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Abstract

A two-parameter unfolding is considered of single-pulsed homoclinic orbits to an
equilibrium with two real and two zero eigenvalues in fourth-order reversible dy-
namical systems. One parameter controls the linearisation, with a transition oc-
curring between a saddle-centre and a hyperbolic equilibrium. In the saddle-centre
region, the homoclinic orbit is of codimension-one, which is controlled by the second
generic parameter, whereas when the equilibrium is hyperbolic the homoclinic orbit
is structurally stable. A geometric approach reveals the homoclinic orbits to the
saddle to be generically destroyed either by developing an algebraically decaying
tail or through a fold, depending on the sign of the perturbation of the second pa-
rameter. Special cases of different actions of Z2-symmetry are considered, as is the
case of the system being Hamiltonian. Application of these results is considered to
the transition between embedded solitons (corresponding to the codimension-one
homoclinic orbits) and gap solitons (the structurally stable ones) in nonlinear wave
systems. The theory is shown to match numerical experiments on two models arising
in nonlinear optics and on a form of 5th-order Korteweg de Vries equation.
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1 Introduction

1.1 Overview

There has been much interest in recent years in the existence of localised
coherent structures in nonlinear media, especially in optics. A particularly
important class of localised structure are solitary waves, or “solitons” to give
them their physical name (although we do not assume complete integrability
here). In situations governed by higher-order or multi-component partial dif-
ferential equation (PDE) models in 1+1 dimensions, the spectrum of linearised
waves generally has at least two branches. If these branches do not fill out the
entire possible spectrum of wave frequencies, then one has the possibility of a
gap in the linear spectrum where exponentially localised solutions can exist,
so called gap solitons [12]. Such solutions can be linearly stable solutions of
the PDE in that they are attractors for a range of initial data. They are also
typically structurally stable, in that they exist for a range of frequency and
other parameter values.

In contrast, an embedded soliton (ES) is a solitary wave which exists despite
having its internal frequency in resonance with linear waves. Specifically, they
occur in a two-component model when the dispersion relation has only one
branch. In contrast to gap solitons, embedded solitons are not structurally
stable in that they exist as codimension-one solutions, i.e., at discrete values
of the frequency [34,11]. In these parameter ranges quasi-solitons (or “gen-
eralized solitary waves” [1]) in the form of solitary waves with non-decaying
periodic tails are generic. However, at some special values of the internal fre-
quency, the amplitude of the tail may exactly vanish, giving rise to an isolated
soliton embedded into the continuous spectrum. Another interesting feature
of ESs is that they may at best be only linearly neutrally stable, being sub-
ject to a weak one-sided algebraic instability, see e.g. [34,28]. That is, if one
makes an energy increasing perturbation then via the shedding of radiation,
the initial condition relaxes algebraically back to the solitary wave. In contrast,
energy decreasing perturbations cause the solitary wave to decay algebraically
away. The existence of embedded solitons has been established in a number
of physical models including generalised 5th-order Korteweg-de Vries (KdV)
equations [20,4,6,33], coupled KdV equations [17], in nonlinear Schrödinger
(NLS) equations with higher-order derivatives [3,16] and in various coupled
NLS-type equations arising in nonlinear optics [34,10,8].

Soliton solutions in each of these example PDEs reduce, via a travelling-wave
or steady-state reduction to homoclinic orbits of ordinary differential equa-
tions (ODEs). These ODEs typically have the structure of being fourth-order,
reversible and Hamiltonian. The parameter region that supports embedded
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solitons corresponds to when the linearisation of the origin (the trivial fixed
point) in such an ODE system is a saddle-centre. That is, after diagonalising
the system, one two-dimensional component gives rise to imaginary eigenval-
ues ±iω (corresponding to a continuous branch in the linear spectrum of the
PDE system), and the other to real eigenvalues ±λ (corresponding to a gap
in the linear spectrum). In contrast, the gap soliton parameter region is where
the eigenvalues of the origin are purely real ±λ1, ±λ2.

Both single-humped (1-pulse) and multi-humped (N -pulse) embedded solitons
have been discovered. General theories explain how the multi-pulses accumu-
late on the parameter values at which the 1-pulses exist [27,23]. This paper
concerns only the single humped variety, since to date all non-fundamental em-
bedded solitons have been found to be (exponentially) unstable as solutions
of the underlying PDEs, see e.g. [11,35].

The key question we wish to address is what happens as we trace a path of
embedded solitons up to a parameter value ω = 0 at which it passes over into
being a gap soliton. We shall not here consider the question of the stability of
the solitary waves undergoing this process, merely how can a codimension-one
object cross a boundary and become structurally stable? Or from the point
of view of the gap solitons, how does a 1-parameter family of solitons become
degenerate as it transforms into an isolated branch of embedded solitons? We
shall study this question using dynamical systems theory applied to reversible
systems.

The rest of this section introduces the mathematical setting. Section 2 then
contains the main part of the paper, the presentation of the geometric ap-
proach that leads to an unfolding of the degenerate codimension-two situation
at the heart of this paper. Section 3 goes on to analyse systems which ad-
ditionally have a reflection symmetry, such as often arises in NLS systems.
In Section 4 we consider the important class of systems that are additionally
Hamiltonian and show that in this case the previously obtained results are
valid for symmetric solutions. Finally, Section 5 performs numerical computa-
tions on three example systems that have been previously shown to support
the embedded-soliton to gap-soliton transition, and reveals excellent agree-
ment with the preceding theory.

1.2 The mathematical setting

We consider four-dimensional ODEs

ẋ = f(x, λ), x ∈ R4, λ ∈ Rl (1)

and assume that
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(H1) There exists a (linear) involution R : R4 → R4 such that

f(Rx, λ) + Rf(x, λ) = 0, ∀x, λ.

Moreover with Fix (R) := {x : Rx = x} we have dim(Fix (R)) = 2.

So, we are concerned with reversible systems. A fundamental characteristic of
such systems is that with x(t) also Rx(−t) is a solution. If x(t) = Rx(−t), that
is, if for the corresponding orbit X(t) := {x(t) : t ∈ R} we have RX = X then
we call the solution or the orbit symmetric. As general references concerning
the theory of reversible systems we refer to [5,13,31].

Turning to equilibria of (1) we assume that the origin is an equilibrium of (1)
which is non-hyperbolic for λ = 0, that is

(H2) f(0, λ) = 0 ∀λ, and σ(D1f(0, 0)) = {0} ∪ {±µ} with 0 being a
non-semisimple eigenvalue and µ ∈ R+.

According to (H2) the origin is a symmetric equilibrium of (1). In particular,
the linearisation D1f(0, λ) is a reversible matrix and thus if µ is an eigenvalue
then so is −µ. This observation shows that assumption (H2) is generically met
in one-parameter families of reversible ODEs.

Our final assumption concerns the existence of a homoclinic orbit Γ.

(H3) At λ = 0 equation (1) possesses an orbit Γ = {γ(t) : t ∈ R} ho-
moclinic to 0, i.e. γ(t) → 0 as t → ±∞. Furthermore, RΓ = Γ and
choosing α such that 0 < α < µ we have ||γ(t)||eαt → 0 as t →∞.

The last part of (H3) merely ensures that Γ is contained in the intersection
of the stable and unstable manifold of 0. Homoclinic orbits with such an
exponential bound will play a distinguished role in the forthcoming analysis
and we will call them fast decaying. We study bifurcations of homoclinic orbits
from the primary orbit Γ. Thereby we concentrate on the existence of one-
homoclinic orbits (both fast and slowly decaying) to the origin, that is orbits
which are contained in a tubular neighbourhood of Γ and make exactly one
winding.

The main idea of our analysis is the following. Using the Centre Manifold The-
orem [18] we can describe the local bifurcation of the equilibrium in a family
of reversible vector fields on the “centre manifolds” W c

λ. Points of intersection

of the corresponding “centre-stable” and “centre-unstable manifolds” W
cs(cu)
λ

then correspond to homoclinic orbits to W c
λ. (Using these notions for the

manifolds is a slight abuse of language; see Section 2.1 for their construction.)
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Precise information about the asymptotic behaviour of the corresponding ho-
moclinic orbits is obtained by using the invariant foliation of W cs

λ and per-
forming a projection along stable fibres. In this way we derive a bifurcation
diagram for one-homoclinic orbits to the origin.

The next part of the analysis concerns systems of equations which are ad-
ditionally Z2-symmetric. Depending on the action of the symmetry on the
homoclinic orbit Γ and on the centre manifold we have to distinguish sev-
eral bifurcation scenarios. However, most of the results can immediately be
derived from the preceding analysis when no Z2-symmetry was present. We
finally turn to systems being both reversible and Hamiltonian and discuss the
bifurcation of symmetric orbits from Γ.

In the present paper we have chosen to perform an analysis that consists of
purely geometrical considerations. We remark that there exists a supplemen-
tary functional-analytic approach which is based on Lin’s method, [26,29].
This method was originally developed for the treatment of connecting orbits
between hyperbolic equilibria of ODEs. A generalization to the case of homo-
clinic orbits to non-hyperbolic equilibria can be found in [21,32]. Using this
technique one can derive bifurcation equations for fast decaying homoclinic
orbits and for the intersection of W cs

λ ∩W cu
λ .

2 Bifurcation of one-homoclinic orbits in the general case

2.1 Bifurcation of the equilibrium

Let us start by describing the bifurcation of 0 in a suitable way. For this
purpose we consider the extended system

ẋ = f(x, λ)

λ̇ = 0

with an equilibrium (x, λ) = (0, 0) possessing an l+2-dimensional centre man-
ifold Wc and l+3-dimensional centre-(un)stable manifolds Wcs(cu), because of
(H2). Each of these manifolds is foliated into {λ = const.}-slices which we will

denote by W c
λ and W

cs(cu)
λ , respectively. The manifolds are not unique in gen-

eral and in accordance with the reversibility we can choose W cs
λ = RW cu

λ and
set W c

λ = W cs
λ ∩W cu

λ . By the Centre Manifold Theorem, see [18,19], and since
RW c

λ = W c
λ we can thus follow the evolution of small bifurcating solutions of

(1) in a family of reversible vector fields on W c
λ. We note that we can extend

the local manifolds W
cs(cu)
λ along the orbit Γ to derive global centre-(un)stable
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manifolds. We will denote these global manifolds by the same symbols.

Since dim(W c
λ) = 2, i.e. we deal with planar vector fields, the equilibrium

is completely described by its normal form, see [15,25]. Introducing (y1, y2)-
coordinates in W c

λ the involution R can be assumed to act as R : (y1, y2) 7→
(y1,−y2) and a reversible normal form is given in [25] by

ẏ1 = y2

ẏ2 =
∑

k≥1 ak(λ)yk
1 .

Note that by (H2) we have a1(0) = 0 and considering the generic case a2(0) 6= 0
we can with no loss of generality assume that the normal form for our problem
reads

ẏ1 = y2

ẏ2 = λ1y1 + y2
1.

(2)

Being Hamiltonian the system (2) is easily analysed. We find the familiar
phase portrait of the reversible transcritical bifurcation, see Figure 1. The ori-
gin is a centre for λ1 < 0 and a saddle for λ1 > 0. In addition, for λ1 > 0 it is
connected to itself by a (small) homoclinic orbit Υ.

λ1 = 0 λ1 > 0λ1 < 0

Figure 1. Phase portrait for the normal form (2) of the reversible transcritical bi-
furcation in W c

λ. The ‘•’ denotes the equilibrium 0.

2.2 Detection of one-homoclinic orbits

In this central part of the paper we will investigate how homoclinic orbits to
the origin bifurcate from the primary orbit Γ. This will proceed in two steps.
First we introduce some cross-section Σ to Γ and study the intersection of
W cs

λ and W cu
λ in Σ. (Note that we refer to the global centre-stable and centre-

unstable manifold here.) In this way we compute homoclinic orbits to W c
λ. Of

course, W
cs(cu)
λ may intersect Σ many times . But since we are interested in one-

homoclinic solutions our analysis concerns only those pieces of the manifolds
that visit Σ for the first time. In a second step we analyse the asymptotic
behaviour of these homoclinic orbits in detail by performing a projection along
stable fibres. This method allows us to determine all homoclinic orbits to the
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W cu
λ ∩ Σ

W cs
λ ∩ Σ

Fix (R)

Dλ

Figure 2. Position of the traces of W
cs(cu)
λ in Σ under assumption (H4)

origin. Fast decaying homoclinic orbits will play a distinguished role here. A
discussion of their bifurcation reveals the problem to be of codimension two.

We first remark that since Γ is symmetric we have Γ ∩ Fix (R) 6= ∅. Thus, we
can choose γ(0) ∈ Fix (R) and we will introduce a cross-section Σ to Γ at γ(0)

Σ = γ(0) + Z,

where we can choose the space Z such that RZ = Z. This implies in particular
that Fix (R) ⊂ Z. The following transversality condition is crucial for our
analysis.

(H4) At γ(0) we have W cs
λ=0 t W cu

λ=0.

We claim that from (H4) we can gather all the information we need. First
note that by standard arguments the transverse intersection of the manifolds
will persist for λ sufficiently close to 0. Now, the traces of W cs

λ and W cu
λ

in Σ are both two-dimensional. Their transverse intersection will therefore
be a one-dimensional object, i.e. some curve Dλ in Σ. Furthermore, assump-
tion (H4) implies that the traces of both W cs

λ=0 and W cu
λ=0 intersect Fix (R)

transversally in Σ. Indeed, assuming this was not the case would amount to
(Tγ(0)W

cs
λ=0 ∩ Z) ⊂ Fix (R). But because of RW cs

λ = W cu
λ this would yield

Tγ(0)W
cs
λ=0 = Tγ(0)W

cu
λ=0 in contradiction to (H4). Repeating the arguments

above we see that both W cs
λ and W cu

λ intersect Fix (R) in Σ in some curve.
Hence, Dλ ⊂ Fix (R), see Figure 2 for an illustration. We formulate this result
as a first lemma.

Lemma 2.1 Under assumptions (H1)-(H4) equation (1) possesses a one-parameter
family of symmetric homoclinic orbits to the manifolds W c

λ for |λ| sufficiently
small. This family of orbits intersects Σ in a smooth curve Dλ ⊂ Fix (R).
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x

W c
λ

y

Mφt(y),λMy,λ

φt(x)

φt(y)

Figure 3. Invariance of the stable fibres: The orbit through x ∈ My,λ stays in the
fibre with base point φt(y) for all t ≥ 0.

Because of assumption (H4) the set of homoclinic orbits to W c
λ does not depend

on λ. But we are interested in homoclinic orbits to the origin. It thus remains
to find out which of the orbits in Lemma 2.1 are asymptotic to the origin.
Because of the symmetry of the orbits it suffices to study their behaviour as
t →∞. For this we make use of the invariant foliation of W cs

λ and perform a
projection along stable fibres. A distinguished role will be played by the stable
fibre of the origin, which is related to the existence of fast decaying homoclinic
orbits, that is, orbits which satisfy an exponential bound as in (H3). Dealing
with such orbits we find that our unfolding requires a second parameter.

Let us introduce the technique. We can think of W cs
λ as being foliated into sta-

ble fibres. That is, from each point y ∈ W c
λ there originates a one-dimensional

manifold My,λ ⊂ W c
λ such that

W cs
λ =

⋃

y∈W c
λ

My,λ.

It will be of importance for us that the fibres form an invariant foliation in
the following sense: Let φt(x) denote the solution of (1) which starts in x at
t = 0. Then we have for the fibres that

φt(My,λ) ⊂ Mφt(y),λ. (3)

Geometrically, (3) means that points in My,λ follow the trajectory of the base
point under the flow, see also Figure 3. Of particular interest will be the case
when the base point approaches the origin itself. In this case (3) implies that
all points in My,λ will do so, too.

We first deal with the stable fibre M0,λ of the origin. It is easy to see that a
fast decaying homoclinic orbit exists if and only if M0,λ intersects W cu

λ (or,
equivalently, if it intersects Fix (R)) in Σ. Indeed, the orbit is homoclinic to 0
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because of its symmetry established in Lemma 2.1. Furthermore, by (3) the
fibre M0,λ itself is invariant. Therefore, an orbit that is contained in the fibre
satisfies the exponential bound in (H3). In order to consider a generic situation
for the bifurcation of fast decaying orbits we impose a transversality condition
with regard to the stable fibre M0,λ. For this define

M0 :=
⋃

|λ| small

M0,λ, Wcu :=
⋃

|λ| small

W cu
λ .

(Note that Wcu is nothing but the extended version of the local manifold
introduced in Section 2.1.) We demand that

(H5) M0 t Wcu in γ(0) at λ = 0

Let us discuss the consequences of (H6). We can consider the intersection of
M0 and Wcu in Σ×Rl (recall that λ ∈ Rl in (1)). By counting dimensions one
easily sees that (H5) implies this intersection to be (l− 1)-dimensional. Thus,
we can consider (1) with parameters (λ1, λ2) ∈ R2. In a suitable unfolding fast
decaying homoclinic orbits then exist at a curve in parameter space. With no
loss of generality we can assume this curve to be the λ1-axis.

Lemma 2.2 Under assumption (H5) we can choose parameters (λ1, λ2) such
that the local bifurcation of the 0-equilibrium is described by (2) and such that
(1) possesses a fast decaying homoclinic orbit if and only if λ2 = 0.

Remark. The fibre M0,λ has a precise geometric meaning. For λ1 ≤ 0, where
0 is a non-hyperbolic equilibrium, it is the stable manifold of this equilibrium.
For λ1 > 0 it is the strong-stable manifold of 0. 2

In order to investigate whether additional homoclinic orbits to 0 exist we
project the curve Dλ along stable fibres from Σ to W c

λ. Since the fibres depend
smoothly on both their base point y ∈ W c

λ and on the parameter λ this
projection is a smooth map. It is furthermore injective, since the fibre M0,0

is just the homoclinic orbit Γ which intersects Σ transversally. Therefore, all
fibres My,λ will do the same for λ small. Thus, the image of Dλ under the
projection is some curve Cλ which intersects the origin for λ = 0. We impose
the following transversality condition upon this curve.

(H6) Cλ=0 t Fix (R)

So we demand that at λ = 0 the curve is not tangent to Fix (R). This is
essentially an assumption concerning the geometry within W cs

λ=0.

In consequence we obtain the bifurcation diagram in Figure 4. This diagram
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λ1

λ2

L

Figure 4. Bifurcation diagram for one-homoclinic orbits near Γ. The dashed line in
each small box shows the curve Cλ.

shows the local behaviour in W c
λ together with the curve Cλ in dependence of

the parameters. We recall that the parameter λ1 controls the local bifurcation
of 0. The parameter λ2 has been introduced to unfold the bifurcation of fast
decaying homoclinic orbits. Such orbits exist if Cλ intersects the origin. Hence,
λ2 controls the position of Cλ in W c

λ. Since the stable fibres depend smoothly
on λ and because of (H5), the curve Cλ moves linearly to lowest order with
respect to λ2.

Let us discuss the diagram. We first consider the situation for λ1 < 0. Here, 0
is a saddle-centre and we find that Cλ intersects the origin if and only if λ2 = 0.
As observed above this intersection corresponds to a fast decaying homoclinic
orbit. For λ2 6= 0 the curve Cλ only intersects periodic orbits near 0. Using
the invariance property (3) and the symmetry it is easy to see that each of
those intersection points yields a homoclinic orbit to a periodic orbit. However,
such orbits are not of particular interest to us. We conclude that for λ2 6= 0 no
homoclinic orbits to the origin exist. This result is also compatible with the
fact that symmetric homoclinic orbits to a saddle-centre are of codimension
one in the class of reversible systems.

For λ1 = 0 we find homoclinic orbits when λ2 ≤ 0. In fact, for λ2 = 0 this
is implied by assumption (H2), while for λ2 < 0 we see that Cλ intersects
the curve of points which are asymptotic to the origin within W c

λ as t → ∞.
Therefore the corresponding orbit which starts in Σ will do so as well by (3),
and moreover, being symmetric, it will approach R 0 = 0 as t → −∞. So, it
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is a homoclinic orbit, which in addition decays algebraically. An elementary
calculation for the normal form (2) shows that the corresponding solution will
eventually decay like 1/t2 for t → ±∞.

Let us now discuss the bifurcations when λ1 > 0. Here the origin is a real saddle
and for λ2 = 0 there exists a fast decaying homoclinic orbit to this saddle.
These orbits lie in the strong (un)stable manifold of 0 and one would expect
a reversible orbit-flip bifurcation when the parameters are varied. Indeed, we
find this in Figure 4. For λ2 < 0 the curve Cλ intersects the stable manifold of
0 (in W c

λ) which shows the existence of a slowly decaying homoclinic orbit. For
λ2 > 0 sufficiently small we actually find two points of intersection of Cλ with
the small homoclinic orbit Υ in W c

λ. (Note that this is a consequence of (H6).)
Therefore two slowly decaying homoclinic orbits to the origin exist. However,
a closer examination shows that the upper point of intersection corresponds
to an orbit which first follows Γ for some time, but when the orbit is close to
the centre manifold it does not approach the 0-equilibrium directly but runs
along Υ. We will therefore not view this orbit as a one-homoclinic orbit to
0 since it comprises a gluing between Γ and Υ. Doing so, we find agreement
with general results concerning the reversible orbit-flip bifurcation derived in
[30] which show that generically only a single one-homoclinic orbit exists.

Finally, another interesting bifurcation occurs when λ2 is increased further.
We find a curve L on which the two points of intersection of Cλ with Υ merge
and vanish. This scenario corresponds to a saddle-node bifurcation of sym-
metric homoclinic orbits as was analysed in [2,22]. Such a bifurcation occurs
when a homoclinic orbit becomes degenerate, i.e. when the tangent spaces of
the stable and unstable manifold of 0 have another common direction along
the orbit (in the four-dimensional case they thus agree). For λ2 large enough
there exists no homoclinic orbit to 0. Let us give some explanation concerning
the properties of the curve L: First of all we recall that the motion of C in
W c

λ is linear in λ2. On the other hand, it is an easy calculation using the nor-
mal form (2) that the size of the small homoclinic orbit Υ varies linear in λ1.
Therefore, we conclude that L is the graph of some function λ1 = aλ2 + o(λ2)
with a > 0, λ2 ≥ 0. We summarise the results in a theorem.

Theorem 2.3 Consider (1) under the assumptions (H1)-(H6) with param-
eters λ = (λ1, λ2) chosen in accordance with the normal form (2) and with
Lemma 2.2. Then fast decaying homoclinic orbits to 0 exist if and only if
λ2 = 0. For λ1 < 0 no other one-homoclinic orbits exist.

In the case λ1 = 0 we find one homoclinic orbit to the 0-equilibrium if λ2 ≤ 0
which is algebraically decaying for λ2 < 0.

For λ1 > 0, λ2 ≤ 0 we find one homoclinic orbit to the 0-equilibrium. For λ2 >
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0 there exist two homoclinic orbits which coalesce in a saddle-node bifurcation
on some curve L := {(λ2, λ1) : λ2 ≥ 0, λ1 = aλ2 + o(λ2)}, with some a > 0.

Remark. We have restricted the analysis to homoclinic orbits to the origin
merely because of the physical background we have in mind. Obviously, our
method can also be used for a classification of the other homoclinic orbits found
in Lemma 2.1. For example, using the invariance property (3) one immediately
sees that an intersection of Cλ with a periodic orbit in W c

λ corresponds to a
homoclinic orbits to this periodic orbit. As a consequence we see that when
λ1 < 0 and λ2 = 0 every periodic orbit in W c

λ is connected to itself by two
homoclinic orbits. For λ2 6= 0 there exists a critical amplitude A, depending
linearly on λ2, such that we only find homoclinic orbits to periodic orbits with
an amplitude greater than A. Similarly, one can obtain a complete description
of homoclinic orbits bifurcating from Γ. 2

3 Cases with Z2-symmetry

In this section we will consider the situation under the additional assumption
that (1) is Z2-symmetric with respect to some involution S (commuting with
R), that is we have

Sf(x, λ) = f(Sx, λ), ∀(x, λ). (4)

Since the composition Q := R ◦S gives another reversibility, this is equivalent
to considering systems that are reversible with respect to two involutions.
(This observation was formalised in the notion of a reversing symmetry group
in [25].) An immediate consequence from (4) is that Fix (S) is an invariant
subspace for (1). We will see that we have to distinguish several cases according
to the location of the subspace.

3.1 Odd symmetry

We will deal with (1) under (H1)-(H3) and assume additionally

(H7) f is odd-symmetric, that is f(x, λ) = −f(−x, λ) for all (x, λ).

Equivalently we could have required f to be reversible with respect to Q :=
−R, as well. We remark that since S = −id we have Fix (S) = {0}.

Assumption (H7) has consequences for the local bifurcation of the equilibrium
0. Now we have to consider systems (and therefore normal forms) in W c

λ that
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λ1 < 0 λ1 = 0 λ1 > 0

Figure 5. Phase portrait for the normal form (5) of the reversible pitchfork bifurca-
tion in W c

λ. The ‘•’ denotes the equilibrium at the origin.

λ1 = 0λ1 < 0 λ1 > 0

Figure 6. Phase portrait for the normal form (6) of the reversible pitchfork bifurca-
tion in W c

λ. The ‘•’ denotes the equilibrium 0.

are reversible with respect to R and −R. The corresponding general normal
form from [25] then reads

ẏ1 = y2

ẏ2 =
∑

k odd ak(λ)yk
1 ,

where we have again introduced (y1, y2)-coordinates in W c
λ. (Note that we

choose R : (y1, y2) → (y1,−y2).) By (H2) we also have a1(0) = 0 and this time
the generic situation is characterised by the assumption a3(0) 6= 0 which leads
to considering a reversible pitchfork bifurcation. Here we have to distinguish
two qualitatively different cases. For a3(0) > 0 the normal form for the problem
is given by

ẏ1 = y2

ẏ2 = λ1y1 + y3
1.

(5)

This corresponds to the so called ‘eye-case’ which leads to the emergence of
a small heteroclinic cycle for λ1 < 0. The phase portraits are presented in
Figure 5.

In the case a3(0) < 0 we deal with the normal form

ẏ1 = y2

ẏ2 = λ1y1 − y3
1.

(6)

This case is often referred to as the ‘figure-eight’ case since for λ1 > 0 we find
two homoclinic orbits Υ1,2 connecting the origin to itself, see Figure 6 for the
phase portraits.
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λ1

λ2

Figure 7. Bifurcation diagram for one-homoclinic orbits near Γ in case of the normal
form (5). The dashed line in each box shows the curve Cλ.

We can now proceed with the analysis of bifurcations from Γ as in Section 2.2.
But for that two things are important. First, (H7) implies that −Γ is another
fast decaying homoclinic orbit to the origin at λ = 0. Second, we again impose
(H4) which by symmetry also holds for points on −Γ. Thus, we can deal with
the orbit Γ alone and infer all results for −Γ using the Z2-symmetry of (1).

Exclusively considering Γ all the analysis of the last section can again be per-
formed. Lemma 2.1 thus shows the existence of a manifold of homoclinic orbits
to W c

λ of which all orbits are R-symmetric. Projecting along stable fibres in
this case we also get a curve Cλ for which the non-degeneracy condition (H6)
is assumed to hold. Doing so, we derive two bifurcation scenarios, depending
on which normal form describes the bifurcation of 0. The diagrams are given
in Figure 7 and 8. In the same manner as before we can turn the diagrams
into a theorem.

Theorem 3.1 Consider (1) under the assumptions (H1)-(H7) with param-
eters λ = (λ1, λ2) chosen in accordance with the normal form (5), (6) and
Lemma 2.2. Then fast decaying homoclinic orbits to the origin near Γ exist if
and only if λ2 = 0. For λ1 < 0 no other one-homoclinic orbits exist.

In case the normal form for the local bifurcation is given by (5) then there
exist additional homoclinic orbits for all λ1 ≥ 0, λ2 6= 0 which are algebraically
decaying when λ1 = 0.

When the local bifurcation is described by (6) then additional orbits only exist
for λ1 > 0. For |λ2| sufficiently small there exist two homoclinic orbits which
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λ2

λ1

L− L+

Figure 8. Bifurcation diagram for one-homoclinic orbits near Γ in case of the normal
form (6). The dashed line in each box shows the curve Cλ.

coalesce in a saddle-node bifurcation at some curve L = L+ ∪ L− given by
λ1 = aλ2

2 + o(λ2
2), with some a > 0.

By symmetry the assertions are also valid near −Γ.

Remark. For the figure-eight case we need again assumption (H6) to derive
the bifurcation diagram. Furthermore, for the normal form (6) the size of the
figure-eight depends quadratically on λ1. More precisely, let υ1,2 := (±υ, 0)
denote the two points of the figure-eight Υ1 ∪ Υ2 which have the largest re-
spectively smallest y1-component. Then we find that υ2 = 2λ1. This explains
the shape of the ‘saddle-node-curves’ L± in Figure 8. 2

3.2 Z2-symmetry with W c
λ ⊂ Fix (S)

We are now interested in the case when the fixed space of S is non-trivial.
That is we consider (1) under (H1)-(H3) and assume in addition that

(H8) There exists an involution S : R4 → R4 commuting with R and with
dim(Fix (S)) = 2, such that (4) is fulfilled.

As remarked before, the map Q := S ◦ R then induces another reversing
symmetry for (1). We remark that, within Fix (S), the involutions Q and R
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agree.

With regard to our setup two situations have to be distinguished, depending on
whether the symmetry affects the homoclinic orbit Γ or the local bifurcation
of the equilibrium x = 0. We first deal with the latter case. Denoting the
centre eigenspace of D1f(0, 0) by Ec let us assume that

(H9) Ec ⊂ Fix (S).

Under (H9) we can derive a bifurcation diagram for one-homoclinic orbits
near Γ in precisely the same manner as before. First, we see that within W c

λ ⊂
Fix (S) the vector field is reversible with respect to one involution. Therefore
the equilibrium 0 generically bifurcates in a transcritical bifurcation as in
Section 2 above. The corresponding normal form for the local bifurcation is
given by (2) and the local bifurcation diagram is as shown in Figure 1.

For the homoclinic orbit Γ assumption (H9) yields that QΓ 6= Γ, i.e. Γ is not
symmetric with respect to Q. Indeed, assuming that Γ was Q-symmetric we
would have γ(0) ∈ Fix (R) ∩ Fix (Q), i.e. γ(0) ∈ Fix (S). But this results in
Γ ⊂ Fix (S), which is forbidden by (H9). We therefore conclude that QΓ is a
second homoclinic orbit of (1).

Precisely as in Section 3.1 we can now consider each orbit separately and then
immediately apply the results of Section 2.2. Thus the bifurcation diagram for
one-homoclinic orbits in Figure 4 is valid for both Γ and QΓ. So, we obtain
the next theorem.

Corollary 3.2 Consider (1) under assumptions (H1)-(H6), (H8), and (H9).
Then QΓ is a second homoclinic orbit to 0 at λ = 0 and Theorem 2.3 applies
to both orbits Γ and QΓ.

Remark. A completely analogous result is valid when the local bifurcation
of x = 0 is described by the normal forms (5) or (6). This case is non-generic
in our general setup. It could, however, arise when we assume an additional
symmetry within the subspace Fix (S). Then the bifurcation of one-homoclinic
orbits from Γ is described by Theorem 3.1. 2

3.3 Z2-symmetry with Γ ⊂ Fix (S)

For the final case in this section we assume (H1)-(H3) and (H8) and in addi-
tion
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(H10) QΓ = Γ.

Assumption (H10) implies that γ(0) ∈ Fix (R) ∩ Fix (Q), i.e. γ(0) ∈ Fix (S).
So, by invariance of Fix (S) this means Γ ⊂ Fix (S). In particular, the stable
and unstable manifold of 0 are contained in Fix (S). Hence we conclude that
W c

λ ∩ Fix (S) = {0}. Within W c
λ we have to deal with vector fields that are

reversible with respect to two involutions. That means, we are in the same
situation as in Section 3.1, in that (5) or (6) give the suitable normal forms
for the local bifurcation.

Consider (1) reduced to the invariant subspace Fix (S). Then the system is
also reversible and since W c

λ∩Fix (S) = {0} we find that the origin is a hyper-
bolic equilibrium for the reduced system. Thus, Γ ⊂ Fix (S) is a symmetric
homoclinic orbit to a hyperbolic equilibrium. Therefore, the orbit is robust un-
der reversible perturbations. In each one of the other cases, however, we find
arbitrary small perturbations that destroy the fast decaying homoclinic orbit.
We therefore conclude that the above analysis can not apply to the present
scenario. In particular, no additional parameter is now required to control
the existence of fast decaying homoclinic orbits. In the present situation our
problem is of codimension one.

The main difference from the above cases is that under (H10) assumption (H4)
is impossible. This is proved in [32] where the case was considered in detail.
We only give a concise description of the results here and refer to that pa-
per for a detailed discussion involving an analytical approach based on Lin’s
method. It is shown in [32] that (H10) gives rise to additional symmetries for
W cs

λ and W cu
λ which imply that common directions in the tangent spaces of

these manifolds are not allowed to lie in Fix (S). We cite from [32]:

Lemma 3.3 Under (H10) the intersection of W cs
λ and W cu

λ is non-transverse,

and moreover W
cs(cu)
λ t Fix (R), W

cs(cu)
λ t Fix (Q).

From this lemma one can immediately conclude the existence of a manifold
of R-symmetric homoclinic orbits and a manifold of Q-symmetric homoclinic
orbits to W c

λ for all λ. A suitable non-degeneracy condition, see [32], excludes
the existence of other one-homoclinic orbits such that one obtains

Lemma 3.4 In a generic family of vector fields the intersection of W cs
λ and

W cu
λ in Σ consists of two curves Cλ ⊂ Fix (R) and Dλ ⊂ Fix (Q).

Again performing a projection along stable fibres we obtain two curves in W c
λ

for which we assume an equivalent condition to (H6) by
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λ1 < 0 λ1 = 0 λ1 > 0

Figure 9. Bifurcation diagram for one-homoclinic orbits near Γ ⊂ Fix (S) in case of
the normal form (5). The dashed lines show the curves Cλ, Dλ.

λ1 = 0λ1 < 0 λ1 > 0

Figure 10. Bifurcation diagram for one-homoclinic orbits near Γ ⊂ Fix (S) in case
of the normal form (6). The dashed lines show the curves Cλ, Dλ.

(H11) Cλ=0 t Fix (R), Dλ=0 t Fix (R).

One then finds the bifurcation diagrams in Figures 9 and 10. Note, that as-
sumption (H12) prevents any intersections of Cλ, Dλ with the local stable
manifold of 0 in W c

λ. We therefore obtain

Theorem 3.5 Consider (1) under (H1)-(H3), (H10), and (H11) with pa-
rameter λ ∈ R. Then for all λ there exists a fast decaying homoclinic or-
bit Γ ⊂ Fix (S). Generically, there are no other one-homoclinic orbits to the
origin.

Remark. The studies in [32] are more comprehensive in that they give a
complete description of bifurcating one-homoclinic orbits to the centre man-
ifolds W c

λ. In that paper particular emphasis is given to the case where the
local bifurcation is governed by the normal form (5). It is proved that the
local scenario is then accompanied by a similar global bifurcation, creating
two homoclinic orbits to the equilibria that emerge in the local bifurcation.
This has been termed a reversible homoclinic pitchfork bifurcation in [32]. But
as explained before, this bifurcation is not of concern for us here since we
concentrate on homoclinic orbits to the origin in the present paper. 2
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4 Reversible Hamiltonian systems

We now turn to the important class of systems that are both reversible and
Hamiltonian. As discussed in the beginning of the paper most of the physical
applications of our studies lead to an analysis of such equations (compare
also with the examples in Section 5 below). We will show that the previously
obtained results are in this case still valid for symmetric solutions although as
we shall see the basic transversality condition (H4) is not satisfied. The main
emphasis will be laid on the general case in Section 2, the implications for
systems with additional Z2-symmetry will be discussed only shortly.

So let us consider (1) under assumptions (H1)-(H3) and demand in addition
that

(H13) There exists a function H : R4 × R2 → R such that (1) can be
written as

ẋ = J · ∇H(x, λ), (7)

where

J =




0 I

−I 0




denotes the standard symplectic structure on R4.

A well-known property of (7) is that the Hamiltonian H is a first integral for
the equation, i.e. it is constant along orbits of the system. It is this conservative
character of the equation which is of relevance for the following analysis. We
also note that the reversibility of (7) is reflected by the fact that H ◦R = H.

Proceeding as usual we find that the local bifurcation of 0 in W c
λ is described by

the normal form (2). The determination of homoclinic orbits to W c
λ, however,

is difficult. Similar to the last section the property of (7) being Hamiltonian

imposes additional restrictions for W
cs(cu)
λ and does not allow our basic as-

sumption (H4) to be fulfilled. To see this note that the cross-section Σ is
smoothly foliated by level-sets Hh of the Hamiltonian H. Each of these in-
tersects the space Fix (R) transversally and with no loss of generality we can
assume them to be straightened out, i.e. Hh ⊂ TH0. (Here we assume that the
equilibrium is contained in the zero level set H0 of H.) In addition, Lemma 2.2
implies that for λ1 < 0, λ2 = 0 there exists a homoclinic orbit to the saddle-
centre 0. Let us consider the consequences. Reduced to the centre manifold
the Hamiltonian H has a local extremum, say minimum. If H(0) = 0 this
implies that all points in W cs(cu) take non-negative values of H which in turn
implies that the traces of W cs(cu) in Σ lie “on one side” of the trace of H0 in
Σ. This observation shows that the tangent spaces of both manifolds at γ(0)
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Hc

H0 = TW cs
λ

Fix (R)

W cs
λ

W cs
λ (Π)

W cu
λ (Π)

(a) (b)

Figure 11. Situation in Σ in the Hamiltonian case: For parameter values where a
homoclinic orbit to a saddle-centre equilibrium exists the trace of W cs

λ is tangent to
the zero level set H0 of the Hamiltonian and intersects Fix (R) transversally. (By
reversibility the same statement is valid for W cu

λ .) Panel (a) of the picture shows
a sketch of the intersection the stable and unstable manifold of a periodic orbit Π
in some level set Hc of H in Σ. Note that in addition to the intersection points in
Fix (R) these manifolds will generically intersect in two further points giving rise to
a pair of non-symmetric solutions as in (b).

are contained in the tangent space of H0; see [24] for a rigorous proof and
Figure 11 for an illustration. Clearly, the same relations must be found for
λ = 0 such that we obtain

Lemma 4.1 Consider (7) under (H1)-(H3). Then Tγ(0)W
cs
λ=0 = Tγ(0)W

cu
λ=0

and Tγ(0)W
cs
λ=0 t Fix (R).

Because of the non-transverse intersection of W cs
λ=0 and W cu

λ=0 we expect both
R-symmetric and non-symmetric solutions to bifurcate from Γ, compare again
with Figure 11. In the following we concentrate on the bifurcation of symmetric
orbits. Being more involved, a complete analysis of the bifurcation including
the discussion of non-symmetric solutions is the subject of future research.

The existence of symmetric homoclinic orbits can be discussed in the same
way as before. Lemma 4.1 implies the existence of a manifold of homoclinic
orbits to W c

λ which intersects the cross-section Σ in some curve Dλ. Hence, we
are in precisely the same situation as in Section 2.2 and immediately obtain
the final theorem.

Theorem 4.2 Consider the Hamiltonian system (7) under assumptions (H1)-
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(H3), (H5), and (H6). Then the existence of R-symmetric homoclinic orbits
near Γ is described by Theorem 2.3.

Remark. In the same way one can discuss the different cases in Section 3
under the additional hypotheses that the systems are Hamiltonian. One then
finds that the main theorems in the corresponding sections describe the exis-
tence of symmetric homoclinic orbits near the primary orbit Γ. 2

5 Three numerical examples

We shall illustrate our theoretical results with numerical computations for
three Hamiltonian example systems. First, we deal with a reversible fourth-
order equation arising in a water-wave problem which is part of the general
family of 5th-order KdV models. Afterwards, we study two problems from
nonlinear optics involving reversible and Z2-symmetric systems.

For the numerical investigations we have used the methods for homoclinic
continuation implemented in AUTO/HomCont, [14].

5.1 A fifth-order KdV equation

In this section we will illustrate the results of Section 2 with numerical studies
for a fourth-order equation arising in water-wave theory. We are concerned
with the existence of solitary wave solutions for the following fifth-order long-
wave equation for gravity-capillary water waves,

rτ +
2

15
rxxxxx − brxxx + 3rrx + 2rxrxx + rrxxx = 0.

Which is an example of a general family of 5th-order KdV equations, see
[20,33]. Making the travelling wave ansatz r(t = x − aτ) and integrating the
resulting ODE once, we obtain the fourth-order equation

2

15
riv − br′′ + ar +

3

2
r2 − 1

2
(r′)2 + [rr′]′ = 0, (8)

where a prime denotes differentiation with respect to t. Homoclinic orbits
to the origin of (8) were intensively studied in [6], using a combination of
analytical and numerical techniques.

Here we are interested in the situation for a = 0 and b = 2 since for these
parameter values the fundamental assumptions (H1)-(H3) are fulfilled. First
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note, that for all parameter values a, b equation (8) is reversible with respect
to

R : (r, r′, r′′, r′′′) 7→ (r,−r′, r′′,−r′′′).
Note also, that one can introduce variables such that (8) may be written as a
Hamiltonian system; see [6] for details. Moreover, the origin is an equilibrium
for all a, b which is easily seen to possess a double non-semisimple eigenvalue
0 and a pair of real eigenvalues if a = 0, b > 0. Increasing the parameter a
through 0, the equilibrium undergoes a transcritical bifurcation described by
the normal form (2). The equilibrium turns from a saddle-centre (a < 0) into
a real saddle (a > 0). In particular, for a > 0 a small homoclinic orbit emerges
which corresponds to the famous Korteweg-de Vries solitary wave (after an
appropriate rescaling of the system).

Finally, in [6] the following explicit homoclinic solution

rh(t) = 3
(
b +

1

2

)
sech2

(√
3

2
(2b + 1)t

)

of (8) is found for parameter values a = 3/5 · (2b + 1)(b − 2), b ≥ −1/2. In
particular, rh exists for a = 0 and b = 2 where it is a fast decaying homoclinic
solution. So the results of Sections 2 and 4 should apply to this situation.

In fact, numerical studies in [6] already revealed the orbit-flip bifurcation of
the primary homoclinic orbit for a > 0 . Also the existence of the curve L
where the saddle-node bifurcation of homoclinic orbits occurs could be nu-
merically verified. This curve can be approximated by taking different values
of a > 0, b for which rh exists and performing a numerical continuation of the
homoclinic solution with decreasing b and fixed a. For example, for a = 0.1 we
can continue the starting solution with decreasing b until we find a limit point
at b∗ = 1.83226. In Figure 12 we present the bifurcation diagram together
with corresponding plots of solutions at the indicated points. We have found
comparable results for all tested parameter values.

The results in Figure 12 show excellent agreement with the general theory.
Indeed, we find that in the reversible orbit-flip bifurcation two homoclinic
orbits emerge, of which one is composed of the fast decaying solution and the
(small) ‘KdV’-homoclinic orbit, see panel b) in Figure 12. The two homoclinic
orbits coalesce in a saddle-node bifurcation, and we find that the corresponding
bifurcation curve L is essentially linear.

Also the existence of an algebraically decaying solution for a = 0, b > 2 can be
verified numerically. In Figure 12 such a solution is shown for parameter values
a = 0, b = 2.5. Another illustration is given in Figure 13 where we compare
this solution to the exponentially decaying solution at a = 0.1, b = 2.5. The
plots in part c) of this figure indicate that the solution for a = 0 decays with
a quadratic rate in accordance to results of Section 2.
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Figure 12. Bifurcation diagram for (8) as computed with AUTO. On the solid curve
S the analytically known solution rh exists. For a > 0 this curve describes a re-
versible orbit-flip. After decreasing b two homoclinic solutions can be found. In a)
the slow decaying solution after the orbit-flip is shown. In b) we show a plot of the
second solution which is composed of the primary orbit and the small ‘KdV’ homo-
clinic solution. These two orbits coalesce in a saddle-node bifurcation on the curve
L to the left of S (see panel c)). For parameter values b > 2, a = 0, represented by
the dashed line to the right of S, computations with AUTO show the existence of
an algebraically decaying homoclinic solution as depicted in d) see also Figure 13.

So, for equation (8) we can compute everything that was predicted by the
theory. We remark that for this example we have not made use of the re-
versible symmetry of the equation (which is possible in AUTO). Nevertheless,
all solutions found have been symmetric under time-reversal which suggests
that only symmetric one-homoclinic solutions bifurcate from the primary ho-
moclinic orbit. This is of interest since the results in Section 4 did not concern
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Figure 13. Comparison of the solutions for a = 0, b = 2.5, (I), and a = 0.1, b = 2.5,
(II). Panels (a) and (b) show plots of the solutions. In (c) the reciprocal of the
square-root of the solutions is plotted. Here the linearity of (I) as t → ∞ reveals
the quadratic rate of decay for the solution whereas (II) decays at some higher
(exponential) rate. Note that the solution (II) in (c) is multiplied by a factor 1/10
in order to view it on the same set of axes.

non-symmetric solutions.

Note that we do not attempt to prove any of the results for (8) rigorously.
This would amount to proving that the equation fulfills the non-degeneracy
conditions imposed for the general analysis. In particular regarding (H6) this
is a major difficulty. But since we find perfect agreement of the numerical and
the theoretical results we could argue the other way around and claim that
(8) is a generic system in the sense of this paper. So our analysis can explain
the numerical results obtained for the equation.

5.2 Two examples from nonlinear optics

In connection with the general results of Section 3.1 and 3.2 we study two ex-
amples which additionally possess Z2-symmetry. Both deal with the existence
of embedded solitons in nonlinear optical media. An example for the class of
systems studied in Section 3.3 can be found [32] where also some numerical
results are presented.

5.2.1 An extended massive Thirring model

We first consider an extended massive Thirring model that describes solitons in
an optical media equipped with Bragg-grating, see [9] and references therein.
The model is described by the following systems of complex PDEs

iut + iux + Duxx + (σ|u|2 + |v|2)u + v = 0

ivt − ivx + Dvxx + (σ|v|2 + |u|2)v + u = 0.
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Looking for steady state solutions via u(x, t) = eiχtU(x), v(x, t) = e−iχtU(x)
we can perform scalings and assume with no loss of generality that σ = 0 and
U = V ∗, where V ∗ denotes the complex conjugate of V . Doing so, we obtain
the single complex ODE

DU ′′ + iU ′ + χU + U |U |2 + U∗ = 0, (9)

which is reversible with respect to

R : (U,U ′) 7→ (U∗,−(U ′)∗)

and has odd symmetry

S : (U,U ′) 7→ −(U,U ′).

We note again that one can write (9) as a Hamiltonian system in R4.

For |χ| < 1 the origin is a saddle-centre equilibrium of (9) and at χ = −1 it
undergoes a reversible pitchfork bifurcation of figure-eight-type to become a
real saddle itself.

In [10] it was found numerically that there are three curves in the (D, χ)-
plane at which embedded solitons exist. Each of these curves can be extended
to parameter values χ < −1, so that there exist three points in the parameter
plane around which the results of Section 3.1 apply, see Figure 14. (Note that
because of the odd symmetry of (9) embedded solitons, i.e. homoclinic orbits,
come in pairs. But obviously it suffices to consider one of the two orbits for
our purposes.) We restrict attention to one of the points and choose the point
(D∗, χ∗) = (1.5,−1) with the largest D-value for our computations.

In accordance with Theorem 3.1 we can detect a reversible orbit-flip bifur-
cation of the primary homoclinic orbit and two curves where a saddle-node
bifurcation of homoclinic orbits occur. In Figure 15 the bifurcation diagram
including plots of the real parts of the corresponding homoclinic solutions is
shown. In the computations we have explicitly used the reversing symmetry of
(9). As for example (8) above we find that the reversible orbit-flip bifurcation
of the primary orbit also gives rise to a solution which is composed of the
fast decaying solution and a small homoclinic solution in the centre manifold.
Note, however, that for (9) there are two different small homoclinic solutions
and which one is chosen depends on whether D is decreased or increased.

We remark that for this example the computations have to be performed
very close to the critical parameter values to find agreement with the general
bifurcation results concerning the shape of the “saddle-node curves”. On the
other hand, in order to illustrate the different types of bifurcating solutions it
is necessary to compute the solutions in Figure 15 for larger parameter values.
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Figure 14. The three curves in the (D, χ)-parameter plane at which homoclinic
solutions of (9) were computed in [10] to cross the boundary of the region for which
the origin is a saddle-centre (|χ| < 1). The indicated solution at (D∗, χ∗) := (1.5,−1)
is the one whose unfolding is computed in Figure 15.

This explains why the bifurcation diagram in this figure is only schematic for
χ < −1.00005.

5.2.2 A second-harmonic-generation system

We end this section with computations for the system in connection to which
the term embedded solitons was used first. In [34] solitary waves appearing
in an optical medium with competing quadratic and cubic nonlinearities were
studied. The model is given by

iuz + 1
2
utt + u∗v + γ1 (|u|2 + 2|v|2) u = 0

ivz + 1
2
δvtt + qv + 1

2
u2 + 2γ2 (|v|2 + 2|u|2) v = 0,

where u and v are the amplitudes of complex wave vectors corresponding to
the fundamental and second-harmonic fields. Seeking stationary solutions in
the form u = U(t) exp(ikz), v = V (t) exp(2ikz), with real k we are led to the
system of ODEs for U , V

1
2
U ′′ − kU + UV + γ1 (|U |2 + 2|V |2) U = 0

−1
2
δV ′′ + (q − 2k)V + 1

2
U2 + 2γ2 (|V |2 + 2|U |2) V = 0.

(10)

Embedded soliton solution of (10) have been found for δ > 0 and γ1,2 < 0 in
[34], and for δ < 0, γ1,2 > 0 in [11]. We shall follow the latter paper here and
search for parameter values δ < 0 where our theory applies. In the following
we will fix the parameters γ1 = γ2 = 0.05, k = 1 and consider (10) as a system
depending on the two parameters δ, q.

Let us first discuss the symmetries of (10). The system is reversible with
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Figure 15. Bifurcation of one-homoclinic orbits of (9) near (D∗, χ∗), computed using
AUTO. On the solid curve, the fast decaying homoclinic orbit exists and for χ < −1
this defines an orbit-flip bifurcation. On the dashed curves saddle-node bifurcations
of homoclinic orbits were detected. The solutions in the sub-panels were all com-
puted for χ = −1.01 and the given values of D. Only the real parts of the solutions
are shown.

respect to

R : (U,U ′, V, V ′) 7→ (U,−U ′, V,−V ′)

and Z2-symmetric with respect to

S : (U,U ′, V, V ′) 7→ (−U,−U ′, V, V ′).

The origin is an equilibrium for all parameter-values. We are interested in the
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situation at q = 2 since on this line the equilibrium has a zero eigenvalue
and a pair of real eigenvalues. Moreover, it is easy to compute that the cen-
tre eigenspace of the linearisation at this equilibrium is contained in Fix (S).
According to Section 3.2 we would therefore expect a transcritical bifurcation
of the equilibrium. Equation (10), however, is non-generic since we find that
the local bifurcation is governed by the normal form (6). This means that the
equilibrium undergoes a pitchfork bifurcation of figure-eight type. Neverthe-
less, our general studies still apply to this system. As it was observed after
Corollary 3.2 we just have to adapt the results of Section 3.1 in this case.

In [11] curves (in the (δ, q)-parameter plane) of R-symmetric embedded soliton
solutions were found for k = 0.3. In a similar manner we find a curve of such
solutions for k = 1. This curve can be extended to parameter values q < 2
where the origin is a real saddle, see Figure 16. The critical parameter value is
given by (δ∗, q∗) = (−2.6425, 2). Now we can go again through computations
similar to the last example. The results are comprised in the bifurcation dia-
gram in Figure 16. We have again incorporated plots of solutions of (10) for
several parameter values. For the purpose of illustrating the different types of
homoclinic solutions we only show the V -component of the solutions.

6 Discussion

Our goal in this paper has been to analyse the nature of solution profiles and
parameter dependency of solitary wave solutions to nonlinear PDE systems
in 1+1 dimensions that undergo a transition from being a gap soliton to an
embedded soliton. Using dynamical systems theory this was formulated as
a bifurcation problem concerning a homoclinic orbit asymptotic to a degen-
erate equilibrium. We studied different scenarios for the bifurcation of one-
homoclinic orbits from the primary one in certain classes of reversible systems
including also effects of Z2-symmetry and Hamiltonian structure. The ana-
lytical results were shown to match numerical experiments on model-systems
arising in nonlinear optics and water wave theory.

It is clear that this paper only takes a first step towards a complete under-
standing of the homoclinic bifurcation and the underlying physical problem.
A natural next issue for investigations is the bifurcation of n-homoclinic or-
bits corresponding to N -pulse solutions of the physical problem. Some of our
results already give rise to interesting questions. For example, general results
by Sandstede et. al. in [30] show that in reversible systems the orbit-flip bifur-
cation which was detected in all cases of Sections 2 and 3 generically leads to
the emergence of n-homoclinic orbits. See also [6] for a numerical investigation
of this bifurcation for the 5-th order KdV-equation (8), where the presence of
a Hamiltonian structure implies that the bifurcation is degenerate compared
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Figure 16. Bifurcation diagram for one-homoclinic orbits of (10) near (δ∗, q∗). The
fast decaying homoclinic orbit exists at the solid curve whereas at the dashed curves
the saddle-node bifurcation of homoclinic orbits occurs. The corresponding solu-
tions have been computed for q = 1.995 and the given values of δ. Plots show the
V -components of the solutions.

with the analysis of [30]. These results concern orbits which are composed of
copies of the fast decaying homoclinic orbit alone. In our case, however, there
is the possibility of an even richer dynamics in that it includes orbits being
composed of copies of the primary orbit and of parts that are governed by
the dynamics in W c

λ. Such a solution can for instance be found in panel b) of
Figure 12.

Of similar interest is the existence of N -pulse solutions for parameter values
where the origin is a saddle-centre. Here, general results are available which
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explain the accumulation of such solutions on parameter values where the
primary orbit exists, see [7] for the reversible case and [27,23] for the case
of systems that are additionally Hamiltonian. An interesting point is that
these studies show differences in the behaviour of systems that are purely
reversible and of those are also Hamiltonian. In Section 4 of the present paper
we have established a possible reason for these differences, namely the fact
that the Hamiltonian property does not allow a transverse intersection of the
centre-stable and unstable manifolds. This will certainly be reflected in results
concerning bifurcating n-homoclinic orbits. Thus, our geometric approach to
the analysis may also give further insight into qualitative differences between
reversible and Hamiltonian systems, see [7] for some related remarks.

From a PDE point of view a further important project is the study of the
stability of solutions. More precisely an open question is what happens to the
stability of the ESs when they cross the critical parameter value to become
structurally stable objects. For a variety of model equations, including two of
the examples studied in this paper, the property of semi-stability of embedded
solitons has been established by a mixture of numerical, asymptotic and rig-
orous arguments [28,33,34,35]. Does this semi-stability necessarily transform
into true exponential stability when the embedded soliton becomes a gap soli-
ton? A general rigorous answer to this question is of course beyond the realm
of the finite-dimensional dynamical systems theory used in this paper.
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