dimensional subspaces Xh ⊂X and Mh ⊂L2(�), where
h is a representative mesh parameter, and enforce (2.1)–(2.2) over the discrete subspaces (again
specifying that functions in Mh have zero mean to ensure uniqueness). SpeciJcally, we look for a
function uh satisfying the boundary condition (1.8), and a function ph ∈ Mh such that

1
Mt

(uh; C) + (wh ·�uh; C) + �(�uh;�C) − (ph;� · C) = ( f ; C) ∀C ∈ Xh; (2.7)

(� · uh; q) = 0 ∀q ∈ Mh; (2.8)

where wh represents the interpolant of w in Xh. Notice that this approximation means that the discrete
wind is not actually pointwise divergence-free. From the linear algebra perspective the point is that in
the case of the enclosed ,ow boundary condition (1.3), the discrete convection matrix corresponding
to the term (wh ·�uh; C) is skew symmetric.

The well-posedness of (2.7)–(2.8) is not automatic since we do not have an internal approxima-
tion. A su$cient condition for the existence and uniqueness of a solution to (2.7)–(2.8) is that the
following discrete inf–sup condition is satisJed: there exists a constant � independent of h such that

sup
C∈Xh

(q;� · C)
||�C|| ¿�||q|| ∀q ∈ Mh: (2.9)

Note that the semi-norm ||�C|| in (2.9) is equivalent to the norm ||C||1 for functions C ∈ X . The
inf–sup condition also guarantees optimal approximation in the sense of the error estimate [13]

||�(u − uh)|| + ||p− ph||6C
(

inf
C∈Xh

||�(u − C)|| + inf
q∈Mh

||p− q||
)
: (2.10)

Note that the constant C is inversely proportional to the inf–sup constant � in (2.9).
Since we want to use linear algebra tools it is convenient to express the discrete problem (2.7)–

(2.8) as a matrix problem. To do this we introduce discrete operators F :Xh �→ Xh and B :Xh �→ Mh

deJned via

(FCh; zh) =
1

Mt
(Ch; zh) + (wh ·�Ch; zh) + �(�Ch;�zh) ∀Ch; zh ∈ Xh; (2.11)

(BCh; qh) = (Ch;B∗qh) = −(� · Ch; qh) ∀Ch ∈ Xh;∀qh ∈ Mh; (2.12)

so that B∗ is the adjoint of B. With these deJnitions the discrete problem (2.7)–(2.8) can be
rewritten as a matrix system: Jnd uh satisfying the boundary condition (1.8) such that(

F B∗

B 0

)(
uh
ph

)
=
(
f
0

)
: (2.13)
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Furthermore, introducing A :Xh �→ Xh, satisfying

(ACh; zh) = (�Ch;�zh) ∀Ch; zh ∈ Xh; (2.14)

the inf–sup inequality (2.9) simpliJes to

�||qh||6 sup
Ch∈Xh

(BCh; qh)
(ACh; Ch)1=2

∀qh ∈ Mh: (2.15)

It is instructive to express (2.13) and (2.15) in terms of the actual Jnite element matrices that
arise in practice. To this end, let us explicitly introduce the Jnite element basis sets, say,

Xh = span{�i}n
i=1; Mh = span{ j}m

j=1; (2.16)

and associate the functions uh, ph, with the vectors u ∈ Rn; p ∈ Rm of generalised coe$-
cients, ph =

∑m
j=1 pj j, etc. DeJning the n × n “convection”, “di:usion” and “mass” matrices

Nij = (wh · ��i; �j); Aij = (��i;��j) and Gij = (�i; �j), and also the m × n “divergence matrix”
Bij = −(� :�j;  i), gives the Jnite element version of (2.13):( 1

Mt G + N + �A Bt

B 0

)(
u
p

)
=
(
f
g

)
; (2.17)

where the RHS term g arises from enforcement of the (non-homogeneous) boundary condition on
the function uh; see [14, pp. 440–448] for details.

Moreover, introducing the m×m pressure “mass” matrix Qij = ( i;  j); leads to the Jnite element
version of (2.9): for all p ∈ Rm,

�(ptQp)1=26max
u

ptBu
(utAu)1=2

(2.18)

= max
w=A1=2u

ptBA−1=2w
(wtw)1=2

(2.19)

= (ptBA−1Btp)1=2; (2.20)

since the maximum is attained when w = A−1=2Btp. Thus, we have a characterization of the inf–sup
constant:

�2 = min
p �=0

ptBA−1Btp
ptQp

: (2.21)

In simple terms it is precisely the square root of the smallest eigenvalue of the preconditioned Schur
complement Q−1BA−1Bt . We also have that

(q;� · C)6||q|| ||� · C||6
√
d||q|| ||�C|| (2.22)

where �⊂Rd, and so there also exists a constant '6
√
d satisfying

'2 = max
p �=0

ptBA−1Btp
ptQp

: (2.23)

Note that the tight bound '61 was recently established (valid in the case of a conforming approx-
imation space, Xh ⊂X) by Stoyan [28].
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In practice, the inf–sup condition (2.9) is extremely restrictive. Problems arise if the pressure
space Mh is too rich compared to the velocity space Xh. Although many stable methods have been
developed (see [14] for a complete list of possibilities), many natural low order conforming Jnite
element methods like Q1–P0 (trilinear/bilinear velocity with constant pressure) are unstable in the
sense that pressure vectors p ∈ Mh can be constructed for which the inf–sup constant tends to zero
under uniform grid reJnement. This type of instability can be di$cult to detect in practice since the
associated discrete systems (2.17) are all nonsingular — so that every discrete problem is uniquely
solvable — however they become ill-conditioned as h → 0.

Another issue, which needs to be addressed when applying multigrid solution techniques to
convection–di:usion problems of the form

c(uh; C) = ( fh; C) ∀C ∈ Xh; (2.24)

(with c(·; ·) given by (2.4)), is that standard approximation methods may produce an unstable,
possibly oscillating, solution if the mesh is too coarse in critical regions. In such cases, to give
additional stability on coarse meshes used in the multigrid process, the discrete problem (2.24)
needs to be stabilised. For example, using a streamline-di?usion method, we replace (2.24) by the
regularised problem

c(uh; C) + )(wh ·�uh;wh ·�C) = ( fh; C) ∀C ∈ Xh; (2.25)

where ) is a locally deJned stabilisation parameter, see [15] for further details.
The formulation (2.25) clearly has better stability properties than (2.24) since there is additional

coercivity in the local ,ow direction. The local mesh PTeclet number Pe
T = ||wh||∞; T hT =� determines

the streamline-di:usion coe$cient )T in a given element T via the “optimal” formula [10];

)T =




1
2hT (1 − 1

Pe
T
) if Pe

T ¿ 1;

0 if Pe
T61;

(2.26)

where hT is a measure of the element length in the direction of the wind.

3. Krylov subspace solvers

Let Lx = f denote a generic linear system of equations. Krylov subspace solution methods start
with a guess x(0) for the solution, with residual r(0) = f − Lx(0), and construct a sequence of
approximate solutions of the form

x(k) = x(0) + p(k) (3.1)

where p(k) is in the k-dimensional Krylov space

Kk(r(0);L) = span{r(0);Lr(0); : : : ;Lk−1r(0)}:
In this section, we give a brief overview of properties of Krylov subspace methods for solving the
systems arising from the discretizations discussed in the previous section.

Problem (2.17) is nonsymmetric so that algorithms applicable to such problems are of primary
concern, but the small Reynolds number limit leads to a symmetric indeJnite Stokes problem, and we
Jrst brie,y discuss this case. It is well-known that for symmetric indeJnite problems, the MINRES
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algorithm [20] generates iterates of the form (3.1) for which the residual r(k) has minimal Euclidean
norm. It follows that the residuals satisfy

||r(k)||2
||r(0)||26 min

�k (0)=1
max

.∈/(L)
|�k(.)|;

where the minimum is taken over polynomials �k of degree k satisfying �k(0) = 1. This result leads
to the following bound on the relative residual norm [18].

Theorem 3.1. If the eigenvalues of L are contained in two intervals [ − a;−b] ∪ [c; d] with
a− b = d− c¿ 0; then the residuals generated by MINRES satisfy

||r(k)||2
||r(0)||262

(
1 −√2
1 +

√
2

)k=2

;

where 2 = (bc)=(ad).

We apply this result to the Stokes equations in the Jnal section. We also point out that tighter
bounds can be established when a − b �= d − c and b; d have some asymptotic behaviour, [32,33].
Each step of the computation entails only a matrix–vector product together with a small number,
independent of the iteration count, of vector operations (scalar-vector products and inner products),
so that the cost per step of the MINRES iteration is low.

For nonsymmetric problems, there is no Krylov subspace solver that is optimal with respect to
some error norm for which the cost per step is independent of the iteration count [8,9]. The gener-
alized minimal residual algorithm (GMRES) [21] is the most e$cient “optimal” solver, producing
the unique iterate of the form (3.1) for which the Euclidean norm of the residual is smallest. Step
k requires one matrix–vector product together with a set of k vector operations, making its cost, in
terms of both operation counts and storage, proportional to kN where N is the problem dimension.
We summarize the main convergence properties of GMRES below. See [4,21] for proofs.

Theorem 3.2. Let x(k) denote the iterate generated after k steps of GMRES; with residual r(k) =
f −Lx(k).

(i) The residual norms satisfy ||r(k)||2 = min�k (0)=1||�k(L)r(0)||2.
(ii) If L = X3X−1 is diagonalizable; where 3 is the diagonal matrix of eigenvalues of L; then

||r(k)||26||X ||2 ||X−1||2 min
�k (0)=1

max
.j

|�k(.j)| ||r(0)||2:

Assertions (i) and (ii) follow from the optimality of GMRES with respect to the residual norm.
Assertion (i) guarantees that GMRES will solve any nonsingular problem provided that the dimen-
sions of the Krylov space is large enough. This di:erentiates GMRES from most other nonsymmetric
Krylov subspace methods.

The GMRES iterate is computed as in (3.1) with p(k) of the form p(k) = Vky(k), where Vk is
a matrix whose columns form an orthogonal basis for Kk . The construction of the orthogonal
basis is what makes the cost per step high, but once such a basis is available, the iterate with
smallest residual norm can be computed cheaply. See [21] for details. Nonoptimal methods com-
promise on these points, reducing the cost per step by avoiding the construction of an orthogonal
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basis, but thereby making the construction of an optimal iterate too expensive. Numerous methods
of this type have been proposed, for example, BiCGSTAB [30], BiCGSTAB (‘) [25], CGS [27],
QMR [11].

The results of Theorems 3.1–3.2 indicate that if the eigenvalues of L are tightly clustered, then
convergence will be rapid. In particular, for MINRES, it is desirable for the sizes of the two
intervals (one on each side of the origin) to be as small as possible, and well separated from
the origin. For GMRES, Theorem 3.2(ii) suggests that convergence will be fast if the eigenval-
ues can be enclosed in a region in the complex plane that is small. The spectra of the dis-
crete problems of Section 2 are not well-behaved in this sense, and convergence must be en-
hanced by preconditioning. That is, we use an operator P ≈ L and solve an equivalent system
such as P−1Lx = P−1b, with a more favorable distribution of eigenvalues, by Krylov subspace
iteration.

We conclude this section with a few general observations concerning preconditioning for both
symmetric indeJnite and nonsymmetric problems. Sections 4 and 6 discuss and analyze some speciJc
strategies suitable for (2.17). First, we note that preconditioning increases the cost per step, since
the matrix–vector product now requires a preconditioning operation, i.e., application of the action of
P−1 to a vector. Thus, for the preconditioner to be e:ective, the improved convergence speed must
be enough to compensate for the extra cost.

The MINRES algorithm can be combined with preconditioning by a symmetric positive-deJnite
operator P. Formally, MINRES is then applied to the symmetric matrix L̂ = S−1LS−T , where
P = SSt . The error bound analogous to that of Theorem 3.1 is

||r(k)||P−1

||r(0)||P−1
62

(
1 −√2
1 +

√
2

)k=2

; (3.2)

where the intervals deJning 2 now come from the eigenvalues of the preconditioned operator L̂.
Thus, we seek a preconditioner for which the computation of the action of P−1 is inexpensive, and
for which the eigenvalues of L̂ are tightly clustered, leading to smaller 2. Note also that the norm
in (3.2) is now di:erent; for further details see [23]. It is also possible to apply the QMR algorithm
to symmetric indeJnite problems (with comparable complexity to that of MINRES). In this case a
symmetric indeJnite preconditioner can be used [12].

For nonsymmetric problems, there is some ,exibility in how the preconditioned problem may be
formulated, with three possible di:erent “orientations”:

Left orientation [P−1L] [x] = [P−1f];

Two-sided orientation [P−1
1 LP−1

2 ] [P2x] = [P−1
2 f];

Right orientation [LP−1] [Px] = [f]:

The two-sided orientation depends on having an explicit representation of the preconditioner in
factored form P = P1P2. In our experience, there is little di:erence in the e:ectiveness of these
choices. We tend to prefer the “right” variant, especially for use with GMRES, since the norm
being minimized (the Euclidian norm of the residual) is then independent of the choice of the
preconditioner.
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4. Preconditioning strategy

Our starting point is the discrete system Lx = f associated with (2.17), which we write in the
form (

F Bt

B 0

)(
u
p

)
=
(
f
g

)
(4.1)

so that F = (1=Mt)G + N + �A ∈ Rn×n, with B ∈ Rm×n. Our preconditioning strategy is based on the
assumption that a fast solver (typically based on multigrid) is available for the convection–di:usion
system Fu = f. This leads us to consider a block triangular preconditioning

P−1 =
(
F−1 R

0 −S−1

)
; (4.2)

with matrix operators R∈Rn×m and S ∈Rm×m chosen to provide clustering of the eigenvalues
/(LP−1) of the right preconditioned system

LP−1 =
(

In FR− BtS−1

BF−1 BR

)
: (4.3)

The speciJc choice of R and S in (4.2) satisfying

FR− BtS−1 = O; BR = Im;

that is, R = F−1BtS−1 with S = BF−1Bt , is the optimal choice, see [19]. For this choice, it follows
from (4.3) that /(LP−1) = {1}, and preconditioned GMRES converges to the solution of (4.1) in
at most two iterations.

Implementation of a right preconditioner for GMRES requires the solution of a system of the
form Py = r at every step. (QMR also requires the solution of a system with Pt .) With the optimal
choice of R and S we need to compute the vector ( v

q ) satisfying
(

v
q

)
=
(
F−1 F−1BtS−1

0 −S−1

)(
r
s

)
; (4.4)

for given vectors r ∈Rn, and s∈Rm. Rewriting (4.4) shows that the optimal preconditioner is deJned
by a two-stage process:

Solve for q : Sq = −s;

Solve for v : Fv = r − Btq:
(4.5)

To get a practical method, we modify the preconditioning process (4.5) by replacing the matrix
operators S =BF−1Bt and F , by approximations S∗ and F∗ respectively, designed so that the precon-
ditioned Oseen operator has a tightly clustered spectrum. We are particularly interested in operators
S∗ and F∗ derived from multigrid computations such that /(SS−1

∗ ) ∈ !S and /(FF−1
∗ ) ∈ !F where

!S and !F represent small convex sets in the right half of the complex plane; ideally, these sets
would be independent of the problem parameters �, h, and Mt.

The construction of the operator F∗ ≈ F is relatively straightforward, see Section 5. The more
di$cult issue is the construction of a simple multigrid approximation to the Schur complement
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BF−1Bt , see, e.g., [29, p. 56]. The approach presented here was developed by Kay and Loghin [16]
and represents an improved version of ideas in [6,5].

To motivate the derivation, suppose for the moment that we have an unbounded domain, and that
di:erential operators arising in (1.6)–(1.8) commute:

�(1=Mt + w ·� − ��2)p ≡ (1=Mt + w ·� − ��2)u� (4.6)

where for any operator >; >u represents the vector analogue of the scalar operator >p. If we further
assume that a C0 pressure approximation is used (so that Mh ⊂H 1(�)) then we can construct a
discrete pressure convection–di:usion operator Fp :Mh �→ Mh such that

(Fpqh; rh) =
1

Mt
(qh; rh) + (wh ·�qh; rh) + �(�qh;�rh) ∀qh; rh ∈ Mh: (4.7)

Introducing the L2-projection operators G :Xh �→ Xh and Q :Mh �→ Mh

(GCh; zh) = (Ch; zh) ∀Ch; zh ∈ Xh;

(Qqh; rh) = (qh; rh) ∀qh; rh ∈ Mh;

then gives the discrete analogue of (4.6)

(G−1B∗)(Q−1Fp) ≡ (G−1F)(G−1B∗): (4.8)

A simple rearrangement of (4.8) gives

(G−1F)−1(G−1B∗) ≡ (G−1B∗)(Q−1Fp)−1;

F−1B∗ ≡ G−1B∗F−1
p Q:

Hence, assuming that (4.8) is valid, we have an alternative expression for the Schur complement
operator BF−1B∗ :Mh �→ Mh, namely

BF−1B∗ ≡ BG−1B∗F−1
p Q: (4.9)

For equivalence (4.9) to hold, it is necessary for the spaces Xh and Mh to be deJned with
periodic boundary conditions. In the case of an enclosed ,ow boundary condition like (1.8), the
discrete operator Fp inherits natural boundary conditions (associated with the space M), and in this
case (4.9) gives us a starting point for approximating the Schur complement matrix S = BF−1Bt .
Using basis (2.16), we have the approximation

BG−1BtF−1
p Q = PS ≈ S: (4.10)

The goal now is to design an e$cient implementation of a preconditioner based on (4.10). This
requires that fast solvers for the underlying operators Q and BG−1B∗ are available: we seek operators
Q∗ and H∗ such that there exist constants �, >; .; 3 independent of h, satisfying

� 26
ptQp
ptQ∗p

6>2 ∀p ∈ Rm; (4.11)

and

.26
ptBG−1Btp

ptH∗p
632 ∀p ∈ Rm; (4.12)
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respectively. The practical version of the preconditioner is then deJned by replacing the action of
S−1 in the Jrst step of (4.5) by the so called Fp approximation:

S−1
∗ = Q−1

∗ FpH−1
∗ : (4.13)

Satisfying (4.11) is straightforward; the simple pressure scaling Q∗ = diag (Q) does the trick [31].
The upshot is that the action of Q−1 in (4.10) can be approximated very accurately using a Jxed
(small) number of steps of diagonally scaled conjugate gradient iteration applied to the operator Q.

Relation (4.12) can also be satisJed using a multigrid approach. The crucial point is that the use
of a C0 pressure approximation space is associated with an alternative inf–sup condition, see, e.g.,
[1]: for a stable mixed approximation there exists a constant 2 independent of h, such that

sup
C∈Xh

(C;�q)
||C|| ¿2||�q|| ∀q ∈ Mh: (4.14)

Thus, introducing the pressure Laplacian operator Ap :Mh �→ Mh such that

(Apqh; rh) = (�qh;�rh) ∀qh; rh ∈ Mh;

we have that (4.14) is equivalent to

2(Apqh; qh)1=26 sup
Ch∈Xh

(Ch;B∗qh)
||Ch|| ∀qh ∈ Mh:

Applying the same arguments used to get (2.21) and (2.23), we have a natural characterization in
terms of the matrices associated with the Jnite element basis (2.16):

226
ptBG−1Btp

ptApp
61 ∀p ∈ Rm: (4.15)

In simple terms, for a stable mixed discretisation, the operator BG−1B∗ is spectrally equivalent
to the Poisson operator Ap deJned on the pressure space Mh (with inherited Neumann boundary
conditions) [14, p. 563]. We note in passing that an equivalence of the form (4.15) can also hold
in cases when a discontinuous pressure approximation is used (with an appropriately deJned matrix
operator Ap). For example, in the case of well known MAC discretization on a square grid, we have
Ap = h−2BBt where Ap is the standard Jve-point Laplacian deJned at cell centres.

The result (4.15) opens up the possibility of using a multigrid preconditioner. In particular, a single
multigrid V-cycle with point Jacobi or (symmetric) Gauss–Seidel smoothing deJnes an approximation
H∗, with spectral bounds

�26
ptApp
ptH∗p

61 ∀p ∈ Rm: (4.16)

The combination of (4.15) and (4.16) shows that a simple multigrid cycle can be used as an
approximation to BG−1B∗ in the sense that (4.12) holds with constants . = 2� and 3 = 1.

To end this section we would like to emphasize the simplicity of the practical implementation of
the preconditioner associated with (4.5). The computation of q in the Jrst stage entails an approxima-
tion of the action of P−1

S deJned by (4.10). This is done in three steps; the Jrst is the approximation
to the action of the inverse of BG−1Bt using a multigrid iteration applied to a system with coe$-
cient matrix Ap (typically representing a Poisson operator with Neumann boundary conditions), the
second step is a matrix–vector product involving the discrete convection–di:usion operator Fp, and
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the third step is essentially a scaling step corresponding to the solution of a system with coe$cient
matrix given by the pressure mass matrix Q. For the second stage of (4.5), the computation of v is
approximated by a multigrid iteration for the convection–di:usion equation. Clearly, the overall cost
of the preconditioner is determined by the cost of a convection–di:usion solve on the velocity space
and of a Poisson solve on the pressure space; with multigrid used for each of these, the complexity
is proportional to the problem size.

5. Computational results

We use P2–P1 mixed Jnite element approximation (see, e.g., [14, p. 462]), that is, we choose
spaces

Xh = {v ∈ H 1
0 (�) : v|T ∈ P2(T ) ∀T ∈ Th};

Mh = {q ∈ H 1(�) : q|T ∈ P1(T ) ∀T ∈ Th};
where T is a triangle in the mesh Th. (This mixed method is shown to be inf–sup stable in [1].) We
restrict attention to uniformly reJned meshes in this work, analogous results for adaptively reJned
meshes are given in [16].

We present results for three standard test ,ow problems below. The time discretization is backward
Euler, and the linearization strategy is given by the choice u∗ = un in Algorithm 1. In all cases
we run the time integrator for 15 time-steps, unless the stopping criterion ||un+1 − un||2 ¡ 10−6 is
satisJed. We solve the linear system that arises at each discrete time interval using GMRES with the
preconditioner P that is deJned below. The GMRES starting vector for the nth time-step is always
taken to be the previous time-step solution (un−1, pn−1). GMRES iterations are performed until the
relative residual is reduced by 10−6.

We will denote the action of a single multigrid V-cycle using a point Gauss–Seidel smoother for
the discrete velocity operator F in (2.11), by F−1

∗ ; where we perform one smoothing sweep before
a Jne to coarse grid transfer of the residual, and one smoothing sweep after a coarse to Jne grid
transfer of the correction. For details see e.g., [34]. Similarly we let H−1

∗ denote the action of a
single multigrid V-cycle using damped Jacobi as a smoother (with damping parameter 0.8) for the
pressure Laplacian operator Ap in (4.7) (again with a single sweep of pre- and post-smoothing).
We comment that although the use of multigrid as a solver for a Laplacian operator is very robust,
using a simple multigrid cycle with point smoothing does not generally lead to an e$cient solver
for the convection–di:usion operator F when convection dominates (although the same strategy
can still be an e:ective preconditioner [34]). If we let Q−1

∗ denote two diagonally scaled conjugate
gradient iterations applied to the discrete pressure identity, then our inverse preconditioner is of the
form:

P−1
∗ =

(
F−1
∗ 0
0 I

)(
I BT

0 −I

)(
I 0
0 Q−1

∗ FpH−1
∗

)
:

Within the multigrid process we construct prolongation operators using interpolation that is con-
sistent with the order of the velocity=pressure approximation spaces. Furthermore, the restriction
operator is the usual transpose of the prolongation, and on the coarsest level (h = 1=2 below) we
perform an exact solve. Finally, we emphasize that if the local mesh PTeclet number is greater than
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Table 1
Nh

Mt for Stokes driven cavity ,ow

Mt h = 1=4 h = 1=8 h = 1=16

0.001 9 10 12
0.1 13 14 14
1 14 15 15
10 14 15 15
1000 14 15 15

unity on any grid, then streamline di:usion is included in the discrete system that is solved (as well
as the discrete convection–di:usion problems deJning the operator F−1

∗ , see (2.26)).
To show the robustness of our solver we report below the maximum number of GMRES iterations

required for the tolerance to be satisJed on a given mesh (with a given Mt) over all time iterations;
this maximum iteration count is denoted by Nh

Mt .

5.1. Stokes: driven cavity Bow

We Jrstly consider the (symmetric-) generalized Stokes problem, associated with a standard driven
cavity ,ow problem deJned on a unit domain �= (0; 1)× (0; 1). The associated boundary condition
is given by

u(@�; t) =
{

(1; 0) y = 1;
0 otherwise;

and we “spin-up” to the steady state from the initial condition u(x; 0) = 0.
The performance of our preconditioned method is summarized in Table 1. These iteration counts

are consistent with our expectation that the rate of convergence is independent of the degree of mesh
reJnement, and the size of the time-step. We note that in the limit Mt → ∞, the system reduces to
a stationary Stokes system in which case we have tight analytic bounds showing the e:ectiveness
of the same preconditioning strategy in a MINRES context, see Section 6.

5.2. Navier–Stokes: driven cavity Bow

We also consider the Navier–Stokes problem associated with the domain, boundary and initial
conditions given above. These results are given in Table 2.

The obvious point to note here is that, as in the Stokes case, the performance is not a:ected
by mesh reJnement. (The trend is clearly evident even though the meshes are relatively coarse.) In
contrast to the results in the Stokes case it can be seen that as Mt gets larger in Table 2, the iteration
counts tend to an asymptotic maximum value. Moreover this maximum value becomes somewhat
larger as � is decreased. This behaviour is consistent with our expectations — steady-state iteration
counts that are presented in [16] can be seen to slowly increase as the Reynolds number is increased.
A complete theoretical explanation is not yet available, but see [7].
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Table 2
Nh

Mt for Navier–Stokes driven cavity ,ow

h = 1=4 h = 1=8 h = 1=16

� = 1=50
Mt = 0:1 14 15 14
Mt = 1 14 15 15
Mt = 10 17 18 18

� = 1=100
Mt = 0:1 14 15 14
Mt = 1 14 16 16
Mt = 10 19 21 21

� = 1=200
Mt = 0:1 14 15 14
Mt = 1 15 18 18
Mt = 10 23 24 24

5.3. Navier–Stokes: backward facing step

We Jnally consider a Navier–Stokes problem on an L-shaped domain. We start with the coarse
(level 0) mesh in Fig. 1, and generate subsequent meshes (i.e., levels 1–3) by successive uniform
reJnement. The total number of degrees of freedom on the respective levels 1, 2 and 3 are 309, 1092
and 4089, respectively. We again start from a “no ,ow” initial condition, and impose the following
enclosed ,ow boundary condition:

u(@�; t) =




(2y − y2; 0) x = −6;

( 8
27 (y + 1)(2 − y); 0) x = 16;

0 otherwise:

An important point here is that the initial condition is not divergence free in this case; i.e. � ·u0 �= 0.
This means that the Jrst time-step is artiJcial (see [14]) — for small Mt it gives a projection to
the discretely divergence-free space so that u1 looks like a potential ,ow Jeld. The fact that we

Fig. 1. Coarsest and Jnest grid triangulations for the backward facing step.
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Fig. 2. Velocity solution for � = 1=200.

Table 3
Nh

Mt for Navier–Stokes ,ow over a backward facing step

� = 1=50 Level 1 Level 2 Level 3

Mt = 0:1 26 32 33
Mt = 1 26 32 33
Mt = 10 26 43 40

� = 1=100 Level 1 Level 2 Level 3

Mt = 0:1 26 32 33
Mt = 1 26 32 33
Mt = 10 26 51 47

� = 1=200 Level 1 Level 2 Level 3

Mt = 0:1 26 32 33
Mt = 1 26 32 33
Mt = 10 33 64 59

have a prescribed out,ow boundary condition is also emphasized here. Fig. 2 illustrates the computed
steady ,ow (interpolated from the Jnest mesh) in the case �=1=200, and shows that the downstream
evolution from the in,ow to the out,ow proJle is physically realistic.

The maximum iteration counts are given in Table 3. These results have the same general character
as those in Table 2, although the iteration counts for a given � and Mt are increased by a factor of
about two. We attribute this di:erence to the fact that the longer ,ow domain means that the local
mesh PTeclet number is relatively large in this case. We remark that for the largest time-step there
is a reduction in the iteration count when going from the second to the third level of reJnement.
Indeed the average GMRES iteration counts in the case �= 1=200; Mt = 10 are 27:3; 52:3 and 50.1,
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respectively. This phenomenon of increased mesh reJnement being correlated with faster convergence
is also evident in the steady-state results that are presented in [16].

6. Analytic results

For problems where the coe$cient matrix is symmetric, speciJcally whenever N = 0 in (2.17),
there is a well-established convergence analysis associated with preconditioners based on the Schur
complement approximation (4.10). We outline this theory in this Jnal section.

As discussed in Section 3, MINRES is the optimal Krylov solver in the case of a symmetric
coe$cient matrix L, but it can only be used in conjuction with a symmetric positive deJnite
preconditioning operator P. For this reason, in place of the block triangular preconditioner (4.2),
we introduce the simpler block diagonal variant

P−1 =
(
F−1
∗ 0
0 S−1

∗

)
; (6.1)

and insist that the block-diagonal entries F∗ and S∗ are themselves symmetric. The convergence
analysis is based on the following result, which is established by Silvester and Wathen [22].

Theorem 6.1. Assume that the blocks F∗ and S∗ in (6:1) satisfy

.F6
utFu
utF∗u

63F ∀u ∈ Xh; (6.2)

.S6
ptBF−1Btp

ptS∗p
61 ∀p ∈ Mh; (6.3)

then the eigenvalues of the preconditioned problem;(
F Bt

B 0

)(
u
p

)
= .

(
F∗ 0
0 S∗

)(
u
p

)
; (6.4)

lie in the union of intervals

E ≡
[

1
2

(.F −
√

.2
F + 43F);

1
2

(.F −
√

.2
F + 4.S.F)

]
∪
[
.F ;

1
2

(3F +
√

32
F + 43F)

]
: (6.5)

We now consider two special cases; corresponding to potential ,ow and generalized Stokes ,ow,
respectively.

6.1. Potential Bow

In the simplest case of potential ,ow, � = 0 and N = 0 in (2.17) thus in (6.4) we have that
F = (1=Mt)G, and the Schur complement matrix is S = Mt BG−1Bt . Since F is simply a (scaled)
velocity mass matrix, the choice of F∗ ≡ (1=Mt)diag(G) ensures that (6.2) holds with .F and 3F

independent of h. For the Schur complement, we consider a preconditioner corresponding to (4.10)



D. Silvester et al. / Journal of Computational and Applied Mathematics 128 (2001) 261–279 277

with Fp = (1=Mt)Q, and with BG−1Bt replaced by the spectrally equivalent operator Ap, that is we
take

PS = BG−1BtF−1
p Q � ApF−1

p Q = Mt Ap: (6.6)

Bound (4.16) suggests that a practical choice for the preconditioner in (6.3) is S∗=Mt H∗ correspond-
ing to a (symmetric) multigrid approximation to the inverse of the pressure Poisson operator Ap.
(With this choice of S∗ bounds (4.15) and (4.16) show that (6.3) holds with .S =22�2.) Combining
Theorems 3.1 and 6.1 then leads to the following result.

Theorem 6.2. In the case of a potential Bow problem; MINRES iteration with a velocity scaling
together with a simple multigrid preconditioning for the pressure Poisson operator; converges to
a >xed tolerance in a number of iterations that is independent of the mesh size h; and the time
step Mt.

6.2. The generalised Stokes equations

We now consider eigenvalue bounds in the case N = 0 in (2.17) so that F = (1=Mt)G + �A in
(4.1). Since F is essentially a scaled vector-Laplacian plus an identity operator, it is well-known that
multigrid can be used to generate an approximation F∗ satisfying (6.2). For the Schur complement,
we consider a preconditioner corresponding to (4.10) with Fp = (1=Mt)Q + �Ap, that is we take

P−1
S = (BG−1Bt)−1FpQ−1

�A−1
p FpQ−1

≡ (1=Mt)A−1
p + �Q−1: (6.7)

The optimality of this combination is well established [3]. Using (6.7) we have that the Rayleigh
quotient in (6.3) satisJes

ptBF−1Btp
ptPsp

=
ptB((1=Mt)G + �A)−1Btp
pt((1=Mt)A−1

p + �Q−1)−1p
: (6.8)

This shows the importance of the inf–sup condition (2.21) in the limiting case of steady ,ow —
for large Mt the quotient (6.8) reduces to the quotient in (2.21), (2.23), and it follows that (6.3)
is satisJed with .S = �2 in the steady-state limit Mt → ∞. Recent work by Bramble and Pasciak
[2] has formally established that for Jnite Mt, quotient (6.8) is bounded both above and below by
constants independent of h and Mt, although careful consideration is required in the separate cases
�Mt ¡h2 and �Mt¿h2.

Our analysis in Section 4 suggests that a practical version of the generalized Stokes preconditioner
is given by (6.1) with:

S∗ =
1

Mt
H−1

∗ + �Q−1
∗ : (6.9)

The point here is that PS is spectrally equivalent to S∗ so that (6.3) is satisJed for the choice
(6.9), in which case Theorem 6.1 implies that the intervals deJning E in (6.5) are independent of h
and Mt. This fact can be combined with Theorem 3.1 to establish the following convergence result
(corroborated by the iteration counts presented in Section 5.1).
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Theorem 6.3. In the case of a generalized Stokes problem; preconditioned MINRES iteration with
a simple multigrid cycle approximating a Helmholtz operator for each velocity component and a
Poisson operator for the pressure; converges to a >xed tolerance in a number of iterations that is
independent of the mesh size h; and the time step Mt.

7. Conclusion

The Navier–Stokes solution algorithm that is outlined in this work is rapidly converging, and the
resulting iteration counts are remarkably insensitive to the mesh size and time-step. The algorithm is
also robust with respect to variations in the Reynolds number of the underlying ,ow. An attractive
feature of our approach is that it can be implemented using simple building blocks for solving the
two subsidiary problems that arise, namely, a pressure Poisson problem and a scalar convection–
di:usion problem. If multigrid is used for each of these then the overall complexity is proportional
to the number of degrees of freedom.
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