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Relative Equilibria of Molecules

James Montaldi and Mark Roberts

Abstract

We describe a method for finding the families of relative equilibria of mdéscwhich bifurcate
from an equilibrium point as the angular momentum is increased from GtiReequilibria are
steady rotations about a stationary axis during which the shape of theutetemains constant.
We show that the bifurcating families correspond bijectively to the criticaltpaf a functionh
on the 2-sphere which is invariant under an action of the symmetry griotine equilibrium point.
From this it follows that for each rotation axis of the equilibrium configurati@re is a bifurcating
family of relative equilibria for which the molecule rotates about that axisaddition, for each
reflection plane there is a family of relative equilibria for which the molecotates about an axis
perpendicular to the plane.

We also show that if the equilibrium is non-degenerate and stable then theanimawima and
saddle points oh correspond respectively to relative equilibria which are (orbitally) Liaymy
stable, linearly stable and linearly unstable. The stabilities of the bifurcatamches of relative
equilibria are computed explicitly fokY,, X3 andXY,; molecules.

These existence and stability results are corollaries of more generattheon relative equi-
libria of G-invariant Hamiltonian systems which bifurcate from equilibria with finite isoyreub-
groups as the momentum is varied. In the general case the fuldsatefined on the Lie algebra
dualg* and the bifurcating relative equilibria correspond to critical points of te&ximions ofh to
the coadjoint orbits ig*.
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Introduction

In the theory of molecular spectra a molecule is treated gstam of point particles, the atomic nuclei
and electrons, interacting through conservative forceés.résulting mechanical system is impossible
to ‘solve’, even for very simple molecules. For example tiaes moleculeH,O has 3 nuclei and 10
electrons, and hence a 39 dimensional configuration spawesi@zrable simplification is achieved by
applying the Born-Oppenheimer approximation in which tleeteon motion responds adiabatically
to that of the nuclei (see eg [15]). The result is a model ferrthclei alone, interacting via a potential
energy function which incorporates the effects of the ete.

Although considerably simpler than the original mod€iO now has 3 particles and a 9 dimen-
sional configuration space, understanding the dynamicheofésulting system is still highly non-
trivial. The classical approach to computing and inteipgemolecular spectra is based on a further
approximation which effectively decouples the vibratiomation of the molecule from the rotational
motion. For the rotational motion the molecule is assumeth&intain a constant shape, namely
that of a stable equilibrium position, and to rotate as arlgpdy. Both the classical and quantum
mechanics of rigid bodies are well understood and the lgiters reasonably accurate predictions
of spectra for many ‘rigid’ molecules. The classical meébsmf a rigid body includes among its
features motions in which the body rotates about a statyoseéds. Such motions are exampleself
ative equilibria Provided the three principal moments of inertia of the bayall different there are
precisely 6 of these relative equilibria for each non-zexie of the angular momentum, one rotating
in each direction about each of the 3 principal axes of thaiatensor.

For a molecule, a relative equilibrium is a motion during ebhit rotates steadily about a fixed
axis, which we call thelynamical axiswhile the shape remains constant. In this paper we describe
an approach to finding families of relative equilibria of malles which bifurcate from equilibrium
configurations as the total angular momentum is increased fero. We do this for the full Born-
Oppenheimer model for the motion of the nuclei. For exampkeshow that if an equilibrium con-
figuration has distinct principal moments of inertia thempae would expect, the 6 relative equilibria
of the rigid body approximation persist to this model, tégtwith their stabilities, and these are the
only relative equilibria near the equilibrium configurati@Corollary 3.2).

More interesting is the case of molecules near equilibritn wither two or all three principal
moments of inertia equal, which in the molecular spectrpgdierature are calledymmetric top
andspherical topmolecules, respectively. In the rigid body approximatigmmetric top molecules
have a whole circle of relative equilibria with dynamicaéaxn the plane spanned by the two principal
axes of the inertia tensor with equal moments of inertia.yTdiso have two isolated relative equilibria
which are rotations about the other principal axis. Sirhjlthre spherical top molecules have a sphere
of relative equilibria. Indeed in this case every trajegtoirthe rigid body approximation is a relative
equilibrium. We show that typically in each of these casely anfinite number of these relative
equilibria persist in the Born-Oppenheimer model, inahgdthe two isolated relative equilibria of
symmetric top molecules. In Section 3 of this paper we show twcalculate these for specific
molecules, or rather for specific equilibria of specific nwolles: a molecule can have more than one
equilibrium, some stable some unstable (as noted in Exafng)e and our analysis applies to each
one separately.

For symmetric top and spherical top molecules the degeperfabe rigid body approximation is
caused by symmetries. The Born-Oppenheimer model is amvianinder the action of two groups, the
groupO(3) of all orthogonal rotations and reflections Rf and the groufE of all permutations of
identical nuclei. We define theymmetry group of an equilibrium configuration to be the subgroup of
O(3) x Zwhich fixes each nucleus. Its elements are p@ire) for which the action of the orthogonal
transformatiorA on the equilibrium configuration is the same as that of thenpéaitiono.
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The methane molecule and its symmetry axes.

Figure 1:

Consider for example the methane moleddld,, consisting of four light hydrogen atoms dis-
tributed around a central massive carbon atom, see Figuhe its equilibrium state, the hydrogen
nuclei are positioned at the vertices of a regular tetratvedFhe symmetry group is isomorphic to
the subgroup oO(3) which consists of orthogonal rotations and reflections Wwiiap the tetrahe-
dron to itself. Chemists denote this group By. Each of these transformations gives a non-trivial
permutation of the hydrogen nuclei, and every such pernoutég realised by an element @f. Thus
I" is also isomorphic to the symmetric groGp. Note that in generdl will be a finite group if and
only if the equilibrium configuration is not collinear.

The tetrahedral symmetry of the methane equilibrium conditjon forces its inertia tensor to be
scalar and so methane is a spherical top molecule and hada2¢kphere of relative equilibria in the
rigid body approximation. These correspond to the tetredlenfiguration rotating about arbitrary
axes through the centre of mass of the equilibrium confignmatie the carbon nucleus. In 82 we
will show that those relative equilibria with dynamical axeorresponding to symmetry axes of the
equilibrium configuration persist for the full Born-Oppeimer Hamiltonian.

More precisely, consider the action bfon R? determined by its projection int®(3). Let the
axes of rotatiorof I' be the one dimensional fixed point sets of the rotations myhvjection and the
axes of reflectiothe lines through the origin perpendicular to the planegftyethe reflections. The
following result is a consequence of Theorem 2.7, the maarm of this paper (or of its subsidiary
Theorem 2.1), as explained in Example 2.4. The non-degeype@ndition on the equilibrium is
described in § 2.1.

Theorem 0.1

Consider a molecule with a non-degenerate equilibrium ejtimmetry group < O(3) x Z. There
exists |¢ > 0 such that for all pc R with || < po there are at least 6 relative equilibria with angular
momentum L. Moreover, for each axisf rotation or reflection irl”, there are two relative equilibria
with angular momentum p and dynamical a&i®ne rotating in each direction.

The tetrahedral equilibrium of the methane molecule hasxE3 af symmetry, divided into 3
types, and representatives of each type are shown in Figufédre are 4 axes of 3-fold rotational
symmetry joining the carbon nucleus to each of the hydrogeren (denoted/s in the figure), 3
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axes of 2-fold rotational symmetry joining mid-points ofpmsite edges of the tetrahedrdh (h the
figure), and 6 axes of reflection passing through the carboleus, parallel to an edge of the tetrahe-
dron (2 in the figure). By the theorem there are two families of re&@gquilibria bifurcating from
the equilibrium for each of these axes, a total of 26 famili&isce this existence result depends only
on the tetrahedral symmetry gro(fy of the equilibrium, precisely the same result is true of any
other molecule with an equilibrium with the same symmetryugr such a®, (white phosphorous).
Moreover, it turns out that the same symmetry analysis Holidsholecules with the cubic or octahe-
dral symmetry grou®;, such asSk. On the other hand, the details regarding which of the redati
equilibria are stable will depend on the molecule in questio

Theorem 2.7 is a generalization of a result of Montaldi [12]bdfurcations of relative equilibria
of Hamiltonian systems given by HamiltoniaHswhich are invariant under free actions of a grabip
In this paper we relax this by requiring only that the conadatomponent of the identity & acts
freely, and so the isotropy subgroup, of the equilibrium point from which the relative equilibri
are bifurcating is finite. By using a combination of the Mde€decomposition of the tangent space
to a symplectic manifold [11, 13] and the equivariant siplfitlemma we show that &-invariant
HamiltonianH induces d -invariant functionh on g*, the dual of the Lie algebra @, such that the
bifurcating relative equilibria are given by the criticadipts of restrictions oh to the orbits of the
coadjoint action ofs on g*. For a precise statement see Theorems 2.1 and 2.7.

For molecular Hamiltonians the symmetry gro@ps the groupO(3) x X described above. The
spacey* is the space of angular momentum values and is isomorpiié &md the coadjoint action of
Gis generated by the standard actiors@i(3) on R3 together with trivial actions of-| € O(3) and of
. The coadjoint orbits are just the 2-spheres centred atrthman R3. These are invariant under the
action ofl” on R® obtained by restricting the action 63) x = and the search for bifurcating relative
equilibria reduces to finding critical points bfinvariant functionsh on these spheres. The relative
equilibria described in Theorem 0.1 correspond to pointtherspheres which are critical points for
all T-invariant functionsh by virtue of being the fixed point sets pfaximal isotropy subgroupsf the
I" action.

In this paper we also incorporate the effects of the timenssl symmetry possessed by any
Hamiltonian which is the sum of a quadratic kinetic energyction and a potential energy function.
This leads to the functionon g* being even (invariant undgr— —) in addition to beingd -invariant.

In some cases the presence of this extra symmetry enablesdedltice that there must be extra
bifurcating relative equilibria in addition to those preigid by Theorem 0.1. We show that this occurs
for XYz molecules such as ammonidKlz) in Example 2.5.

The results we have described so far give the existenceatfvelequilibria with particular sym-
metries and are proved using symmetry considerations alarnd out whether there are any others
the Taylor series offi at 0 ing* has to be calculated to a sufficiently high order. In Sectiove3le-
scribe how to do this for molecular Hamiltonians using thdueed form of the Hamiltonian function
H obtained by Eckart in 1935 [4]. In the final subsections thisiplied to molecules of typ€Ys, XY,
andXs. In particular we show that the 26-relative equilibria désed above are generically the only
relative equilibria which bifurcate from a tetrahedral gitpium configuration of arX'Y; molecule.

In Section 2 we also give some general results on the stabflihe relative equilibria bifurcating
from an equilibrium. See Theorem 2.8. For molecular Hamitias these imply that if the equilib-
rium point is a non-degenerate minimum of the potentialgn&mction then relative equilibria which
correspond to minima df on the angular momentum spheres are Liapounov stable, ¢tbasspond-
ing to maxima are linearly stable, but typically not Liapourstable, while those corresponding to
saddle points are linearly unstable. Here stability is @ be interpreted in an orbital sense [16].
Thus the calculations of Section 3 also enable us to deterthstabilities of the bifurcating relative
equilibria.
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The stabilities of the bifurcating relative equilibria atetermined by the low order terms in the
I-invariant even functioh discussed above, and which terms one needs depends upgmimeisy
groupl of the equilibrium. For non-symmetric molecules where thiagipal moments of inertia are
distinct the second order termstoéire sufficient to determine the stabilities. These secotereerms
depend only on the inertia tensor of the equilibrium configion. It follows then that the stabilities
are precisely those found in the rigid body approximatiatdssed above.

In the case of spherical top molecules, for tetrah€tlgadymmetry or octahedré&y, symmetry the
fourth order terms are required, while for icosahedaymmetry (such as for buckminsterfullerene)
the sixth order terms are required as well. For the symmgiganolecules with dihedral or cyclic
symmetry, those with square symmetry require fourth ordems, while those with triangular or
hexagonal symmetry require sixth order terms.

In terms of physical molecular parameters, the fourth otelens depend on the so-callegrtia
derivatives(the derivatives of the inertia tensor as a function of sheysuated at the equilibrium

configuration — out(0), or theaﬁB of [1]) together with the harmonic force constants (the gatd
part of the potential energy function). The sixth order temfh require in addition knowledge of
the Coriolis coupling constants (our mat@x denotedZ in [20], or theZﬂ in [1]), the second inertia
derivatives and certain anharmonic force constants (therivatives of the potential energy function).
The quadratic and quartic parts fofare given in closed form in Proposition 3.1, while the degiee
part is computed only foXz molecules in §3.5.

Using data on molecular parameters taken from a standattootei on molecular spectroscopy
[7] we show, for example, that for methane the 6 relative ldzyia with dynamical axes along the 2-
fold rotation axes are Liapounov stable, the 8 relative ldaia with dynamical axes along the 3-fold
rotation axes are linearly stable and the 12 relative dapialiwith dynamical axes along the reflection
axes are unstable. This is in agreement with [3], where thseyderive these results by considering
a functionh on 2-spheres, although their functions derive from quantuechanical considerations.
Using more recent data [2] we show in §3.5 that for Hig molecule the relative equilbria with
dynamical axis along the 2-fold rotation axis {n Figure 3) are linearly unstable, while those with
dynamical axis along the reflection axig (n Figure 3) are linearly stable.

The restriction in Theorem 2.7 to equilibria with finite ismpy subgroups means that our results
only apply to bifurcations of relative equilibria from edjbrium configurations that are not collinear.
A bifurcation theorem for group actions with non-finite isyggy subgroups has been obtained by
Roberts and Sousa Dias [18]. That paper also contains adis@ission of relative equilibria bifur-
cating from collinear equilibrium configurations of moléest

In this paper we are concerned only with the classical dyosaifimolecular Hamiltonians. If the
methods and results are to be applied to molecular spe&retitiey must be related to the quantum
mechanics, presumably by semi-classical techniques. i$groject for the future. However we
note that some elements of the theory developed here armiseemt of the work of Harter and
Patterson [6] on the spectra 8f, and of Pavlichenkov, Zhilinskii and coworkers, see [17] d8d
the survey [22]. In particular these methods also genéritteariant functions on angular momentum
spheres similar to the functiomsof this paper. These are obtained as the classical limitsi@figim
Hamiltonians restricted to certain finite dimensional ggaaf quantum states, rather than by a purely
classical reduction procedure. Moreover the methods aré tesexplain observed patterns in high
angular momenta spectra, rather than the low angular mammerggime considered in this paper.
Nevertheless we believe that new insights into the straatiro-vibrational spectra may be obtained
by exploring the relationship between these two approaches

Acknowledgementsie would like to thank Jonathan Tennyson for useful disaussiand the anony-
mous referees for a number of suggestions. This researctpavtially supported by thdlliance
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programme for scientific cooperation between Great Brigaid France, and by an EPSRC Visiting
Fellowship for J.M.

1 Molecules

Consider a molecule consisting Nfinteracting atoms ifR3. Regarding the atomic nuclei as point
masses the configuration spac®', which it is useful to view as

C=RV®R3*~L(N,3).

HereL(N, 3) is the space of real 8N matrices. Thé\ columns of a configuration matri@ represent
the positionsy; of theN nuclei ( = 1,...,N). The total phase space is thén= T*(C ~ RN, which
we can identify with the space of paifB, Q) of 3 x N matrices. The columns &f are the momenta
pi of the nuclei.

If the mass of théth nucleus isny the dynamics of the system is given by the Hamiltonian

1
Hp,a)=Y =—Ip>+V(au,...,an)
22m P

whereV (qs,...,qn) is the potential energy of the configurati@hdue to the electronic bonding be-
tween the nuclei. In terms of matrices, we have

H(P.Q) = 3tr((PM~1PT) +V(Q), (1.1)

whereM is the diagonal mass matrix with entries, ..., my. For any motiorQ(t), the momentuni?
is related to the velocit® by, _
P=0QM.

The centre of mass of the molecule is given by the sum of thenwas of the matribxQM. If there
are no external forces on the molecule, the centre of masesriowan inertial frame, which we can
take to be fixed (corresponding to taking total momentum Etguzero), and we can choose the origin
to coincide with the centre of mass. Thus, henceforth, werasghat the sum of the columns @M
is zero. That is,

C=Lo(N,3)={Q€eL(N,3)| Zqi,- =0,i=1,2,3}.
]

Consequently,
P =T"Lo(N,3) 2 Lo(N,3) x Lo(N,3).

1.1 Symmetries of the Model

There are three types of symmetry of this model: euclideatiom®, internal particle relabelling and
time-reversal. These are described below.

Of the euclidean motions, we have already eliminated thestational component by fixing the
centre of mass. Rotation or reflection of the molecule (ongeeof basis irR3) by an orthogonal
matrix A acts on configuration spagg= Lo(N, 3) by multiplication byA on the left: A-Q = AQ. In
the absence of external forces this leaves the potentiadjgn®/ariant.

The relabelling symmetry group can be described as folldivsome of the nuclei are identical
then a finite subgroup of the permutation groufy acts by permuting thal nuclei, in such a way
that foro € X < Sy,the nuclei anda(i) are indistinguishable. Thuse X if and only if,

V(Ao(1)s---»Go(n)) =V (A1,---,0ON); Mgy =M, (1.2)
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forall (qi,...,qn) € C, and alli.

For o € Z, we also denote by the associatetll x N permutation matrix, which acts ofi by
multiplication byc' on the right. Note that this matrix commutes with by (1.2).

There is thus an action @(3) x X on the configuration spa@@= Ly(N, 3) leaving the potential
energy invariant;

(A0)-Q=AQa". (1.3)

It is simple to see that the induced action®f3) x Z on P = T*Lo(N,3) is a symmetry of the
Hamiltonian system, foP transforms in the same way s so that

H((A0)-(PQ)) = 3tr((APoT)M *(oPTAT)) +V(AQoT) = H(PQ),

where we have used the fact tihdtando commute.

Note that the group of relabelling symmetries is not in general the same as themthat is often
thought of as beinthesymmetry group of a molecule, namely the symmetry groupscdduilibrium
configuration. For example buckminsterfullere@gy, hasZ equal toSs0, but its equilibrium only has
icosahedral symmetry,. For the symmetry group of a given equilibrium configuratiamich we
will denote byrl", see §1.2 below.

As with any classical Hamiltonian system of the form ‘kimeti potential’, the molecule model is
time reversible. That id{ is invariant under the involution

:(RQ)— (-PQ).

We denote by} the group generated iy Note that the action &, commutes with the action of any
groupG that is induced from an action af. In particular it commutes with the action 6f(3) x
described above. Thus, when time reversal is included, imeretry group of the system becomes
O(3) x T x Z3.

One of the important consequences of 8@(3)-symmetry is that angular momentum is con-
served. The usual expression for the angular momentum ddtarsyof point massed,= 3 qi A pi,
here becomes

J(PQ)=3(PQ"—QP"), (1.4)

where we consider angular momentum as a skew-symmetriéxmather than a vector. In fact it
is naturally an element of the dual spae€3)*, but we identifyp € so(3)* with a skew symmetric
matrix by the usual formulay, &) = tr(u" ). Note thatl(—P, Q) = —J(P,Q), so that the time-reversal
operator reverses angular momentum. For the orthogonahsgries] (AP, AQ) = AJ(P,Q)AT. If we
identify the skew-symmetric matrices with vectorsRf then this transformation becomes

J — detA)AJ. (1.5)

The angular momentum is also invariant under the actionefétabelling symmetry group on the
phase spacé(Pa’,Qa") = J(P,Q). ThusJ is equivariant with respect to the action®{3) x X x Z5
on phase space defined above and the action on momentumsspace= R? given by:

(Ajo).u = detfA)AU (1.6)
L = —W a.7)

ForA € SO(3), the action onuis justp— Ap, while for A € O(3) \ SO(3) the action igt— —Ay, and
—As a rotation about the axis of reflectionAf
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1.2 Configuration Symmetries

The symmetry group of a particular configuratiQp of a molecule is thésotropy subgroupf Qg for
the action ofO(3) x X on configuration space. In other words it is the subgréifo), of O(3) x
consisting of elements which m&p to itself:

r(Q) ={(A0)€0(3)x 2| (A 0) Q= Qo}.

Note that ifQ; is a configuration which can be obtained from a configura@grby applying an
element ofO(3) x 2, ie Q1 = (A,0) - Qo, then (A o) conjugatesthe isotropy subgrouf (Qo) to
r(Qu):

M(Q1) = (A0)M(Q)(A o) "

Let =T (Qp) be an isotropy subgroup. Away from collinear configurati®®(3) acts freely.
This fact is essential in what follows, and so collinear agunfations will not be considered in this
paper (see [18] for a brief discussion of them). Moreovas, @ear that a configuration is fixed by an
element ofO(3) \ SO(3) if and only if it is planar, and if the planar configuration istrcollinear then
the element 0O(3) in question is a reflection. Thus for non-planar configurstithe projectionl »,
of I < O(3) x Z into X is an isomorphism. For planar non-collinear configuratioisisomorphic to
an extension of » by the group of order 2. In both cases the group finite.

Fixed points for the action of the pure relabelling gr@ugre not of interest, since they correspond
to points where 2 or more nuclei coincide. However, therereresting isotropy groups of mixed
type, whereo € X acts in the same way as soies O(3). For example, in the methane molecule at
equilibrium (Figure 1), every permutation of the four hygeo nuclei can be realised by an orthogonal
transformation. The same is true of the water molecule. &ihas already been pointed out, it is not
true of buckminsterfullerene.

The fact that> acts freely on configurations without coincident nuclei iep that the isotropy
subgroup of such a configuration is isomorphic to its pragect” 1, to O(3). The axes of rotation
and reflectionof the configuration are, respectively, the axes of rotaficdimensional fixed-point
spaces) of element& € '1 N SO(3), and the axes perpendicular to the reflection planesfar
NN (0(3)\SO(3)). Note that in the latter case the axis of reflectionfois the axis of rotation
of —A.

1.3 Examples

We now describe the relative equilibria obtained by apmylieorem 0.1 to a number of different
types of small molecule. In the introduction there is a samdiscussion of the methane molecule.
The stabilities of these relative equilibria will be calatdd in Section 3.

Example 1.1 Planar molecules
Consider a planar equilibrium configuration of a molecube eikample any equilibrium configuration
of a molecule with three atoms. Its symmetry group will camtae element 0O(3) corresponding
to reflection in that plane. If the atoms are all different d&ne configuration is not collinear then
this will be the only symmetry. The groupsandl; are both isomorphic t@, andrl; is trivial.
The chemists’ notation for this symmetry groligs Cs. We denote the reflection itself by. The
configuration has one axis of reflection, perpendicular égplane containing the molecule.
Theorem 0.1 says that these molecules will have two fanofi§urcating relative equilibria with
dynamical axes equal to the reflection axis, together witbestt four more families. In Section 3 (see
Corollary 3.2) we will show that generically these molesutave precisely six families and that their
dynamical axes are close to the principal axes of inertia@eguilibrium configuration. One of these
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axes coincides with the reflection axis, so in this case tmauycal axis remains equal to the inertia
axis.

Example 1.2 Non-collinear XY, molecules
In addition to the reflectioms described in the previous example, a configuration of acimat
molecule with two identical atoms can also be invariant uradeeflection inO(3) through a plane
perpendicular to that containing the molecule, combindt permutation of the two identical nuclei.
We denote this reflection by and the permutation by. The composition of the two reflections gives
a rotation of order 2 about the axis defined by the interseafdhe two reflection planes. This we
denote byp. It follows that(p, ) is also a symmetry of the configuration. The symmetry grbup
consists of the identity together with the elemefrtsl ), (¢, M) and (p, ), wherel is the identity in
>. The nontrivial elements of the projectidn arerg,r; andp. Bothm andl"; are isomorphic to
Zy x Zy. The projectiornT , is isomorphic toZ, and is generated bi. The chemists’ notation for
this symmetry group i€,,. There are many molecules with equilibria with this symmétrcluding
water,H-0.

This symmetry group has two axes of reflectién énd /3 in Figure 2) and one of rotatiorf4),
all mutually perpendicular. Each of these gives two famitié relative equilibria branching from the
equilibrium point. Two of the families are similar to thosktbe previous example - the dynamical
axis is the axis of the reflection in the plane containing tiodecule.

We will see in 83.3 that generically, these are the only fewibf relative equilibria that branch
from the equilibrium solution.

Example 1.3 Equilateral X3 molecules

A configuration of a molecule with three identical atoms inatithe three nuclei lie at the corners of
an equilateral triangle has the reflectional symmegitpgether with three further reflectional symme-
tries through planes perpendicular to the reflection pldrrg, @ach of which must be combined with
an appropriate permutation. Composing one of these thfieetiens withrs gives a rotation of order
2 which is also a symmetry when combined with a permutatioraddition there is an order 3 rota-
tion about an axis perpendicular to the reflection plang,afigain with corresponding permutation.
Together these give a symmetry graupvhich is isomorphic t&Z, x D3 (whereDs3 is the dihedral
group of order 6) and is denoted by chemistdly. The projectior ; is equal toz = S3, which is
isomorphic taD3. An example of a molecule with an equilibrium with this syntmes the molecular
ionHS .

Tﬁis configuration has three reflectional axes (similaf4on Figure 2), three rotational axes
(similar to £2) and an axis (similar td1) which is both rotational (for the rotation of order 3) and
reflectional (forrs) . By Theorem 0.1, for low angular momentum &g molecule has 14 relative
equilibria rotating about these axes. Again, we will see 3rb&hat generically these are the only
relative equilibria for sufficiently small values of angul@omentum. We will also discuss their
stabilities.

Example 1.4 Ammonia: NHg
The ammonia molecule consists of one nitrogen atom and tiygi®gen atoms and has an equilib-
rium configuration in which the three hydrogens lie at theneos of an equilateral triangle and the
nitrogen lies on the axis of 3-fold rotational symmetry af thiangle, but not in the same plane. This
configuration is therefore non-planar and its symmetry gioudenotedCs, by chemists, is isomor-
phic to aD3 subgroup of the previous example. The configuration has xiseoé(3-fold) rotational
symmetry and three axes of reflectional symmetry, and thexed bifurcating relative equilibria ro-
tating about these axes.

We will see in Example 2.5 that these are not the only relatiyglibria of the ammonia molecule
near the equilibrium. There are at least a further 6 relayglibria which are not geometric, in the
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Figure 2: Axes for th&X'Y2 molecule

sense that their precise location depends on the form ohtee-@atomic bonding. In fact their axes
lie in the planes containing & — H bond and the centre of mass. There is thus a total of 14 relativ
equilibria near the equilibrium for the ammonia molecule.

The ammonia molecule is also interesting because it hasytmmetrically related stable equilib-
ria, one with theN atom above thélz-plane, and one with it below. They are separated by a palenti
barrier, and between the two stable equilibria there is mgplaquilibrium configuration wit, x D3
symmetry. This is the same symmetry group as in Example AaBigh here the equilibrium is un-
stable. Each of the stable equilibria will have 14 relatigeikbria nearby, as described above, and
furthermore the unstable equilibrium will also have 14 tigaequilibria nearby, as described in the
previous example, since the existence arguments depepaoihe symmetry and not on either the
number of atoms or the stability of the equilibrium. The pdie barrier between the stable equilibria
is very low, accounting for the ‘inversion flip’ seen in amnimnT his means that the local bifurcation
analysis performed in this paper is truly local, and thetexise of the other equilibria will interfere
with extending it to high energy or angular momentum. A mdabgl analysis of ammonia would
therefore be useful.

There are other molecules with tt@3, symmetry, such aSHDs, where the potential barrier is
very high, and the relative equilibria found by our analyss be expected to persist to much higher
values of the angular momentum.

2 Existence and Stability of Relative Equilibria

Let 2 be a symplectic manifold with a symplectic action of a conthéegroupG and aG-equivariant
momentum mag : P — g*. LetH be aG-invariant smooth Hamiltonian function defined énif G
acts freely (ie the isotropy subgroups are all trivial) thie@reduced phase spacgs= J W/ Gy are
themselves symplectic manifolds and the relative eqiglibf H in 2 are given by the critical points
of the induced functionsl, on the®,. In [12] it was shown that, near a non-degenerate equikibriu
point p of H with J(p) = O, the critical points oH, correspond bijectively to those of a function
defined on the coadjoint orb@. .

Essentially the same technique will be used in this papentitfie relative equilibria of molecules.
Of course the action o6 = O(3) x Z on © described in § 1.1 is not free. However, away from
collinear configurations of molecules, the actiorS)(3) is free and we can reduce by it as in [12].
The new ingredient in this paper is that we then consider thieraof the (finite) quotient group
(0(3) x ) /SO(3) =2 Z, x X on the reduced spaces.
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We also incorporate time reversal symmetry, restrictingsfmplicity, to the case wheB =T*C
is a cotangent bundle. In this setting, the reduction prodan be made more explicit than in the
general case. It is also global, as described in [11], thdhghresults in this paper are purely local.
In this section we will work in the general setting of a cotanfgaction of a compact Lie group
on P for which the connected component containing the iderdiyotedGo, acts freely. In the next
subsection we state our main existence theorem for reletjuéibria of Hamiltonians which are also
invariant under the time reversal operatdp,q) = (—p,q). We will useG to denote the product
GxZ5.

2.1 An Existence Theorem
Let g denote the Lie algebra & andGg. The momentum map: P =T*C — g* is given by

Je(pa) = (3(p.a),&) = (P, % (), (2.1)

whereg € g andX; is the vector field corresponding to the actiorfafn C. The angular momentum
(1.4) is a special case. A straightforward calculation shtivat this commutes with the action Gf
on P and the coadjoint action ggt. It also commutes with the action of the time reversal operat
on ? given byt.(p,q) = (—p,q) and its action og* by —I.

Since Gy is acting freely, the orbit spac®/Gy is a smooth manifold and the momentum map
(2.1) is a submersio? — g*. We denote thé&p-coadjoint orbits byO, = Go.u. The equivariance
of the momentum map implies that there is a well-defiaggt momentum map: 2/Gy — g*/Go,
making the following diagram commute,

P N g*
[ l
P?/Gy - g*/Go.

Thatis,j is defined orP /Gg by j (Go.x) = Go.J(X) = Oy(x). The components of the m@are Casimirs
for the natural Poisson structure on the orbit space. Thecestispaces), are, by definition, the fibres
ofj.

Up to now, we have understood a relative equilibrium to beagettory of the dynamics that lies
in a group orbit, and any such trajectory has a well-definetherdgump. Since we are now working
in the orbit space? /Gy, it is more natural to take a relative equilibrium to b&gorbit of such
trajectories — or equivalently, an invaria@p-orbit (as in [12]). The momentum of such a relative
equilibrium is now a group orbid,.

As we have only reduced by tt@&, action, and not by the fulB-action, there is still an action of
the finite grourG/Go remaining on?/Gp. The quotient5/Gp also acts om*/Gp, and with respect
to these actiong,is equivariant. Lefl1 denote the projection

n:G— G/Go,

and letMN(G ) denote the isotropy subgroup 6}, € g*/Go. Thenl‘I(G)ou acts on®,. In the case
of molecules, wher&, = SO(3), the orbit spacg* /Gy is a half line, and s&1(G) acts trivially on
g*/Go, so that(G)g, = M(G).

If H is aG-invariant Hamiltonian orP there is an induceé/Go-invariant function on the quotient
spaceP /Gy that we still denote byd. We denote the restriction of this function® C 2/Gg by H,.
This restriction is'l(é)op-invariant.
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Let x = (0,q0) € 2 be an equilibrium point oH with isotropy subgroup for the G action and
I = x Z} for the G action. TherGo.x is a critical point ofHg in ) C P/Go. The group acts on
/Gy via its projection(T"). Sincel NGy is trivial, M(T°) is isomorphic td™. The group” also acts
on g* by the restriction of thé& action and ory*/Gy by the restriction of thé1(G) action. Letl o,
denote the isotropy subgroup 6f; € g*/Go for this latter action.

The following theorem is part of the main result of this pafEneorem 2.7), but is stated here
as it is less technical, and already has several useful quesees. Recall that a critical poxbf a
function f is said to be non-degenerate if the second derivalfitéx) is non-degenerate as a quadratic
form.

Theorem 2.1 R
Suppose that flhas a non-degenerate critical point aty@ € %. Then there exists a smoofh
invariant function h: g* — R, such that for each p the critical points of k- h| are in 1-1 corre-

spondence with the relative equilibria of H with momentam Moreover this correspondence is

equivariant: ifv is a critical point of h with isotropy kK< I, then the corresponding relative equilib-
rium also has isotropy group K.

We will see in Theorem 2.7 that the 1-1 correspondence isdindi@en by a smooth embedding
8:g* — P/Gp satisfyingj (5(1)) = Oy, andh=H 0 d. It seems likely that thE-invariance oh can be
used to give lower bounds for the number of bifurcating redaquilibria on each nearby momentum
level set, generalising the Lusternick-Schnirelman aatefound given in [12].

Example 2.2 Molecules

For the application to molecules described in 81 we t&ke O(3) x £. ThenGg = SO(3) and

g* = s0(3)* 2R3, The coadjoint orbit®), are the 2-spheres centred at the origiR?n The quotient
spaceg* /Gy is just a half-line and the action ¢1(G) on it is trivial. Hencel(G )Ou n(G) and

Fou = (). In particular the function$y, must be invariant under the action ofoy —I on the
2-spheres and so are given by functions@Z5 =~ RP2, the 2-dimensional real projective space.
The Lusternick-Schnirelman categoryRP? is equal to 3 and so the quotient functions must have at
least 3 critical points and thig, must have at least 6 critical points. By Theorem 2.1 these tjie

6 families of relative equilibria claimed in Theorem 0.1.otie assumes that the equilibriatgfare
non-degenerate, then the Morse inequalities give the sasudtr

2.2 Symmetric Relative Equilibria

If Gy is the isotropy subgroup for th® action on? aty thenﬂ(éy) is the isotropy subgroup for the
M(G) action on?/Go at Go.y. SinceGy acts freely onP, M(Gy) is isomorphic taGy. If y, = g.y; for
someg € G thenGy, = gGy, g~ andM(Gy,) = N(g)M(Gy,)M(g)~L. So, ify; andy, belong to the
sameG orbit the isotropy subgroups @&p.y1 andGg.y2 in /G are conjugate irh‘l(é).

In Theorem 2.1, iv € O, is a critical point ofh, with isotropy subgrougK C Fou - I'I(é) then
the corresponding relative equilibrium i6/Gp also has isotropy subgrouf and soll projects
the isotropy subgroups of points in the corresponding dggiyy isomorphically toK. The follow-
ing corollary of Theorem 2.1 predicts the existence of fasibf relative equilibria with particular
isotropy subgroups. We say that an isotropy subgtigmaximalif it is not contained in any other
isotropy subgroup.

Corollary 2.3 With the same hypotheses as in Theorem 2.1, if K is an isosaipyroup of the action
of g, on Oy then there must be at least one family of relative equiliurcating from x with
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isotropy subgroups which project to a subgroupﬁ@;‘Fl containing K. If K is a maximal isotropy
subgroup then the isotropy subgroups project isomorphjcalK.

Proof The fixed point set of the action &f on O, denoted FixK, Oy), is a compact smooth mani-
fold and so the restriction &, to it must have a critical point. By therinciple of symmetric criticality
[14] this will also be a critical point ohy, itself, and will have isotropy subgroup containikg If K

is a maximal isotropy subgroup then the isotropy subgroughefcritical point is preciselk. The
result now follows from Theorem 2.1 and the remarks above. |

Example 2.4 Rotation and reflection axes of molecules
By Example 2.2 for molecules we have

~

Mg, =T =TxZy c O3)xZxZb.

The coadjoint orbit®), can be identified with the 2-spheres centred at the origé (8)* = R3. The
groupl acts on these by the restrictionitaf the projection of0(3) x  x Z5 10 SO(3) x Z5,.

Each rotation and reflection axfsof the equilibrium configuration defines a subgrdgpof r
which fixes the corresponding axissn(3)*. For a rotation axis the groug, contains the rotations
about? which map the equilibrium configuration to itself, up to pemations of identical nuclei. For
a reflection axi¥, contains the corresponding reflection. Note that an axisednoth a reflection
axis and a rotation axis, in which cakg contains both types of elements. A rotation or reflection
axis/ can also be fixed by a reflection in a plane which contdins this case<, also contains the
composition of this reflection with. R

These subgroupk, are precisely the maximal isotropy subgroups for the astiii™ on the
Ou. Each of them has a fixed point set consisting of two points smld, must have two critical
points with that isotropy subgroup. These two critical psiare equivalent under ttf-action. The
corresponding relative equilibria have isotropy subgsowhich are conjugate ti, by rotations in
SO(3). Those with isotropy subgroup equalKe correspond to the molecule rotating about the axis
£. The conjugate groups are the isotropy subgroups of spatations of these motions.

These remarks complete the proof of Theorem 0.1.

Example 2.5 Ammonia

As a particular example we consider the case of ammadwids. By Example 1.4 the group is
isomorphic tdDs. Its projection tdD(3) contains the rotations byr23 about one axis and 3 reflections
with axes perpendicular to the rotation axis. The actiohof O, = §* is by rotations, the ‘reflections’
in D3 acting by rotation bytabout the corresponding reflection axis. In additiacts by—I.

The combined action ob3 x Z' has 4 maximal isotropy subgroups, falling into 2 conjugacy
classes. The 3 corresponding to the reflection axes are ipbindo Z, and are generated by the
appropriate reflection.The isotropy subgroup correspanth the rotation axis contains the rotations
by 2rt/3 and also the reflections composed wuitht is therefore isomorphic tB3. These 4 maximal
isotropy subgroups lead to 8 families of relative equiibas described above.

In addition to the maximal isotropy subgroups this actiosoathas 3 further non-triviasub-
maximalisotropy subgroups. Each of these is isomorphiZtoand is generated by a reflection
composed wittt. Their fixed point sets iBo(3)* are planes perpendicular to the corresponding re-
flection axes. The three planes intersect along the 3-fdltiom axis. InO, = & these fixed point
sets become circles, each containing the two points fixetidogfold rotations. The operatomaps
each of these circles to itself and so the restrictions tmtbéthe functionsh, must have at least 4
critical points. Thus there must be at least two criticahp®ivith each of these sub-maximal isotropy
subgroups. These give at least another 3 pairs of familieslative equilibria.
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2.3 The Moncrief Decomposition

To prove Theorems 2.1 and 2.7 we first describe the local gegpmithe reduction process by using
a well-known splitting of the tangent spa€gP (sometimes called the Moncrief decomposition [11];
see also [13] for the more general setting away ftbm0). Forx = (0,q) € P let

Wy == 9.0 C TqC C kP
be the tangent space to the group orbit throxghet
Sq = annWg) C Ty C C k2,
where an(\W) is the annihilator ofV in the dual space. Using the kinetic energy metric (or angioth
G-invariant Riemannian metric off), we put,
Sq = W)t C TqC C Tk,

Zy == ann&) C T4C C k2.

We have explicitly identifiedy C with a subset oTx?, which is allowed sinc@y € ~ Tx(Ty C) C TxP.
The spacey is a slice to thes-action on(C.
Note that the pairing of; C with TqC identifiesSy with the dual ofSy (hence the notation), and
Zq with the dual ofW. Finally, define
Yq:=SqD Sq- (2.2)

The spacey C Ty is called thesymplectic slicdor the G-action atx (denotedS by Marsden [11]).
Note also that since the Riemannian metric was assumed ®ibeariant, the spacesy, Sq,.5q, Zq
areGg-invariant. We have an isomorphism Gj-representations:

TP = Wy & Yo & Zg. 2.3)

The time reversal operatarfixesx = (0, q) and so also acts oR?P. With respect to the decom-
position given by (2.2) and (2.3), the action is

1(w,s,0,2) = (W,S,—0,—2).
The symplectic form on this decomposition is given by
W((W1,81,01,21), (W2, 52,02, 22)) = (Z2,W1) — (21,W2) +(02,51) — (01,%) -

Consequently (or by differentiating (2.1)), the lineartgzfrthe momentum map at= (0, q) is given
by
(dJ(0,g)(W8,0,2),&) == (X (0,0), (W.5,0,2)) = (2 Xg(0)) - (2.4)

The main properties of this decompositionTQf’ are given in the following proposition.

Proposition 2.6 For a free action of @, we have the following isomorphisms of 675 representa-
tions

Wy ~ g
Zg ~ ¢
Yo ~ TqQ/9® (TqQ/9)".

Here G, acts ong by the adjoint representation and g by the coadjoint representation. The group
Z}, acts on both spaces byl. The linear part dx of the momentum map at=x(0,q) provides the

isomorphism dy : Z; — g*.
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Proof The isomorphisms are immediate consequences of the dafigitFor example, the first one
is provided byg — Wg, & — X¢(q); the fact that it is &G4 x Z5 isomorphism, is just the fact that the
G x Z}-action is indeed an action. The second part follows immtelfidrom (2.4). a

We can use the Moncrief decomposition to give a local detioripf the reduced space in a
neighbourhood ok = (0,q). The isotropy subgroup @& atx is T = I x ZL. SinceTy(Go.x) = W,
the orbit mapt: P — P/Gg defines aﬁequivariant isomorphism,

dT[X : Yq @Zq = Tn(x)(T/GO)

Moreover the momentum map (2.1) is a submersior- g*, so we can use th€-invariant Rie-
mannian metric to identifiytq C ker(dJy) with aT-invariant submanifold 08~1(0) transverse to the
Go-orbit, which we also denotg;. We can similarly identifyZ; with a submanifold ofP transverse
to J-1(0), which is also denotely. ThenTt: Yq x Zg — P/Go is al -equivariant isomorphism onto
its image, a neighbourhood &f Moreover, the restriction af to Z; is also an isomorphism onto its
image and we have,

j: Ygxg® — g"/Go
y,v) — o,
where we have usedlito identify Z, with g*. Thus, in a neighbourhood of the point= (0,q),
Bu=]"1(0) = {(y,V) €Ygx g" |V E Ou} =Yg x Oy (2.5)

This isomorphism is equivariant with respect to the natactions offu, the isotropy subgoup at
for the action of” on g". The symplectic slic¥; has a natural symplectic structure induced from that
on Ty?, and the isomorphism betweety Gy andY, x g* identifies the natural Poisson structure on
P /Go with the product Poisson structure @x g*. For more details see [12, 18].

The G-equivariant, time reversible flow generated b@-énvariant Hamiltonian functiotd on P
induces a flow on each of the reduced spagewhich commutes with the action ¢1(Gy) and is
time reversible with respect to the action of element8 C@u) \M(Gy). This flow is generated by the
restriction to®, of the function on?/Gg induced byH. We will denote thiseduced Hamiltoniary
Hy. In the neighbourhood of a point= (0, q) identifying 2/Go with Yq x g* enables us to identify
the induced function ot /Gg with arl invariant function orlgq x g* and the reduced Hamiltonians
Hy with the restrictions of this function to the symplectic rifatus Yq x O,. Explicit forms for the
reduced Hamiltoniansl, for molecular Hamiltonians are obtained in Section 3. Thehoe used
there extends in a straightforward way to any Hamiltoniaricivhis the sum of a non-degenerate
gquadratic kinetic energy function and a potential energyfion.

2.4 Main Theorem

LetH : ? — R be aG = G x Z-invariant function, wher& is a compact Lie group acting anand
by the lift of this action onP = T*C andZ}, acts as above. Suppose it the connected component
of the identity ofG, acts freely on? in a neighbourhood of an orb.x wherex = (0,q). From
§ 2.3, neaiGy.x we have aﬁequivariant isomorphisr®/Go ~ Y ® Z whereY is a symplectic slice
atx andZ ~ g*. This isomorphism restricts to symplectic isomorphismseafuced phase spaces,
Pu~=Y x O

The dynamics oP/Gy are determined by th (G)-invariant quotient functiom : P/Gy — R.
The relative equilibria with momentupare given by the critical points of the restrictibly = H|P,;
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Using the identifications described in § 2.3 we can re¢ggas al -invariant function ory @©g*and
Hy, as al -invariant function orYY @ Oy.

Remark Although for simplicity we have restricted attention to tb@angent bundle setting, the
theorem below holds under the more general setting of atranpsymplectic manifold with a locally
free ‘pseudo-symplectic’ action of a compact Lie gr(m(lhat is,0*w= t+wfor eachg € G) This is
because the Moncrief decomposition is still valid, althoitgs not defined in the same manner, see
for example [12, 13] or [18].

Theorem 2.7 Suppose that flhas a non-degenerate critical point ab@ € %. ldentifying?/Go
with Y x g*, there is a smooth map: g* — P/Gp of the formd(u) = (81(), 1) such that the condition

dyH(y,u) =0 (2.6)
is satisfied if and only if y= 8, (). Leth=Hod: g* — R. Then

1. v € Oyis acritical point of iy, = qo if and only ifd(v) € P/Gg is a relative equilibrium for H,
(1l
and moreover every relative equilibrium is of this form. i€limplies Theorem 2.1.)

2. There exists &- equivariant diffeomorphisr# of 2/Gy of the form

Dy, 1) = (Q(Y; W), 1),

satisfying
H o ®(y, 1) = Q(y) +h(W),
where Qy) = 2d?Hy(0) is a non-degenerate quadratic form.

3. Ifthe identification ofP/Go with Y x g* is such that dH (0,0) splits (that is, all the mixed par-

tial derivatives vanish a?/ 0'1 (0,0) = 0) thend; is of order Q?) and the linear approximation

to ® at (0,0) can be chosen to be the identity.

Here and elsewhere we wri@X) to meanO(||u/|¥) for the vector variablg.

Note that althougkb decouples the reduced Hamiltonian into a sum of indeperideations ony
andQy, it does not preserve the natural product symplectic siraanY x Oy, so the corresponding
vector field is not decoupled.

Proof For the purposes of this proof, we Writﬂu for H|YX{H}. This is not to be confused with
Hu == H|T % Ou.

First note that sincdHo(0) = 0 andQ := d?Hy(0) is non-degenerate, it follows from the implicit
function theorem that for each sufficiently smalthere is a unique poir8; (i) neary = 0 such that
dH, (81(k)) = 0. We putd(p) = (31(H), W)-

The theorem follows essentially from the equivariant §iptitlemma, or equivariant parametrized
Morse lemma. Fop near 0, we have a functioH‘“ with a non-degenerate critical point at=
d1(1), so by the equivariant Morse lemma, there is an equivarigf@odnorphismy — @,(y) such
thatH‘“o @ = Q+ const whereconstis a constant depending qn and is just the value dﬂ\u at
O(M) = @u(0). The point of the equivariant splitting lemma is that thisgedure can be carried out
smoothly and equivariantly ip. The constant depending @nis also smooth, and is equal by).
Writing @(y, ) = (qu(y), 1) we have part (2) of the theorem.
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For part (3), ifd?H splits therH is already in the desired form up to order 2, and so the linagr p
of 8; vanishes and the linear part®@fcan be chosen equal to the identity.

For part (1), lev € 0,. The functionH, = H‘YX o has a critical point aty,v) if and only if the
derivatives ofH,, with respect to thg-variables and the,-variables vanish. The first condition is by
definition equivalent ty = &:(v), and the second is then equivalenwtbeing a critical point ohy,
as required. Indeed,

dhy(v) = d(Huod)(v) = dyHL(8(v)).d1 (V) +dyHu(3(v)),

and by definitiordyH,, vanishes ad(v). Since critical points oH,, are relative equilibria foH with
momenturru (or Oy), the result is proved. ]

2.5 Stability of Relative Equilibria

In this subsection we relate the stability of a relative &oguum near to the orbitGo.(0,q) with
momenturru to the Morse type of the corresponding critical point of thedtionh, on the coadjoint
orbit O,

Recall that a relative equilibrium with= pis an equilibrium point of the flow o¥ x O, generated
by H,.. A critical pointvg of hy, corresponds to a relative equilibriudvo) = (81(vo), Vo).

In practice the critical points of the functiomfig occur in smooth families bifurcating from 0 as
[|M] increases. We therefore assume that vo(s) andp = p(s) are continuous curves igi such
that||u(s)|| = sandvo(s) € Oys) is a critical point offyys).

Recall thatQ = 3d?Hy(0) (as in Theorem 2.7). The linearization near the equilbrignthiis
given byLo = 2Jv(0)Q. The following theorem relates the stability of nearby tiglaequilibria to the
stability of Lo and the type of critical point dfi, atvg. Recall also that an infinitesimally symplectic
matrix L is said to be:

o spectrally stablef all its eigenvalues are pure imaginary,

e linearly stableif it is spectrally stable and semisimple, and

e strongly stablef it lies in the interior of the set of linearly stable infirgimally symplectic matrices.
In particularLo = 2Jv(0)Q is strongly stable ifQ is definite. If the Hamiltonian functioHl is of the
“kinetic energy + potential energy” type then this is eqléva to the orbitGy.x of equilibrium points

being a nondegenerate critical orbit of local minima of téeptial energy function. If the orbit is a
nondegenerate saddle or maximum thgris unstable.

Theorem 2.8 The following statements hold fog = vo(s) and p= pu(s) when s is sufficiently small.
1. If Q is positive definite andy is a strict local minimum of ithend(vo) is Liapounov stable.
2. If Ly is unstable the®(vo) is linearly and nonlinearly unstable.
3. If Lo is strongly stable and the coadjoint orbitsgnh are two dimensional thed(vo) is

(a) strongly stable (elliptic) ifg is a nondegenerate local extremum gf h

(b) linearly and nonlinearly unstable (hyperbolicMg is a nondegenerate saddle point @f h
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Proof Recall that there exists a change of coordingtemn Y x g* such thaH,(P(y,v)) = Q(y) +
hu(v). If Q is positive definite andy is a strict local minimum oh, then (0,vo) is a strict local
minimum of Q(u) + h,(v). This property is preserved by the diffeomorphigimand sod(vo) is a
strict local minimum ofH,.. It must therefore be Liapounov stable. This protes

For the remaining statements we need to estimate the eiges\af the linearization of the vector
field atd(vo) generated by,. This satisfies

L(3(vo)) = J(3(vo))d*Hy(8(vo)) 2.7

whereJ(3(vo)) is the Poisson structure &fix Oy at (8(vo)). From § 2.3 this is the product structure

3(3(v0)) = (WB(VO)) Jp&» )

wherely is the Poisson structure afgiven by its symplectic form and], is the restriction ta), of
the natural Poisson structure gt

Ju(Vo)§ = adgvo. (2.8)
As s— 0 we have
Jv(81(vo(s))) = I (0);  Ju(vo(s)) — O

and
L(d(vo(s))) — L(0) =Lo® 0.

The nondegeneracy Qfimplies that the eigenvalues bf are non zero. The eigenvalueddd(vo(s)))
therefore form two distinct groups, those that are pertisha of eigenvalues dfy and those that are
perturbations of 0.

If Lo is unstable, then it has eigenvalues with non-zero rea) pad hence so mu&{d(vo(s)))
for sufficiently smalls. This prove.

If Lo is strongly stable then its eigenvalues all lie on the imagiraxis, as do the eigenvalues of
any small perturbation dfy. It follows that the corresponding eigenvalues 63(vo(s))) will remain
on the imaginary axis for all sufficiently small To complete the proof of the theorem we need to
determine what happens to the eigenvalues that perturbGrom

The change of coordinates transformsd?H,(3(vo(s))) to 2Q @ dzhp(s) (vo(s)). If vo(s) is a
nondegenerate critical point bf;s) then ;Q@dzhp(s) (vo(s)) will be nondegenerate and hence so will
dzHu(S)(é(vo(s))). It follows that fors # O there will be no eigenvalues &f{d(vo(s))) at 0. If the
coadjoint orbits are two dimensional there are only two filtges, either the two eigenvalues bf0)
at 0 perturb to a real pair or to an imaginary pair. The first hdlppen if and only iﬁZHu(B(vo(s)))
has a single negative eigenvalue while the second posgibicurs if it has either O or 2 negative
eigenvalues. The number of negative eigenvalued?sif,((3(vo(s))) is preserved by the coordinate
change® and so is equal to the number of negative eigenvalueQab ﬁzhp@ (vo(s)). Thisis 1 if
Vo(s) is a nondegenerate saddle point and 2 if it is a nondegeneateénum and O if it is a non-
degenerate minimum. This completes the prod.of ad

For the proof of Par8 of the Theorem it was necessary to restrict to cases (sugh-=aso(3)*) for
which the coadjoint orbits are two dimensional. For higherehsional cases the number of negative
eigenvalues ofi?H,(8(vo)) is not sufficient to determine whether the eigenvalues @(vo(s)))
which perturb from 0 remain on the imaginary axis or not.
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3 Calculating Relative Equilibria

To calculate exactly how many families of relative equibbifurcate from an equilibrium, and to

determine their stabilities, we need to go beyond symmainsiclerations and use an explicit form
for the Hamiltonian. The standard reduced Hamiltonian foteoules near non-collinear equilibria
was established by C. Eckart in 1935 [4]. We describe thihénrtext subsection, following very

closely the exposition of Sutcliffe [20] (though changimg thotation somewhat). See also [1, 10].
Then we show how the splitting lemma can be applied to comiat&aylor series of the functidm

on momentum spac®(3)*. In the final subsections we apply this to a number of examples

3.1 Reduction to the Eckart Hamiltonian
Consider a molecular equilibrium configuratiQg € C = Lo(N, 3). The kinetic energy is given by,
T =3tr(QMQT).

This defines a®(3) x Z-invariant Riemannian metric off, which atQ € C is given by,
(@) = tr(Q@MQY). (3)

for Q1,Q, € ToC. The subscripQ on the metric is redundant, but is kept to distinguish therimet
from other pairings. Using this metric, we choose the slida C to theSO(3) orbit throughQp to
be the affine linear subspace @throughQg orthogonal tase(3).Qp. That is,

Si= {Se C | (QQo.(S—Qo))g, = 0. VR € 50(3)} .

Choosing the slice to be orthogonal to the group orbit ersstivat the Coriolis interaction matri@
below vanishes at the equilibrium; this is called thekart conditionin the molecular spectroscopy
literature. Note that since the metric $0(3)-invariant, it follows that(QQo, Qo)q, = 0, whence
0 € S andS is a linear subspace af. Consequently, the definition ¢f can be replaced by the
simpler expression,

5:{86 C1(QQ0,9q, =O. VQ€50(3)}. (3.2)
By the slice theorem, any point ii can be decomposed as a product of matrices,

Q =AS AecS0O3),Ses.
Any motionQ(t) has a corresponding decomposition, which differentiaiegve

Q = AS+AS = A(QS+9)
whereQ = A~1A. The kinetic energy is then given by,

T = 1t(QEQT) + tr(SMST) +tr(AQ),

where

E = SMuS,
A = L(mST—sus).
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Note that theinertia dyadicE is symmetric, while/ is skew-symmetric. Note also that, with the
choice of slices we have made, 5= Qp € § then/A =0 (for all S) by (3.2).

We now introduce coordinates grby fixing a basis of matricegS;, ... &} and puttingS=5; s 5.
Let %j = SMS] and defing?* symmetric matrices;;, n” skew-symmetric matriced; and am x n
matrix N = (N;;) by:

B = 3(%+%,
Zj = 3(Tj— L),
Nij = trE;j.
These are all constant matrices, depending only on the elobicasis in the slicg, and
£ = ) ssEj,
1]
N = ZSSjZij.
1]

We will also find it more convenient to identify skew-symnietmatrices withR® in the usual way.
If Q is identified withw then we define matricdsandC by identifying %(ZQ + QE) with lw and
tr(AQ) with ' C$. Thenl is a symmetric 3« 3 matrix, theinertia tensor andC is a 3x n matrix
which gives theCoriolis interactionbetween the vibrational and rotational dynamics. Note that
depends quadratically @) while C is linear and vanishes at the equilibrium configuration.elmts
of these coordinates the kinetic energy becomes

T=1wlw+3s'Ns+w'Cs. (3.3)

To put this into Hamiltonian form we introduce the momentuaniablesy ando conjugate tan
ands, respectively. These can be expressed in terms of the atbedinates by:

oT

H =35, = lwt+Cs
o =% =Ns$+C'w
Eliminatings from these equations gives
H=Klo+m
where
K = (I—cNcT) ™
n = CNlo.

Substituting forw andsin equation (3.3) gives the Hamiltonian form for the kineditergy
T=3u-m"Ku-m+3ic"N"o (3.4)

The full SO(3) reduced Hamiltonian is obtained from this by simply addihg potential energy
functionV (s), restricted to the slics:

H(ws0)=3(u—mTK(u—m)+30"N"1o+V(s). (3.5)

This is a function ofi, sando, defined orso(3)* x T*S, and invariant under the action b= x Z3.
It is known as the Eckart Hamiltonian [4].
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It follows from (1.5) that the angular momentuhtan be expressed as
J = AL

(since defA) = 1). Henceu can be interpreted as the angular momentum of the molecaledordi-
nate system that rotates with the molecule.

3.2 Applying the Main Theorem

Next we must apply Theorem 2.7 to reduce the Hamiltoniar) 8.8 functionh onso(3)* only. For
simplicity we will assume throughout the rest of this settioat the equilibrium configuratiog is a
nondegenerate local minimum of the restriction of the pidéanergy functiorV to the sliceS. This
implies that the nondegeneracy hypothesis of Theorem Zdtisfied and also that the unperturbed
linearizationLg in Theorem 2.8 is strongly stable. In fact the bifurcatiosuies remain unchanged
if Qo is a nondegenerate saddle pointafbut sincelg is then unstable all the bifurcating relative
equilibria will also be unstable.

We will be interested in the critical points &f when restricted to small 2-spheres around the
origin, so we only need to compute its Taylor series to suffitty high order. Sincé is always
invariant under the time reversal operatoracting by—I on so(3)*, all terms of odd degree must
vanish. The following result gives general formulae for fingt two non-zero terms, the quadratig
and the quartitys. These turn out to be sufficient for some, though not all, efdakamples considered
below.

Proposition 3.1
L h() = 3uT1(0) My
2. (W) = — gV MW O UTISH(O)),

wherel (0) is the inertia tensor of the equilibrium configuration of tmelecule)51(0) is the deriva-
tive with respect to s of the inverse inertia ten(s) ~* (regarded as a function os), evaluated at
the equilibrium configuration, )/= %dZV(Qo) is the quadratic approximation to the potential energy

function at the equilibrium configuration, ang“‘&’ is the inverse matrix to/

To interpret the formula fohg, regardV{l as a quadratic form of*, the dual to the slice, and
151(0) as a quadratic form osv(3)* which takes values is*. Note thatl 5 2(0) satisfies

157(0) = ~1(0) H15(0)1(0)

wherel(0) is the derivative ofl (s) with respect tas at the equilibrium configuration; the entries
of Is(0) are callednertia derivativesin the molecular spectroscopy literature. If we choose #sbas
{S1,...,Sn} for S, and writeV, * as a matrixj, andd(1 ~%)/ds = Kiap then

1
ha (b, bo, bs) = — 7 Uij KiapK jedHaboMcHd
16, .
,j,ab,cd
wherei, j run from 1 ton anda, b, c,d from 1 to 3.
It follows from the propositions thdt, depends only on the inertia tendoat the equilibrium,

while hy depends in addition on the harmonic force constants andhérga derivatives.
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Proof Recall from Theorem 2.7 that the functibrand the reduced Hamiltoniat are related by

h(p) = H(81(W), W), (3.6)

whered; satisfiesdyH (31 (1), 1) = 0. It will be convenient to writg = (s, 0) anddy (W) = (S(), 0(H)).
For the Eckart Hamiltonian, it is clear thé§H(0,0,0) = 0 andd,H(0,0,0) = 0, so thatd; (1) =
O(W?), andd; is equivariant. In particular, the}, symmetry implies thas(p) is even anay(p) is odd,
s00(p) = O().

To obtain the 2nd and 4th order parts lpfwe use (3.6) and the explicit form of the Eckart
Hamiltonian (3.5). We use subscripts to denote Taylor ser@efficients; iefy is the ordek part in
the Taylor series of at the origin, where the order is defined in terms of its argumeThen, to order
4iny,

h(k) = 3U" (Ko+ Ki(s2(W))) U+ S2(H) TVasa(W) + O(KE), 3.7)

where we have used the fact thafy) = O(1®) and s(i) = O(?) which imply that all the terms
involving o areO(1), and we have represents@l) as a vector anil; as a symmetric matrix. Note
thatK (s) is the linear part oK (s), which is precisely thé; ! of the proposition.

From this Taylor series, we see immediately thgj) = % T Kow, as required in part (1).

For the 4th order part df, we need to find, (), which can be found from the leading order part
of (2.6):

oH
0= 5 (S(). O(k). W) = FH" Kap+ Voo () +O(ke).
Consequently,
1.
M) =7V LT Kap), (3.8)

whereVz‘1 is considered as a linear map — S. Substituting for this in (3.7) gives

) = SHT (Kals2(k)h o () Vose(h)

1 ) 1 )
— g (T Ka) TV (T Kap) + T (W Kap) TV, (1T Kap
1

16(IJT Kak) "V; (U Kap),

as required. ]

The following results can be deduced from the fornhaf
Corollary 3.2

1. If the equilibrium configuration Qhas three distinct principal moments of inertia then there
are precisely six families of relative equilibria bifurdag from it. The relative equilibria have
dynamical axes that are aligned, at least approximatelyhwhe principal axes of the equi-
librium configuration. Those corresponding to the prindipais with largest (resp. smallest)
moment of inertia are Liapounov stable (resp. linearly s&@bwhile those corresponding to the
intermediate moment of inertia are linearly unstable.

2. If the equilibrium configuration gis planar, the nearby relative equilibria with dynamicalesx
perpendicular to the plane containing the equilibrium afagounov stable.
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Proof If 1(0)~! has three distinct eigenvalubs has precisely six non-degenerate critical points
on each sphere round 0. These are at the points correspaiading eigenvectors dff0)~t. The
maxima, saddle points and minima are given by the eigenkgwatith the smallest, middle and largest
eigenvalues, respectively. On sufficently small sphereguhctionh is a small perturbation df, and
so will have nearby critical points. Part (1) now followsritdrheorem 2.1 and Theorem 2.8.

For Part 2 we use the fact that the principle moment of in@ftia planar body perpendicular to
the plane is the sum of the other two principle moments otim@nd so must be the largest. O

Part (1) of this corollary states that if the molecule hadkelitr no symmetry, and the three moments
of inertia are distinct, then for small values of angular nemom the molecule behaves like a rigid
body, and the relative equilibria and their stabilities elegh only on the equilibrium shape. On the
other hand, this is not true for symmetric molecules as tlaengptes below show.

3.3 Non-collinear XY, molecules

In Example 1.2 we noted that a non-collinear equilibriumfguration of anXY, molecule has three
mutually perpendicular symmetry axes, one of rotation amddf reflection. By Theorem 0.1 for each
of these there are two families of relative equilibria bifating from the equilibrium with dynamical
axes equal to the symmetry axis. These three axes are aldoabkerincipal axes of the inertia tensor
of the equilibrium. So by Corollary 3.2 these will be the oblfurcating relative equilibria, provided
the three moments of inertia are different. Note that thersgtry means that the dynamical axes of
the relative equilibria arpreciselythe principal axes of the inertia tensor in this case.

The stability properties of the relative equilibria arecatietermined by the moments of inertia.
In particular, by the second part of Corollary 3.2, the metéaequilibria rotating about the reflection
axis perpendicular to the plane containing the equilibrivithbe stable. For the other two families
we need to compute the corresponding moments of inertia.

Let the distance between tilenucleus and one of thé nuclei at equilibrium bée and the angle
between theX —Y bonds be 8. Let the masses of thé¢ andY nuclei bemy andmy, respectively. Put
M = myx +2my andp = mx /M. Letl; denote the moment of inertia about the reflection axis lying i
the plane containing the equilibriurds(in Figure 2) and, the moment of inertia about the rotation
axis (2 in Figure 2). Then

i = Mp(1—p)f2cosH
I, = M(1—p)f3sirfe.

Thusly < I, if and only if tar? @ > p. In this case the relative equilibrium rotating about theaion
axis is linearly (though not Liapounov) stable, and thaatiofy about the rotation axis is linearly
unstable. If tak® < p these stability properties are reversed.

The bond angles for over 28Y> molecules are listed in [8] and [9]. In all these cases it is
greater than 90and so we can conclude that it is the relative equilibria wighamical axes along
the reflection axis that are linearly stable, and those wythadhical axes along the rotation axis are
linearly unstable. However, there are also molecules lyith |, such aH,D*, wherep = 1/2 and
20 = 6(° (D is deuterium, withmp = 2my ), and for these the stabilities are reversed.

3.4 Tetrahedral XY 4 molecules

In the introduction we saw that (at least) three differeipiety of relative equilibria bifurcate from a
tetrahedral equilibrium configuration of a6; molecule such as methan@H,). Their dynamical
axes are, respectively, the three-fold rotation axes,whoefbld rotation axes and the reflection axes.
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In this subsection we will compute the quadratic and quaetims of the functiorh on so(3)* and
show that generically these determine the stabilities efifurcating relative equilibria and that no
other relative equilibria bifurcate.

The functionh onso(3)* is invariant under the induced action of bdth= Ty = & and the time-
reversingZ5. Together these give an action of the group of symmetriehi®@fcube, denote@r,
which is isomorphic to the standard action BA. The three types of bifurcating relative equilibria
correspond to the three conjugacy classes of maximal gpgabgroups for this action, namely the
isotropy subgroups conjugate By (3-fold rotation axis denoted; in Figure 1),D4 (2-fold rotation
axis, £1 in the figure) andD, (reflection axis/f, in the figure). The restriction of an@n-invariant
function to spheres centred on<0so(3)* must have the points with these isotropy subgroups as
critical points. The following proposition says that gdnally there won't be any others near 0, and
determines the generic possibilities for their stab#itie

Proposition 3.3

1. The quadratic and quartic terms of the Taylor serie af a generalOp-invariant function h
onso(3)* have the form

ho
hy

o (4 + 15+ 15)
BOE+15+18)"+y (118 + 1818+ 1818)

2. If a,y # 0 then the restriction of h to a small sphere centredat so(3)* has only critical
points with isotropy subgroups conjugatelRq, D3 andD».

3. Suppos@& > 0. If y < 0 the critical points with isotropy subgroups conjugateDe, D, and
D4 are, respectively, minima, saddle points, and maximg>f0 the maxima and minima are
interchanged.

Proof Part (1) follows from the fact that every smooth functionRhwhich is invariant under the
standard action 0By, is a smooth function of the polynomiglg + 3 + 13, p2p3 + L33 + pap2 and
u%u%u% (see for example [5, p. 48, Ex. 4.7]). Parts (2) and (3) aeggittforward calculations. O

It follows from this proposition and Theorem 2.8 that we ddoexpect the relative equilibria
with dynamical axes equal to the reflection axis to be lineanstable when they bifurcate from the
equilibrium. To determine the stabilities of the other twpéds we need to calculaygn terms of the
physical parameters of the molecule.

Let the masses of thé nucleus an&’ nuclei bemy andmy, respectively. Lep denote the mass
ratio my /my. Let ¢ denote the distance between ewucleus and & nucleus at equilibrium. The
inertia tensor of the equilibrium configuration is then

8 100
umzéw% 010 (3.9)
0 0 1

We take the following symmetry-adapted basis for the sfice
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0 -1 1 1 -1

1 -1 -1 1 -1 1 -1
0O 0 0 ©O 1 -1 -1
1 1 -1 -1 0O 0 O

—-4p 1 1 1 1 0O 0 00O 0 0O
F 0O 0 0 0O -4 1 1 1 1 0 0O
0O 0 0 0O 0O 0 00O —4p 1 1

We denote these matrices By, ..., in the order they appear above. The columns of each matrix
give the coordinates of the 5 nuclei, wihin the first column. Note that the position ¥fis deter-
mined by the positions of thé’s and the requirement that the centre of mass of the systaiwés/s
at the origin. Each row of matrices defines a subspaceasf whichl™ acts irreducibly. All the matri-
ces are orthogonal to each other and to the tangent space $©t8) orbit through the equilibrium
configuration with respect to the inner product (3.1). TheelaA, E, F; andF, are those commonly
used in the molecular spectroscopy literature. The reptatsens ofl on the twoF subspaces are
isomorphic. The subspacésandE are uniquely defined, but tHg are not. We have chosédn to
be the subspace consisting of configurations in whialemains stationary. The subspdgeis then
determined by the orthogonality requirement.

The tetrahedral equilibrium configuration is given by:

0O 0 0 0 O o 2 2 -2 -2
1
0 -1 1 -11 %O—ll—ll
0
0
0
0

ocooo
oOR R

P OO
= O o
N~

-
V3

A general configuration of the molecule jhis defined by:

Q=—7=S5.

9
Q= 0Q(s) = QoleSS-

To computehs (and hence) we need to finds(0) and hence
151(0) = —1(0) " MIs(0)1(0)*.

To do this we compute the inertia derivativigéd) (i =1,...,9) of I(s) in the directions given by
each of the matrices listed above in the basisSfoExplicitly these are given by:

1i(0) = tr(B)I - %
where%; is the derivative ofE = SMS' in the direction given by thieth basis element of:

E = SMQJ +QuMS.
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With these formulae it is an easy computation (using MAPIJE eikample) to obtain the derivatives

1740) = —1(0)~H;(0)1(0) L.

These are the components of the linear rhah(0) from the tangent space t at the equilibrium
point, which we identify withs itself, to the space of quadratic forms (or symmetric magjcon
s0(3)* = R3. Using the coordinates, i, iz onso(3)* the calculations give:

WITOR = —C(H+18+18)
_ C
WizOm = 2 (1B-15)

c
T|710 — 22_ 2_ 2
H iz 0)u ZE(M 5 — 13)

W' 0u = Cieps
Wit Op = Cpem
Wig'Op = Chapp
Wi top = 0 fori=7,8,9

whereC = 3v/3/(4my(3). Note in particular that the subspaggof S lies in the kernel of ;1(0).

By Schur’s lemma the (symmetric) matrix g * = (%dZV(Qo))fl, with respect to the basis of
S given above, will have the form:

U11
vl — Uzzl2
2 Ussls  Usals
Ugalz  Uaal3
wherely is thek x k identity matrix and the missing entries are all 0. It follofkem Proposition 3.1
that:

16 1. _ _
—cza) = Vo (WIST ORI O)W)
2
= Ui (1 +15+18)

u 2 1 2
+{?<0€—u@ +§(aﬁ—u%—@))
“+Usa (K5 + MG + 115)

= (vat “22) (1 1B+ 1E)" o+ (Usa— Uzo) (HBME + 1B1E + 1END).
Hencey = (ux2 — U33)C2/16 and the sign of this determines the stability of the redagquilibria
which bifurcate from the equilibrium.

To obtain the values of the non-zero entrigsin V, * for specific molecules is not straight for-
ward. The methods of molecular spectroscopy determineititational frequencies corresponding
to the 4 distinct eigenvalues v;l. However this is not enough information to determine the ®-no
zeroujj. This problem can be side-stepped by assuming a specificfforthe quadratic part of the
potential energy function which depends on 4 parametersss; nd then using the experimentally
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determined vibrational frequencies to estimate thesef@example the account given in [7]. As an
example we use thealence force potentiajiven by:

Vo = ks r%ﬁzai- (3.10)
2iZ‘II 2i<1 :

wherer; is the change in the distance between Xraucleus and théth Y-nucleus, and; is the
change in the angle betweay; andXY; (see [7] page 181). A routine, though tedious, calculation
shows that in the basis given above fothe quadratic form corresponding\ip is:

V11

Vo — V2al2

2 V33ls  Va4l3

Va4lz  Vaals
where:
Vi1 = 12k
Voo = 24%
16
V33 = 3 <k—|— %)

Vag = 8(1+4P)(k—2%>

3
4 2 ks
Vaga = §(1+4p) (k+4€—2>

Inverting this gives

62
U2 = m
s = o
BT 48k 1k

and hence

o ct /e 4
V= 768<|<5 k)'
The values ok andks/¢? obtained by fitting the valence force potential (3.10) tocsfmescopic data
from a number ofXY; molecules (including methane) are listed in Table 46 of [f]all casesy is
positive and so we can predict that the bifurcating relagiggilibria with dynamical axes along the
2-fold rotation axes (seé in Figure 1) will be Liapounov stable, those with dynamicaés along
the 3-fold rotation axest§ in the figure) will be linearly stable, but typically Liapoow unstable,

while those with dynamical axes along the reflection aXgsn(the figure) will be linearly unstable
(hyperbolic).
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0

62/”'

Figure 3: Representative axes for themolecule
Note that/y is unique, while there are
3 of typel, and 3 of type/s.

3.5 Equilateral X3 molecules

Consider a molecule made up of 3 identical nuclei and with guiliérium configuration with the
nuclei at the vertices of an equilateral triangle. Exampiekide ozoneQ3, and the ionized molecule
H; , which plays an important role in the chemistry of the intieitar medium and the atmospheres
of the giant planets [21]. For ozone the equilateral trianggdjuilibrium is unstable and the stable
equilibria are isosceles. However fidg it is stable.

The symmetry group of the equilateral triangle configuratgD3 x Z,, whereZ, acts by reflect-
ing in the plane of the molecule. By Theorem 0.1 relative ldopia of three types bifurcate from the
equilibrium: rotations about the axis perpendicular toflsmne of the molecule, rotations about axes
passing through one of the three nuclei, and rotations adoas in the plane of the molecule which
are perpendicular to these. This third set of axes are axaesflettion, where the reflection is in a
plane perpendicular to that of the molecule and passingigiira vertex of the equilateral triangle.

If the equilibrium point is unstable then all the bifurcatirelative equilibria will be unstable. If
it is stable then by Corollary 3.2(2) the relative equilébrvith axes perpendicular to the plane of
the molecule will be Liapounov stable. Generically, onehw two remaining types will be linearly
stable and the other linearly unstable. In this section vasvsiow to distinguish between the two
possibilities. We also show that generically these are tthe relative equilibria that bifurcate. These
calculations turn out to involve computing a 6th order caéfit in the Taylor series d@f, and this de-
pends on a 3rd order coefficient in the Taylor series of therng@l energy function, i.e. an anharmonic
force constant.

In this case the functioh on so(3)* will be invariant under the action dbz x Z, x Z} given
by equations (1.6, 1.7). For this actien(3)* splits into the direct sum of two invariant subspaces,
the two-dimensional space consisting of momentum valuadithin the plane of the molecule, and
the one-dimensional space perpendicular to this. The giaup Z, is isomorphic toDg and acts
on the two-dimensional subspace by the standard acti@y @i the plane. The action on the one-
dimensional space is determined by the fact that the supgsdiich acts trivially isZg C Dg. As
usualZ} acts orso(3)* by —I.

Every maximal isotropy subgroup of this action on the spheentred at O is conjugate to one

of the three group®e, ZJ® x ZF* or ZU® x ZI°* defined as follows. The subgrous consists

of the groupZg together with each of the remaining element®gfcomposed wittt. This fixes the
momentum values perpendicular to the plane of the moledtiere are no other subgroups conjugate

to this one. The subgro@hgon is generated by rotating the molecule toabout one of its two-fold
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rotation axes (labelleé, in Figure 3). The subgroub(zref) is generated by a reflection of the molecule
in one of the reflection planes perpendicular to the plan¢aiming the molecule, with axi§. The
group Z3°" is generated by rotating the molecule tyabout its three-fold rotation axis and then

applyingt. These three order two subgroupsf x Z; are not conjugate to each other. Each of the

groupszi® x Z* andz® x ZIT has two other subgroups conjugate to it. The fixed point sets

for each of these subgroups is a line in the plane of the midedinus there are 7 maximal isotropy
subgroups altogether, each of which will have two fixed aont the spheres kv(3)*.

Proposition 3.4

1. The quadratic, quartic and sextic terms in the Taylor egr@tO of a generalD3 x Z, x Z5-
invariant function h orso(3)* have the form

he = ay(Kf+p5)+ oz,
ha = Bo(+18)% + Bo (1 + 13) 15 + Basd,

3 . )
he = (- 3u1u%)2+_20vi(u%+ 1) (H8)* .
i=

2. If a; # a2 and y # 0 then the restriction of h to a small sphere centred0at so(3)* has
precisely 14 critical points; they have isotropy subgroapsjugate tDg (2), Z(Zrm) X 25T (6)
andz{® x 1" ().

3. If h is the split Hamiltonian of an xmolecule ther; = %al > 0, and the critical points
K= (0,0,£1) with isotropy subgroups conjugate fds are minima. Moreover, iy > 0 the
critical points in the orbit of(1,0,0) (with isotropy subgroups conjugate Kémt) x Z5°T) are

maxima while those in the orbit ¢0, 1,0) (with isotropy subgroups conjugatelcgef) x Z5°1)
are saddle points; i < 0 the maxima and saddles are interchanged.

Proof The first part is a straightforward invariant theory caltiola (see eg [5]). Part (2) follows
from the discussion before the statement of the propoditigather with a computation to verify that
there are no other critical points, and part (3) is a compnat a

Part (3) of this proposition is used in conjunction with Thera 2.8 to determine the stabilities of
the relative equilibria. We now consider tixg molecule in general, and perform the computations
needed to determine the signyof

Let m be the mass of th¥ nuclei, andl the equilibrium bond length. The equilibrium configura-
tion is

1 1
3 —z2 0
— 1 1 1
@@=~z “as
0 0 0
The equilibrium inertia tensor is then

2 (1 0 0
|(0):m% 01 0],

0 0 2
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and it follows from Proposition 3.1(1) that
1
)=z (AE+25+15).
We take the following symmetry-adapted orthonormal basigtie slices (with respect to the
inner product (3.1), which in this case is equivalent$or ) = tr(S'T)):

ha (U

1 1
2 3 0
_ 1 1 1
A=l e T |
0 0O O
1 _1 9 - 1 1
2 2 2V3 2V3 /3
! 1 1 1 N I 1
B S=|35 25 | S=| 2z -2 0
0O o0 O 0 0O O

The symmetry group = D3 x Z; acts trivially onA and by the standard 2-dimensional representation
of D3 and the trivial representation @ onE.
A general configuration is given by

3
Q=Q(9 = Qo+ 3 5.

The inertia tensolt(s) can be computed easily, and its derivatives at O give rise to the three
quadratic forms; 1(0) = (Ky); = 0K /ds (0):

_ 2

UTlll(O)U = —W(ZU%+2L1%+H§)
_ 4

HT|21(O)U = @(HZ—L@

_ 8
Higtop = el

We wish to find an expression fgiin terms of the physical characteristics of the moleculd,ian
particular of its potential energy function. Singds I-invariant, its third order Taylor series can be
written

V(s1,52, %) = AS + B(S3+ S3) +CS; + Dsy($3 + S3) + E(S3 — 353) + O(s). (3.11)

HereA, B are harmonic force constants, whileD, E are anharmonic force constants.
Recall from (3.8) that the quadratic partsff1) satisfies

1
S2(H) = =2V, 1" Kap),

4
(there should be no confusion arising from usgdoth as a coordinate in (3.11) and the quadratic
part of a function). Combining this with the expressions(i¢r); = Ifl(O) above gives
1 2 2
sl = A g(E+1E+318)
1 - 9
S22(H) = *B—Wg,(ul* 15))

2
S32(l) = ~BryaHabe
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wheres » is the quadratic part of. Substituting for this in (2.6) givesy(1) andoz(p). The expres-
sions forsy, s, andas are then substituted in the expressiontor=inally, comparing with Proposi-

tion 3.4 shows thaf is given by
_1 <66_h _ @)
=ei\ae a8/

All these computations are quite lengthy, and can mostyebsiperformed with the aid of a computer
package (again, we use MAPLE). The final result is

 197E
Y= 308983

whereB, E are the force constants defined in (3.11). For a stable bquith B > 0 and so the sign of
y coincides with that oE.

As an example consider a system of three identical point @sassupled by three identiciithear
springs with spring constakt> 0, and equilibrium lengtld. Then expressing the extensions of the
three springs in terms of the slice coordinadgsy, s3, gives

__k
ar

It follows from Proposition 3.4 and Theorem 2.8 that the tiotaabout an axis passing through one
of the point masses is linearly unstable (afdsn Figure 3), while rotation about the orthogonal one
(axis/3) is linearly stable, and indeed strongly stable.

To apply these calculations to tig” molecule, we need to know the potential energy function.
The Taylor series to order 7 of this function at the equilibrihas been estimated from spectroscopic
data in [2]. The coordinates they use are not the same asamuat&; our coordinates, their coefficients
become (cf. (3.11))

A = 225291 B = 146892

C = —234030 D = —389483 E = —104648

In particular,E < 0 and consequently so is It follows that of the two horizontal axes, the one
through a nucleus (axi& in Figure 3) is linearly unstable (hyperbolic) while the eths strongly
stable (elliptic), precisely as for the linear spring model

The world of molecules is very rich, and one would expect thate is arfXs molecule where the
stabilities differ from those of the linear spring modelt tue do not know of such an example.
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