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Abstract

We describe a method for finding the families of relative equilibria of molecules which bifurcate
from an equilibrium point as the angular momentum is increased from 0. Relative equilibria are
steady rotations about a stationary axis during which the shape of the molecule remains constant.
We show that the bifurcating families correspond bijectively to the critical points of a functionh
on the 2-sphere which is invariant under an action of the symmetry groupof the equilibrium point.
From this it follows that for each rotation axis of the equilibrium configurationthere is a bifurcating
family of relative equilibria for which the molecule rotates about that axis. In addition, for each
reflection plane there is a family of relative equilibria for which the molecule rotates about an axis
perpendicular to the plane.

We also show that if the equilibrium is non-degenerate and stable then the minima, maxima and
saddle points ofh correspond respectively to relative equilibria which are (orbitally) Liapounov
stable, linearly stable and linearly unstable. The stabilities of the bifurcating branches of relative
equilibria are computed explicitly forXY2, X3 andXY4 molecules.

These existence and stability results are corollaries of more general theorems on relative equi-
libria of G-invariant Hamiltonian systems which bifurcate from equilibria with finite isotropy sub-
groups as the momentum is varied. In the general case the functionh is defined on the Lie algebra
dualg∗ and the bifurcating relative equilibria correspond to critical points of the restrictions ofh to
the coadjoint orbits ing∗.
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Introduction

In the theory of molecular spectra a molecule is treated as a system of point particles, the atomic nuclei
and electrons, interacting through conservative forces. The resulting mechanical system is impossible
to ‘solve’, even for very simple molecules. For example the water molecule,H2O has 3 nuclei and 10
electrons, and hence a 39 dimensional configuration space. Considerable simplification is achieved by
applying the Born-Oppenheimer approximation in which the electron motion responds adiabatically
to that of the nuclei (see eg [15]). The result is a model for the nuclei alone, interacting via a potential
energy function which incorporates the effects of the electrons.

Although considerably simpler than the original model,H2O now has 3 particles and a 9 dimen-
sional configuration space, understanding the dynamics of the resulting system is still highly non-
trivial. The classical approach to computing and interpreting molecular spectra is based on a further
approximation which effectively decouples the vibrational motion of the molecule from the rotational
motion. For the rotational motion the molecule is assumed tomaintain a constant shape, namely
that of a stable equilibrium position, and to rotate as a rigid body. Both the classical and quantum
mechanics of rigid bodies are well understood and the lattergives reasonably accurate predictions
of spectra for many ‘rigid’ molecules. The classical mechanics of a rigid body includes among its
features motions in which the body rotates about a stationary axis. Such motions are examples ofrel-
ative equilibria. Provided the three principal moments of inertia of the bodyare all different there are
precisely 6 of these relative equilibria for each non-zero value of the angular momentum, one rotating
in each direction about each of the 3 principal axes of the inertia tensor.

For a molecule, a relative equilibrium is a motion during which it rotates steadily about a fixed
axis, which we call thedynamical axis, while the shape remains constant. In this paper we describe
an approach to finding families of relative equilibria of molecules which bifurcate from equilibrium
configurations as the total angular momentum is increased from zero. We do this for the full Born-
Oppenheimer model for the motion of the nuclei. For example,we show that if an equilibrium con-
figuration has distinct principal moments of inertia then, as one would expect, the 6 relative equilibria
of the rigid body approximation persist to this model, together with their stabilities, and these are the
only relative equilibria near the equilibrium configuration (Corollary 3.2).

More interesting is the case of molecules near equilibria with either two or all three principal
moments of inertia equal, which in the molecular spectroscopy literature are calledsymmetric top
andspherical topmolecules, respectively. In the rigid body approximation symmetric top molecules
have a whole circle of relative equilibria with dynamical axes in the plane spanned by the two principal
axes of the inertia tensor with equal moments of inertia. They also have two isolated relative equilibria
which are rotations about the other principal axis. Similarly the spherical top molecules have a sphere
of relative equilibria. Indeed in this case every trajectory of the rigid body approximation is a relative
equilibrium. We show that typically in each of these cases only a finite number of these relative
equilibria persist in the Born-Oppenheimer model, including the two isolated relative equilibria of
symmetric top molecules. In Section 3 of this paper we show how to calculate these for specific
molecules, or rather for specific equilibria of specific molecules: a molecule can have more than one
equilibrium, some stable some unstable (as noted in Example1.4), and our analysis applies to each
one separately.

For symmetric top and spherical top molecules the degeneracy of the rigid body approximation is
caused by symmetries. The Born-Oppenheimer model is invariant under the action of two groups, the
groupO(3) of all orthogonal rotations and reflections ofR3 and the groupΣ of all permutations of
identical nuclei. We define thesymmetry groupΓ of an equilibrium configuration to be the subgroup of
O(3)×Σ which fixes each nucleus. Its elements are pairs(A,σ) for which the action of the orthogonal
transformationA on the equilibrium configuration is the same as that of the permutationσ.
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The methane molecule and its symmetry axes.

Figure 1:

Consider for example the methane moleculeCH4, consisting of four light hydrogen atoms dis-
tributed around a central massive carbon atom, see Figure 1.In its equilibrium state, the hydrogen
nuclei are positioned at the vertices of a regular tetrahedron. The symmetry groupΓ is isomorphic to
the subgroup ofO(3) which consists of orthogonal rotations and reflections which map the tetrahe-
dron to itself. Chemists denote this group byTd. Each of these transformations gives a non-trivial
permutation of the hydrogen nuclei, and every such permutation is realised by an element ofTd. Thus
Γ is also isomorphic to the symmetric groupS4. Note that in generalΓ will be a finite group if and
only if the equilibrium configuration is not collinear.

The tetrahedral symmetry of the methane equilibrium configuration forces its inertia tensor to be
scalar and so methane is a spherical top molecule and has a whole 2-sphere of relative equilibria in the
rigid body approximation. These correspond to the tetrahedral configuration rotating about arbitrary
axes through the centre of mass of the equilibrium configuration, ie the carbon nucleus. In §2 we
will show that those relative equilibria with dynamical axes corresponding to symmetry axes of the
equilibrium configuration persist for the full Born-Oppenheimer Hamiltonian.

More precisely, consider the action ofΓ on R3 determined by its projection intoO(3). Let the
axes of rotationof Γ be the one dimensional fixed point sets of the rotations in this projection and the
axes of reflectionthe lines through the origin perpendicular to the planes fixed by the reflections. The
following result is a consequence of Theorem 2.7, the main theorem of this paper (or of its subsidiary
Theorem 2.1), as explained in Example 2.4. The non-degeneracy condition on the equilibrium is
described in § 2.1.

Theorem 0.1
Consider a molecule with a non-degenerate equilibrium withsymmetry groupΓ < O(3)×Σ. There

exists µ0 > 0 such that for all µ∈ R3 with |µ| < µ0 there are at least 6 relative equilibria with angular
momentum µ. Moreover, for each axisℓ of rotation or reflection inΓ, there are two relative equilibria
with angular momentum µ and dynamical axisℓ, one rotating in each direction.

The tetrahedral equilibrium of the methane molecule has 13 axes of symmetry, divided into 3
types, and representatives of each type are shown in Figure 1. There are 4 axes of 3-fold rotational
symmetry joining the carbon nucleus to each of the hydrogen nuclei (denotedℓ3 in the figure), 3
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axes of 2-fold rotational symmetry joining mid-points of opposite edges of the tetrahedron (ℓ1 in the
figure), and 6 axes of reflection passing through the carbon nucleus, parallel to an edge of the tetrahe-
dron (ℓ2 in the figure). By the theorem there are two families of relative equilibria bifurcating from
the equilibrium for each of these axes, a total of 26 families. Since this existence result depends only
on the tetrahedral symmetry groupTd of the equilibrium, precisely the same result is true of any
other molecule with an equilibrium with the same symmetry group such asP4 (white phosphorous).
Moreover, it turns out that the same symmetry analysis holdsfor molecules with the cubic or octahe-
dral symmetry groupOh such asSF6. On the other hand, the details regarding which of the relative
equilibria are stable will depend on the molecule in question.

Theorem 2.7 is a generalization of a result of Montaldi [12] on bifurcations of relative equilibria
of Hamiltonian systems given by HamiltoniansH which are invariant under free actions of a groupG.
In this paper we relax this by requiring only that the connected component of the identity ofG acts
freely, and so the isotropy subgroup,Γ, of the equilibrium point from which the relative equilibria
are bifurcating is finite. By using a combination of the Moncrief decomposition of the tangent space
to a symplectic manifold [11, 13] and the equivariant splitting lemma we show that aG-invariant
HamiltonianH induces aΓ-invariant functionh on g

∗, the dual of the Lie algebra ofG, such that the
bifurcating relative equilibria are given by the critical points of restrictions ofh to the orbits of the
coadjoint action ofG ong

∗. For a precise statement see Theorems 2.1 and 2.7.
For molecular Hamiltonians the symmetry groupG is the groupO(3)×Σ described above. The

spaceg∗ is the space of angular momentum values and is isomorphic toR3 and the coadjoint action of
G is generated by the standard action ofSO(3) onR3 together with trivial actions of−I ∈O(3) and of
Σ. The coadjoint orbits are just the 2-spheres centred at the origin in R3. These are invariant under the
action ofΓ onR3 obtained by restricting the action ofO(3)×Σ and the search for bifurcating relative
equilibria reduces to finding critical points ofΓ-invariant functionsh on these spheres. The relative
equilibria described in Theorem 0.1 correspond to points onthe spheres which are critical points for
all Γ-invariant functionsh by virtue of being the fixed point sets ofmaximal isotropy subgroupsof the
Γ action.

In this paper we also incorporate the effects of the time-reversal symmetry possessed by any
Hamiltonian which is the sum of a quadratic kinetic energy function and a potential energy function.
This leads to the functionh ong

∗ being even (invariant underµ 7→−µ) in addition to beingΓ-invariant.
In some cases the presence of this extra symmetry enables us to deduce that there must be extra
bifurcating relative equilibria in addition to those predicted by Theorem 0.1. We show that this occurs
for XY3 molecules such as ammonia (NH3) in Example 2.5.

The results we have described so far give the existence of relative equilibria with particular sym-
metries and are proved using symmetry considerations alone. To find out whether there are any others
the Taylor series ofh at 0 ing

∗ has to be calculated to a sufficiently high order. In Section 3we de-
scribe how to do this for molecular Hamiltonians using the reduced form of the Hamiltonian function
H obtained by Eckart in 1935 [4]. In the final subsections this is applied to molecules of typeXY2, XY4

andX3. In particular we show that the 26-relative equilibria described above are generically the only
relative equilibria which bifurcate from a tetrahedral equilibrium configuration of anXY4 molecule.

In Section 2 we also give some general results on the stability of the relative equilibria bifurcating
from an equilibrium. See Theorem 2.8. For molecular Hamiltonians these imply that if the equilib-
rium point is a non-degenerate minimum of the potential energy function then relative equilibria which
correspond to minima ofh on the angular momentum spheres are Liapounov stable, thosecorrespond-
ing to maxima are linearly stable, but typically not Liapounov stable, while those corresponding to
saddle points are linearly unstable. Here stability is always to be interpreted in an orbital sense [16].
Thus the calculations of Section 3 also enable us to determine the stabilities of the bifurcating relative
equilibria.
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The stabilities of the bifurcating relative equilibria aredetermined by the low order terms in the
Γ-invariant even functionh discussed above, and which terms one needs depends upon the symmetry
groupΓ of the equilibrium. For non-symmetric molecules where the principal moments of inertia are
distinct the second order terms ofh are sufficient to determine the stabilities. These second order terms
depend only on the inertia tensor of the equilibrium configuration. It follows then that the stabilities
are precisely those found in the rigid body approximation discussed above.

In the case of spherical top molecules, for tetrahedralTd symmetry or octahedralOh symmetry the
fourth order terms are required, while for icosahedralIh symmetry (such as for buckminsterfullerene)
the sixth order terms are required as well. For the symmetrictop molecules with dihedral or cyclic
symmetry, those with square symmetry require fourth order terms, while those with triangular or
hexagonal symmetry require sixth order terms.

In terms of physical molecular parameters, the fourth orderterms depend on the so-calledinertia
derivatives(the derivatives of the inertia tensor as a function of shapeevaluated at the equilibrium
configuration — ourI s(0), or theaαβ

k of [1]) together with the harmonic force constants (the quadratic
part of the potential energy function). The sixth order terms of h require in addition knowledge of
the Coriolis coupling constants (our matrixC, denotedZ in [20], or theζα

i j in [1]), the second inertia
derivatives and certain anharmonic force constants (thirdderivatives of the potential energy function).
The quadratic and quartic parts ofh are given in closed form in Proposition 3.1, while the degree6
part is computed only forX3 molecules in §3.5.

Using data on molecular parameters taken from a standard textbook on molecular spectroscopy
[7] we show, for example, that for methane the 6 relative equilibria with dynamical axes along the 2-
fold rotation axes are Liapounov stable, the 8 relative equilibria with dynamical axes along the 3-fold
rotation axes are linearly stable and the 12 relative equilibria with dynamical axes along the reflection
axes are unstable. This is in agreement with [3], where they also derive these results by considering
a functionh on 2-spheres, although their functions derive from quantum-mechanical considerations.
Using more recent data [2] we show in §3.5 that for theH+

3 molecule the relative equilbria with
dynamical axis along the 2-fold rotation axis (ℓ2 in Figure 3) are linearly unstable, while those with
dynamical axis along the reflection axis (ℓ3 in Figure 3) are linearly stable.

The restriction in Theorem 2.7 to equilibria with finite isotropy subgroups means that our results
only apply to bifurcations of relative equilibria from equilibrium configurations that are not collinear.
A bifurcation theorem for group actions with non-finite isotropy subgroups has been obtained by
Roberts and Sousa Dias [18]. That paper also contains a briefdiscussion of relative equilibria bifur-
cating from collinear equilibrium configurations of molecules.

In this paper we are concerned only with the classical dynamics of molecular Hamiltonians. If the
methods and results are to be applied to molecular spectra then they must be related to the quantum
mechanics, presumably by semi-classical techniques. Thisis a project for the future. However we
note that some elements of the theory developed here are reminiscent of the work of Harter and
Patterson [6] on the spectra ofSF6, and of Pavlichenkov, Zhilinskii and coworkers, see [17, 19] and
the survey [22]. In particular these methods also generateΓ-invariant functions on angular momentum
spheres similar to the functionsh of this paper. These are obtained as the classical limits of quantum
Hamiltonians restricted to certain finite dimensional spaces of quantum states, rather than by a purely
classical reduction procedure. Moreover the methods are used to explain observed patterns in high
angular momenta spectra, rather than the low angular momentum regime considered in this paper.
Nevertheless we believe that new insights into the structure of ro-vibrational spectra may be obtained
by exploring the relationship between these two approaches.

AcknowledgementsWe would like to thank Jonathan Tennyson for useful discussions, and the anony-
mous referees for a number of suggestions. This research waspartially supported by theAlliance
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programme for scientific cooperation between Great Britainand France, and by an EPSRC Visiting
Fellowship for J.M.

1 Molecules

Consider a molecule consisting ofN interacting atoms inR3. Regarding the atomic nuclei as point
masses the configuration space isR3N, which it is useful to view as

C = RN ⊗R3 ≃ L(N,3).

HereL(N,3) is the space of real 3×N matrices. TheN columns of a configuration matrixQ represent
the positionsqi of theN nuclei (i = 1, . . . ,N). The total phase space is thenP = T∗C ≃ R6N, which
we can identify with the space of pairs(P,Q) of 3×N matrices. The columns ofP are the momenta
pi of the nuclei.

If the mass of theith nucleus ismi the dynamics of the system is given by the Hamiltonian

H(p,q) = ∑
i

1
2mi

|pi |2 +V(q1, . . . ,qN)

whereV(q1, . . . ,qN) is the potential energy of the configurationQ due to the electronic bonding be-
tween the nuclei. In terms of matrices, we have

H(P,Q) = 1
2 tr(PM−1PT)+V(Q), (1.1)

whereM is the diagonal mass matrix with entriesm1, . . . ,mN. For any motionQ(t), the momentumP
is related to the velocitẏQ by,

P = Q̇M .

The centre of mass of the molecule is given by the sum of the columns of the matrixQM . If there
are no external forces on the molecule, the centre of mass moves in an inertial frame, which we can
take to be fixed (corresponding to taking total momentum equal to zero), and we can choose the origin
to coincide with the centre of mass. Thus, henceforth, we assume that the sum of the columns ofQM
is zero. That is,

C = L0(N,3) = {Q∈ L(N,3) | ∑
j

qi j = 0, i = 1,2,3}.

Consequently,
P = T∗L0(N,3) ∼= L0(N,3)×L0(N,3).

1.1 Symmetries of the Model

There are three types of symmetry of this model: euclidean motions, internal particle relabelling and
time-reversal. These are described below.

Of the euclidean motions, we have already eliminated the translational component by fixing the
centre of mass. Rotation or reflection of the molecule (or change of basis inR3) by an orthogonal
matrix A acts on configuration spaceC = L0(N,3) by multiplication byA on the left:A ·Q = AQ. In
the absence of external forces this leaves the potential energy invariant.

The relabelling symmetry group can be described as follows.If some of the nuclei are identical
then a finite subgroupΣ of the permutation groupSN acts by permuting theN nuclei, in such a way
that forσ ∈ Σ < SN,the nucleii andσ(i) are indistinguishable. Thusσ ∈ Σ if and only if,

V(qσ(1), . . . ,qσ(N)) = V(q1, . . . ,qN), mσ(i) = mi , (1.2)
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for all (q1, . . . ,qN) ∈ C , and alli.
For σ ∈ Σ, we also denote byσ the associatedN×N permutation matrix, which acts onC by

multiplication byσT on the right. Note that this matrix commutes withM , by (1.2).
There is thus an action ofO(3)×Σ on the configuration spaceC = L0(N,3) leaving the potential

energy invariant:

(A,σ) ·Q = AQσT . (1.3)

It is simple to see that the induced action ofO(3)× Σ on P = T∗L0(N,3) is a symmetry of the
Hamiltonian system, forP transforms in the same way asQ, so that

H((A,σ) · (P,Q)) = 1
2 tr

(
(APσT)M−1(σPTAT)

)
+V(AQσT) = H(P,Q),

where we have used the fact thatM andσ commute.
Note that the groupΣ of relabelling symmetries is not in general the same as the group that is often

thought of as beingthesymmetry group of a molecule, namely the symmetry group of its equilibrium
configuration. For example buckminsterfullerene,C60, hasΣ equal toS60, but its equilibrium only has
icosahedral symmetryIh. For the symmetry group of a given equilibrium configuration, which we
will denote byΓ, see §1.2 below.

As with any classical Hamiltonian system of the form ‘kinetic + potential’, the molecule model is
time reversible. That is,H is invariant under the involution

τ : (P,Q) 7→ (−P,Q).

We denote byZτ
2 the group generated byτ. Note that the action ofZτ

2 commutes with the action of any
groupG that is induced from an action onC . In particular it commutes with the action ofO(3)×Σ
described above. Thus, when time reversal is included, the symmetry group of the system becomes
O(3)×Σ×Zτ

2.
One of the important consequences of theSO(3)-symmetry is that angular momentum is con-

served. The usual expression for the angular momentum of a system of point masses,J = ∑i qi ∧ pi ,
here becomes

J(P,Q) = 1
2(PQT −QPT), (1.4)

where we consider angular momentum as a skew-symmetric matrix rather than a vector. In fact it
is naturally an element of the dual spaceso(3)∗, but we identifyµ∈ so(3)∗ with a skew symmetric
matrix by the usual formula:〈µ,ξ〉= tr(µTξ). Note thatJ(−P,Q) =−J(P,Q), so that the time-reversal
operator reverses angular momentum. For the orthogonal symmetriesJ(AP,AQ) = AJ(P,Q)AT . If we
identify the skew-symmetric matrices with vectors inR3 then this transformation becomes

J 7→ det(A)AJ. (1.5)

The angular momentum is also invariant under the action of the relabelling symmetry groupΣ on the
phase space,J(PσT ,QσT) = J(P,Q). ThusJ is equivariant with respect to the action ofO(3)×Σ×Zτ

2
on phase space defined above and the action on momentum spaceso(3)∗ ∼= R3 given by:

(A,σ).µ = det(A)Aµ (1.6)

τ.µ = −µ. (1.7)

ForA∈ SO(3), the action onµ is justµ 7→ Aµ, while for A∈ O(3)\SO(3) the action isµ 7→ −Aµ, and
−A is a rotation about the axis of reflection ofA.
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1.2 Configuration Symmetries

The symmetry group of a particular configurationQ0 of a molecule is theisotropy subgroupof Q0 for
the action ofO(3)×Σ on configuration space. In other words it is the subgroup,Γ(Q0), of O(3)×Σ
consisting of elements which mapQ0 to itself:

Γ(Q) = {(A,σ) ∈ O(3)×Σ | (A,σ) ·Q0 = Q0}.

Note that if Q1 is a configuration which can be obtained from a configurationQ0 by applying an
element ofO(3)× Σ, ie Q1 = (A,σ) ·Q0, then (A,σ) conjugatesthe isotropy subgroupΓ(Q0) to
Γ(Q1):

Γ(Q1) = (A,σ)Γ(Q0)(A,σ)−1.

Let Γ = Γ(Q0) be an isotropy subgroup. Away from collinear configurationsSO(3) acts freely.
This fact is essential in what follows, and so collinear configurations will not be considered in this
paper (see [18] for a brief discussion of them). Moreover, itis clear that a configuration is fixed by an
element ofO(3)\SO(3) if and only if it is planar, and if the planar configuration is not collinear then
the element ofO(3) in question is a reflection. Thus for non-planar configurations the projection,Γ2,
of Γ < O(3)×Σ into Σ is an isomorphism. For planar non-collinear configurationsΓ is isomorphic to
an extension ofΓ2 by the group of order 2. In both cases the groupΓ is finite.

Fixed points for the action of the pure relabelling groupΣ are not of interest, since they correspond
to points where 2 or more nuclei coincide. However, there areinteresting isotropy groups of mixed
type, whereσ ∈ Σ acts in the same way as someA∈ O(3). For example, in the methane molecule at
equilibrium (Figure 1), every permutation of the four hydrogen nuclei can be realised by an orthogonal
transformation. The same is true of the water molecule. But,as has already been pointed out, it is not
true of buckminsterfullerene.

The fact thatΣ acts freely on configurations without coincident nuclei implies that the isotropy
subgroup of such a configuration is isomorphic to its projection, Γ1, to O(3). Theaxes of rotation
and reflectionof the configuration are, respectively, the axes of rotation(1-dimensional fixed-point
spaces) of elementsA ∈ Γ1 ∩SO(3), and the axes perpendicular to the reflection planes forA ∈
Γ1 ∩ (O(3) \SO(3)). Note that in the latter case the axis of reflection ofA is the axis of rotation
of −A.

1.3 Examples

We now describe the relative equilibria obtained by applying Theorem 0.1 to a number of different
types of small molecule. In the introduction there is a similar discussion of the methane molecule.
The stabilities of these relative equilibria will be calculated in Section 3.

Example 1.1 Planar molecules
Consider a planar equilibrium configuration of a molecule, for example any equilibrium configuration
of a molecule with three atoms. Its symmetry group will contain the element ofO(3) corresponding
to reflection in that plane. If the atoms are all different andthe configuration is not collinear then
this will be the only symmetry. The groupsΓ andΓ1 are both isomorphic toZ2 andΓ2 is trivial.
The chemists’ notation for this symmetry groupΓ is Cs. We denote the reflection itself byrs. The
configuration has one axis of reflection, perpendicular to the plane containing the molecule.

Theorem 0.1 says that these molecules will have two familiesof bifurcating relative equilibria with
dynamical axes equal to the reflection axis, together with atleast four more families. In Section 3 (see
Corollary 3.2) we will show that generically these molecules have precisely six families and that their
dynamical axes are close to the principal axes of inertia of the equilibrium configuration. One of these
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axes coincides with the reflection axis, so in this case the dynamical axis remains equal to the inertia
axis.

Example 1.2 Non-collinear XY2 molecules
In addition to the reflectionrs described in the previous example, a configuration of a triatomic
molecule with two identical atoms can also be invariant under a reflection inO(3) through a plane
perpendicular to that containing the molecule, combined with permutation of the two identical nuclei.
We denote this reflection byrt and the permutation byπ. The composition of the two reflections gives
a rotation of order 2 about the axis defined by the intersection of the two reflection planes. This we
denote byρ. It follows that (ρ,π) is also a symmetry of the configuration. The symmetry groupΓ
consists of the identity together with the elements(rs, I),(rt ,π) and(ρ,π), whereI is the identity in
Σ. The nontrivial elements of the projectionΓ1 are rs, rt andρ. Both Γ andΓ1 are isomorphic to
Z2×Z2. The projectionΓ2 is isomorphic toZ2 and is generated byπ. The chemists’ notation for
this symmetry group isC2v. There are many molecules with equilibria with this symmetry, including
water,H2O.

This symmetry group has two axes of reflection (ℓ1 andℓ3 in Figure 2) and one of rotation (ℓ2),
all mutually perpendicular. Each of these gives two families of relative equilibria branching from the
equilibrium point. Two of the families are similar to those of the previous example - the dynamical
axis is the axis of the reflection in the plane containing the molecule.

We will see in §3.3 that generically, these are the only families of relative equilibria that branch
from the equilibrium solution.

Example 1.3 Equilateral X3 molecules
A configuration of a molecule with three identical atoms in which the three nuclei lie at the corners of
an equilateral triangle has the reflectional symmetryrs together with three further reflectional symme-
tries through planes perpendicular to the reflection plane of rs, each of which must be combined with
an appropriate permutation. Composing one of these three reflections withrs gives a rotation of order
2 which is also a symmetry when combined with a permutation. In addition there is an order 3 rota-
tion about an axis perpendicular to the reflection plane ofrs, again with corresponding permutation.
Together these give a symmetry groupΓ which is isomorphic toZ2×D3 (whereD3 is the dihedral
group of order 6) and is denoted by chemists byD3h. The projectionΓ2 is equal toΣ = S3, which is
isomorphic toD3. An example of a molecule with an equilibrium with this symmetry is the molecular
ion H+

3 .
This configuration has three reflectional axes (similar toℓ3 in Figure 2), three rotational axes

(similar to ℓ2) and an axis (similar toℓ1) which is both rotational (for the rotation of order 3) and
reflectional (forrs) . By Theorem 0.1, for low angular momentum anX3 molecule has 14 relative
equilibria rotating about these axes. Again, we will see in §3.5 that generically these are the only
relative equilibria for sufficiently small values of angular momentum. We will also discuss their
stabilities.

Example 1.4 Ammonia: NH3
The ammonia molecule consists of one nitrogen atom and threehydrogen atoms and has an equilib-
rium configuration in which the three hydrogens lie at the corners of an equilateral triangle and the
nitrogen lies on the axis of 3-fold rotational symmetry of the triangle, but not in the same plane. This
configuration is therefore non-planar and its symmetry group Γ, denotedC3v by chemists, is isomor-
phic to aD3 subgroup of the previous example. The configuration has one axis of (3-fold) rotational
symmetry and three axes of reflectional symmetry, and therefore 8 bifurcating relative equilibria ro-
tating about these axes.

We will see in Example 2.5 that these are not the only relativeequilibria of the ammonia molecule
near the equilibrium. There are at least a further 6 relativeequilibria which are not geometric, in the
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ℓ1

ℓ2

ℓ3

Figure 2: Axes for theXY2 molecule

sense that their precise location depends on the form of the inter-atomic bonding. In fact their axes
lie in the planes containing anN−H bond and the centre of mass. There is thus a total of 14 relative
equilibria near the equilibrium for the ammonia molecule.

The ammonia molecule is also interesting because it has two symmetrically related stable equilib-
ria, one with theN atom above theH3-plane, and one with it below. They are separated by a potential
barrier, and between the two stable equilibria there is a planar equilibrium configuration withZ2×D3

symmetry. This is the same symmetry group as in Example 1.3, though here the equilibrium is un-
stable. Each of the stable equilibria will have 14 relative equilibria nearby, as described above, and
furthermore the unstable equilibrium will also have 14 relative equilibria nearby, as described in the
previous example, since the existence arguments depend only on the symmetry and not on either the
number of atoms or the stability of the equilibrium. The potential barrier between the stable equilibria
is very low, accounting for the ‘inversion flip’ seen in ammonia. This means that the local bifurcation
analysis performed in this paper is truly local, and the existence of the other equilibria will interfere
with extending it to high energy or angular momentum. A more global analysis of ammonia would
therefore be useful.

There are other molecules with thisC3v symmetry, such asCHD3, where the potential barrier is
very high, and the relative equilibria found by our analysiscan be expected to persist to much higher
values of the angular momentum.

2 Existence and Stability of Relative Equilibria

Let P be a symplectic manifold with a symplectic action of a compact Lie groupG and aG-equivariant
momentum mapJ : P → g

∗. Let H be aG-invariant smooth Hamiltonian function defined onP . If G
acts freely (ie the isotropy subgroups are all trivial) thenthe reduced phase spacesPµ = J−1(µ)/Gµ are
themselves symplectic manifolds and the relative equilibria of H in P are given by the critical points
of the induced functionsHµ on thePµ. In [12] it was shown that, near a non-degenerate equilibrium
point p of H with J(p) = 0, the critical points ofHµ correspond bijectively to those of a function
defined on the coadjoint orbitG.µ.

Essentially the same technique will be used in this paper to find the relative equilibria of molecules.
Of course the action ofG = O(3)× Σ on P described in § 1.1 is not free. However, away from
collinear configurations of molecules, the action ofSO(3) is free and we can reduce by it as in [12].
The new ingredient in this paper is that we then consider the action of the (finite) quotient group
(O(3)×Σ)/SO(3) ∼= Z2×Σ on the reduced spaces.
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We also incorporate time reversal symmetry, restricting, for simplicity, to the case whenP = T∗C

is a cotangent bundle. In this setting, the reduction procedure can be made more explicit than in the
general case. It is also global, as described in [11], thoughthe results in this paper are purely local.
In this section we will work in the general setting of a cotangent action of a compact Lie groupG
on P for which the connected component containing the identity,denotedG0, acts freely. In the next
subsection we state our main existence theorem for relativeequilibria of Hamiltonians which are also
invariant under the time reversal operatorτ(p,q) = (−p,q). We will useĜ to denote the product
G×Zτ

2.

2.1 An Existence Theorem

Let g denote the Lie algebra ofG andG0. The momentum mapJ : P = T∗C → g
∗ is given by

Jξ(p,q) = 〈J(p,q),ξ〉 =
〈
p,Xξ(q)

〉
, (2.1)

whereξ ∈ g andXξ is the vector field corresponding to the action ofξ on C . The angular momentum
(1.4) is a special case. A straightforward calculation shows that this commutes with the action ofG
on P and the coadjoint action ong∗. It also commutes with the action of the time reversal operator τ
on P given byτ.(p,q) = (−p,q) and its action ong∗ by −I .

SinceG0 is acting freely, the orbit spaceP/G0 is a smooth manifold and the momentum map
(2.1) is a submersionP → g

∗. We denote theG0-coadjoint orbits byOµ = G0.µ. The equivariance
of the momentum map implies that there is a well-definedorbit momentum mapj : P/G0 −→ g

∗/G0,
making the following diagram commute,

P
J−→ g

∗

↓ ↓
P/G0

j−→ g
∗/G0.

That is,j is defined onP/G0 by j(G0.x) = G0.J(x) = OJ(x). The components of the mapj are Casimirs
for the natural Poisson structure on the orbit space. The reduced spacesPµ are, by definition, the fibres
of j .

Up to now, we have understood a relative equilibrium to be a trajectory of the dynamics that lies
in a group orbit, and any such trajectory has a well-defined momentumµ. Since we are now working
in the orbit spaceP/G0, it is more natural to take a relative equilibrium to be aG0-orbit of such
trajectories – or equivalently, an invariantG0-orbit (as in [12]). The momentum of such a relative
equilibrium is now a group orbitOµ.

As we have only reduced by theG0 action, and not by the full̂G-action, there is still an action of
the finite groupĜ/G0 remaining onP/G0. The quotientĜ/G0 also acts ong∗/G0, and with respect
to these actions,j is equivariant. LetΠ denote the projection

Π : Ĝ−→ Ĝ/G0,

and letΠ(Ĝ)Oµ denote the isotropy subgroup ofOµ ∈ g
∗/G0. ThenΠ(Ĝ)Oµ acts onPµ. In the case

of molecules, whereG0 = SO(3), the orbit spaceg∗/G0 is a half line, and soΠ(Ĝ) acts trivially on
g
∗/G0, so thatΠ(Ĝ)Oµ = Π(Ĝ).

If H is aĜ-invariant Hamiltonian onP there is an induced̂G/G0-invariant function on the quotient
spaceP/G0 that we still denote byH. We denote the restriction of this function toPµ ⊂ P/G0 by Hµ.
This restriction isΠ(Ĝ)Oµ-invariant.
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Let x = (0,q) ∈ P be an equilibrium point ofH with isotropy subgroupΓ for the G action and
Γ̂ = Γ×Zτ

2 for theĜ action. ThenG0.x is a critical point ofH0 in P0 ⊂ P/G0. The group̂Γ acts on
P/G0 via its projectionΠ(Γ̂). SinceΓ̂∩G0 is trivial, Π(Γ̂) is isomorphic tôΓ. The group̂Γ also acts
on g

∗ by the restriction of thêG action and ong∗/G0 by the restriction of theΠ(Ĝ) action. LetΓ̂Oµ

denote the isotropy subgroup ofOµ ∈ g
∗/G0 for this latter action.

The following theorem is part of the main result of this paper(Theorem 2.7), but is stated here
as it is less technical, and already has several useful consequences. Recall that a critical pointx of a
function f is said to be non-degenerate if the second derivatived2f (x) is non-degenerate as a quadratic
form.

Theorem 2.1
Suppose that H0 has a non-degenerate critical point at G0.x ∈ P0. Then there exists a smootĥΓ-
invariant function h: g

∗ → R, such that for each µ the critical points of hµ = h
Oµ

are in 1-1 corre-

spondence with the relative equilibria of H with momentumOµ. Moreover this correspondence is
equivariant: ifν is a critical point of h with isotropy K< Γ̂, then the corresponding relative equilib-
rium also has isotropy group K.

We will see in Theorem 2.7 that the 1-1 correspondence is in fact given by a smooth embedding
δ : g∗ → P/G0 satisfyingj(δ(µ)) = Oµ, andh= H ◦δ. It seems likely that thêΓ-invariance ofh can be
used to give lower bounds for the number of bifurcating relative equilibria on each nearby momentum
level set, generalising the Lusternick-Schnirelman category bound given in [12].

Example 2.2 Molecules
For the application to molecules described in §1 we takeG = O(3)× Σ. ThenG0 = SO(3) and
g
∗ = so(3)∗ ∼= R3. The coadjoint orbitsOµ are the 2-spheres centred at the origin inR3. The quotient

spaceg∗/G0 is just a half-line and the action ofΠ(Ĝ) on it is trivial. HenceΠ(Ĝ)Oµ = Π(Ĝ) and

Γ̂Oµ = Π(Γ̂). In particular the functionshµ must be invariant under the action ofτ by −I on the
2-spheres and so are given by functions onOµ/Zτ

2
∼= RP2, the 2-dimensional real projective space.

The Lusternick-Schnirelman category ofRP2 is equal to 3 and so the quotient functions must have at
least 3 critical points and thehµ must have at least 6 critical points. By Theorem 2.1 these give the
6 families of relative equilibria claimed in Theorem 0.1. Ifone assumes that the equilibria ofhµ are
non-degenerate, then the Morse inequalities give the same result.

2.2 Symmetric Relative Equilibria

If Ĝy is the isotropy subgroup for thêG action onP at y thenΠ(Ĝy) is the isotropy subgroup for the
Π(Ĝ) action onP/G0 atG0.y. SinceG0 acts freely onP , Π(Ĝy) is isomorphic toĜy. If y2 = g.y1 for
someg ∈ Ĝ thenGy2 = gGy1g−1 andΠ(Gy2) = Π(g)Π(Gy1)Π(g)−1. So, if y1 andy2 belong to the
sameG orbit the isotropy subgroups ofG0.y1 andG0.y2 in P/G0 are conjugate inΠ(Ĝ).

In Theorem 2.1, ifν ∈ Oµ is a critical point ofhµ with isotropy subgroupK ⊂ Γ̂Oµ ⊂ Π(Ĝ) then
the corresponding relative equilibrium inP/G0 also has isotropy subgroupK and soΠ projects
the isotropy subgroups of points in the corresponding orbitG0.y isomorphically toK. The follow-
ing corollary of Theorem 2.1 predicts the existence of families of relative equilibria with particular
isotropy subgroups. We say that an isotropy subgroupK is maximalif it is not contained in any other
isotropy subgroup.

Corollary 2.3 With the same hypotheses as in Theorem 2.1, if K is an isotropysubgroup of the action
of Γ̂Oµ on Oµ then there must be at least one family of relative equilibriabifurcating from x with
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isotropy subgroups which project to a subgroup ofΓ̂Oµ containing K. If K is a maximal isotropy
subgroup then the isotropy subgroups project isomorphically to K.

Proof The fixed point set of the action ofK on Oµ, denoted Fix(K,Oµ), is a compact smooth mani-
fold and so the restriction ofhµ to it must have a critical point. By theprinciple of symmetric criticality
[14] this will also be a critical point ofhµ itself, and will have isotropy subgroup containingK. If K
is a maximal isotropy subgroup then the isotropy subgroup ofthe critical point is preciselyK. The
result now follows from Theorem 2.1 and the remarks above. 2

Example 2.4 Rotation and reflection axes of molecules
By Example 2.2 for molecules we have

Γ̂Oµ
∼= Γ̂ ∼= Γ×Zτ

2 ⊂ O(3)×Σ×Zτ
2.

The coadjoint orbitsOµ can be identified with the 2-spheres centred at the origin inso(3)∗ ∼= R3. The
groupΓ̂ acts on these by the restriction toΓ̂ of the projection ofO(3)×Σ×Zτ

2 to SO(3)×Zτ
2.

Each rotation and reflection axisℓ of the equilibrium configuration defines a subgroupKℓ of Γ̂
which fixes the corresponding axis inso(3)∗. For a rotation axis the groupKℓ contains the rotations
aboutℓ which map the equilibrium configuration to itself, up to permutations of identical nuclei. For
a reflection axisKℓ contains the corresponding reflection. Note that an axis canbe both a reflection
axis and a rotation axis, in which caseKℓ contains both types of elements. A rotation or reflection
axisℓ can also be fixed by a reflection in a plane which containsℓ. In this caseKℓ also contains the
composition of this reflection withτ.

These subgroupsKℓ are precisely the maximal isotropy subgroups for the actions of Γ̂ on the
Oµ. Each of them has a fixed point set consisting of two points andso hµ must have two critical
points with that isotropy subgroup. These two critical points are equivalent under theZτ

2-action. The
corresponding relative equilibria have isotropy subgroups which are conjugate toKℓ by rotations in
SO(3). Those with isotropy subgroup equal toKℓ correspond to the molecule rotating about the axis
ℓ. The conjugate groups are the isotropy subgroups of spatialrotations of these motions.

These remarks complete the proof of Theorem 0.1.

Example 2.5 Ammonia
As a particular example we consider the case of ammonia,NH3. By Example 1.4 the groupΓ is
isomorphic toD3. Its projection toO(3) contains the rotations by 2π/3 about one axis and 3 reflections
with axes perpendicular to the rotation axis. The action ofΓ onOµ

∼= S2 is by rotations, the ‘reflections’
in D3 acting by rotation byπ about the corresponding reflection axis. In additionτ acts by−I .

The combined action ofD3 × Zτ has 4 maximal isotropy subgroups, falling into 2 conjugacy
classes. The 3 corresponding to the reflection axes are isomorphic to Z2 and are generated by the
appropriate reflection.The isotropy subgroup corresponding to the rotation axis contains the rotations
by 2π/3 and also the reflections composed withτ. It is therefore isomorphic toD3. These 4 maximal
isotropy subgroups lead to 8 families of relative equilibria, as described above.

In addition to the maximal isotropy subgroups this action also has 3 further non-trivialsub-
maximal isotropy subgroups. Each of these is isomorphic toZ2 and is generated by a reflection
composed withτ. Their fixed point sets inso(3)∗ are planes perpendicular to the corresponding re-
flection axes. The three planes intersect along the 3-fold rotation axis. InOµ

∼= S2 these fixed point
sets become circles, each containing the two points fixed by the 3-fold rotations. The operatorτ maps
each of these circles to itself and so the restrictions to them of the functionshµ must have at least 4
critical points. Thus there must be at least two critical points with each of these sub-maximal isotropy
subgroups. These give at least another 3 pairs of families ofrelative equilibria.
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2.3 The Moncrief Decomposition

To prove Theorems 2.1 and 2.7 we first describe the local geometry of the reduction process by using
a well-known splitting of the tangent spaceTxP (sometimes called the Moncrief decomposition [11];
see also [13] for the more general setting away fromJ = 0). Forx = (0,q) ∈ P let

Wq := g.q ⊂ TqC ⊂ TxP

be the tangent space to the group orbit throughx. Let

S
∗
q := ann(Wq) ⊂ T∗

q C ⊂ TxP ,

where ann(W) is the annihilator ofW in the dual space. Using the kinetic energy metric (or any other
G-invariant Riemannian metric onC ), we put,

Sq := (Wq)
⊥ ⊂ TqC ⊂ TxP ,

Zq := ann(Sq) ⊂ T∗
q C ⊂ TxP .

We have explicitly identifiedT∗
q C with a subset ofTxP , which is allowed sinceT∗

q C ≃Tx(T∗
q C )⊂TxP .

The spaceSq is a slice to theG-action onC .
Note that the pairing ofT∗

q C with TqC identifiesS∗
q with the dual ofSq (hence the notation), and

Zq with the dual ofWq. Finally, define
Yq := Sq⊕S

∗
q . (2.2)

The spaceYq ⊂ TxP is called thesymplectic slicefor theG-action atx (denotedS by Marsden [11]).
Note also that since the Riemannian metric was assumed to beG-invariant, the spacesWq,S

∗
q ,Sq,Zq

areGq-invariant. We have an isomorphism ofGq-representations:

TxP ∼= Wq⊕Yq⊕Zq. (2.3)

The time reversal operatorτ fixesx = (0,q) and so also acts onTxP . With respect to the decom-
position given by (2.2) and (2.3), the action is

τ(w,s,σ,z) = (w,s,−σ,−z).

The symplectic form on this decomposition is given by

ω((w1,s1,σ1,z1), (w2,s2,σ2,z2)) = 〈z2,w1〉−〈z1,w2〉+ 〈σ2,s1〉−〈σ1,s2〉 .

Consequently (or by differentiating (2.1)), the linear part of the momentum map atx = (0,q) is given
by 〈

dJ(0,q)(w,s,σ,z),ξ
〉

:= ω(Xξ(0,q),(w,s,σ,z)) =
〈
z,Xξ(q)

〉
. (2.4)

The main properties of this decomposition ofTxP are given in the following proposition.

Proposition 2.6 For a free action of G0, we have the following isomorphisms of Gq×Zτ
2 representa-

tions

Wq ≃ g

Zq ≃ g
∗

Yq ≃ TqQ/g⊕ (TqQ/g)∗.

Here Gq acts ong by the adjoint representation and ong∗ by the coadjoint representation. The group
Zτ

2 acts on both spaces by−I. The linear part dJx of the momentum map at x= (0,q) provides the
isomorphism dJx : Zq

∼−→ g
∗.
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Proof The isomorphisms are immediate consequences of the definitions. For example, the first one
is provided byg →Wq, ξ 7→ Xξ(q); the fact that it is aGq×Zτ

2 isomorphism, is just the fact that the
G×Zτ

2-action is indeed an action. The second part follows immediately from (2.4). 2

We can use the Moncrief decomposition to give a local description of the reduced spacesPµ in a
neighbourhood ofx = (0,q). The isotropy subgroup of̂G at x is Γ̂ ∼= Γ×Zτ

2. SinceTx(G0.x) = Wq,
the orbit mapπ : P → P/G0 defines âΓ-equivariant isomorphism,

dπx : Yq⊕Zq
∼−→ Tπ(x)(P/G0).

Moreover the momentum map (2.1) is a submersionP → g
∗, so we can use thêG-invariant Rie-

mannian metric to identifyYq ⊂ ker(dJx) with a Γ̂-invariant submanifold ofJ−1(0) transverse to the
G0-orbit, which we also denoteYq. We can similarly identifyZq with a submanifold ofP transverse
to J−1(0), which is also denotedZq. Thenπ : Yq×Zq → P/G0 is a Γ̂-equivariant isomorphism onto
its image, a neighbourhood ofx. Moreover, the restriction ofJ to Zq is also an isomorphism onto its
image and we have,

j : Yq×g
∗ −→ g

∗/G0

(y, ν) 7→ Oν,

where we have usedJ to identifyZq with g
∗. Thus, in a neighbourhood of the pointx = (0,q),

Pµ = j−1(Oµ) ∼=
{
(y,ν) ∈Yq×g

∗ | ν ∈ Oµ
}

= Yq×Oµ. (2.5)

This isomorphism is equivariant with respect to the naturalactions ofΓ̂µ, the isotropy subgoup atµ
for the action of̂Γ ong

∗. The symplectic sliceYq has a natural symplectic structure induced from that
on TxP , and the isomorphism betweenP/G0 andYq× g

∗ identifies the natural Poisson structure on
P/G0 with the product Poisson structure onYq×g

∗. For more details see [12, 18].
TheG-equivariant, time reversible flow generated by aĜ-invariant Hamiltonian functionH on P

induces a flow on each of the reduced spacesPµ which commutes with the action ofΠ(Gµ) and is
time reversible with respect to the action of elements ofΠ(Ĝµ)\Π(Gµ). This flow is generated by the
restriction toPµ of the function onP/G0 induced byH. We will denote thisreduced Hamiltonianby
Hµ. In the neighbourhood of a pointx = (0,q) identifying P/G0 with Yq× g

∗ enables us to identify
the induced function onP/G0 with a Γ̂ invariant function onYq× g

∗ and the reduced Hamiltonians
Hµ with the restrictions of this function to the symplectic manifolds Yq×Oµ. Explicit forms for the
reduced HamiltoniansHµ for molecular Hamiltonians are obtained in Section 3. The method used
there extends in a straightforward way to any Hamiltonian which is the sum of a non-degenerate
quadratic kinetic energy function and a potential energy function.

2.4 Main Theorem

Let H : P → R be aĜ = G×Zτ
2-invariant function, whereG is a compact Lie group acting onC and

by the lift of this action onP = T∗C andZτ
2 acts as above. Suppose thatG0, the connected component

of the identity ofG, acts freely onP in a neighbourhood of an orbitG0.x wherex = (0,q). From
§ 2.3, nearG0.x we have âΓ-equivariant isomorphismP/G0 ≃ Y⊕Z whereY is a symplectic slice
at x andZ ≃ g

∗. This isomorphism restricts to symplectic isomorphisms ofreduced phase spaces,
Pµ ≃Y×Oµ.

The dynamics onP/G0 are determined by theΠ(Ĝ)-invariant quotient functionH : P/G0 → R.
The relative equilibria with momentumµ are given by the critical points of the restrictionHµ = H

Pµ
.
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Using the identifications described in § 2.3 we can regardHG0 as aΓ̂-invariant function onY⊕g
∗ and

Hµ as aΓ̂µ-invariant function onY⊕Oµ.

Remark Although for simplicity we have restricted attention to thecotangent bundle setting, the
theorem below holds under the more general setting of an arbitrary symplectic manifold with a locally
free ‘pseudo-symplectic’ action of a compact Lie groupĜ (that is,g∗ω =±ω for eachg∈ Ĝ). This is
because the Moncrief decomposition is still valid, although it is not defined in the same manner, see
for example [12, 13] or [18].

Theorem 2.7 Suppose that H0 has a non-degenerate critical point at G0.x∈ P0. IdentifyingP/G0

with Y×g
∗, there is a smooth mapδ : g∗ → P/G0 of the formδ(µ) = (δ1(µ),µ) such that the condition

dyH(y,µ) = 0 (2.6)

is satisfied if and only if y= δ1(µ). Let h= H ◦δ : g
∗ → R. Then

1. ν ∈ Oµ is a critical point of hµ = h
Oµ

if and only ifδ(ν) ∈ P/G0 is a relative equilibrium for H,

and moreover every relative equilibrium is of this form. (This implies Theorem 2.1.)

2. There exists âΓ- equivariant diffeomorphismΦ of P/G0 of the form

Φ(y,µ) = (φ(y,µ),µ),

satisfying
H ◦Φ(y,µ) = Q(y)+h(µ),

where Q(y) = 1
2d2H0(0) is a non-degenerate quadratic form.

3. If the identification ofP/G0 with Y×g
∗ is such that d2H(0,0) splits (that is, all the mixed par-

tial derivatives vanish: ∂2H
∂yi∂µj

(0,0) = 0) thenδ1 is of order O(µ2) and the linear approximation

to Φ at (0,0) can be chosen to be the identity.

Here and elsewhere we writeO(µk) to meanO(‖µ‖k) for the vector variableµ.
Note that althoughΦ decouples the reduced Hamiltonian into a sum of independentfunctions onY

andOµ, it does not preserve the natural product symplectic structure onY×Oµ, so the corresponding
vector field is not decoupled.

Proof For the purposes of this proof, we writeH
µ

for H
Y×{µ}. This is not to be confused with

Hµ = H
T ×Oµ

.

First note that sincedH0(0) = 0 andQ := d2H0(0) is non-degenerate, it follows from the implicit
function theorem that for each sufficiently smallµ there is a unique pointδ1(µ) neary = 0 such that
dH

µ
(δ1(µ)) = 0. We putδ(µ) = (δ1(µ),µ).

The theorem follows essentially from the equivariant splitting lemma, or equivariant parametrized
Morse lemma. Forµ near 0, we have a functionH

µ
with a non-degenerate critical point aty =

δ1(µ), so by the equivariant Morse lemma, there is an equivariant diffeomorphismy 7→ φµ(y) such
that H

µ
◦ φµ = Q+ const, whereconst is a constant depending onµ, and is just the value ofH

µ
at

δ(µ) = φµ(0). The point of the equivariant splitting lemma is that this procedure can be carried out
smoothly and equivariantly inµ. The constant depending onµ is also smooth, and is equal toh(µ).
Writing Φ(y,µ) = (φµ(y),µ) we have part (2) of the theorem.
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For part (3), ifd2H splits thenH is already in the desired form up to order 2, and so the linear part
of δ1 vanishes and the linear part ofΦ can be chosen equal to the identity.

For part (1), letν ∈ Oµ. The functionHµ = H
Y×Oµ

has a critical point at(y,ν) if and only if the

derivatives ofHµ with respect to they-variables and theOµ-variables vanish. The first condition is by
definition equivalent toy = δ1(ν), and the second is then equivalent toν being a critical point ofhµ,
as required. Indeed,

dhµ(ν) = d(Hµ◦δ)(ν) = dyHµ(δ(ν)).dδ1(ν)+dνHµ(δ(ν)),

and by definitiondyHµ vanishes atδ(ν). Since critical points ofHµ are relative equilibria forH with
momentumµ (or Oµ), the result is proved. 2

2.5 Stability of Relative Equilibria

In this subsection we relate the stability of a relative equilibrium near to the orbitG0.(0,q) with
momentumµ to the Morse type of the corresponding critical point of the functionhµ on the coadjoint
orbit Oµ.

Recall that a relative equilibrium withJ = µ is an equilibrium point of the flow onY×Oµ generated
by Hµ. A critical pointν0 of hµ corresponds to a relative equilibriumδ(ν0) = (δ1(ν0),ν0).

In practice the critical points of the functionshµ occur in smooth families bifurcating from 0 as
||µ|| increases. We therefore assume thatν0 = ν0(s) andµ = µ(s) are continuous curves ing∗ such
that||µ(s)|| = sandν0(s) ∈ Oµ(s) is a critical point ofhµ(s).

Recall thatQ = 1
2d2H0(0) (as in Theorem 2.7). The linearization near the equilbrium is thus

given byL0 = 2JY(0)Q. The following theorem relates the stability of nearby relative equilibria to the
stability of L0 and the type of critical point ofhµ at ν0. Recall also that an infinitesimally symplectic
matrixL is said to be:

• spectrally stableif all its eigenvalues are pure imaginary,

• linearly stableif it is spectrally stable and semisimple, and

• strongly stableif it lies in the interior of the set of linearly stable infinitesimally symplectic matrices.

In particularL0 = 2JY(0)Q is strongly stable ifQ is definite. If the Hamiltonian functionH is of the
“kinetic energy + potential energy” type then this is equivalent to the orbitG0.x of equilibrium points
being a nondegenerate critical orbit of local minima of the potential energy function. If the orbit is a
nondegenerate saddle or maximum thenL0 is unstable.

Theorem 2.8 The following statements hold forν0 = ν0(s) and µ= µ(s) when s is sufficiently small.

1. If Q is positive definite andν0 is a strict local minimum of hµ thenδ(ν0) is Liapounov stable.

2. If L0 is unstable thenδ(ν0) is linearly and nonlinearly unstable.

3. If L0 is strongly stable and the coadjoint orbits ing∗ are two dimensional thenδ(ν0) is

(a) strongly stable (elliptic) ifν0 is a nondegenerate local extremum of hµ;

(b) linearly and nonlinearly unstable (hyperbolic) ifν0 is a nondegenerate saddle point of hµ.
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Proof Recall that there exists a change of coordinatesΦ onY×g
∗ such thatHµ(Φ(y,ν)) = Q(y)+

hµ(ν). If Q is positive definite andν0 is a strict local minimum ofhµ then (0,ν0) is a strict local
minimum of Q(u) + hµ(ν). This property is preserved by the diffeomorphismΦ and soδ(ν0) is a
strict local minimum ofHµ. It must therefore be Liapounov stable. This proves1.

For the remaining statements we need to estimate the eigenvalues of the linearization of the vector
field atδ(ν0) generated byHµ. This satisfies

L(δ(ν0)) = J(δ(ν0))d
2Hµ(δ(ν0)) (2.7)

whereJ(δ(ν0)) is the Poisson structure onY×Oµ at (δ(ν0)). From § 2.3 this is the product structure

J(δ(ν0)) =

(
JY(δ1(ν0)) 0

0 Jµ(ν0)

)

whereJY is the Poisson structure onY given by its symplectic form andJµ is the restriction toOµ of
the natural Poisson structure ong

∗:

Jµ(ν0)ξ = ad∗ξν0. (2.8)

As s→ 0 we have

JY(δ1(ν0(s))) → JY(0); Jµ(ν0(s)) → 0

and

L(δ(ν0(s))) → L(0) = L0⊕0.

The nondegeneracy ofQ implies that the eigenvalues ofL0 are non zero. The eigenvalues ofL(δ(ν0(s)))
therefore form two distinct groups, those that are perturbations of eigenvalues ofL0 and those that are
perturbations of 0.

If L0 is unstable, then it has eigenvalues with non-zero real part, and hence so mustL(δ(ν0(s)))
for sufficiently smalls. This proves2.

If L0 is strongly stable then its eigenvalues all lie on the imaginary axis, as do the eigenvalues of
any small perturbation ofL0. It follows that the corresponding eigenvalues ofL(δ(ν0(s))) will remain
on the imaginary axis for all sufficiently smalls. To complete the proof of the theorem we need to
determine what happens to the eigenvalues that perturb from0.

The change of coordinatesΦ transformsd2Hµ(δ(ν0(s))) to 2Q⊕ d2hµ(s)(ν0(s)). If ν0(s) is a
nondegenerate critical point ofhµ(s) then 2Q⊕d2hµ(s)(ν0(s)) will be nondegenerate and hence so will
d2Hµ(s)(δ(ν0(s))). It follows that fors 6= 0 there will be no eigenvalues ofL(δ(ν0(s))) at 0. If the
coadjoint orbits are two dimensional there are only two possibilities, either the two eigenvalues ofL(0)
at 0 perturb to a real pair or to an imaginary pair. The first will happen if and only ifd2Hµ(δ(ν0(s)))
has a single negative eigenvalue while the second possibility occurs if it has either 0 or 2 negative
eigenvalues. The number of negative eigenvalues ofd2Hµ((δ(ν0(s))) is preserved by the coordinate
changeΦ and so is equal to the number of negative eigenvalues of 2Q⊕d2hµ(s)(ν0(s)). This is 1 if
ν0(s) is a nondegenerate saddle point and 2 if it is a nondegeneratemaximum and 0 if it is a non-
degenerate minimum. This completes the proof of3. 2

For the proof of Part3 of the Theorem it was necessary to restrict to cases (such asg
∗ = so(3)∗) for

which the coadjoint orbits are two dimensional. For higher dimensional cases the number of negative
eigenvalues ofd2Hµ(δ(ν0)) is not sufficient to determine whether the eigenvalues ofL(δ(ν0(s)))
which perturb from 0 remain on the imaginary axis or not.



RELATIVE EQUILIBRIA OF MOLECULES 19

3 Calculating Relative Equilibria

To calculate exactly how many families of relative equilibria bifurcate from an equilibrium, and to
determine their stabilities, we need to go beyond symmetry considerations and use an explicit form
for the Hamiltonian. The standard reduced Hamiltonian for molecules near non-collinear equilibria
was established by C. Eckart in 1935 [4]. We describe this in the next subsection, following very
closely the exposition of Sutcliffe [20] (though changing the notation somewhat). See also [1, 10].
Then we show how the splitting lemma can be applied to computethe Taylor series of the functionh
on momentum spaceso(3)∗. In the final subsections we apply this to a number of examples.

3.1 Reduction to the Eckart Hamiltonian

Consider a molecular equilibrium configurationQ0 ∈ C = L0(N,3). The kinetic energy is given by,

T = 1
2 tr(Q̇MQ̇T).

This defines anO(3)×Σ-invariant Riemannian metric onC , which atQ∈ C is given by,

〈
Q̂1,Q̂2

〉
Q

= tr(Q̂1MQ̂T
2 ), (3.1)

for Q̂1,Q̂2 ∈ TQC . The subscriptQ on the metric is redundant, but is kept to distinguish the metric
from other pairings. Using this metric, we choose the sliceS in C to theSO(3) orbit throughQ0 to
be the affine linear subspace ofC throughQ0 orthogonal toso(3).Q0. That is,

S :=
{

S∈ C | 〈ΩQ0,(S−Q0)〉Q0
= 0, ∀Ω ∈ so(3)

}
.

Choosing the slice to be orthogonal to the group orbit ensures that the Coriolis interaction matrixC
below vanishes at the equilibrium; this is called theEckart conditionin the molecular spectroscopy
literature. Note that since the metric isSO(3)-invariant, it follows that〈ΩQ0,Q0〉Q0

= 0, whence
0 ∈ S and S is a linear subspace ofC . Consequently, the definition ofS can be replaced by the
simpler expression,

S =
{

S∈ C | 〈ΩQ0,S〉Q0
= 0, ∀Ω ∈ so(3)

}
. (3.2)

By the slice theorem, any point inC can be decomposed as a product of matrices,

Q = AS, A∈ SO(3), S∈ S .

Any motionQ(t) has a corresponding decomposition, which differentiates to give

Q̇ = ȦS+AṠ = A(ΩS+ Ṡ)

whereΩ = A−1Ȧ. The kinetic energy is then given by,

T = 1
2 tr(ΩEΩT)+ 1

2 tr(ṠM ṠT)+ tr(ΛΩ),

where

E = SMST ,

Λ = 1
2(SM ṠT − ṠMST).
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Note that theinertia dyadicE is symmetric, whileΛ is skew-symmetric. Note also that, with the
choice of sliceS we have made, ifS= Q0 ∈ S thenΛ = 0 (for all Ṡ) by (3.2).

We now introduce coordinates onS by fixing a basis of matrices{S1, . . .Sn} and puttingS= ∑i siSi .
Let Ei j = SiMST

j and definen2 symmetric matricesEi j , n2 skew-symmetric matricesZi j and ann×n
matrixN = (Ni j ) by:

Ei j = 1
2(Ei j +E ji ),

Zi j = 1
2(Ei j −E ji ),

Ni j = trEi j .

These are all constant matrices, depending only on the choice of basis in the sliceS , and

E = ∑
i j

sisjEi j ,

Λ = ∑
i j

si ṡjZi j .

We will also find it more convenient to identify skew-symmetric matrices withR3 in the usual way.
If Ω is identified withω then we define matricesI andC by identifying 1

2(EΩ + ΩE) with Iω and
tr(ΛΩ) with ωTCṡ. ThenI is a symmetric 3×3 matrix, theinertia tensor, andC is a 3×n matrix
which gives theCoriolis interactionbetween the vibrational and rotational dynamics. Note thatI
depends quadratically ons, while C is linear and vanishes at the equilibrium configuration. In terms
of these coordinates the kinetic energy becomes

T = 1
2ωT Iω+ 1

2 ṡTNṡ+ωTCṡ. (3.3)

To put this into Hamiltonian form we introduce the momentum variablesµ andσ conjugate toω
ands, respectively. These can be expressed in terms of the other coordinates by:

µ = ∂T
∂ω = Iω+Cṡ

σ = ∂T
∂ṡ = Nṡ+CTω.

Eliminating ṡ from these equations gives

µ = K−1ω+π

where

K =
(
I −CN−1CT)−1

π = CN−1σ.

Substituting forω andṡ in equation (3.3) gives the Hamiltonian form for the kineticenergy

T = 1
2(µ−π)TK(µ−π)+ 1

2σTN−1σ. (3.4)

The full SO(3) reduced Hamiltonian is obtained from this by simply adding the potential energy
functionV(s), restricted to the sliceS :

H(µ,s,σ) = 1
2(µ−π)TK(µ−π)+ 1

2σTN−1σ+V(s). (3.5)

This is a function ofµ,sandσ, defined onso(3)∗×T∗S , and invariant under the action ofΓ̂ = Γ×Zτ
2.

It is known as the Eckart Hamiltonian [4].
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It follows from (1.5) that the angular momentumJ can be expressed as

J = Aµ,

(since det(A) = 1). Henceµ can be interpreted as the angular momentum of the molecule ina coordi-
nate system that rotates with the molecule.

3.2 Applying the Main Theorem

Next we must apply Theorem 2.7 to reduce the Hamiltonian (3.5) to a functionh on so(3)∗ only. For
simplicity we will assume throughout the rest of this section that the equilibrium configurationQ0 is a
nondegenerate local minimum of the restriction of the potential energy functionV to the sliceS . This
implies that the nondegeneracy hypothesis of Theorem 2.7 issatisfied and also that the unperturbed
linearizationL0 in Theorem 2.8 is strongly stable. In fact the bifurcation results remain unchanged
if Q0 is a nondegenerate saddle point ofV, but sinceL0 is then unstable all the bifurcating relative
equilibria will also be unstable.

We will be interested in the critical points ofh when restricted to small 2-spheres around the
origin, so we only need to compute its Taylor series to sufficiently high order. Sinceh is always
invariant under the time reversal operatorτ, acting by−I on so(3)∗, all terms of odd degree must
vanish. The following result gives general formulae for thefirst two non-zero terms, the quadratich2

and the quartich4. These turn out to be sufficient for some, though not all, of the examples considered
below.

Proposition 3.1

1. h2(µ) = 1
2µT I(0)−1µ;

2. h4(µ) = − 1
16V

−1
2 (µT I−1

s (0)µ,µT I−1
s (0)µ),

whereI(0) is the inertia tensor of the equilibrium configuration of themolecule,I−1
s (0) is the deriva-

tive with respect to s of the inverse inertia tensorI(s)−1 (regarded as a function onS ), evaluated at
the equilibrium configuration, V2 = 1

2d2V(Q0) is the quadratic approximation to the potential energy
function at the equilibrium configuration, and V−1

2 is the inverse matrix to V2.

To interpret the formula forh4, regardV−1
2 as a quadratic form onS∗, the dual to the slice, and

I−1
s (0) as a quadratic form onso(3)∗ which takes values inS∗. Note thatI−1

s (0) satisfies

I−1
s (0) = −I(0)−1I s(0)I(0)−1

where I s(0) is the derivative ofI(s) with respect tos at the equilibrium configuration; the entries
of I s(0) are calledinertia derivativesin the molecular spectroscopy literature. If we choose a basis
{S1, . . . ,Sn} for S , and writeV−1

2 as a matrixui j , and∂(I−1)/∂si = Kiab then

h4(µ1,µ2,µ3) = − 1
16 ∑

i, j,a,b,c,d

ui j KiabK jcdµaµbµcµd,

wherei, j run from 1 ton anda,b,c,d from 1 to 3.
It follows from the propositions thath2 depends only on the inertia tensorI at the equilibrium,

while h4 depends in addition on the harmonic force constants and the inertia derivatives.
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Proof Recall from Theorem 2.7 that the functionh and the reduced HamiltonianH are related by

h(µ) = H(δ1(µ),µ), (3.6)

whereδ1 satisfiesdyH(δ1(µ),µ) = 0. It will be convenient to writey= (s,σ) andδ1(µ) = (s(µ),σ(µ)).
For the Eckart Hamiltonian, it is clear thatd2

sµH(0,0,0) = 0 andd2
σµH(0,0,0) = 0, so thatδ1(µ) =

O(µ2), andδ1 is equivariant. In particular, theZτ
2 symmetry implies thats(µ) is even andσ(µ) is odd,

soσ(µ) = O(µ3).
To obtain the 2nd and 4th order parts ofh, we use (3.6) and the explicit form of the Eckart

Hamiltonian (3.5). We use subscripts to denote Taylor series coefficients; iefk is the orderk part in
the Taylor series off at the origin, where the order is defined in terms of its arguments. Then, to order
4 in µ,

h(µ) = 1
2µT (K0 +K1(s2(µ)))µ+s2(µ)TV2s2(µ)+O(µ6), (3.7)

where we have used the fact thatσ(µ) = O(µ3) and s(µ) = O(µ2) which imply that all the terms
involving σ areO(µ6), and we have representeds(µ) as a vector andV2 as a symmetric matrix. Note
thatK1(s) is the linear part ofK(s), which is precisely theI−1

s of the proposition.
From this Taylor series, we see immediately thath2(µ) = 1

2µTK0µ, as required in part (1).
For the 4th order part ofh, we need to finds2(µ), which can be found from the leading order part

of (2.6):

0 =
∂H
∂s

(s(µ),σ(µ),µ) = 1
2µTK1µ+2V2s2(µ)+O(µ4).

Consequently,

s2(µ) = −1
4

V−1
2 (µTK1µ), (3.8)

whereV−1
2 is considered as a linear mapS∗ → S . Substituting for this in (3.7) gives

h4(µ) =
1
2

µT(K1(s2(µ)))µ+s2(µ)TV2s2(µ)

= −1
8
(µTK1µ)TV−1

2 (µTK1µ)+
1
16

(µTK1µ)TV−1
2 (µTK1µ)

= − 1
16

(µTK1µ)TV−1
2 (µTK1µ),

as required. 2

The following results can be deduced from the form ofh2.

Corollary 3.2

1. If the equilibrium configuration Q0 has three distinct principal moments of inertia then there
are precisely six families of relative equilibria bifurcating from it. The relative equilibria have
dynamical axes that are aligned, at least approximately, with the principal axes of the equi-
librium configuration. Those corresponding to the principal axis with largest (resp. smallest)
moment of inertia are Liapounov stable (resp. linearly stable), while those corresponding to the
intermediate moment of inertia are linearly unstable.

2. If the equilibrium configuration Q0 is planar, the nearby relative equilibria with dynamical axes
perpendicular to the plane containing the equilibrium are Liapounov stable.
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Proof If I(0)−1 has three distinct eigenvaluesh2 has precisely six non-degenerate critical points
on each sphere round 0. These are at the points correspondingto the eigenvectors ofI(0)−1. The
maxima, saddle points and minima are given by the eigenvectors with the smallest, middle and largest
eigenvalues, respectively. On sufficently small spheres the functionh is a small perturbation ofh2 and
so will have nearby critical points. Part (1) now follows from Theorem 2.1 and Theorem 2.8.

For Part 2 we use the fact that the principle moment of inertiaof a planar body perpendicular to
the plane is the sum of the other two principle moments of inertia and so must be the largest. 2

Part (1) of this corollary states that if the molecule has little or no symmetry, and the three moments
of inertia are distinct, then for small values of angular momentum the molecule behaves like a rigid
body, and the relative equilibria and their stabilities depend only on the equilibrium shape. On the
other hand, this is not true for symmetric molecules as the examples below show.

3.3 Non-collinear XY2 molecules

In Example 1.2 we noted that a non-collinear equilibrium configuration of anXY2 molecule has three
mutually perpendicular symmetry axes, one of rotation and two of reflection. By Theorem 0.1 for each
of these there are two families of relative equilibria bifurcating from the equilibrium with dynamical
axes equal to the symmetry axis. These three axes are also thethree principal axes of the inertia tensor
of the equilibrium. So by Corollary 3.2 these will be the onlybifurcating relative equilibria, provided
the three moments of inertia are different. Note that the symmetry means that the dynamical axes of
the relative equilibria arepreciselythe principal axes of the inertia tensor in this case.

The stability properties of the relative equilibria are also determined by the moments of inertia.
In particular, by the second part of Corollary 3.2, the relative equilibria rotating about the reflection
axis perpendicular to the plane containing the equilibriumwill be stable. For the other two families
we need to compute the corresponding moments of inertia.

Let the distance between theX nucleus and one of theY nuclei at equilibrium beℓ and the angle
between theX−Y bonds be 2θ. Let the masses of theX andY nuclei bemX andmY, respectively. Put
M = mX +2mY andρ = mX/M . Let I1 denote the moment of inertia about the reflection axis lying in
the plane containing the equilibrium (ℓ3 in Figure 2) andI2 the moment of inertia about the rotation
axis (ℓ2 in Figure 2). Then

I1 = Mρ(1−ρ)ℓ2cos2 θ
I2 = M(1−ρ)ℓ2sin2 θ.

ThusI1 < I2 if and only if tan2 θ > ρ. In this case the relative equilibrium rotating about the reflection
axis is linearly (though not Liapounov) stable, and that rotating about the rotation axis is linearly
unstable. If tan2 θ < ρ these stability properties are reversed.

The bond angles for over 25XY2 molecules are listed in [8] and [9]. In all these cases it is
greater than 90o and so we can conclude that it is the relative equilibria withdynamical axes along
the reflection axis that are linearly stable, and those with dynamical axes along the rotation axis are
linearly unstable. However, there are also molecules withI1 > I2 such asH2D+, whereρ = 1/2 and
2θ = 60o (D is deuterium, withmD = 2mH ), and for these the stabilities are reversed.

3.4 Tetrahedral XY4 molecules

In the introduction we saw that (at least) three different types of relative equilibria bifurcate from a
tetrahedral equilibrium configuration of anXY4 molecule such as methane (CH4). Their dynamical
axes are, respectively, the three-fold rotation axes, the two-fold rotation axes and the reflection axes.
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In this subsection we will compute the quadratic and quarticterms of the functionh on so(3)∗ and
show that generically these determine the stabilities of the bifurcating relative equilibria and that no
other relative equilibria bifurcate.

The functionh on so(3)∗ is invariant under the induced action of bothΓ = Td
∼= S4 and the time-

reversingZτ
2. Together these give an action of the group of symmetries of the cube, denotedOh,

which is isomorphic to the standard action onR3. The three types of bifurcating relative equilibria
correspond to the three conjugacy classes of maximal isotropy subgroups for this action, namely the
isotropy subgroups conjugate toD3 (3-fold rotation axis denotedℓ3 in Figure 1),D4 (2-fold rotation
axis, ℓ1 in the figure) andD2 (reflection axis,ℓ2 in the figure). The restriction of anyOh-invariant
function to spheres centred on 0∈ so(3)∗ must have the points with these isotropy subgroups as
critical points. The following proposition says that generically there won’t be any others near 0, and
determines the generic possibilities for their stabilities.

Proposition 3.3

1. The quadratic and quartic terms of the Taylor series at0 of a generalOh-invariant function h
on so(3)∗ have the form

h2 = α
(
µ2

1 +µ2
2 +µ2

3

)

h4 = β
(
µ2

1 +µ2
2 +µ2

3

)2
+ γ

(
µ2

1µ2
2 +µ2

2µ2
3 +µ2

3µ2
1

)
.

2. If α,γ 6= 0 then the restriction of h to a small sphere centred at0 ∈ so(3)∗ has only critical
points with isotropy subgroups conjugate toD4, D3 andD2.

3. Supposeα > 0. If γ < 0 the critical points with isotropy subgroups conjugate toD3, D2 and
D4 are, respectively, minima, saddle points, and maxima. Ifγ > 0 the maxima and minima are
interchanged.

Proof Part (1) follows from the fact that every smooth function onR3 which is invariant under the
standard action ofOh is a smooth function of the polynomialsµ2

1 +µ2
2 +µ2

3, µ2
1µ2

2 +µ2
2µ2

3 +µ2
3µ2

1 and
µ2

1µ2
2µ2

3 (see for example [5, p. 48, Ex. 4.7]). Parts (2) and (3) are straightforward calculations. 2

It follows from this proposition and Theorem 2.8 that we should expect the relative equilibria
with dynamical axes equal to the reflection axis to be linearly unstable when they bifurcate from the
equilibrium. To determine the stabilities of the other two types we need to calculateγ in terms of the
physical parameters of the molecule.

Let the masses of theX nucleus andY nuclei bemX andmY, respectively. Letρ denote the mass
ratio mY/mX. Let ℓ denote the distance between theX nucleus and aY nucleus at equilibrium. The
inertia tensor of the equilibrium configuration is then

I(0) =
8
3

mYℓ2




1 0 0
0 1 0
0 0 1


 . (3.9)

We take the following symmetry-adapted basis for the sliceS :
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A




0 1 1 −1 −1
0 1 −1 1 −1
0 1 −1 −1 1




E




0 0 0 0 0
0 −1 1 −1 1
0 1 −1 −1 1


 1√

3




0 2 2 −2 −2
0 −1 1 −1 1
0 −1 1 1 −1




F1




0 0 0 0 0
0 1 −1 −1 1
0 1 −1 1 −1







0 1 −1 −1 1
0 0 0 0 0
0 1 1 −1 −1







0 1 −1 1 −1
0 1 1 −1 −1
0 0 0 0 0




F2




−4ρ 1 1 1 1
0 0 0 0 0
0 0 0 0 0







0 0 0 0 0
−4ρ 1 1 1 1

0 0 0 0 0







0 0 0 0 0
0 0 0 0 0

−4ρ 1 1 1 1


 .

We denote these matrices byS1, . . . ,S9 in the order they appear above. The columns of each matrix
give the coordinates of the 5 nuclei, withX in the first column. Note that the position ofX is deter-
mined by the positions of theY’s and the requirement that the centre of mass of the system isalways
at the origin. Each row of matrices defines a subspace ofS on whichΓ acts irreducibly. All the matri-
ces are orthogonal to each other and to the tangent space to the SO(3) orbit through the equilibrium
configuration with respect to the inner product (3.1). The labelsA, E, F1 andF2 are those commonly
used in the molecular spectroscopy literature. The representations ofΓ on the twoFi subspaces are
isomorphic. The subspacesA andE are uniquely defined, but theFi are not. We have chosenF1 to
be the subspace consisting of configurations in whichX remains stationary. The subspaceF2 is then
determined by the orthogonality requirement.

The tetrahedral equilibrium configuration is given by:

Q0 =
ℓ√
3

S1.

A general configuration of the molecule inS is defined by:

Q = Q(s) = Q0 +
9

∑
i=1

siSi .

To computeh4 (and henceγ) we need to findI s(0) and hence

I−1
s (0) = −I(0)−1I s(0)I(0)−1.

To do this we compute the inertia derivativesI i(0) (i = 1, . . . ,9) of I(s) in the directions given by
each of the matrices listed above in the basis forS . Explicitly these are given by:

I i(0) = tr(Ei) I −Ei

whereEi is the derivative ofE = SMST in the direction given by thei-th basis element ofS :

Ei = SiMQT
0 +Q0MST

i .
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With these formulae it is an easy computation (using MAPLE, for example) to obtain the derivatives

I−1
i (0) = −I(0)−1I i(0)I(0)−1.

These are the components of the linear mapI−1
s (0) from the tangent space toS at the equilibrium

point, which we identify withS itself, to the space of quadratic forms (or symmetric matrices) on
so(3)∗ ∼= R3. Using the coordinatesµ1,µ2,µ3 on so(3)∗ the calculations give:

µT I−1
1 (0)µ = −C

(
µ2

1 +µ2
2 +µ2

3

)

µT I−1
2 (0)µ =

C
2

(
µ2

3−µ2
2

)

µT I−1
3 (0)µ =

C

2
√

3

(
2µ2

1−µ2
2−µ2

3

)

µT I−1
4 (0)µ = Cµ2µ3

µT I−1
5 (0)µ = Cµ3µ1

µT I−1
6 (0)µ = Cµ1µ2

µT I−1
i (0)µ = 0 for i = 7,8,9

whereC = 3
√

3/(4mYℓ3). Note in particular that the subspaceF2 of S lies in the kernel ofI−1
s (0).

By Schur’s lemma the (symmetric) matrix ofV−1
2 =

(
1
2d2V(Q0)

)−1
, with respect to the basis of

S given above, will have the form:

V−1
2 =




u11

u22I2
u33I3 u34I3
u34I3 u44I3




whereIk is thek×k identity matrix and the missing entries are all 0. It followsfrom Proposition 3.1
that:

−16
C2 h4(µ) =

1
C2V−1

2

(
µT I−1

s (0)µ,µT I−1
s (0)µ

)

= u11
(
µ2

1 +µ2
2 +µ2

3

)2

+
u22

4

((
µ2

3−µ2
2

)2
+

1
3

(
2µ2

1−µ2
2−µ2

3

)2
)

+u33
(
µ2

2µ2
3 +µ2

3µ2
1 +µ2

1µ2
2

)

=
(

u11+
u22

3

)(
µ2

1 +µ2
2 +µ2

3

)2
+(u33−u22)

(
µ2

2µ2
3 +µ2

3µ2
1 +µ2

1µ2
2

)
.

Henceγ = (u22−u33)C2/16 and the sign of this determines the stability of the relative equilibria
which bifurcate from the equilibrium.

To obtain the values of the non-zero entriesui j in V−1
2 for specific molecules is not straight for-

ward. The methods of molecular spectroscopy determine the vibrational frequencies corresponding
to the 4 distinct eigenvalues ofV−1

2 . However this is not enough information to determine the 5 non-
zeroui j . This problem can be side-stepped by assuming a specific formfor the quadratic part of the
potential energy function which depends on 4 parameters or less, and then using the experimentally
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determined vibrational frequencies to estimate these. Seefor example the account given in [7]. As an
example we use thevalence force potentialgiven by:

V2 =
k
2

4

∑
i=1

r2
i +

kδ
2 ∑

i< j
δi j (3.10)

wherer i is the change in the distance between theX-nucleus and thei-th Y-nucleus, andδi j is the
change in the angle betweenXYi andXYj (see [7] page 181). A routine, though tedious, calculation
shows that in the basis given above forS the quadratic form corresponding toV2 is:

V2 =




v11

v22I2
v33I3 v34I3
v34I3 v44I3




where:

v11 = 12k

v22 = 24
kδ
ℓ2

v33 =
16
3

(
k+

kδ
ℓ2

)

v34 =
8
3

(1+4ρ)

(
k−2

kδ
ℓ2

)

v44 =
4
3

(1+4ρ)2
(

k+4
kδ
ℓ2

)
.

Inverting this gives

u22 =
ℓ2

24kδ

u33 =
ℓ2

48kδ
+

1
12k

and hence

γ =
C2

768

(
ℓ2

kδ
− 4

k

)
.

The values ofk andkδ/ℓ2 obtained by fitting the valence force potential (3.10) to spectroscopic data
from a number ofXY4 molecules (including methane) are listed in Table 46 of [7].In all casesγ is
positive and so we can predict that the bifurcating relativeequilibria with dynamical axes along the
2-fold rotation axes (seeℓ1 in Figure 1) will be Liapounov stable, those with dynamical axes along
the 3-fold rotation axes (ℓ3 in the figure) will be linearly stable, but typically Liapounov unstable,
while those with dynamical axes along the reflection axes (ℓ2 in the figure) will be linearly unstable
(hyperbolic).
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ℓ1

ℓ2

ℓ3

Figure 3: Representative axes for theX3 molecule
Note thatℓ1 is unique, while there are

3 of typeℓ2 and 3 of typeℓ3.

3.5 Equilateral X3 molecules

Consider a molecule made up of 3 identical nuclei and with an equilibrium configuration with the
nuclei at the vertices of an equilateral triangle. Examplesinclude ozone,O3, and the ionized molecule
H+

3 , which plays an important role in the chemistry of the interstellar medium and the atmospheres
of the giant planets [21]. For ozone the equilateral triangle equilibrium is unstable and the stable
equilibria are isosceles. However forH+

3 it is stable.
The symmetry group of the equilateral triangle configuration isD3×Z2, whereZ2 acts by reflect-

ing in the plane of the molecule. By Theorem 0.1 relative equilibria of three types bifurcate from the
equilibrium: rotations about the axis perpendicular to theplane of the molecule, rotations about axes
passing through one of the three nuclei, and rotations aboutaxes in the plane of the molecule which
are perpendicular to these. This third set of axes are axes ofreflection, where the reflection is in a
plane perpendicular to that of the molecule and passing through a vertex of the equilateral triangle.

If the equilibrium point is unstable then all the bifurcating relative equilibria will be unstable. If
it is stable then by Corollary 3.2(2) the relative equilibria with axes perpendicular to the plane of
the molecule will be Liapounov stable. Generically, one of the two remaining types will be linearly
stable and the other linearly unstable. In this section we show how to distinguish between the two
possibilities. We also show that generically these are the only relative equilibria that bifurcate. These
calculations turn out to involve computing a 6th order coefficient in the Taylor series ofh, and this de-
pends on a 3rd order coefficient in the Taylor series of the potential energy function, i.e. an anharmonic
force constant.

In this case the functionh on so(3)∗ will be invariant under the action ofD3 ×Z2 ×Zτ
2 given

by equations (1.6, 1.7). For this actionso(3)∗ splits into the direct sum of two invariant subspaces,
the two-dimensional space consisting of momentum values that lie in the plane of the molecule, and
the one-dimensional space perpendicular to this. The groupD3 ×Z2 is isomorphic toD6 and acts
on the two-dimensional subspace by the standard action ofD6 on the plane. The action on the one-
dimensional space is determined by the fact that the subgroup which acts trivially isZ6 ⊂ D6. As
usualZτ

2 acts onso(3)∗ by−I .
Every maximal isotropy subgroup of this action on the spheres centred at 0 is conjugate to one

of the three groups̃D6,Z
(rot)
2 ×Zπ◦τ

2 or Z(ref)
2 ×Zπ◦τ

2 defined as follows. The subgroup̃D6 consists
of the groupZ6 together with each of the remaining elements ofD6 composed withτ. This fixes the
momentum values perpendicular to the plane of the molecule.There are no other subgroups conjugate

to this one. The subgroupZ(rot)
2 is generated by rotating the molecule byπ about one of its two-fold
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rotation axes (labelledℓ2 in Figure 3). The subgroupZ(ref)
2 is generated by a reflection of the molecule

in one of the reflection planes perpendicular to the plane containing the molecule, with axisℓ1. The
group Zπ◦τ

2 is generated by rotating the molecule byπ about its three-fold rotation axis and then
applyingτ. These three order two subgroups ofD6×Zτ

2 are not conjugate to each other. Each of the

groupsZ(rot)
2 ×Zπ◦τ

2 andZ(ref)
2 ×Zπ◦τ

2 has two other subgroups conjugate to it. The fixed point sets
for each of these subgroups is a line in the plane of the molecule. Thus there are 7 maximal isotropy
subgroups altogether, each of which will have two fixed points on the spheres inso(3)∗.

Proposition 3.4

1. The quadratic, quartic and sextic terms in the Taylor series at0 of a generalD3 ×Z2 ×Zτ
2-

invariant function h onso(3)∗ have the form

h2 = α1(µ
2
1 +µ2

2)+α2µ2
3,

h4 = β1(µ
2
1 +µ2

2)
2 +β2(µ

2
1 +µ2

2)µ
2
3 +β3µ4

3,

h6 = γ(µ3
1−3µ1µ2

2)
2 +

3

∑
i=0

γi(µ
2
1 +µ2

2)
i(µ2

3)
3−i .

2. If α1 6= α2 and γ 6= 0 then the restriction of h to a small sphere centred at0 ∈ so(3)∗ has

precisely 14 critical points; they have isotropy subgroupsconjugate tõD6 (2), Z(rot)
2 ×Zπ◦τ

2 (6)

andZ(ref)
2 ×Zπ◦τ

2 (6).

3. If h is the split Hamiltonian of an X3-molecule thenα2 = 1
2α1 > 0, and the critical points

µ = (0,0,±1) with isotropy subgroups conjugate tõD6 are minima. Moreover, ifγ > 0 the

critical points in the orbit of(1,0,0) (with isotropy subgroups conjugate toZ(rot)
2 ×Zπ◦τ

2 ) are

maxima while those in the orbit of(0,1,0) (with isotropy subgroups conjugate toZ(ref)
2 ×Zπ◦τ

2 )
are saddle points; ifγ < 0 the maxima and saddles are interchanged.

Proof The first part is a straightforward invariant theory calculation (see eg [5]). Part (2) follows
from the discussion before the statement of the propositiontogether with a computation to verify that
there are no other critical points, and part (3) is a computation. 2

Part (3) of this proposition is used in conjunction with Theorem 2.8 to determine the stabilities of
the relative equilibria. We now consider theX3 molecule in general, and perform the computations
needed to determine the sign ofγ.

Let m be the mass of theX nuclei, andℓ the equilibrium bond length. The equilibrium configura-
tion is

Q0 = ℓ




1
2 −1

2 0

− 1
2
√

3
− 1

2
√

3
1√
3

0 0 0


 .

The equilibrium inertia tensor is then

I(0) =
mℓ2

2




1 0 0
0 1 0
0 0 2


 ,
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and it follows from Proposition 3.1(1) that

h2(µ) =
1

mℓ2 (2µ2
1 +2µ2

2 +µ2
3).

We take the following symmetry-adapted orthonormal basis for the sliceS (with respect to the
inner product (3.1), which in this case is equivalent to〈S,T〉 = tr(STT)):

A S1 =




1
2 −1

2 0

− 1
2
√

3
− 1

2
√

3
1√
3

0 0 0


 ,

E S2 =




1
2 −1

2 0
1

2
√

3
1

2
√

3
− 1√

3

0 0 0


 , S3 =




− 1
2
√

3
− 1

2
√

3
1√
3

1
2 −1

2 0

0 0 0


 .

The symmetry groupΓ = D3×Z2 acts trivially onA and by the standard 2-dimensional representation
of D3 and the trivial representation ofZ2 onE.

A general configuration is given by

Q = Q(s) = Q0 +
3

∑
i=1

siSi .

The inertia tensorI(s) can be computed easily, and its derivatives ats = 0 give rise to the three
quadratic formsI−1

i (0) = (K1)i = ∂K/∂si(0):

µT I−1
1 (0)µ = − 2

mℓ3 (2µ2
1 +2µ2

2 +µ2
3)

µT I−1
2 (0)µ =

4
mℓ3 (µ2

1−µ2
2)

µT I−1
3 (0)µ =

8
mℓ3 µ1µ2.

We wish to find an expression forγ in terms of the physical characteristics of the molecule, and in
particular of its potential energy function. SinceV is Γ-invariant, its third order Taylor series can be
written

V(s1,s2,s3) = As2
1 +B(s2

2 +s2
3)+Cs3

1 +Ds1(s
2
2 +s2

3)+E(s3
2−3s2s2

3)+O(s4). (3.11)

HereA,B are harmonic force constants, whileC,D,E are anharmonic force constants.
Recall from (3.8) that the quadratic part ofs(µ) satisfies

s2(µ) = −1
4

V−1
2 (µTK1µ),

(there should be no confusion arising from usings2 both as a coordinate in (3.11) and the quadratic
part of a function). Combining this with the expressions for(K1)i = I−1

i (0) above gives

s1,2(µ) =
1

Amℓ3 (µ2
1 +µ2

2 + 1
2µ2

3)

s2,2(µ) = − 1
Bmℓ3 (µ2

1−µ2
2)

s3,2(µ) = − 2
Bmℓ3 µ1µ2.
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wheresi,2 is the quadratic part ofsi . Substituting for this in (2.6) givess4(µ) andσ3(µ). The expres-
sions fors2,s4 andσ3 are then substituted in the expression forh. Finally, comparing with Proposi-
tion 3.4 shows thatγ is given by

γ =
1
6!

(
∂6h

∂µ6
1

− ∂6h

∂µ6
2

)
.

All these computations are quite lengthy, and can most easily be performed with the aid of a computer
package (again, we use MAPLE). The final result is

γ =
197E

3m3ℓ9B3 ,

whereB,E are the force constants defined in (3.11). For a stable equilibriumB > 0 and so the sign of
γ coincides with that ofE.

As an example consider a system of three identical point masses coupled by three identicallinear
springs with spring constantk > 0, and equilibrium lengthℓ. Then expressing the extensions of the
three springs in terms of the slice coordinatess1,s2,s3, gives

γ = −9k
4ℓ

.

It follows from Proposition 3.4 and Theorem 2.8 that the rotation about an axis passing through one
of the point masses is linearly unstable (axisℓ2 in Figure 3), while rotation about the orthogonal one
(axisℓ3) is linearly stable, and indeed strongly stable.

To apply these calculations to theH+
3 molecule, we need to know the potential energy function.

The Taylor series to order 7 of this function at the equilibrium has been estimated from spectroscopic
data in [2]. The coordinates they use are not the same as ours,and in our coordinates, their coefficients
become (cf. (3.11))

A = 225291, B = 146892,

C = −234030, D = −389483, E = −104648.

In particular,E < 0 and consequently so isγ. It follows that of the two horizontal axes, the one
through a nucleus (axisℓ2 in Figure 3) is linearly unstable (hyperbolic) while the other is strongly
stable (elliptic), precisely as for the linear spring model.

The world of molecules is very rich, and one would expect thatthere is anX3 molecule where the
stabilities differ from those of the linear spring model, but we do not know of such an example.
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