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Abstract

Numerical algorithms are considered for three distinct areas of numerical lin-
ear algebra: hyperbolic matrix computations, condition numbers of structured
matrices, and trigonometric matrix functions.

We first consider hyperbolic rotations and show how to construct them
accurately. A new accurate representation is devised which also avoids over-
flow. We show how to apply hyperbolic rotations directly, in mixed form, and
by the OD procedure, with a rounding error analysis that shows the latter
two methods are stable. A rounding error analysis for combining a sequence of
nonoverlapping hyperbolic rotations applied in mixed form or by the OD proce-
dure is then given. Applying a hyperbolic rotation directly is generally thought
to be unstable but no proof has previously been given. However, using numer-
ical experiments we prove that it is unstable. We describe several methods
of applying fast hyperbolic rotations and unified rotations, giving a rounding
error analysis and numerical experiments to show which are stable and which
are not. Hyperbolic Householder transformations are briefly discussed.

We then consider the hyperbolic QR factorization for which we present
new results for the existence of the closely related HR factorization, and then
use these to prove new theorems for the existence of the hyperbolic QR fac-
torization. We describe how nonoverlapping hyperbolic rotations can be used
to compute the hyperbolic QR factorization, with a rounding error analysis

to show that this method is stable. Two applications of the hyperbolic QR



factorization are also discussed.

For an n x n tridiagonal matrix we exploit the structure of its QR factoriza-
tion to devise two new algorithms for computing the 1-norm condition number
in O(n) operations. The algorithms avoid underflow and overflow, and are sim-
pler than existing algorithms since tests are not required for degenerate cases.
An error analysis of the first algorithm is given, while the second algorithm is
shown to be competitive in speed with existing algorithms. We then turn our
attention to an n x n diagonal-plus-semiseparable matrix, A, for which several
algorithms have recently been developed to solve Az = b in O(n) operations.
We again exploit the QR factorization of the matrix to present an algorithm
that computes the 1-norm condition number in O(n) operations.

We also consider algorithms for computing the matrix cosine. The algo-
rithms scale a matrix by a power of two to make the norm of the scaled matrix
small, use a Padé approximation to compute the cosine of the scaled matrix,
and recover the cosine of the original matrix using the double angle formula
cos(24) = 2cos?’(A) — I. We make several improvements to an algorithm of
Higham and Smith to derive new algorithms, which are shown by theory and
numerical experiments to bring increased efficiency and accuracy. We also
consider an algorithm for simultaneously computing cos(A) and sin(A) that
extends the ideas for the cosine and intertwines the cosine and sine double

angle recurrences.
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Chapter 1

Introduction

1.1 Basic Definitions

Throughout the thesis we will require the definition of the following types of

matrices.

o A c R is symmetric if A = AT, where AT denotes the transpose of A.
Also, A € C"" is Hermitian if A = A* where A* denotes the conjugate

transpose of A.

A € CY" is diagonal if a;; = 0 for 7 # j. We use the notation A =

diag(z1, za, . .., x,) for a diagonal matrix with a; = z; for i = 1:n.

A e CY" is upper (lower) triangular if a;; = 0 for i > j (i < j). We
also say that A is strictly upper (lower) triangular if it is upper (lower)

triangular with a;; = 0 for ¢ = 1: n.

A € CY™ is upper (lower) bidiagonal if a;; = 0 for 4 > j (j > i) and

i+1<j(j+1<i).

A € CY" is tridiagonal if a;; =0fori+1<jand j+1 <.

A € CY™ is upper (lower) Hessenberg if a;; =0 fori > j+1 (i <j—1).

15



A € C™" is positive definite if z*Ax > 0 for all x € C*, x # 0.

A € R™" is orthogonal if AT A = I where I is the n x n identity matriz
with ones on the diagonal and zeros elsewhere. We also say that A € C"*"

is unitary if A*A=1.

The following linear algebra definitions will also be used:

The set of vectors S = {ai,as,...,a,} C R™ is linearly independent if

the only solution to
n
Zaiai =0, o; €R,
i=1

is a; = 0 for all 7.

The span of a set of vectors is the set of all linear combinations of the

vectors. Therefore span(S) is given by

span{ay, ag,...,a,} = {Zﬁiai 1 B; € R} .
i=1

The null space of A € R**" is given by

null(4) = {z € R" : Az =0}.

Let A=1a; as ... a,] be a column partitioning. Then the range of A is
defined by

ran(A) = span{ay, as, ..., a,}.
The rank of A is defined by

rank(A) = dim(ran(A)),

which is the maximum number of linearly independent vectors of ran(A).

16



o If A € R"" and rank(A) = n, then A is said to be nonsingular or full
rank, and there exists an inverse of A, denoted A~! such that AA™! = I.
If rank(A) # n we say that A is singular or rank deficient and no inverse
exists. If A € R™*" and rank(A) = min(m, n) then A is said to have full

rank. Otherwise it is said to be rank deficient.

1.2 Norms and Condition Numbers

Norms are a valuable tool which provides a measure of size for vectors and
matrices. Extensive use will be made of norms and their properties, particularly

for conducting rounding error analysis and bounding perturbations.

1.2.1 Vector Norms

A wector norm on C" is a function || - || : C* — R that has the following

properties.
1. ||z|| = 0 and ||z|| = 0 if and only if z = 0.
2. ||az|| = |«|||z|| for all « € C,x € C".

3. ||z +yl| < |lz|| + ||y|| for all z,y € C".

A valuable class of vector norms are the Holder p-norms, defined by

n 1/p
|zl = (Z |xi\p) , p>1. (1.1)
=1

The most commonly used of the p-norms are the 1, 2 and oo norms:

n
|z||, = Z\iﬂi\,
=1
n 1/2
el = (zw) |
=1

Izloc = max [z

17



For unitary @ we have Q*() = I and so

Q)3 = 2" Q"Qz = 2"z = ||=|5.

We therefore say that the 2-norm is invariant under unitary transformations.

1.2.2 Matrix Norms

Analogous to the vector norm we have the matriz norm || -|| : C™*" — R that

has the following properties.
1. ||A]| > 0 and ||A]| = 0 if and only if A = 0.
2. ||@A|| = |a|||A|| for all @ € C, A € C™*".
3. [|A+ B|| < ||A]| + || B|| for all A, B € C™*".

Among the most important matrix norms is the Frobenius norm,

Al = (iimz«m) N

i=1 j=1
and the subordinate p-norms,

1Al

I|All, = max
P Iz, ’

which are defined in terms of the p-norms given by (1.1). It can be shown that

the 1, 2 and oo matrix p-norms satisfy

|All: = max Z |aij],

1<5<n

| Ao = max Z |aij],

[Allz = (p(A* A))l/2 = Omax(A),
where the spectral radius

p(B) = max(|A| : det(B — AI) = 0)

18



and 0.y (A) denotes the largest singular value of A.
The Frobenius norm and matrix p-norms are said to be consistent since

they satisfy the useful property
IAB]| < [[A[llIBIl-

The 2-norm and Frobenius norm are both unitarily invariant, which means
that for any unitary matrices U and V' we have |[UAV|| = ||A]l.

We will make use of the following lemmas.
Lemma 1.2.1. Let A,B € R™*". If |A| < |B] then ||A||r < ||B||F-

Lemma 1.2.2 ([30, Sec. 6.2]). Let A € R**". Then 1/\/n||A|lr < ||A|: <
VAl

Another important quantity in numerical linear algebra is the condition
number as it provides a measure of the sensitivity of a problem to perturba-
tions in the data. The condition number with respect to matrix inversion of a

nonsingular A € C"*" is defined by

kp(A) :==lim  sup
=024l <dlAll

(II(A + A4 - A‘lllp)
€[l A=, ’

where || - || denotes a subordinate matrix p-norm. An explicit formula for this

condition number (see [30, Thm. 6.4]) is given by

kip = 1Al IA lp-

1.3 Floating Point Numbers

A floating point number system F' C R is a subset of the real numbers and is
defined by the base 3, precision t and exponent range emi, < € < €maz. The

elements of I have the form

y=+mx g,

19



where the significand m is an integer satisfying 0 < m < g1
The element of F' nearest to x € R is denoted by fl(z). A bound for the

error in the approximation fl(x) to z is given in the following theorem.

Theorem 1.3.1 ([30, Thm. 2.2]). If z € R lies in the range of F' then
Loy
fllz) =z(14+96), |§<u= Eﬁ : (1.2)

We call u in (1.2) the unit roundoff.

An operation involving floating point numbers, such as addition, subtrac-
tion, multiplication and division, is called a floating point operation or flop.
We will also use this notation for the square root of a floating point number.

We say that fl(z) overflows if |fl(z)| > max{|y|:y € F'} and underflows if
0 < |fl(z)] < min{|y|:0 # y € F}. Clearly, underflow or overflow is undesir-

able and should be avoided where possible.

1.4 Model of Floating Point Arithmetic

Throughout this thesis we denote quantities evaluated in floating point arith-
metic with a hat or by the fI(-) notation. We will use the standard model for

floating point arithmetic:

fllzopy)=(zopy)(1+061), || <u, op=+,—-/%  (13)
fiVz) = Va(l+62), 62| <w,
where u is the unit roundoff of the computer. The following modification

of (1.3) will also be used:

T op vy

TOPY 15 < .
1465 05 < u

fl(z op y) =

The following lemmas are used without comment.

20



Lemma 1.4.1 ([30, Lem. 3.1]). If |6;| < u and p; = £1 fori = 1:n, and

nu < 1, then

n

[[a+6)" =1+06,

i=1
where
nu

0, < =:,.
‘n‘_l—nu T

Lemma 1.4.2 ([30, Lem. 3.3]). For any positive integer k let 6y denote a

quantity bounded according to |0| < v, = ku/(1 — ku). The following relations
hold:

(1+0k)(1+6;) =1+ Opyy,

1+9k_ 1+9k+], ]Sk:
1+6;,

1+ 0k—|—2j7 ] > k,
VeV < Ymin(k,y) Sfor max(j,k)u <1/2,

Yk < Yiks
Yk +u S Ye+1,

Ve + Y+ WY S Vet

Lemma 1.4.3. For any positive integer k let v, = ku/(1 — ku). Then

]_+")/]c< 1+7k+]a ]Ska

L+ L+ Ykro5, J > k.

Proof. The proofis almost identical to the proof of (1.4) asin [30, Lem. 3.3]. O

We also make use of the constant

~ cnu
Tn

1—cnu’

where ¢ denotes a small integer constant whose exact value is unimportant.

21



1.5 Forward and Backward Errors

Using the properties in Section 1.4 it is often possible to conduct a rounding
error analysis of a numerical algorithm to obtain backward and forward error
results. These results provide a measure of the accuracy of a solution computed
using a numerical algorithm. In order to define what we mean by forward and
backward errors, and also the stability of an algorithm, we denote by ¥ the
vector y = f(z) computed in floating point arithmetic, where f is a vector
function and z is a vector. We consider only this vector problem for simplicity

but the ideas extend to other problems.

e A backward error analysis involves bounding |Az| where Ax satisfies
y = f(x + Az). We say a method is backward stable if it produces a
computed ¥ such that ¥ = f(z + Azx) for some small Az, where the

definition of “small” depends on the problem.

e A forward error analysis involves bounding the absolute error |7 — y|.
A method is said to be forward stable if the bound is small, where the

definition of “small” depends on the problem.

e A mixed forward-backward error analysis involves bounding |Az| and
| Ay| where Az and Ay satisfy y+ Ay = f(z + Az). A method is said to
be mized forward-backward stable if |Az| and |Ay| are small, where the

definition of “small” depends on the problem.

In general we call an algorithm stable if it is mixed forward-backward stable.
Therefore a backward stable algorithm is said to be stable.

The forward and backward errors for a problem are connected by the condi-
tioning of the problem, that is, the sensitivity of the solution to perturbations

in the data. When the backward error, forward error, and the condition number

22



are defined in a consistent fashion we have the useful rule of thumb
forward error < condition number x backward error,

with approximate equality possible.

1.6 Orthogonal Transformations and Factor-
izations

In this section we describe two commonly used orthogonal transformations that
introduce zeros into vectors and will be required in later chapters. We also de-
scribe the QR factorization, which may be computed using the transformations

described.

1.6.1 Givens Rotations
A Givens rotation, () € C**™ is a unitary transformation that is equal to the
identity matrix except that

Qi . ir4]) = [ ’ ] ,

-5 ¢
where |c|?> + |s|?> = 1, with |c| = cosf and |s| = sin# for some #. Applying a
Givens rotation to a matrix from the left affects only two rows and applying it
from the right affects two columns. For this reason, applying a Givens rotation
is not implemented as full matrix multiplication. For convenience we consider
a rotation to be a 2 X 2 matrix which contains the significant components of

the rotation:

Givens rotations are used to introduce zeros into a vector and hence reduce

matrices to particular forms. Given a vector z € C?, ¢ and s can be chosen so

23



that y = Gz has zero second component. If the Givens rotation is applied to

x € C? then

Y1 = Cx1 + 8Z2,

Yo = —8T1 + CTa,

and so y, = 0 if

T Z2

c= and s= . (1.5)

Vw12 + |22 Vw12 + |22

Thus, the transformation gives

G C S T v |f131|2 + |.’132|2
xr = g
—s c To 0

In practice, c and s are usually rewritten to avoid overflow in floating point

arithmetic, so that if |z1| > |zo|,

c:m, s =ct, with t:g,
V1+|[t? z1

and
cmst, 5= BN g, T

NS o

otherwise, where sign(z) = z/|z| for x € C. The Givens rotation can be applied
to a matrix A € C>*" by forming B = GA, and it is well documented that
this is a stable process (see [30]). The cost of applying a Givens rotation to

A € C**" is 6n operations.

1.6.2 Householder Transformations

A Householder reflector is a unitary matrix of the form
Q=1-pw", 0#veC,

with 8 on the circle | — r| = |r|, where r = —1/(v*v). For any distinct

vectors € C" and y € C" such that z*x = y*y, we can choose v = y — x and

24



B = 1/(v*z) so that Qz = y. This allows us to apply a Householder reflector
in order to zero all but one element of a vector x € C", which is commonly
achieved by y = sign(xi)\/ﬁei, where e; is the 7th column of the identity
matrix. This choice results in a Hermitian matrix ). An alternative choice
used in LAPACK is y = +v/z*ze;. This sends z; to a real multiple of e; and is
useful for problems where it is advantageous to apply a real algorithm to the
resulting vector instead of a complex algorithm. Using this choice results in a
non Hermitian matrix Q).

When applying a Householder reflector to a matrix it is important to exploit
the structure of ) to reduce the number of flops. We note that if A € C™*"
then

QA= (I—-puvv")A=A—vw",

where w = SA*v. We can therefore apply a Householder reflector to a matrix
A € C™™ by a matrix-vector multiplication and the calculation of an outer
product, which in total requires 4mn operations. If () is applied to A by
forming () and then multiplying ) and A, the number of flops is increased by

an order of magnitude.

1.6.3 QR Factorization

A QR factorization of A € C™*"™ with m > n is
Ry
0

A=QR=Q

I

where @ is unitary and R; € C"*" is upper triangular. If A is real then (@ is
orthogonal and R; is also real.

The most common method of computing the QR factorization is by House-
holder reflectors. The matrix A € C™*" is reduced to upper trapezoidal form

by applying a sequence of Householder reflectorss to zero A®)(k + 1 : m, k),
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where A%®) is the matrix A after k¥ — 1 Householder reflectors and A®Y = A.

This gives the upper trapezoidal R as
R = Ht. . .HQHlA = Q*A,

where H; is the ith Householder reflector and ¢t = min(m — 1, n).

1.7 Matrix Functions

A matriz function can have various meanings, but we will only be concerned
with a definition that takes a scalar function, f, and defines the equivalent
matrix function f(A) to have the same dimensions as A € C**™. When f(x)
is a polynomial or rational function, we will regard a matrix function to be the
function obtained by replacing a scalar variable x € C in the scalar function
f(z), by the matrix A € C**™. We replace division by matrix inversion (pro-
viding the inverse exists), and replace 1 by the identity matrix. For example,

the scalar function
_24x+32°
B 11—z

f(z)

leads to the matrix function
f(A)=(2I+A+ 3A2)(I — A)_l, if 1¢ A(A),

where A(A) denotes the set of eigenvalues of A, which is called the spectrum
of A. Similarly scalar functions defined by a power series extend to matrix
functions, such as

.772 3 4

log(l+z)=2— >4+ 2 4 7] < 1
& —TT T3 ’ ’
and
A2 A% At
log(l—i-A):A—?—i-?—I-i----, p(A) <1,
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where p(A) = max{|A\| : A € A(A)} is called the spectral radius and the
condition p(A) < 1 ensures convergence of the matrix series. Many power

series have infinite radius of convergence such as

For more details on the radius of convergence of Taylor series of matrix func-
tions see [26].

This approach to defining a matrix function is sufficient for a wide range
of functions, but it does not provide a definition for a general matrix function.
There are many equivalent formal definitions of a matrix function of which we
present two here.

The first definition is based on the Jordan canonical form of a matrix A €
Crxn:

Z7'AZ = J = diag(Jy, Ja, - - -, Jp), (1.6a)
e 1 -
Ak

Je = T(h) = o |eems ae)

Ak

where Z is nonsingular and m; + mg + - - - + m, = n.
We denote by Ay, ..., As the distinct eigenvalues of A and let n; be the order

of the largest Jordon block in which ); appears. We also define the values
fO9N), j=0mn—-1, i=1:s

to be the values of the function f on the spectrum of A, and if they exist f is

said to be defined on the spectrum of A.

Definition 1.7.1 ([20, Thm 11.1.1]). Let A € C**" have the Jordon canon-
ical form (1.6) and f be defined on the spectrum of A. Then

f(A) = Zf(J)Z™" = Zdiag(f(Jx))Z ",
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where

f(e) () - %
fw) :
f Jk =
v (k)
) F(A%)

Alternatively, given a function f that is analytic inside and on a closed
contour I" which encloses the eigenvalues of A, f(A) can be defined by a gen-

eralisation of the Cauchy integral theorem as

1) = 5 [ £ = 2y

1.7.1 Evaluating Matrix Polynomials

Evaluating a matrix polynomial is a common task when working with matrix
functions. Horner’s method is almost always used when evaluating a scalar
polynomial, but in the matrix case we must also consider alternative methods.

The most obvious method of evaluating the matrix polynomial,
Pm(A) =D bAT, AeC, (1.7)
i=0
is to explicitly form each power of A.

Algorithm 1.7.2. Evaluates the matriz polynomial (1.7) by explicitly forming

matriz powers.

1 Ag=1, A=A
2 fort=2:m

3 A, =AxA;
4 end

5 pm=2?iobiAi

This method is of particular interest when m is not known or if we wish to
evaluate several polynomials in A.
An alternative method is Horner’s method extended for a matrix polyno-

mial.
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Algorithm 1.7.3. Evaluates the matriz polynomial (1.7) by Horner’s method.

Sm_1=bpA~+by_11

fore=m —2:-1:0
Si = ASiy1 + b;

end

Pm = So

Tt o LW N -

The cost of Algorithms 1.7.2 and 1.7.3 is (m — 1) M, where M denotes a matrix
multiplication.
A more efficient method of evaluating a matrix polynomial is that of Pa-

terson and Stockmeyer [43]. This expresses p,,(A) as
pm(A) = ZBk(As)k, r = floor(m/s), (1.8)
k=0

where s is an integer parameter and

B bsk—l—s—lAs_l +-o+ bsk—|—1A + bskla k=0:r— 1,
k —
by AT e by A + by k=r

The powers A2 ..., A® are computed and the By evaluated. Finally (1.8) is
evaluated using Horner’s method. As an example, for m = 8 and s = 3 we

have,

pg(A) = BO -+ B1A3 -+ BQ(A3)2,
where
B() = b()I + blA + bQAZ,
B1 = bgl + b4A + b5A2,
B2 = bGI + b7A + b8A2.
The total cost of evaluating p,,(A) by the Paterson-Stockmeyer method is

1 if s divides m,
(S+T—1 —f(s,m))M, f(s,m) = (19)
0 otherwise.

29



This quantity is approximately minimised by s = /m. Therefore we take s
to be one of floor(y/m) and ceil(y/m). In the following theorem we show that

both choices of s yield the same cost.

Theorem 1.7.4. For the Paterson-Stockmeyer method of evaluating the matriz
polynomial (1.7), the cost given by (1.9) is the same for both s = ceil(y/m) and
s = floor(y/m).
Proof. Given an integer m, then either m = 4% or i* < m < (i + 1)?, for some
integer 4. If m = 42 then floor(y/m) = ceil(/m) and hence both choices of s
give the same cost.

Assume that 2 < m < (i + 1)%. Then ¢ < v/m < i+ 1 and hence the two

choices of s, denoted by s; and sy are

51 = floor(v/m) =i,
sy = ceil(y/m) =i+ 1.

Since 1 < m < (i+1)2, s; divides m only if m = i>+4 or m = 4?4+ 2. Similarly

s divides m only if m = i? + i. Hence the possible values of s lead to

1 if m=14+41o0rm=1®+ 2i,
fl(slﬂm):

0 otherwise,

1 ifm=i+i,
fa(s2,m) =

0 otherwise.
If i2 < m < i® + 4 then i < m/s; < i+ 1 and hence floor(m/s;) = i. Using
a similar argument for the other cases we find
i if m < i?+1,
ri = floor(m/s1) =< i4+1 if 2+i<m<i®+2,
i+2 if m =142+ 2,
i—1 if m<ii®+q,

ro = floor(m/ss) =
1 if m > %+
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Testing the various possible cases we find that s; +7 —1— f; = so+1ro—1— fo,

and hence both choices of s give the same cost. O

The advantage of the Paterson-Stockmeyer method over Algorithms 1.7.2
and 1.7.3 is the reduced number of matrix multiplications needed. This is high-
lighted by Table 1.1 which compares the number of multiplications required by

the three methods described to evaluate matrix polynomials of various degrees.

Table 1.1: The total number of matrix multiplications required by the Paterson
Stockmeyer method and Algorithms 1.7.2 and 1.7.3 to evaluate the matrix
polynomial of degree m.

m |2 345 6 7 8 9 10 11 12 13 14
PSmethod [1 2 2 3 3 4 4 4 5 5 5 6 6
Algs1.72/173|1 2 3 4 5 6 7 8 9 10 11 12 13

The disadvantage of the Paterson-Stockmeyer method is that (s + 2)n?
elements of storage are required. This can be reduced to 4n” using the variation
of the Paterson-Stockmeyer method of Van Loan [54], which computes p,, a

column at a time but costs approximately 40% more than the original method.

1.7.2 Conditioning of Matrix Functions

If a matrix function is computed in floating point arithmetic then it is subject
to rounding errors. Through the use of a rounding error analysis, these errors
can often be interpreted as perturbations in the data. In order to determine
the potential accuracy of a computed matrix function it is important to be able
to measure the sensitivity of f(X) to perturbations in X. This sensitivity can

be measured by the matriz condition number

cond(f, X)=1lm  sup I/ (X +E) f(X)”F (1.10)

=0 || B|| p <81 X | SILF(X)r
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A large condition number shows that f(A) is particularly sensitive to pertur-
bations in the data and hence may not be accurate when computed in floating
point arithmetic. We now show how the condition number (1.10) can be esti-
mated [37].

The linear operator L(X, - ): C**" — C**" is said to be the Fréchet deriva-

tive of f:C**" — C™™ at X € C™" if for all matrices E € C**"
f(X + E) = f(X) = L(X, E) = O(]|E]))-

We denote by L(X, E) the Fréchet derivative of f at X in the direction E. For

a matrix function with the power series representation f(X) = > "2 ;X" we

have
00 k
L(X,E)=) o Y XI'EX*T,
k=1 j=1

A relationship between the Fréchet derivative and the condition number (1.10)
is given by (see [26])

L, OlEIX
cond(£, X =l

where

IL(X, E) s
L(X, - ‘= max ————.
I, e = max “= e

Hence, an estimate of |L(X, - )||r will lead to an estimate of cond(f, X).
The Kronecker form of the Fréchet derivative is said to be given by K (X) €

C™* x"* if it satisfies

vec(L(X, E)) = K(X)vec(E), (1.11)
where vec(A) = [af a2 ... al]" for a matrix with column partition A =
a1 ag ... ap]. If the matrix function has the power series representation

f(X) =37, ;X" then the Kronecker form of the Fréchet derivative is

o0

KX)=> o) (X" @Xxi. (1.12)

k=1  j=1
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Since || A||r = ||vec(A)||2 for A € C™™™, we can use (1.11) to show that
LX)l = 1K)l = (1K (X) K (X)]|2)"72.

Therefore, we can reduce the problem of estimating ||L(X, -)||r to that of

estimating || K (X)||2, which can be achieved by the power method.

Algorithm 1.7.5. Given A € R"™™ and a nonzero vector zy, the power method

is used to give an approzimation y to ||Al|a.

k=0

repeat
Wry1 = Az,
Zky1 = ATWppq
k=k+1

until converged

Y= ||Zk+1||2/||wk+1||2

N O Ot ke W N =

We now consider the power method applied to A = K(X)TK(X) for
X € R™". Using (1.11) and K(X)T = K(XT), which follows from using
the property (X ® V)T = X7 @ Y7 on (1.12), the resulting algorithm can be

written in terms of L(X, -).

Algorithm 1.7.6. Given X € R"™", a nonzero matriz Zy € R"*", a function
f that has a power series representation, and its Fréchet derivative L, the power

method is used to give an approzimation vy to |L(X, - )| -

k=20

repeat
W1 = L(X, Z)
Zlc+1 = L(XT; Wk+1)
k=k+1

until converged

Y =1Zk1llp/ (Wil p

N O Ut R W N =
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An alternative to computing the potentially costly L(X, - ) in Algorithm 1.7.6
is to use the finite difference approximation

f(X+0E) — f(X)

L(X,E) ~ :

for small values of 9.
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Chapter 2

Hyperbolic Transformations and
the Hyperbolic QR

Factorization

2.1 Introduction

A matrix @ € R"*" is J-orthogonal if

QTIQ = J, (2.1)

where the signature matrix J = diag(£1). We will be concerned with signature
matrices of the form
o
J = , p+qg=n. (2.2)
0 -1

A matrix satisfying (2.1) is sometimes referred to as pseudo-orthogonal [22,
p. 612], [33], and when J = diag(1, 1,1, —1), physicists often refer to @ as a
Lorentz matrix [4]. Transformations that are J-orthogonal are often referred
to as hyperbolic transformations. These hyperbolic transformations are an im-

portant tool used in many applications such as signal processing (see [1], [41]),
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indefinite least squares problems (see [9], [10], [56]) and the Cholesky down-
dating problem (see [8]).

A matrix @) € R™" is said to be (.J1, Jy)-orthogonal if

QTJIQ = J27

where J; = diag(+1) and J, = diag(£1) have the same number of 1s and —1s.
Transformations that are (J;, Jo)-orthogonal have been used in various appli-
cations such as reducing symmetric indefinite pairs of matrices to tridiagonal-
diagonal form [53] and computing the eigenvalues of pseudo-Hermitian matri-
ces [12]. If @ is complex then we say that it is J-unitary if @*JQ = J and
(J1, Jo)-unitary if Q*J1Q = Js.

A link between J-orthogonal transformations and orthogonal transforma-

tions exists in the form of the exchange operator. Suppose that

A Al » :[Qll Q12 Bi| » — B,
Ayl ¢ Qa1 Q2 By | ¢

where () is J-orthogonal with J given by (2.2). Then since Q¥,Q;; = I +

Q%,Q21, Q11 is nonsingular and

B1 Al
= exc(Q) ,
A2 B2
where
Q' —Q7' Qo ]
exc(Q) =
QR Qo — QR Quz

is orthogonal. If an orthogonal matrix P is partitioned in the same way as
@ and 1 is nonsingular, then exc(P) is J-orthogonal. The exchange opera-
tor has the property exc(exc(A)) = A, for any A and is therefore said to be
tnvolutory.

The exchange operator will be used extensively in later sections to analyse

the errors in applying hyperbolic transformations. By applying the exchange
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operator to a hyperbolic transformation we obtain an orthogonal transforma-
tion and hence error terms can be moved around without changing their norm.
For more detail on the exchange operator see [31].

Although there is an extensive collection of functions for computing or-
thogonal transformations and factorizations in numerical libraries and software
packages, there is little available for their J-orthogonal and (.J;, Jo)-orthogonal
counterparts. For this reason we detail and implement a collection of hyperbolic
transformations, and show how some of these may be used in the application
of computing the hyperbolic QR factorization. MATLAB implementations of
the methods discussed are given in Appendix A and are available at
http://www.maths.man.ac.uk/ hargreaves/hyperbolic.

We start in Section 2.2 with hyperbolic and unified transformations. Hy-
perbolic rotations analogous to Givens rotations are considered with details
on how to construct them accurately. A new representation of the hyperbolic
rotation is devised that avoids overflow and is shown to be stable.

We show how to apply a hyperbolic rotation directly and in mixed form,
for which the latter is known to be mixed forward-backward stable. Applying
a hyperbolic rotation directly is generally thought to be unstable but this has
not been proved. However, we prove this is true by numerical experiments.
We also consider the OD procedure of Chandrasekaran and Sayed [15] for
applying hyperbolic rotations, which is known to be mixed forward-backward
stable when applying one hyperbolic rotation. We prove a new error result for
this method which allows us to prove stability when a sequence of hyperbolic
rotations are applied in this way. A rounding error analysis for combining r
hyperbolic rotations is given. Unified rotations are discussed and we show how
to apply these in a stable way.

In Section 2.3 we consider fast hyperbolic rotations, which require less oper-

ations than hyperbolic rotations. We take care to ensure that these are applied

37



in a stable way and back this up with a rounding error analysis. Hyperbolic
Householder transformations are briefly discussed in Section 2.4.

The hyperbolic QR factorization of a matrix A € C™*™ with m > n is

Ry
A=QR=Q

I

0
where @) is J-unitary and R; € C**" is upper triangular. In Section 2.5 we
extend theorems of Bunse-Gerstner [12], to give new results for the existence
of the related HR factorization, which we then use to prove new theorems for
the existence of the hyperbolic QR factorization. We consider how to compute
this factorization, detail the rounding error analysis, and conduct numerical
experiments. Two applications for the hyperbolic QR factorization are also

discussed.

2.2 Hyperbolic and Unified Rotations

2.2.1 Hyperbolic Rotations

A hyperbolic rotation has the form

c —S
H= , e =1 =1, (2.3)
-5 ¢
where |c| = cosh(f) and |s| = sinh(f) for some 6.

Given a vector z € C?, we can choose H so that y = Hz is of the form
[a 0]", provided that |z;| # |z2|. This is achieved by taking

I 4]
C = S =

Vv |961|2 - |~’52|2’ Vv |3€1|2 - |9C2|2’

AR

If x € R? we would like to ensure that ¢ and s are also real, which can be

so that

achieved by imposing the condition |z;| > |z2|. In the applications where
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we require the use of hyperbolic rotations, it turns out that this condition
is satisfied. Therefore we say that the hyperbolic rotation is not defined for
|z1| < |z2|. We also impose this condition for z € C2.

However, there are applications where we require the use of (.J1, J;)-orthogonal
rotations, and in Section 2.2.6 we will define such a rotation which is used to
zero the second component of x when |z1| < |z2|.

For a hyperbolic rotation we have that

¢ —=51"[1 0 ¢ -5 lc|? — |s|? 0
-s ¢ 0 —1]|=s ¢ 0 |s]2 —|c|?

and hence hyperbolic rotations are J-unitary, where

=[5

One of the major issues concerning hyperbolic rotations can be demon-
strated by considering the condition number of a real hyperbolic rotation. We

first calculate the eigenvalues of

. A +s?2 —2cs
HH = ,
—2cs A+ s?

where H is defined as in (2.3), to be

A = + s + 2cs,

Ao = + 5% — 2¢s.

It follows that the 2-norm condition number of H is

max(A1, A2)  Je| + 5]
min(Ay, Ao) e — |[s|

ko(H) =

which may be arbitrarily large, unlike for a Givens rotation whose 2-norm

condition number is 1.
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2.2.2 Representing and Applying Hyperbolic Rotations

Unlike Givens Rotations, the way in which a hyperbolic rotation is constructed
and applied affects the stability of the computation. The obvious way to com-

pute ¢ and s which define the hyperbolic rotation is

Hl: c¢= o1 s = 22 (2.4)

\/|<C1\2— |$2\2’ \/|CU1|2— |$2|2'

It is often suggested that ¢ and s should be scaled to avoid overflow and com-

puted using

oo e= ST g o (2.5
V1= t]? Ty
Another representation often used to compute ¢ and s is
H3: c¢= i , S= v .
V(1] + [2]) (1] = [a2]) V(1] + [a2]) (1] - |le)(2 0

In Section 2.2.3 we show that this representation is preferable, for x € R?, in
that the error in computing H using H1 or H2 is unbounded. However, using
H3 does not guard against overflow.

We propose a new representation that reduces the risk of overflow, and for
which the error in computing H, for z € R?, is bounded by a small constant.

We use an alternative method of computing 1 — |¢|* in (2.5) by first computing

so that 1 — [t|?> = 2e — €. This gives

sign(zy) _ Zac

——— 5= )
V2e —e?’ T

We show the advantage of this representation over H1 and H2 in Section 2.2.3.

H4: ¢= (2.7)

The following function computes ¢ and s using the representation H4.

Algorithm 2.2.1. Computes ¢ and s that define the hyperbolic rotation H so

that Hz has zero second component. It is assumed that |z1| > |z2|.
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1 function [c, s] = hrotate(z)
2 e = (lza] = |22))/]2:]

3 ¢ =sign(z1)/V2e — €2

4 s=x9c/11

The hyperbolic rotation may be applied using various methods. It may be

applied directly to a vector a € C? as
b1 = ca; — Eag, (28)
by = —say + cas. (2.9)

However, Bojanczyk, Brent, Van Dooren and De Hoog [8] suggest the following

method of applying the rotation. Solving (2.8) for a; gives

. bl —|—§a2

2.10
a; z ( )
and hence (2.9) can be written as
$ s[?
b2: _ib1+ (_!"'6) asz,
c ¢
= _ibl + a_?. (2.11)

Applying the hyperbolic rotation using (2.8) and (2.11) is referred to as ap-
plying the rotation in mized form and is generally thought to be more stable
than applying the rotation directly. In the case of applying a Givens rotation
G € C**2 to a € C? to obtain b = Ga, Gill, Golub, Murray and Saunders [21]
have shown how to use b; in the computation of b, in order to reduce the
number of multiplications required in applying G.

The equations (2.10) and (2.11) can be combined so that

[0,1_ b1
=G

where




is unitary. The condition |z1| > |z2| ensures that ¢ # 0 and hence the exchange
operator can be used on any hyperbolic rotation, and also exc(exc(H)) = H.
The following function applies the hyperbolic rotation to a 2 x n matrix in

mixed form.

Algorithm 2.2.2. Applies the hyperbolic rotation, H, defined by ¢ and s to a
2 x n matriz A in mized form so that B = HA.
1 function B = happly(c, s, A)

2 B(1,:) =cA(l,:) — 5A(2,:)
3 B(2,:)=(—-sB(1,:)+ A(2,:))/c

An alternative method of applying a real hyperbolic rotation is the OD
(Orthogonal-Diagonal) procedure of Chandrasekaran and Sayed [15], which
expresses the hyperbolic rotation that zeros the second component of z € R?

| ~ [ 1 1][d2 0 1 -1 NG
e _[—1 1”0 1/(2d>] L 1]’ Ve
(2.12)

We note that removing a factor of 1/2 from D and multiplying @ by 1/v/2

gives the singular value decomposition of

c —s
H = ,
-5 c

and that the elements ¢ and s are not computed explicitly, but H is applied
to A € R¥*" as B = Q(D(QTA)). This can be efficiently implemented as

described by the following function.

Algorithm 2.2.3. Applies a hyperbolic rotation that zeroes the second compo-

nent of x € R? using the OD procedure, to a 2 X n matriz A to obtain B.

1 function B = happly_od(z, A)

2 d= Z1+T2
r1—T2
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3 §(1,:):A(1,:Z—A(2,i),E(Q, )= A(L:) + A(2,0)
4 B(1,:) = (d/2)B(L,:), B(L,:) = (1/(2d))B(2,:)
5 B(1,:)=B(1,:)+B(2,:), B2,:)=—B(1,:)+ B(2,:)

Applying a hyperbolic rotation to a 2 X n matrix using the OD procedure
requires 6n operations, which is same as the cost of applying a hyperbolic
rotation directly or in mixed form.

The OD procedure has good numerical properties, which result from the fact
that the hyperbolic rotation is applied as a sequence of orthogonal and diagonal
matrices, and is shown by Chandrasekaran and Sayed [15] to be mixed forward-
backward stable when applying one hyperbolic rotation in this way. This result
is described in Section 2.2.3 together with a new error result which will allow
us to perform a rounding error analysis for a sequence of hyperbolic rotations
applied using the OD procedure.

MATLAB implementations of the methods described in this section for

constructing and applying hyperbolic rotations are given in Appendix A.1.

2.2.3 Error Analysis for Hyperbolic Rotations

Here we perform a rounding error analysis for forming a hyperbolic rotation
and applying it to a vector. We first study the errors in computing ¢ and s
using the representations described in Section 2.2.2. We restrict the analysis
to the real case but provide numerical experiments to show the problems with
computing ¢ and s using the representations described in Section 2.2.2 in the

complex case.

Lemma 2.2.4. Let ¢ and s defining a hyperbolic rotation be computed using

H1-Hj. Then the errors Ac = fl(c) — ¢ and As = fl(s) — s are bounded by

1 1
HI: |Ad < +722+2—1 o, |4s| < +72+ —1 s,
1=z} =
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147 14y

H2: |Ac¢l < -1, |As| < 1] s,
1 a3 +a3 1 2472
~ Maia e
H3: |Ac| <sle|, |As| < sls,
Ha: [Ac| < mslel,  |As| < yaols.
Proof. For a proof of the results for H1-H3 see [42].
Here we consider H4. Recall that e = (|z1| — |z2|)/|z1], from which € =

e(1+6,) is immediate. Using the fact that multiplying a floating point number

by 2 on a binary machine is exact, we then have

1+ 04
V(26 —22(1+61))(1 + 62)(1 + 63)
B 1 (1+6,)v2e — €2
 V2e—¢ (\/26(1 +6;) —e?(1 +9’2))

fl(e) =

2e6; — e20,\ ~?
2e — €2

1
= \/ﬁ(1+02) <1+

1
= ot te) V2

where

2¢ + €2 1
< 732(26 +€%) < 3v3 < 7.

<
le1] < 7326_62 hS

Hence
fl(e) = c(1+m),
where 1, = (1 +6)(1 +€)""/2 — 1 and

1+
Im| < ik

<1+4+mg—1 (aconsequence of Lemma 1.4.2)
= 718-
We also obtain

fl(s) = s(1 +1m2),
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where [ng| < 790- O

Lemma 2.2.4 suggests that H3 and H4 can be computed more accurately
than H1 and H2, although if |z1| is not close to |z5| all four representations will
be accurate. This is supported by numerical experiments. Using MATLAB we
computed ||H — fI(H)||2/||H]||2 for H1-H4, for a series of vectors z € R? with z
approaching x; where H is calculated to 100 significant digits. The results are
given in Table 2.1, and show the benefit of the H3 and H4 representations. We

therefore do not further consider or make use of the H1 and H2 representations.

Table 2.1: The errors |H — flI(H)||2/||H]||2 in forming H by H1-H4 using the
vector z = [5000, 5000 — ]”.

o H1 H2 H3 H4
1e-00 | 4.6280e-17 | 2.8732e-14 | 4.6280e-17 | 4.6280e-17
le-02 | 7.5126e-13 | 6.4709e-12 | 1.8665e-17 | 9.5022¢-17
le-04 | 2.6335e-10 | 1.8257e-09 | 5.1384e-17 | 5.1384e-17
1e-06 | 8.7261e-08 | 1.2785e-07 | 1.3048e-16 | 5.7722e-17
1e-08 | 4.8750e-06 | 5.7733e-06 | 4.5305e-17 | 2.1602e-17
le-10 | 8.2806e-04 | 6.2203e-04 | 3.7077e-17 | 3.7077e-17

We now consider computing ¢ and s using representations H3 and H4 for

2 € C2. For both representations we must compute

r = |z1] — |29

=Va2+b2 —\/e2 + f2, (2.13)

where 1 = a + ib and =2 = e + if, and using (2.13) may cause cancellation
similar to that observed in the computation of H1 and H2 in the real case. This
is highlighted by numerical experiments. We computed ||H — fI(H)||2/||H]||2
using H3 and H4 for a series of vectors z € C?, with x5 approaching z;, where
H is calculated to 100 significant digits. The results in Table 2.2 show the

instability of using H3 or H4 for z € C2.

45



An alternative method of computing ¢ and s for z € C? is to compute the

denominator d = /|z|? — |z3|? using
d=+/(a+e)(a—e)+ B+ f)b-f).

(2.14)

This removes the risk of cancellation when sign(a? — €*) = sign(b* — f?), but

may still suffer from cancellation otherwise. Similarly, using

d=+(a+ flla—f)+O+e)b—e) (2.15)

will not suffer from cancellation if sign(a? — f?) = sign(b* — e?). We can choose
to use (2.14) or (2.15), depending on the circumstances, so that the risk of
cancellation is significantly reduced. It is possible to ensure that cancellation
may only occur if |al, |b], |e| and | f| are close together, sign(a®—e?) = —sign(b*—
f?) and sign(a® — f?) = —sign(a® — €?). However, since we are unable to find
any stable methods to compute ¢ and s for all |zi| > |z3], we restrict our

attention to the real case.

Table 2.2: The errors ||H — fI(H)||2/||H]||2 in forming H by H3 and H4 for the
vector z = [3000 + 20004, (3000 — a) + (2000 — a)i]”.

o H3 H4
1e-00 | 4.3008e-14 | 4.3036e-14
1e-02 | 6.9506e-12 | 6.9505e-12
le-04 | 9.0943e-11 | 9.0943e-11
1e-06 | 8.1762e-08 | 8.1762e-08
1e-08 | 5.8488e-06 | 5.8488e-06
le-10 | 1.3949e-04 | 1.3949¢-04

Next we consider the errors in applying H € R?*2, represented by H3 and

H4, directly to a vector a € R2.

Lemma 2.2.5. Let a hyperbolic rotation H be formed by H3 or Hj and applied

directly to a = [a; ag ]T, giwing b= Ha. The computed/g satisfies

|Aa| < 7 |H[?|al,



H4: b=H(a+ Aa), |Aa|< s|H|?al.

Proof. We prove the result for H4. The proof for H3 is similar.

From Lemma 2.2.4 we have that

flle)=c(L+m), |m|<s,

fl(s) =s(L+m2), |me| < yo-

Hence

by = (c(1+m)ar(l+8) — s(1 +m2)as(1 + 62)) (1 + &)

=cai1(1+€) — saz(l + €),

where

ler] = [m + 60s + mibs| < v18 + 72 + Y1872 < Y20,

and similarly

2] < Yao.

We can also find that
32 = —sa;,(1+ €3) + caz (1l + &),

where

les| < ya2,  |ea| < ya0.

Combining (2.17) and (2.18) we obtain

-~

. [b
2

and therefore

b=H(a+ Aa), |Aa| < Yool H||H ||a| = yaz| H?|a].
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For hyperbolic rotations applied directly, we have been unable to find error
bounds that do not depend on H. Since the components of H may be arbitrarily
large it seems that applying hyperbolic rotations directly may be unstable.
Fortunately, hyperbolic rotations can be applied in a stable way by applying

them in mixed form.

Lemma 2.2.6. Let a hyperbolic rotation, H, constructed using H3 or Hj be
applied in mized form. Let a = [a; as]T € R? and b= [by by]T = Ha. Then the
computed b satisfies

b+ Ab= H(a + Aa),
0

ACLQ

Aby

where Ab = , Aa = and

0
H3: max(|Abi],|Aas|) < 70 max([by], |az|),

H4: max(|Abi],|Aas|) < ~vs2 max([by], |as)).

Proof. We will prove the result for H4. The result for H3 is proved in a similar
way.

From Lemma 2.2.4 we have that

flle)=c(l+m), |ml<ms,
fU(s) =s(L+m), [ne] < o0
The first component of b is computed in the same way as when the hyperbolic

rotation is applied directly and therefore satisfies (2.16), which can be rewritten

as

~

b
ap = ?1(1 + 61) + 2&2(1 + 62), (219)

where |€1| < 7440 and |e;] < 7y40. The computed second component of b satisfies
~ S a
by=—"bi(1+ &) + ?2(1 + ), (2.20)

where |e3] < 741 and |e] < 7ss.
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Combining (2.19) and (2.20), and using |e1], |€a], |€s], |€4] < 741 we obtain

ay ,51
2

a2

where

C S
G =

-5 C

] , ¢=1/c, s=s/c,

is orthogonal. This can be rewritten as

a; ,51 + Abl
| =c , (2.21)
b2 as + ACLQ
with N
Aby by
=GTAG
A(J/Q [¢5)
and

max(| b, [Aaz|) < a1 (1 + 212[3]) max([b , |az|)

< vge max([by|, |az|),

where ¢ = 1/c and 5 = s/c. Using the exchange operator we can rewrite (2.21)

by + Ab,
by

a1
. I

ay + ACLQ

This result is a mixed forward-backward error result, and the errors do not
depend on the size of H. It shows that applying a hyperbolic rotation in mixed
form is mixed forward-backward stable. The OD procedure described by H5
for applying hyperbolic rotations has also been shown, by Chandrasekaran and
Sayed [15], to be mixed forward-backward stable. Their result, also proved

in [42], is summarised in the following lemma.

Lemma 2.2.7. Let a hyperbolic rotation, H = QDQT, be expressed in the
form (2.12). Let a = [a; as]T € R? and b= [by bo]T = Ha. Then if b is formed
using b = Q(D(Q"a)), the computed b satisfies

~

b+ Ab= H(a+ Aa),
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where | Ab| < 41 [b| and |Aa| < 2v6|Q||a|. Normwise bounds are || Abl|s < 71 |[bl|
and || Aallz < 47l|all2-

Proof. Let b' = QTa, b" = DV and b = Qb". Then the computed ¥’ satisfies

V= f1(Q"a)
1+51 0 a; — Q2
= ) |51|a|52| SU,
0 1+52 ai + Qg

= (I+ Al)QTCL, ‘A1| S ’)/1]

The computed d satisfies
cfi\: 1l < T +l’2)
1 — T9

_ \/(f”l F2)H%) 34+ 6)

(x1 — z2)(1 + d4)
=d(1+6,),

and since division by 2 can be considered to be done exactly, J/\Z =d(1+86,)/2

—

and 1/(2d) = (1 +64)/(2d). The computed b” therefore satisfies
b = fI(DV)
= D(_l + AQ)(I + Al)QTCI,, |A2| S ’)/51,
= D(I 4 A35)Q"a,
where |Az| < l. Applying @ to b gives
b= fUQY")
= (I + A4)QD(I+ Ag)QTa,

where |A4| < v,I. Rearranging and using QTQ = I gives

(I + A5)b = QD(I + A3)QTa, |As] <,
= QDQ"(I + QA3Q")a
= QDQ"(I + Ag)a,

a0



where
|4 = [QA3Q"| < 7|QI* = 275|Q)|.

Hence we have the result

~

b+ Ab=H(a+ Aa), [Ab| <mbl, [Ad| < 27/Q]lal,
and the normwise bounds follow using |||Q|]|2 < 2. O

We now seek a new mixed forward-backward error result that has no per-
turbation for the by and a; components. This will later allow us to conduct
a rounding error analysis when more than one hyperbolic rotation is applied
using the OD procedure. The following lemma shows how we can remove
the perturbations from the b, and a; components for a more general mixed

forward-backward error result.

Lemma 2.2.8. Let a = [a; as]” € R%, b= [by by]T = Ha and H be a hyperbolic

rotation that satisfies

7)\1 + Aby a; + Aay
- - , (2.22)
bg + AbQ as + ACLQ
where
[Abi| < efbi], |Ab| < elbal, [Aai| < eslar], |Aag| < esfag]-
Then ~
bl —+ Al ay
—~ =H ;
b as + As
where
|A1] < (€1 + 262 + 2¢3) max(|?)\1|, |azl),
| Ag] < (eq + 2€5 + 2€3) max([by, |az)),
Proof. Applying the exchange operator to (2.22) gives
a1 + Aay ,51 + Aby
- - , (2.23)
bg —+ Abg as + Aag
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where

o [ 1/c s/c].
—s/c 1/c

Since |s/c|,|1/¢c| < 1, we have
[by| < |s/cl[bs + Abi| + [1/c||as + Aaz| + | Aby|
< [b1| 4 |Aby| + |as| + | Aas| + | Abs]

< 2max([by], as|) + O(uw).

Similarly

la1| < 2max([bi], |as) + O(u).

Ignoring second order terms of v we now have the bounds

| Aby| < ea[by| < 26, max([by], |az]),

|Aa| < elan| < 2¢3 max([bu], |a]).

The perturbations on the left hand side of (2.23) can be rearranged so that

aq 31 + Abl Aa1
.| =G - GGT .
bg ag + AG,Q Abg
Since
Aay (1/¢)Aay + (s/c) Aby
GT == )
Aby —(s/c)Aay + (1/c)Aby
and |s/c|,|1/c| < 1, we can write
a; 51 + Al
~ | =G ;
b2 as + AQ

where

|Ay] < [Aby| + [Aay | + |Aby| < (€1 + 2€3 + 2¢2) ma‘X(|/51|7 lasl),

|As| < |Aao| + |Aay| + | Abs| < (e4 + 2€3 + 2€5) max([by], |as]).

Applying the exchange operator we get

31 + Al aq
~ =H )
bg as + AQ
with the required bounds for |A;| and |Ay|. O
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Corollary 2.2.9. Let a hyperbolic rotation, H = QDQ™, be expressed in the
form (2.12). Let a = [a; as]t € R? and b= [by bo]¥ = Ha. Then if b is formed
using b = Q(D(Q"a)), the computed b satisfies

/[;1 + Al ai
~ =H ;
ba ag + Agy

where max(|A;|, |As|) < 14~ max([by], |as)).

Proof. Since |Ab| < 'yl|?)\| and |Aa| < 2796|Q||a| in Lemma 2.2.7, we have
by + Ab,
by + Aby

a; + Aay

)

as + Aasy
where
|Ab1| < 71‘51‘7
|Ab2| < %‘/52"
|Aay|, | Aag| < 4 max(|ayl, az]).

By Lemma 2.2.8 we have
by + A

ay
o~ - H b
bg as + A2
where
Ay < 11smax([b], |az), [As| < 14y max([by, |as),
and hence we have the desired result. O

Corollary 2.2.9 shows that the errors do not depend on the size of H, and
we note that the error result is similar to that for the mixed method of applying

a hyperbolic rotation as described by Lemma 2.2.6.

2.2.4 Numerical Experiments

Let us consider applying the hyperbolic rotation H € R?*2, such that Hz has

zero second component, to a € R? so that b = Ha. If a method of applying a
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hyperbolic rotation is mixed forward-backward stable then there should exist

a hyperbolic rotation H such that

?)\1 + A
by

ai

—H , (2.24)

a:2+A2

(45} 2

where wu is the unit roundoff. We have shown in Lemma 2.2.6 and Corol-

with ||[A; As]T |2 close to

§=u : (2.25)

lary 2.2.9 that such a matrix H exists when applying a hyperbolic rotation
in mixed form or by the OD procedure. In Section 2.2.3 we suggested that
applying a hyperbolic rotation directly may be unstable and we now confirm
this by numerical experiments.

To check the stability of applying a hyperbolic rotation it is sufficient
to check whether we can find a mixed forward-backward error result of the
form (2.24), since the proof of Lemma 2.2.8 shows how we can convert an error
result of the form (2.22) to the form (2.24). Using the exchange operator we

can rewrite (2.24) as

bi + 4y a1
=1, (2.26)
as + AQ bg
where i
- c s
G =exc(H) = , 48t =1,
-5 c

is orthogonal. Rearranging we find that
Al _ GT i a1 B I b1
L by L Q2

Ay
ap _b2 _C bl
a 7)\2 aq | S as .

Hence, we can find the values of ¢ and s that give the minimum value of

I[A1 A2]"]|2 in (2.26) by solving the constrained least squares problem
min N —
v by Y2 Qs

o4

) subject to ||y|l2 = 1. (2.27)
2



An algorithm for solving such problems is detailed in [22, Sec. 12.1].

For various z € R? and @ € R? we computed b = Ha, where H is the
hyperbolic rotation such that Hz has zero second component, by applying H
directly, in mixed form and by the OD procedure. We solved (2.27) for each
method in 100-digit arithmetic using MATLAB’s Symbolic Math Toolbox.

We recall that we would expect the minimum in (2.27) to be close to (2.25)
if a method of applying H is stable. Therefore the first four results in Table 2.3
prove that applying a hyperbolic rotation directly is unstable. For this reason
we no longer consider applying a hyperbolic rotation using this method. As
expected, a hyperbolic rotation applied in mixed form or by the OD procedure

behaves in a stable way.

Table 2.3: The value (2.27), computed for a hyperbolic rotation applied di-
rectly, in mixed form, and by the OD procedure. The hyperbolic rotation, H,
such that Hz has zero second component, where z = [1,1 — «], is applied to
a = [5,5 — f]. The value § is given by (2.25).
Q 15} ) Direct | Mixed OD

1.0e-08 | 1.0e-02 | 7.9e-15 || 3.8e-12 | 8.2e-15 | 8.1e-15

1.0e-12 | 1.0e-02 | 7.9e-13 || 1.6e-10 | 5.9e-13 | 5.9e-13

1.0e-12 | 1.0e-04 | 7.9e-15 || 6.1e-10 | 8.1e-15 | 6.1e-15

1.0e-12 | 1.0e-08 | 5.6e-16 || 7.7e-13 | 1.4e-16 | 2.8e-22

1.0e-02 | 1.0e-08 | 5.6e-16 || 3.9e-16 | 3.9e-16 | 2.4e-18

1.0e-04 | 1.0e-12 | 5.6e-16 || 2.8e-17 | 2.2e-16 | 1.7e-20

2.2.5 Combining Hyperbolic Rotations

Here we analyse a product of hyperbolic rotations that are nonoverlapping in
components 1: p. Following Bojanczyk, Higham and Patel [9], we say that two
hyperbolic transformations are nonoverlapping in components 1: p (or nonover-
lapping for short) if for i = 1: p at least one of the transformations agrees with

the identity in row ¢ and column 7. This will allow us to conduct a rounding
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error analysis of algorithms which apply nonoverlapping hyperbolic rotations.

Consider first a product of two hyperbolic transformations, which are J-
orthogonal, where J = diag(l,, —I,) and p + ¢ = m. We will require the
following lemma to write our error results in terms of the original hyperbolic

transformations.

Lemma 2.2.10. Consider two hyperbolic transformations, H; € R™*™ agree-
ing with the identity matriz in rows and columns 1:t, and Hy € R™*™ agreeing
with the identity matriz in rows and columns t + 1:p, where 1 < t < p. If
exc(H;) = Gy and exc(Hy) = Gy then

eXC(Hng) = GQGl
and
eXC(GQGl) = H2H1.
Proof. Applying the exchange operator to the hyperbolic transformations

t p—t m—p t p—t m—p

t I 0 0 t Bll 0 B12

mp |0 Ay Ay m-p | Bor 0 Bgo
gives
[ ] 0 0
Gi=exc(H)= |0 A —Al A, , (2.28)
| 0 A21A1_11 Agg — A21A1_11A12
and ) ) )
By 0 —B{; By
G2 = eXC(HQ) = 0 I 0 . (229)
_B21Bl_11 0 By — 32131_11312

The product of H; and H, is given by
Bi1 BipAy  BigAx

HZHI = 0 All A12
BZI B22A21 BQQAQQ
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and by applying the exchange operator we find that

p m-p
P Ci1 Cio
eXC(H2H1) = s
m—p | Co1  Coo
where
(B! —B'BiaAy ATl
Cy = . )
. 0 Afy
i —BﬁlBu (Aga — A21A1_11A12)
012 == 1 3
—Ap A

Cy = [BmBﬂ1 (Baa — leBﬂlBu)AzlAﬂl] ;

Cop = (Byg — B2lB1_11312)(A22 — A21A1_1lz412)-
It is easily verified by multiplying (2.28) and (2.29) that

P m—p
by [on O

“0 e ol

= exc(HyH,).

It is also easy to verify that C}; is nonsingular, and since the exchange operator

is involutory, we have exc(G2G1) = HoH;. O

The following lemma considers the errors involved when combining two

nonoverlapping hyperbolic rotations.

Lemma 2.2.11. Consider two hyperbolic transformations, H; € R™*™ agree-
ing with the identity matriz in rows and columns 1:1 and Hy € R™*™ agreeing
with the identity matriz in rows and columns t+ 1:p, where 1 < t < p. Suppose

that the errors, E;, in applying Hy to the matriz [RT ST XT1", to give in
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exact arithmetic [RT ST XT|", are described by

n

R R t
H, S = [Si+ Ei| pt (2.30)
X + E2 X1 m—p

and the errors, F;, in applying Hy to the right hand side of (2.30), to give
[RT (S;+E)T XT1" in exact arithmetic, are described by

R R+ Fy t
Hy | Si+E | = [Si+E/| p—t (2.31)
X+ By X m—p
where
max || Eilly < pomax(] S]]z, | X[l2),
max || Fil < pmax(|[Baflz, | X3 ]l2)-
Then
R R, + ARy
HyH, S =[5 +485 |,
X +AX X
where

,||X||2) +0(1).

s (H ] 2,||AX||2) < Gumax (H [l: ]

Proof. First let us consider the hyperbolic transformations without the per-

AR,
AS;

2

turbations. Let H; and H, be two nonoverlapping hyperbolic transformations

which satisfy

R R Ry
H, S| = Sl s H, Sl = Sl )
X Xy Xy
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so that

HyH,

R
S
X

Ry
Sy
Xo

Using the exchange operator, the two hyperbolic transformations can be rewrit-

ten in terms of orthogonal transformations Gy and G5 as

Sp S
Gl = )
X | | X1 |
R, R
Go = ,
X1 | | X |

where we express the relations in terms of the affected components only. These

two relations can be rewritten as

R R R R
I 0 I 07.
S| = S | = Gyl S |=Ga| S|, (232
0 GT 0 GT
Xy Xy Xy

where G([1:t, p+ 1:m], [1: ¢, p+ 1: m]) = G5 and elsewhere G5 agrees with the
identity matrix, and G is orthogonal.
Including the perturbations from (2.30) and (2.31) in the analysis, the per-

turbed version of (2.32) is

R+ F [ R+ F,
I 0
Si+E | = S
0 GF
X+ E, | X
R 0
rootf.
= GIls|-1]o0 (2.33)
0 GT
\ lxw) s
This may be rewritten as
R+ ARy R
GG | S1+A48 | =185 |, (2.34)
X+ AX X5
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where

By renaming F; and F}, and using Lemma 2.2.10 after applying the exchange

AR,
ASy

, ||AX||2> < 3pmax (|| Ryl[2, [|S1l2, [[ X2, | X1l|2)-
2

operator, (2.34) can be written as

R R+ AR,
H2H1 S - Sl + ASI
X+ AX Xy

We note that
[ X1ll2 < 2max([|S1][2, | X]]2) + O(p),

and therefore we have

AR, )
max NAX |2 | < 6pmax(||Rall2, [[Sill2, [| X l2) + O(17)
R,
< 6pmax
Sy

This result is similar to that in [9] except that we have been able to write

1 2

O

,IIXIIQ) +0(1*).

the error result in terms of the hyperbolic transformations H; and H, rather
than in terms of exc(H;) and exc(H3) as in (2.34).

In [9] the analysis in the proof of Lemma 2.2.11 is used inductively r — 1
times to give a result for the errors involved in applying a product of » mutually
nonoverlapping hyperbolic transformations Hy, Hy, ..., H,. However, the
precise details are not given. We choose not to use this approach but instead
give a single more precise result for combining the errors of r nonoverlapping
hyperbolic rotations.

Consider hyperbolic transformations H; € R™*™ for ¢ = 1:r, that agree
with the identity in all but rows and columns ¢; _;:¢; and ¢,:¢,1, where t; = 1,

tr =p, t,yr =mand 0 < t; < ty < --- < t.41. The transformation H; is
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applied to the matrix

- Agl) - t
Agl) ta—t1
A=
AV bt
_Agl_ try1=tr
so that A§2) ) A,El)
AP | A

where H; = H;([tio1:ts, tr: trya], [tio1: iy tr: tey1]). After all the hyperbolic trans-

formations have been applied we have

- 2) o - 1) -
AP A
A'slz) e -H'I‘ . H2H1 Agl)

r+1 1

A7) ] LA

We consider the errors in combining r hyperbolic transformations in the

following lemma.

Lemma 2.2.12. Consider hyperbolic transformations H; € R™™ ¢ = 1:r,
where H; agrees with the identity in all but rows and columnst;_1:t; and t.:t. .1,
whereto =1, t, =p, tryr =m and 0 < t; <ty < -+ < tp11. Suppose that the

errors E; aqgl D;, in applying fIz = Hi([ti_lzti,t(2:)tT+1], [tic1:ti, trtry1]) to the

Al A
matric ' to give in exact arithmetic ' , are described by

A(Z) A(H'l)

r+41 r+1
n
~ Az(l) A§2) -+ E’L ti—ti—1 .
0 = ) , 1=1:r, (2.35)
AT—H + Dz A,,.:_l tra1—1r

where

3 2
max (|| Dillz, || Bill2) < pmax(| A%, |2, [|AZ])).
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Then

mAD 1 14D 4+ AP
H, ... H,H, ' - ' ,
AW AP + 24P
5 A£21 + AA£1421 - A A1(~:L+11) -

where

max (|| AAL), ||z, | AAP o) < (2r% — r)pmax(|| AL |2, [[AZ)]|2) + O(42)

AP AAP
A = | | AaAP = . (2.36)
A9 e
Proof. Using the exchange operator, the  hyperbolic transformations, (2.35),

can be rewritten in terms of orthogonal transformations as

5[ A7 HE] A
! A(i) +D. o A(H’l)
r+1 ? r+1

The r orthogonal relations can be rewritten as

r AP 4+ By T FAY 7T 107 C 0 T
=GT|...G |G~ ' — | e
A? 4 E, ' ' AW 0 0
LAY + D, | 1 AT | D, | D, |
- Ag ) S C Y, T
=GTcT..¢"| |-| |,
1~2 A,,(ﬂl) Y;
LAY ] LY

where G;([ti_1:ts, tr:trya], [tic1: iy tritri]) = G; and elsewhere G; agrees with

the identity matrix, and

g 2
Y2 < (r = Dpmax([AT |2, [|AF]l2).
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Using the inequality

E,
< Z ]| < rpmax(| 472 e, 47 l2),
=1
E. 11,
we can collect the error terms so that
_ 2 2) - - 1 -
AP + 24P ALY

G, ...GsG, A0 | =] a0 | (2.37)

-A(l)l + AA'I‘+1 Ag:—ll -

where
max (| A4 o, | AAT o) < (2r = Dpmax([| A7 |2, [| A1)

and AA® is defined by (2.36).
Since
A5z < IIAT+1II2+ APl + O()

<Z||A Iz + 14724112 + O (),

we have

max (| A4 1o, | AAT o) < (27 = r)pmax(| A, 1o, | A7]2) + O (1)

< (2r® — r)pmax(| A% |2, [AL2) + O(1?).

Applying the exchange operator to (2.37) and using Lemma 2.2.10 inductively

we obtain the desired result. O

The errors involved in applying a hyperbolic rotation using the represen-
tation H3 or H4 in mixed form, and by the OD procedure, described in Lem-
mas 2.2.6 and 2.2.8 respectively, satisfy (2.35). Therefore, by Lemma 2.2.12,
providing the hyperbolic rotations are nonoverlapping it is possible to apply a

sequence of them in a mixed forward-backward stable way.
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In Section 2.5 we describe an algorithm for computing the hyperbolic QR
factorization of a matrix using nonoverlapping hyperbolic transformations. We
will make use of Lemma 2.2.12 when conducting a rounding error analysis of

the algorithm.

2.2.6 Unified Rotations

In Section 2.2.1 we defined the hyperbolic rotation that zeroed the second

component of x € C? to be

where
1 X2

c= s = (2.38)

\/|$1|2— |~T2|2’ v\$1|2— |$2\2’

if |x1| > |xo|. This is called a Type I hyperbolic rotation and we showed it to

be J-unitary in Section 2.2.1.
If we allow |z;| < |z3| then we can obtain a form of hyperbolic rotation

that gives real ¢ and s for x € R? and satisfies

Y1 1
=H

0 X9

1 T2

c= s = (2.39)

\/|$2|2— |~T1|2’ v\$2|2— |$1\2'

This is called a Type 2 hyperbolic rotation.

if ¢ and s are defined by

The matrix H is now not J-unitary but satisfies
¢ —5|"[1 0 ¢ -5 [e|? — |s]? 0
-5 ¢ 0 -1]|-s ¢ 0 |s|2 —|c|?

10
o 1)
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and hence H is (Ji, Jp)-unitary, where

1 0
Jp==+
0 -1

Unified Rotations, first introduced by Bojanczyk, Qiao and Steinhardt [11],

and J2 = —Jl.

include Givens and both types of hyperbolic rotations. Given a signature ma-

trix J; = diag(oy, 03), 01 = £1, 09 = 1, a unified rotation has the form
Q C Z—TE
s ¢ |

| 2

where ¢ and s satisfy

oilc]® +oqls|* =51, o1 =1

If we define 05 = 010907 then @ is (J1, Jo)-unitary where J, = diag(oy, o9)-

If 0y = oy then @ is a Givens rotation and ¢ and s are given by (1.5). If
01 # 09 then @ is a hyperbolic rotation where ¢ and s are given by (2.38)
if |z1] > |zo| and (2.39) if |z1| < |za|. Unified rotations are not defined for
|z1| = |x2| when o1 # 0,.

A unified rotation is (Ji, J;)-unitary where

Jpo if Jp =41,
Jo=4q Ji if Jy # +1 and |z1] > |24,
—Ji1 if J;1 # £1 and |z < |22
In Section 2.2.2 we showed there are various ways of representing and ap-
plying Type 1 hyperbolic rotations. We now present the analogous ways of
representing and applying Type 2 hyperbolic rotations.
In Section 2.2.3 we showed that for a Type 1 hyperbolic rotation, ¢ and s
could be computed accurately by using the H3 and H4 representations. The
analogous representations for a Type 2 hyperbolic rotation are

X1 ZTo
H3: ¢= , §= (2.40)
(2] + [21]) (J22| = |2 ]) (72| + |21 [) (Jz2| = |21])
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and

xS sign(xs)
H4: c=212 o= D802 2.41
T2 V2e — e? (2:41)
where e = (|z3| — |z1])/|z2|. It not difficult to show that ¢ and s computed

using (2.40) or (2.41) satisfy similar error results to their Type 1 equivalent.
The following function computes ¢ and s, which define the unified rotation,
according to H4 (2.7) for the Type 1 rotation and analogously for the Type 2

rotation.

Algorithm 2.2.13. Given x = [z, 15|" and Ji, ¢ and s which define a unified
rotation @ are computed such that Qx has zero second component and @ is

(J1, J2)-unitary.

1 function [¢, s, Jo] = urotate(z, J;)

2 o=Ji(1,1)J;(2,2)

3 if |z1| = —olzs|

4 error - no unified rotation exists
5 end

6 Jo=.J;

7 if 21| > |2

8 ifo=1

9 t=|za|/|mal,d =1+ [t
10 ¢ =sign(z,)/Vd, s = tc

11 else

12 e = (|z1| — [z2]) /|71

13 c = sign(71)/v2e — €2, s = (22/71)cC
14 end

15 else

16 ifo=1

17 t=|z1|/|z2|,d =1+ [t]?
18 s = sign(xy)/Vd, c = ts

19 else
20 Jo=—Js
21 e = (|za| — [z1]) /]2
22 s = sign(x2)/v2e — €2, ¢ = (v1/12)s
23 end
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24 end

A Type 2 hyperbolic rotation may be applied in a mixed form, similar to
that for a Type 1 hyperbolic rotation. If we are applying H to a € C? to obtain

b = Ha, then this is achieved using

b1 = cay — §a2,

by = — b — 2,

5 5
In Section 2.2.3 we showed that applying a Type 1 hyperbolic rotation in mixed

form using the H3 or H4 representation is mixed forward-backward stable. The

following lemma shows that a similar result is true for the Type 2 case.

Lemma 2.2.14. Let a real Type 2 hyperbolic rotation, H € R®**?, constructed
using HS (2.40) or Hj (2.41), be applied in mized form. Let a = [a; ap]t € R?
and b = [by by]" = Ha. Then the computed b satisfies

b+ Ab= H(a + Aa),

Abl Aal

where Ab = , Aa = and

0 0

H3: max(|Abi],|Aar]) < ve0 max([by], |a1]),

H4: max(|Ab|,|Aa1|) < vs2 max(|€1|, lai]).

Proof. We will only prove the result for H4.

It is easy to show that

fllc)=c(1+m), |m| < v,

flU(s) =s(1+m2), |m2| < ms,

and therefore

by = (c(1+m)ay(1+61) — s(1+ m)ar(1+62)) (1 + &)
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This can be rewritten as

~

b (1+e), (2.42)

C
a9 = —0,1(1 +61) — —1
S S

where |€1| < 740 and |e;] < 7y40. The computed second component of b satisfies
ay

b= -1+ ) +31§(1 +e), (2.43)

where |e3] < 35 and |e4] < v41.

Combining (2.42) and (2.43), we obtain
Qs
b,

G =

by

a1

where

Cc S

—S C

] , c¢=—1/s, s=—c/s,

is orthogonal. This can be rewritten as

a9 /51 + Abl
| =G , (2.44)
by a; + Aay
with R
Abq by
=GTAG
Aa1 aq
and
max(|Aby|, [Aas ) < a1 (1 + 2[][3]) max(fb |, |as )
< ygo max(|by |, a1 ).
Using the exchange operator we can rewrite (2.44) as
/51 =+ Abl —S C [¢5)
/b\g a c -8 a1 + Aaq ’
and hence we have
b1 + Abl a1 + Aa1
~ = O
bg Qo
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The following function applies the unified rotation directly if the rotation
corresponds to a Givens rotation, and in mixed form if the rotation is a Type

1 or Type 2 hyperbolic rotation.

Algorithm 2.2.15. Applies a unified rotation defined by ¢ and s to a matriz
A € C**™_ If the unified rotation corresponds to a hyperbolic rotation then it

s applied in mized form.

1 function B =uapply(c, s, A, Ji, J2)

2 o=J1(1,1)J1(2,2)

3 B(1,:)=cA(1,:) + 05A(2,:)

4 ifo=1

5 B(2,:) = —sA(1,:) + cA(2,:)

6 elseif Jy(1,1) = J(1,1)

7 B(2,:) = (=sB(1,:) + A(2,:))/c
8 else

9 B(2,:) = (—cB(1,:) — A(1,:))/5
10 end

It is also possible to apply a Type 2 hyperbolic rotation in an analogous
way to the OD procedure for a Type 1 rotation, H5 (2.12). This is achieved by

applying H to a € R? to obtain b = Ha using

= G(D(Qa)), (2.45)

11 /2 0 o N
1 1]’ 0 1/(2d)]° 1 1] Ty — T

In Section 2.2.3 we showed that applying a Type 1 hyperbolic rotation using

where

G =

the OD procedure is mixed forward-backward stable. The following lemma

shows that this is also true for the Type 2 case.

Lemma 2.2.16. Let a Type 2 hyperbolic rotation, H = QDQ™, be applied
using (2.45). Let a = [a; ao]T € R? and b = [by by]T = Ha. Then the computed
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b satis fies

,[;1 + Al ay + AQ
/52 a9 ,

where max(| A1, | As|) < 1476 max([by, |a1]).

Proof. The proof is similar to the arguments used in the proofs of Lemmas 2.2.7

and 2.2.8 and Corollary 2.2.9, except that we make use of the fact that if

NEN

then
aq bl
-G ,
b2 aq
where
—-1/s —c/s
G =
c/s —1/s
is orthogonal. O

The following function describes how a unified rotation may be constructed
and applied by combining the OD procedure representation, H5 (2.12), and its

analogous Type 2 representation.

Algorithm 2.2.17. Given x = [z, z5)7 € R? and J, = diag(£1) € R?*?,
a unified rotation Q that is (Ji, J2) orthogonal, such that Qx has zero second
component, is applied to a matriz A € R?*™ to obtain B € R**™. If the unified
rotation corresponds to a hyperbolic rotation then it is applied using the OD
procedure.

1 function [B, J5] = uapply_od(zx, A, Ji)

2 U:J1(1,1)J1(2,2)
3 ifo=1

4 if |z1| > |22

5 t=|zo|/|z1], d =1+ |t]?
6 ¢ = sign(z,)/Vd, s = tc
7 else
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8 t=|z1|/|zo|, d =1+ |t]?

9 s = sign(xy)/Vd, c = ts

10 end

11 Jy = Jy

12 B(1,:) =cA(1,:) + 05A(2,:), B(2,:) = —sA(1,:) + cA(2,:)
13 else

14 if |x1| > |xo|, @ =1, else, « = —1, end

15 d= af%jjz)

16 Jo = aJ;

17 B(1,:)=A(1,:) — A(2,:), B2,:) = A(1,:) + A(2,:)

18 B(1,:) = (d/2)B(1,:), B(1,:) = (1/(2d))B(2,:)

19 B(1,:)=aB(1,:)+ B(2,:), B(2,:) = —aB(1,:) + B(2,:)
20 end

The functions described in this section are implemented as MATLAB func-

tions in Appendix A.1l.

2.3 Fast Rotations

In this section we first consider fast Givens rotations in order to develop fast

hyperbolic rotations. We restrict our attention to the real case for simplicity.

2.3.1 Fast Givens Rotations

Suppose a Givens rotation, GG, is to be applied to a matrix A so that B = GA,
where G is equal to the identity except for

c —S

G([p,dl, [p,ql) = ! ] . A48 =1.

s ¢
The motivation for a fast rotation is to reduce the number of multiplications
needed to apply a rotation, by expressing the matrix A in the form A = DZ,
where D = diag(ds,...,d,) and A is scaled accordingly. When a sequence of

rotations are applied to A = DA then A and D are updated separately and the
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product of the two factors is calculated after all rotations have been applied.
The matrix D is initially set to the identity matrix.

If A= DA then applying a Givens rotation can be represented as
B=GA=GDA=KFA=KB,

where K = diag(ky,...,k,) and F is defined as

L., 0 0 0
0 fpp 0 qu
0 0 I,. 0
0 fo 0 Jfy
0 0 0 0 I,

(2.46)

o o o O

We call F' a fast Givens rotation if the choices of fp,p, fpq, fop and fy, result in
reducing the number of multiplications in applying a Givens rotation.
There are several ways of choosing F' and K so that the number of multi-

plications is reduced. Two common choices are of the form

r R
F,, = =
fop faq a 1

SR P
" Jop  Jaq -1 a

Suppose we wish to zero the second component of [Z,; Z,]T, where X =

or

DX , by a fast rotation. This will affect the pth and gth rows of the matrix
which the fast rotation is being applied to, say Z, where A = DA. The following
formula applies the fast rotation corresponding to the first choice of F' to Ato

give E, where B = KB and K is a diagonal matrix:

B(p,:) = A(p,:) + BA(g, "), (2.47a)

B(q,:) = aA(p,:) + A(g, ), (2.47D)
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2
where o = —t, 5 = tj—% and ¢ = 7,;/T,;, and
D

dpTp;
7
[ j27:2 272
dpxpj + dqxqj

A problem with fast rotations is that underflow can occur if D is multiplied

cC=

ky =cd,, kq=cd,.

by |¢] < 1. The risk of underflow can be reduced by using the following

alternative formula, corresponding to the second choice of F, when ¢ < 1/2:

B(p.:) = BA(p.:) + Alg, ), (2.482)
B(g,:) = —A(p,:) + 0¢A(g,1), (2.48b)
where o = 1,8 = %Z—’Z’ and t = T,;/Zp;, and
s= % gk, = sd,.

2772 272
dpmpj + dqxqj

By an appropriate choice of the forms of F', the decrease in magnitude of each
element of D can be bounded by 1/ /2. The risk of underflow in D can be
further reduced through the use of self scaling fast rotations [2].

To avoid overflow we may compute ¢ and s using

1 dgToi \”
c= , Wherev:( qfq]) ,
1+ dp.’L'pj
and
1 A7y \”
s = ,  Where w = ( pf”) .
1+w qu?qj

2.3.2 Fast Hyperbolic Rotations

In a similar way that hyperbolic rotations are analogous to Givens rotations,
fast hyperbolic rotations are analogous to fast Givens rotations. These have
been considered in [46] for computing the hyperbolic singular value decompo-

sition of a matrix. However, the fast hyperbolic rotations in [46] are applied in
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two different ways, of which one is unstable. We detail the methods of apply-

ing a fast hyperbolic rotation and give a rounding error analysis and numerical

experiments to determine the stability properties.

We recall that a hyperbolic rotation, H, is equal to the identity except for

H([p,ql,[p,q]) = ©

, c—s2=1.
—s ¢

Applying a hyperbolic rotation to A = DA can be represented as

B=HA=HDA=KFA=KB,

where F' is of the form (2.46) and K = diag(ki, ..., kn)-

We now give two sets of equations for fast hyperbolic rotations which are

analogous to equations (2.47) and (2.48). Firstly we have

B(p,:) = A(p,:) + BA(g,:),

B(g,:) = aA(p,:) + A(g, ),

2
where o = —t, 5 = —tz—é’ and t = Z,;/Zp;, and
q

dpTp;

c= , kp=cd,, ky=cd,.

\/(dpipj)Q - (dqﬁqu)Q
Secondly we have

B(p,:) = BA(p,:) — Alg, ),

Blg,:) = —A(p,:) + aA(g,:),

2
_lg_1% =% T
where a = 1,8 = (3 and t = 7,,/%,;, and

dgyg;

§ = ky = sdy, kg = sdp.

\/(dpi:pj)Q - (dqqu)2 ’

(2.49a)

(2.49D)

(2.50a)

(2.50D)

We note that to obtain real c and s we must impose the condition d,z,; > dyZ;,

and that this corresponds to z,; > x4, which must be satisfied for standard

hyperbolic rotations.
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Unlike for hyperbolic rotations, we know of no stable method of computing
c and s in floating point arithmetic for fast hyperbolic rotations. But, in order
to conduct a rounding error analysis of applying fast hyperbolic rotations we
make the assumption that ¢ and s can be computed exactly.

The fast hyperbolic rotations (2.49) and (2.50) are applied directly to the
matrix A. For hyperbolic rotations it has been shown in Section 2.2.3 that
for stability reasons, the hyperbolic rotation should be applied in mixed form
rather than directly. The following lemma considers the error in applying a

fast hyperbolic rotation directly.

Lemma 2.3.1. Suppose o' = Da where a',a € R? and D € R**? is diagonal.
Let a fast hyperbolic rotation, F, that is equivalent to applying the hyperbolic
rotation H to o' to giveb) = Hd', be applied to the vector a using (2.49) or (2.50)
so that b = Fa and b’ = Kb, where K € R?*? is diagonal. Then the errors in

computing b and K satisfy
Kb=H(Da+ A), |A| < y|HPDlal.

Proof. We give the proof for the fast hyperbolic rotation given by (2.49). The
other case is similar. We make the assumption that ¢ and s can be computed
exactly so that fl(c) =c and fi(s) = s.

The computed scalars & and B satisfy

a(l+6,), (2.51)

B =B(1+0s), (2.52)

Q
and the computed diagonal components of K = diag(k, ko) satisfy
,];1 = Cd1(1 =+ 91),

/]{?2 = Cd2(1 + 91’)
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Using (2.52) we find that

by = (a1 + B(1 + 05)as(1 + 61))(1 + 62)

= 0,1(]. + 011”) + ﬁag(l + 07),
and using (2.51) we have

by = (a(1 + 601)ar(1 + 65) + az) (1 + 64)

= CE(Ll(]. + 93) =+ 0,2(]_ + 911”,).
Multiplying K by b in exact arithmetic gives

Elbl = Cd1(1 + 01)(&1(1 + 011”) + ﬂGQ(l + 07))

= cd1a1(1 + 92) — sd2a2(1 + 98)7 (253)

and

koby = cdi (1 + 0")(car (1 + 65) + ax(1 + 6"))

= —sd1a1(1 + 94) + cd2a2(1 + 9,2) (254)

Combining (2.53) and (2.54) we obtain

C(l + 92) —8(1 + 98)
Kb= Da
—s(1+64) c(1+865)
602 —808
=H|Da+H™' Da
—s0y  cb
= H(Da + A),
where |A| < v|H[?|D|lal. O

For fast hyperbolic rotations applied directly we have been unable to find
error bounds that do not depend on H. In Section 2.2.3 we showed that
hyperbolic rotations applied directly are unstable, and therefore we would like
a form of fast hyperbolic rotation that is applied in a manner similar to applying

a hyperbolic rotation in mixed form.
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We can obtain a fast hyperbolic rotation that is applied in a mixed way if

we consider chained fast rotations, which are of the form

1 0][1 -p

Fpy = , (2.55)
| —a 1] [0 1 ]
(1 —B][ 1 O]

Fp = . (2.56)
0 1 ]| [-a 1]

The rotation of the form (2.55) is applied to a vector z € R? by

Y1 = 21 — Pxe,

Yo = Tg — OY1.

We note that the calculation of y, uses the already calculated y; and is therefore
in a mixed form. The rotation (2.56) is applied in a similar way.
The formula for applying the first fast hyperbolic rotation in mixed form is
given by
B(p::) :A(pa) _/BA(Q7:)’ (2573’)

B(g,:) = Av(q, ) — aé(p, :), (2.57b)

where, o = d,sc/d,, B = (d,s)/(d,c) and

— dpTp, — dgTq; ky=dpe, ky= @'
\/(alp%pj)2 - (dq%qj)2 \/(dp%pj)2 - (dngj)2 (2 508)

Secondly we have

B(q,:) = Av(q, 1) — oz;ﬁlv(p, :), (2.59a)
B(p,:) = A(p,:) — BB(q,:), (2.59b)

where, o = (sd,)/(cd,), 8 = csd,/d, and

dpTp; dgTq; d
it ) a9 , kp:_P’ kq:dqc.

—~ —~ ) s = e —~
\/(dpxzoj)2 — (dgZq))? \/(dpxpj)Z — (dgZg))? ¢
The following lemma shows that the fast hyperbolic rotations applied by (2.57)

and (2.59) are mixed forward-backward stable.
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Lemma 2.3.2. Suppose a' = Da where a',a € R? and D € R**? is diagonal.
Let a fast hyperbolic rotation, F, that is equivalent to applying the hyperbolic
rotation H to o' to giveb) = Hd', be applied to the vector a using (2.57) or (2.59)
s0 that b = Fa and V' = Kb, where K € R**? is diagonal. Then the errors in

)

Proof. We give the proof for the fast hyperbolic rotation given by (2.57). The

computing b and K satisfy
Ay
0

0
Ay

Kb+

:H(Da+

where max(| A1, | As|) < yio max(|k1bs |, |daasl).

other case is proved in a similar way. We make the assumption that ¢ and s
can be computed exactly so that fl(c) = ¢ and fl(s) = s.
Let us consider the computed scalars B, a and the diagonal elements of
K = diag(k1, k»). Firstly
B=B(1+05), (2.60)

and

7{5\1 = dlc(l + 01)

Alternatively the error in computing 751 can be expressed as

~

k
dy = ;1(1 +6).

The computed version of the scalar oo = (dysc)/ds = k1s/ds satisfies

a="F50 10y, (2.61)
dy

and finally

)

do
==(1+0)).
2= (1467)
Using (2.60) we have that
/51 = (a1 - Baz(l -+ 52))(1 + 53)

= (a1 — B(1 + 05)az(1 + d2))(1 + d3),

78



which may be rearranged so that

aq :/1;1(1 + 02) =+ ﬁa,g(l + 06)

Also, using (2.61) we have

by = (—aby (1 + 64) + az)(1 + J5)

k
= —d—lsbl(l +6%) 4 ap(1 4 67).
2

Multiplying d; by a; and 742\2 by /b\g in exact arithmetic gives

ky
C

ki~
= b1+ 05) + d2§a2(1 +05), (2.62)

d1a1 = (1 + 0’1)/51(1 + 92) —+ dlﬂaz(l + 06)

and
oo = 2oy (=0 40 + a1+ 07
202 = 1 ! 5) +az(1+6")
PPN o dy ,

Combining (2.62) and (2.63) we have

d1a1 klgl
. | =(G+ AG) ,
kabo daay
where
1/e  s/ec
G =
—sfc ¢
is orthogonal and |A| < ~4. This result can be rewritten as
dia; //51/51 + 4
v | =G )
kgbg ng:Q + AQ
where ~
4 k1b
=GTAG ,
AQ dQCLQ
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so that

max(| Ay, |A2]) < 76(1 + 2[¢], [3]) max([kib: |, |daas])

= M2 max(|751,51\, ‘d2a2‘)7

where ¢ = a/c and 5 = s/c. Finally, applying the exchange operator gives

Elgl + Al dlafl
~a =H : O
kgbg d2a2 + AQ

Numerical experiments similar to those in Section 2.2.4 can be used to show
the advantage of applying a fast hyperbolic rotation in a mixed way.
If a method of applying a fast hyperbolic rotation is mixed forward-backward

stable then there should exist a hyperbolic rotation H € R**? such that

751?)\1 + Al d1a1
7:72/[)\2 a d2a2 + AQ

with ||[A; As]T |2 close to

d=u , (2.64)

dgag 9

where u is the unit roundoff. Using a similar argument to that in Section 2.2.4

we can show that the defining variable of the hyperbolic rotation H that gives
the minimum value of |[[A; A]”||; can be found by solving the constrained

least squares problem

min A —
y kgbg d1 aq Y2 d2a'2

Let H € R?**? be the hyperbolic rotation such that Hx has zero second

D subject to ||yl =1. (2.65)

component. For various z € R%, ¢ € R? and diagonal D € R?**? we com-
puted b € R? and the diagonal K € R**? such that Kb = H Da using (2.49)
and (2.57). We then solved (2.65) in 100-digit arithmetic using MATLAB’s
Symbolic Math Toolbox.
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We recall that we would expect the value of (2.65) to be close to (2.64) if
the method of applying the fast hyperbolic rotation is stable. Therefore the
results in Table 2.4 show that applying the fast hyperbolic rotation by (2.49)
is unstable. Further experiments show that using (2.50) is also unstable. How-
ever, all our experiments of applying a fast hyperbolic rotation using (2.57)
or (2.59) have behaved in a mixed forward-backward stable way. We note that
this is despite the fact that we have used an unstable method to compute ¢
and s, which is highlighted by the quantity ||H — fI(H)||2/||H]|2 in Table 2.4.

Since our numerical experiments suggest that computing ¢ and s using (2.58)
does not affect the stability when applying fast hyperbolic rotation in mixed
form, and using (2.49) or (2.50) is unstable, we recommend the use of (2.57)

or (2.59).

Table 2.4: The value (2.65) computed for a fast hyperbolic rotation applied
directly (2.49) and in a mixed form (2.57), with 7 = [1,1 — o], d = [10,10 —
B)F and a = [5,5 — #]. The value ¢ is given by (2.64). The errors ||H —
FUH)||2/||H||2 in forming H using (2.58) are also shown.
o 8 0 ) (249) | (257) | A

1.06-04 | 1.0-08 | 1.0e-01 | 9.66-15 || 9.50-14 | 1.1e-14 | 3.2¢-13
1.0e-06 | 1.0e-04 | 1.0e-02 | 6.0e-15 || 1.9e-13 | 4.7e-15 | 4.le-12
1.0e-10 | 1.0e-08 | 1.0e-02 | 2.4e-13 || 2.1e-10 | 1.2e-13 | 4.5e-11
1.0e-10 | 1.0e-08 | 1.0e-06 | 5.6e-15 || 5.1e-13 | 3.3e-15 | 4.5e-11
1.0e-12 | 1.0e-08 | 1.0e-04 | 6.1e-15 || 5.7e-11 | 2.7¢-16 | 3.3¢-08
1.0e-12 | 1.0e-12 | 1.0e-02 | 7.5¢-12 || 2.9e-09 | 1.1e-11 | 3.0e-05

In Section 2.3.1 we showed how to reduce the risk of underflow when using
fast Givens rotations. For fast hyperbolic rotations we note that ¢ can be
arbitrarily large and hence underflow and overflow is possible for £, and £,
in (2.57) and (2.59). In order to minimise this risk we use (2.57) if |d,| < |d,]
and (2.59) otherwise.

The following function computes the defining variables of the fast hyperbolic
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rotation according to the procedure described above.

Algorithm 2.3.3. Computes the o, 3 € R and k € R? which define the fast
hyperbolic rotation that zeros the second component of [dix1 dgl‘Q]T e R .
The output variable “type” is the form of fast hyperbolic rotation used and

determines how it is applied.

1 [a, B, k, type] = hrotate_fast(z, d)
2 if |diz1| < [doxs|

3 error - Fast hyperbolic rotation not defined
4 end

5 e=(|diz1| — |dams])/|dy1 |

6 c=1/v2e—¢?

7 s = dyzoc/(diz1)

8 if |di] > |dy]

9 a =dics/dy

10 B = dys/(dic)

11 ki = cdy, ko = do/c

12 type =1

13 else

14 a = sdy/(cdy)

15 B = csdy/dy

16 ki =di/e ks = dac

17 type = 2

18 end

The following function applies the fast hyperbolic rotation constructed ac-

cording to Algorithm 2.3.3, to a 2 X n matrix.

Algorithm 2.3.4. Applies the fast hyperbolic rotation, defined by o and (3, to

the matriz A € R?*". The value “type” is determined in Algorithm 2.3.3.

1 B = happly_fast(A, a, 3, type)
2 iftype =1

3 B(1,:) = A(1,:) — BA(2,:)
4 B(2,:) = A(2,:) — aB(1,
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These functions have been implemented for use in MATLAB as the func-
tions hrotate_fast.m and happly_fast.m and are given in Appendix A.l.
Also given in Appendix A.1 are the equivalent functions for constructing and

applying fast Givens rotations.

2.4 Hyperbolic Householder Transformations

A hyperbolic Householder transformation is a J-unitary transformation that
zeros all but one element of a vector. Given a signature matrix, J = diag(£1),
a hyperbolic Householder transformation has the form

2uv*

H=J-
v Ju’

v*Jv # 0.
For a hyperbolic Householder transformation we have that

2uv*\ " 2uv*
H*JH=(J - J{J -
( v*Jv) < v*Jv)

vu* n 4v(v*Jv)v*
v*Ju (v*Jv)?

=J%—4

=J,

and so H is J-unitary.
A hyperbolic Householder transformation may be applied to a vector x € C”

so that all but one element of z is zeroed,
Hzx = fe;. (2.66)

We define

sign(z;) =
1 otherwise.
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Theorem 2.4.1. If there is to exist a hyperbolic Householder transformation,

H, such that Hx = Be; then x and J must satisfy

z*Jr #0 and sign(z*Jz) = sign(J(4,1)). (2.67)
Proof. Using (2.66) and the fact that H is J-unitary we have that

ot Jr = x*H*JHx = |B|%el Je; = | B> J (4, 1)
and hence the result. O

If we assume (2.67) to be true and let
v = Jx + osign(xz;)|z* Jz|e;,

where o = sign(z*Jz), then it is easy to verify that

v*Jv = 20(|z* Jz| + |z |2 Tz |H?)

and
v'e = oz Jz| + |2 [z* Tz |?)
so that
v*x
Hx=J— = —osign(z;)|z* Jz| %e;.
x ey osign(z;)|xz* Jx| " “e;

The following function computes the hyperbolic Householder vector v which

defines H such that Hx produces a vector of zeros except for the 7th component.

Algorithm 2.4.2. Computes the hyperbolic Householder vector, v, which de-
fines a hyperbolic Householder transformation, QQ, such that Qz has all but the

ith element equal to zero.

1 function v = hhouse(z, J, 1)

2 ifx*Jzr=0

3 error - no hyperbolic Householder transformation exists
4 end
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5 if sign(z*Jx) = sign(J(4,14))
6 o = sign(J(4,17))

7 v=Jx

8 v; = v; + osign(z;)/|o* Tz

9 else

10 error - no hyperbolic Householder transformation exists
11 end

The structure of a hyperbolic Householder transformation may be exploited
when applying it to a matrix A € C™*", just as described for a Householder
transformation in Section 1.6.2. For a hyperbolic Householder transformation

we have

B = (J— puw")A=JA - vw", (2.68)

where w = fA*v and § = 1/(v*Jv). Applying the transformation using (2.68)
reduces the cost by an order of magnitude compared with forming H and
multiplying with A.

Unlike ordinary Householder transformations, the hyperbolic versions are

ill-conditioned. In [11] it is shown that the singular values of H satisfy

v*v v\
o) = o) = () <
For J # I the ratio v*v/(v*Jv) can be arbitrarily large and hence the con-
dition number k9(H) = Omax/0min can also be large and the transformation
ill-conditioned.

The (Jy, Jz)-orthogonal equivalent of hyperbolic Householder transforma-
tions are unified hyperbolic Householder transformations. For more details
see [11].

A MATLAB implementation of Algorithm 2.4.2 is given by the function

hhouse.m in Appendix A.1. The unified Householder transformation equivalent

is given by the function uhouse.m.
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As well as being able to apply a hyperbolic Householder transformation
directly using (2.68), it is also possible to apply it in a mixed way by making use
of the orthogonal matrix exc(H). It is claimed by Stewart and Stewart [52] that
both these methods are mixed forward-backward stable although it is unclear
how v*Jv may be computed in a stable way. Since we know of no stable method
for computing v*Jv we recommend avoiding the use of hyperbolic Householder
transformations, and in Section 2.5.3 suggest an alternative method of zeroing
all but one element of a vector, due to Bojanczyk, Higham and Patel [9]. This
alternative method has the advantage that we can show it to be stable. Also
the condition number of this alternative method has been shown by Tisseur [53,
Thm. 4.3] to be less than or equal to the condition number of the equivalent

single hyperbolic Householder transformation.

2.5 Hyperbolic QR Factorization

2.5.1 Existence of the HR Factorization and Hyperbolic

QR Factorization

In order to study the existence of the hyperbolic QR factorization we first
prove a new theorem for the existence of the HR factorization. We extend a
theorem of Bunse-Gerstner [12], which gives conditions for the existence of the
HR factorization for n x n matrices, to deal with m x n matrices. We denote
by diag,'(£1) the set of m x m matrices with p 1s and (m — p) —1s on the
diagonal, and zeros elsewhere. Given A € C™" and J € diag,'(+1) we say
that there is an HR factorization of A if A = HR where H is (J,J)-unitary,
J € diag,'(+1) and R € C™" is upper trapezoidal. The following theorem

describes necessary conditions and sufficient conditions for the existence of an

HR factorization.

86



Theorem 2.5.1. Let A € C™*" be of full rank and J € diag)' (£1) withm > n.
Then there ezists a (J, j)—unitary matriz Q € C™™ for some Je diag;”(il),
and an upper trapezoidal R € C™ ", such that A = QR, if all the leading
principal minors of A*JA are nonsingular.

If the factorization exists then the product of the first i diagonal elements

of J is equal to the sign of the ith principal minor of A*JA for all i <n.

Proof. Assume that all the leading principal minors of A*JA are nonsingular.

Then, since A*JA is Hermitian, it can be factorized as
A*JA =U*DU,

where U € C"*" is unit upper triangular and D € C**" is diagonal [22].
Clearly the product of the first ¢ elements of D equals the ¢th principal leading
minor of A*JA. If we take J; = sign(D) then

A*JA = U*|D|Y2J,|D|"/?U,

and the product of the first 7 elements of jl equals the sign of the ¢th principal
leading minor of A*JA.
We define R; = |D|Y/?U and Q, = AR;'. Since A = Q,|D|'/?U,
Q1JQ, = |D|7V2PUA*JAU ' |D|~'/?
— |D|_1/2D‘D|_1/2

= Jla

where J; = diag(+1).
We now show that we can find )2 such that
N Ji 0
(@1 Q2] [Q1 Q2] = ~ |
0 2 0 J2
for some J, € diag(+1). Recall that if Q € C™™ is (J, J)-unitary then
+1 i=j,

0 i#j.

q (Jg;) =
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It is easy to see that rank(R;) = n and hence rank(Q;) = n. This means
that the columns of (); are linearly independent. We can therefore find m —n
linearly independent vectors that lie in the null space of Q7J € C**™. We can
choose the columns of ()3 to be these vectors, which can be transformed by
Q2 « QT so that Q3JQo = J, where Jo = diag({—1,0,1}).

Since @ = [@Q1 Q-] is nonsingular, by Sylvester’s law of inertia (see, for
example, [22]) we have that J has the same number of 1s and —1s as J, and
therefore Q is (J, J)-unitary.

Conversely, if the hyperbolic QR factorization exists then

A*JA = (QR)*JQR
= R'Q*JQR

= R*JR,

and therefore the product of the first 7 diagonal elements of J is equal to the

sign of the ¢th principal minor of A*JA for i < n. O

In the case where A is rank deficient, a condition for existence of an HR
factorization is given by the following corollary.
Corollary 2.5.2. Let A € C™" with rank(A) = k < n and J € diagy'(+1)

with m > n. Then there exists a (J,J)-unitary matriz @@ € C™™, where

Je diag)'(+1), and an upper triangular Ry, € Ck** such that

Rll R12
B:=AP=QR=Q
0 0

where P is a permutation matrix that swaps the columns of A so that the first

k columns are linearly independent, if all the leading principal minors of
B(:,1:k)*JB(:,1: k) (2.69)

are nonzero.
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Proof. If all leading principal minors of (2.69) are nonzero then by Theo-

rem 2.5.1 there exists a (J,J)-unitary @ € C™*™ and an upper triangular

Ry, € CF*k such that
Ry
B(:,1:k)=Q

0

We can choose the columns of a matrix Ry € Cm=kK)*n 4 he
RlZ(::j):Q*B(::k+j)a ]Zlm_k
Then B = QR, where

Ry Ry
0 0

R= 0

We can now consider the hyperbolic QR factorization since this is a special
case of the HR factorization. Given J = diag(l,,—I,;), p+¢ =m and A €
C™*™, A has a hyperbolic QR factorization if we can write A = QR, where @)
is J-unitary and R is upper trapezoidal. We obtain a result for the hyperbolic

QR factorization by requiring J = J in Theorem 2.5.1.

Theorem 2.5.3. Let A € C™*" be of full rank, J = diag(l,,—1,), p+q=m,
and m > n. There exrists a J-unitary Q € C™™ and an upper trapezoidal
R € C™™ such that A = QR if the product of the first © diagonal elements of
J 1s equal to the sign of the ith leading principal minor of A*JA for i = 1:n.

Proof. 1f the product of the first + diagonal elements of .J is equal to the sign of
the 4th principal minor of A*JA, then by Theorem 2.5.1 there exists a (J, j)-
unitary ) and upper trapezoidal R such that A = QR and J(1:n,1:n) =
j(l:n, 1:n). Since the columns ¢,.1,--., ¢, of @ can be permuted into any

order and inertia(J) = inertia(j ), there is a column permutation of ), say @,

such that A = @R and @*J@ = j, where J = J. O

If p > n then, for i < n, the first 7 diagonal elements of J are equal to 1,

and by Theorem 2.5.3, there exists a hyperbolic QR factorization if the leading
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principal minors of A*JA are positive. If A*JA is positive definite then this
condition is satisfied, which gives us the following corollary which was also

obtained in [9].

Corollary 2.5.4. Let A € C™™ be of full rank, J = diag(l,, —1,), p+q =m,
m > n and p > n. If A*JA is positive definite, there exists a J-unitary
Q € C™™ and upper trapezoidal R € C™™ such that A = QR.

2.5.2 Hyperbolic QR Using Hyperbolic Householder Trans-

formations

The hyperbolic QR factorization can be computed using hyperbolic House-
holder transformations in an analogous way to how the QR factorization is
computed by orthogonal Householder transformations. The matrix A € C™*"
is reduced to upper trapezoidal form by applying a sequence of hyperbolic
Householder transformations to zero A%®)(k+1:m, k), where A%®) is the matrix
A after k — 1 hyperbolic Householder transformations and A®) = A.

This gives the upper trapezoidal R as
R:Ht...HzHlAIQA,

where H; is the ith transformation and t = min(m—1,n). Since Hy, Ho, ..., H;
are all J-unitary and a product of J-unitary matrices is also J-unitary, @) is

J-unitary. The method is summarised by the following function.

Algorithm 2.5.5. Computes the hyperbolic QR factorization of an m x n
matriz A. The matriz Q is J-unitary, where J = diag(ly, —In—p), and R is
upper trapezoidal. Hyperbolic Householder transformations are used.

1 function [@, R] =hhqr(A, p)

2 Q=1I,
3 for i = 1l:min(m — 1,n)
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4 v =hhouse(A(i: m, i), J(i:m,i:m))

5 a=2/(v*J(i:m,i:m)v)

6 A(i:m,i:n) = J(@:m,i:m)A(i:m,i:n) — av(v*A(i: m,i:n))
7

QGizm,:)=J(E:m,i:m)Q(i:m,:) — av(v*Q(i:m,:))

As noted in Section 2.4, we do not recommend using hyperbolic Householder
transformations, as no stable representation is known. Instead we recommend

using the procedure described in the following section.

2.5.3 Hyperbolic QR Using Hyperbolic Rotations

We now consider using hyperbolic rotations to compute the hyperbolic factor-

ization of

n

Al p
A= , ptg=m.
As| g

The rows of the submatrix A; corresponds to I, in J and therefore unitary
transformations can be used to reduce A; to upper trapezoidal form. We can
then use hyperbolic transformations to reduce A, so that A is upper trape-
zoidal. We do so using nonoverlapping hyperbolic transformations. The algo-
rithm described is the same as that in [9], except that we do not impose the
restriction p > n.

If p > n then after A; has been reduced to upper triangular form we have

Ry
Q1 0| [A4
=101, (2.70)
0 I;] | A
Ay
where ()1 is unitary and R; € C"*" is upper triangular. We use the notation
RY
AD = | ¢
AY
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to represent the right hand side of (2.70) after transformations have been ap-
plied so that the first 7 — 1 columns of A, have been annihilated.

To annihilate the 7th column of Ay a Householder transformation is applied
to the last ¢ rows of A®, to give A®), to remove all but the first element
of AW(p+1,i:m). We note that the part of J corresponding to Aj is -1,
and hence the unitary transformation is .J-unitary. The element A® (i, p + 1)
is then removed by a hyperbolic rotation in the (i,p + 1) plane which is also
J-unitary. Therefore we require n Householder transformations and only n
hyperbolic rotations to annihilate A,.

In Section 2.2.3 we showed that applying the hyperbolic rotation in mixed
form or by the OD procedure is mixed forward-backward stable whereas no sat-
isfactory stability result for applying the hyperbolic rotation directly is known.
Therefore we apply the hyperbolic rotation either in mixed form or by the OD
procedure.

After A, has been annihilated by a sequence of J-unitary transformations
we have QA = R, where () is J-unitary and R is upper trapezoidal.

In the case where p < n, A; is transformed so that it is upper trapezoidal

and
p n—p
Q 07[47  [Ru Rul.
[0 Ll 14 Ay Apl| e

where (J; is unitary and Ry is upper triangular. The submatrix Ay; is annihi-
lated by the method described to annihilate Ay in (2.70).

The submatrix A, must now be reduced to upper trapezoidal form. Since
the rows of the submatrix Ay correspond to —I, in J, we can use unitary
transformations, as we did for A;. The algorithm is summarised in the following

function.

Algorithm 2.5.6. Computes the hyperbolic QR factorization of A € R™*™.
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The matriz Q is J-unitary, where J = diag(lp, —In—p), and R is upper trape-
zoidal. Householder transformations and at most n hyperbolic rotations applied

in mized form are used.

function [@, R] = hqr(A4, p)

Q=1In

Compute QR factorization of A(1:p,:) so that Q' A(1:p,:) = R’
Q(L:p,1ip) = Q'

A(lip,:) =R

for j = 1:min(m — 1,n)

N S Ot W N

Compute Householder transformation H; such
that H;A(p+1:m,j) = oe;

8 Alp+1:m,j:n) = HjA(p+ 1:m, j:n)

9 Qip+1:m,:)=H;Q(p+1:m,:)

10 [c, s] = hrotate(A([j,p + 1], 7))

11 A([j,p+ 1], 5:n) = happly(c, s, A([4, p + 1], : n))

12 Q([j,p +1],:) = happly(c, s, Q([j,p + 1],:))

13 end

14 ifp<n

15 Compute QR factorization Q' A(p + 1:m,p+ 1:n) = R’

16 Qlp+1:m,:)=Q'Q(p+1:m,:)

17 Ap+1:m,p+1:n) =R

18 end

19 R=A

Householder transformations are well known to be stable and we have
shown in Section 2.2.3 that nonoverlapping hyperbolic rotations can be ap-
plied in a stable way. Therefore we would expect the method described by
Algorithm 2.5.6 to be more stable than Algorithm 2.5.5, since we know of no
stable way to apply hyperbolic Householder transformations. In Section 2.5.4
we prove that Algorithm 2.5.6 is conditionally backward stable and therefore

suggest using this function instead of Algorithm 2.5.5.
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2.5.4 Error Analysis and Numerical Experiments

We now consider the rounding error analysis for computing the hyperbolic QR

factorization, using nonoverlapping hyperbolic rotations, of

A= e R™",

so that QA = R, where @) is J-orthogonal, R is upper trapezoidal and J =
diag(1,, —1,). We will assume that the hyperbolic rotations are constructed
using either H3 or H4 and applied using the mixed form or by the OD procedure.
We restrict our analysis to the case where p > n.

We first compute the QR factorization A; = Q,U;, where U; = [ﬁlT 0|7 €
RP*™ is upper trapezoidal. The computed U, is the exact factor of 4; + Aq,
where ||A1||rF < Ypul|A1]|F [30, Thm. 19.4]. We assume that A, is already upper
trapezoidal and add the error A; later.

Consider the jth column of A,

[af}-] B [Al(: ;j)-l P

ag,)])- B [A2(3 aj)J q

In the hyperbolic QR algorithm this column undergoes n Householder trans-
formations in the last ¢ components, and n hyperbolic rotations in the planes
(Lp+1),...,(n,p+1).

The first Householder transformation, P;, agrees with the identity matrix
in rows and columns 1:p and the first hyperbolic rotation, H;, agrees with the
identity matrix in rows and columns 2: p and p+ 2: m. Hence, (2.30) and (2.31)
are satisfied with E; = 0 and p = 7,. We therefore have a particularly simple
application of Lemma 2.2.11: (2.33) is satisfied with £; =0, Fy =0, F; =0

and G is equal to the identity in rows and columns 1: p— 1. We can collect the
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error terms and apply the exchange operator to the right hand side of (2.33)

to find that 0) (1) 1)
H,P r a A
ag,])- + Aaé,} ag;J)'
where

0 1 ~ 0 1
max(||Aad)]|2, [ Aal) (1)]|2) < F, max(|[a)]|2, [[al) (1)]]2)-

We have that Aagj)- (2:p) = 0 since rows 2: p are unaffected by the transforma-
tions.

Now consider any pair HpP, where the Householder transformation Py
agrees with the identity in rows and columns 1:p, and the hyperbolic rota-
tion Hy agrees with the identity in all but rows and columns k£ and p + 1. If
this pair of transformations is applied to the vector [a! od]7 to obtain |31 BT]7,

we have

B+ ABy
B2

031

Hy Py

Q9 + AOKQ

where

max (|| Aaslls, | AB1 (K)]]2) < Fg max([|aalls, 151 ()]l2)-

We have that Aay(1:k — 1) and Aag(k + 1:p) are equal to zero since rows
1:k —1 and k£ + 1: p are unaffected by the transformations.
The H;P;, for 1 = 1: n, are mutually nonoverlapping and hence we can use

Lemma 2.2.12 to obtain

0
ai;

o)+ )

o)+ )
()

az,j

H,P,... HP

where
0 ] . ~ 0 ] .
max(||Aa)||2, || Aa{)(L: 5)||2) < Fyy max(|las)]lz, i) (L: 5)]l2),

since only j pairs of Householder transformations and hyperbolic rotations are
(0) 0

applied to a;’ and a;;(j +1:n) =0 for [ = 1:n.
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We note that ag{;(n:p) =0 and ag]; = 0, hence

n

(0) ;‘\J + Ag n
a+ -
0) X - 0 pn (2.71)
0 q

where

~ 0 ~
max || Aille < oy, max(lla5) |2, [175112),

~

T, = ﬁl(: ,7) and @ is J-orthogonal. Applying the exchange operator to (2.71)

gives
E o0
1,3
¢l o :[ ]
0
CLgB—FAQ

where G is orthogonal, and therefore

~ 0 ~
I7ill2 < 11a{]ls + OFy),s

0 0 ~
las)]l2 < a2 + OFy)-

We thus have
~ 0 ~
max Aill2 < Fgillal + O(7g))-

L,j

Putting these equations together for j = 1:n gives

R + A3
A
G 0 = ,
_ 0
As + Ay

where

1Aillr < AgnllAillr, i =2,3.

Applying the exchange operator and including the error, 4, for the initial QR

factorization of A; gives

R1+A3
A+ 4
_ | = 0 ;
Ay + Ay
0
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where @ is J-orthogonal and ||A;||r < Ypn||A1||#. This result is summarised in

the following theorem.

Theorem 2.5.7. Let ﬁl € RP*™ p > n, be the computed upper triangular
hyperbolic QR factor of A € R™"™ obtained by a combination of Householder
transformations and nonoverlapping hyperbolic rotations applied in mized form

or by the OD procedure. Then there exists a J-orthogonal () € R™*™ such that

n

A+ AAL| »
Ay + AAy| ¢

: (2.72)

where

max([|AAi|r, [|A4z||r, [[AR:[|F) < FmnllAllF,
and J = diag(ly, —I,).

This result is a mixed forward-backward error result, which can be combined

with the following lemma [51, pp. 302-304] to obtain a backward error result.

Lemma 2.5.8. Let m =p+ q and n > p. Given a full rank matriz A € RP*"

and E € R™*™ there exists an orthogonal QQ € R™ ™ such that

A A+ F
Q = ’
FE 0
where, for small ||E||o,
1E|l5 4
Fll, < ——12 El5).

After applying the exchange operator to (2.72) we can rewrite it as

R, ~
Ay + AA + Ay N
0 =G - , A=-G7 , (2.73)
A, 0
Ay + AA,
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where G’ is orthogonal. Applying Lemma 2.5.8 to the right hand side of (2.73),

we have ~
Ry o
_ A1+ AA
0 = G ) (2'74)
0
Ay + AAy

where G is orthogonal and

[A4:|r < Fmn 1Al 7,

20min(A1 + AAL + Ay)

2 < O
n ~ ~
< 2 (52 )l Al + O0%),

Providing G(1:p, 1: p) is nonsingular we can rewrite (2.74) as

A, + AA;
Ay + AA,

where @ is J-orthogonal, and conclude that the hyperbolic QR factorization is
backward stable if ko(A;)u is of order 1.

The result is summarised in the following theorem.

Theorem 2.5.9. Let 1:31 € RP*" p > n, be the computed upper triangular
hyperbolic QR factor of A € R™ ™ obtained by a combination of Householder
transformations and nonoverlapping hyperbolic rotations applied in mized form
or by the OD procedure. Assuming G(1:p,1:p) in (2.74) is nonsingular, there

exists a J-orthogonal QQ € R™™ such that

R1 n
A+ AA | »
= 0 p—n
A+ AAs| ¢
0 q
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where

n ~ ~
1441 < 2 (A Vi) T 1AL + O,

[AA2[lF < FmnllAllr
and J = diag(ly, —1I,).

Theorem 2.5.9 shows that computing the hyperbolic QR factorization using
a combination of Householder transformations and nonoverlapping hyperbolic
rotations, applied in mixed form or by the OD procedure, is conditionally
backward stable. In order to show that the method would not be backward
stable if the hyperbolic rotations are applied directly we consider the 2 x 2
case with p = 1. The numerical experiments in Section 2.2.4 show that using
hyperbolic rotation applied directly can not be mixed forward-backward stable.
The proof of Lemma 2.2.8 shows that it would be possible to convert a backward
stable error result to a mixed forward-backward error result of the form (2.24),
and hence using a hyperbolic rotation applied directly can not be backward
stable.

We now conduct further numerical experiments in order to compare the
computed matrix R for the various methods of applying the hyperbolic rota-
tions. We also include tests for Algorithm 2.5.5.

To ensure the hyperbolic QR factorization exists we form A = Q' R, where
Q@ is J orthogonal and R is upper trapezoidal. Using the direct search maximi-

sation routines of the MATLAB Matrix Computation Toolbox [27], the residual

|ATJA — RTR)||
14113

is maximised, where ATJA is computed in 100-digit arithmetic using MAT-
LAB’s Symbolic Math Toolbox.
The direct search routines can be used to naturally vary R, but we want

to also allow @) to vary while keeping it J-orthogonal. Higham [31] suggests
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a method to generate random J-orthogonal matrices using the hyperbolic CS
decomposition and random orthogonal matrices. Allowing an O(n?) matrix
to vary, we can create varying orthogonal matrices by creating a sequence of
n — 1 Householder transformations in a similar way to how Stewart [50] creates
random orthogonal matrices, except the random vectors used by Stewart are
replaced with columns of the varying matrix. Using the orthogonal matrix
created, we use a version of the algorithm in [31] to create a J-orthogonal
matrix @), while keeping ||@||> constant.

The results given in Table 2.5 for the case m =6, n=p=>5 and ¢ =1 are
surprising. It appears that the accuracy of R is similar for all the methods of
computing the hyperbolic QR factorization tested. This is despite the fact that
applying hyperbolic rotations directly is unstable, and also we know of no stable
methods for applying hyperbolic Householder transformations. Similar results
were obtained when we tried maximising the error || R — R||5. We are unable to
explain this phenomenon, but would recommend using Algorithm 2.5.6 or the
equivalent with the hyperbolic rotations applied by the OD procedure, since

this is known to be conditionally backward stable.

Table 2.5: The maximum residuals 8 = ||A”JA — R'R||y/||A||2 in computing
the hyperbolic QR factorization. The quantities 8p, Sir and Bop are the
residuals when the hyperbolic rotations are applied directly, in mixed form
and by the OD procedure respectively. The quantity Sy is the residual when
using Algorithm 2.5.5. For all tests ||Q||2 = ||@||2, where @ is computed in the
hyperbolic QR factorization

Q]2 B Bum Bop Bu
le2 | 6.4109e-16 | 5.5465e-16 | 5.3481e-16 | 1.3957e-16
le4 | 8.8807e-16 | 7.0788e-16 | 5.3635e-16 | 3.4510e-16
le6 | 8.1292e-16 | 6.8401e-16 | 6.3911e-16 | 5.4502e-16
le8 | 7.3862e-16 | 7.5376e-16 | 7.4219e-16 | 6.8137e-16
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2.5.5 Cholesky Downdating Problem

Let the positive definite matrix A € C"*" have a Cholesky decomposition
A = RiR,, where R; € C"*" is upper triangular. The Cholesky downdating
problem is to perform a rank ¢ downdate of A and compute the new Cholesky
decomposition of the downdated matrix. More precisely, we must compute the
Cholesky decomposition of C = RiR; — B*B, where B € C?*". To compute
the desired Cholesky factorization efficiently we would like to take advantage
of the upper triangular structure of R;. We also avoid forming C' explicitly for
numerical stability reasons.
The hyperbolic QR factorization provides one method of solving the Cholesky

downdating problem. By Corollary 2.5.4, we can find a J-orthogonal matrix
Q@ such that

Ry

B 0
with J = diag(l,, —1,;) and R € C"*" upper triangular. We observe that

R
Q

Y

R TR
C= J
_B_ B_
R ‘R,
= Q*JQ
B | ' B
= R*R,

and hence R*R is the Cholesky factorization of C. We note that R; need not
be upper triangular and hence the hyperbolic QR factorization can be used to
compute the Cholesky decomposition of C' = A*A — B*B, where A € C**"
and B € C7", providing C' is positive definite.

The following function makes use of Algorithm 2.5.6 to compute the Cholesky

factor of C.

Algorithm 2.5.10. Computes the Cholesky factor R of C = A*A — B*B.

1 function R =choldown(A, B)
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2 [Q, R] =hqr([A"B']",n)

The MATLAB implementation of this function is given in Appendix A.2 as the
function choldown.m.

The built-in MATLAB function cholupdate can also be used to downdate
a Cholesky decomposition. It computes the Cholesky factor, R, of the rank one
downdate C' = A*A — zz*, where A € C"*" is upper triangular and x € C",
using the method implemented in LINPACK [18] as function zchdd.

Instead of using hyperbolic transformations, the Cholesky factor, R, can be
computed using the relationship

A

G1Gy...Gy , (2.75)

0

where G; for i = 1:n are Givens rotations in the (i,n + 1) plane. The Givens
rotations must be carefully chosen so that the right hand side of (2.75) has
upper triangular R and the desired x. This is achieved by solving A*a = z for
a, setting a = v/1 — a*a, and choosing the G; to satisfy

a
GiGs...G,

= en—i—l;

(07

where e, is the (n + 1)st column of the identity matrix.

The algorithm used by the MATLAB function cholupdate is shown to be
mixed forward-backward stable in [49] and extensive numerical experiments
as in Table 2.5 show that this method computes R as accurately as using
hyperbolic transformations. Using this method to compute the Cholesky factor
of the rank ¢ downdate

C=A"A-B"B,

where B € C7*" would require ¢ applications of the algorithm and hence ¢n
Givens rotations. Since Algorithm 2.5.10 uses n Householder transformations

of dimension ¢, and ¢ hyperbolic rotations, it uses approximately two-thirds the
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number of operations required by the algorithm used in the MATLAB function

cholupdate.

2.5.6 The Indefinite Least Squares Problem

The indefinite least squares (ILS) problem is
min(b — Az)" J(b — Ax),

where A € R™"™ m > n and b € R™ are given and
I, 0
J = , ptg=m,
0 -1
with p > n. It can be shown that there is a unique solution of the ILS problem
if and only if ATJA is positive definite.
In [9] it is shown how to solve the ILS problem if there exists a hyperbolic

QR factorization

A1 D R n
RQA=0Q = ;
A2 q 0 m—n

where R is upper triangular. By Corollary 2.5.4 there exists a matrix @ if

AT J A is positive definite. Then

d1 — Rx
da

Qb — Ar) =

and hence

(b—Az)"J(b— Az) = (b— Az)"QTJQ(b — Ax)
d, — Rz|" [di— Rz
J
ds do
= ||d, — Rz||3+ dj J(n 4+ 1:m,n + 1: m)d,.
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Therefore the ILS solution can be obtained by solving Rz = d;. The following

function solves the ILS problem.

Algorithm 2.5.11. Solves the ILS problem ming(b — Az)TJ(b — Azx) where
A e R™™ and J = diag(Il,, —In—p)-
1 function z =ils(A, b, p)
2 Compute the hyperbolic QR factorization of A with respect to
J = diag(l,, —Im—p), overwriting A(1:n,:) with R, and b with Qb.
3 R=A(1:n,:)
4 Solve Rz = b by backward substitution.

In [9] this method is shown, under a reasonable assumption that has been
shown to be true by Grear [23], to be forward stable. It is unclear if the method
is backward stable.

A method for solving the ILS problem that uses a QR factorization and a
Cholesky factorization is given by Chandrasekaran, Gu and Sayed [14]. This
method is more expensive than Algorithm 2.5.11 but has been shown to be
backward stable. A more efficient backward stable method that makes use of
a hyperbolic QR factorization has been proposed by Xu [56]. However, this

method is twice as expensive as Algorithm 2.5.11.

2.6 Conclusion

We have provided a detailed overview of how to compute various J-orthogonal
and (Jy, Jo)-orthogonal transformations, which includes hyperbolic rotations,
unified rotations, fast hyperbolic rotations and hyperbolic Householder trans-
formations. The methods described have been implemented in MATLAB and
are given in Appendix A.

Various methods of constructing and applying hyperbolic rotations have
been considered, including a new stable representation (2.7) that avoids over-

flow. Using numerical experiments we have been able to prove that hyperbolic
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rotations applied directly are unstable. We have also given new error results
for applying hyperbolic rotations using the OD procedure, and have made use
of these when showing how to apply a sequence of nonoverlapping hyperbolic
rotations in a stable way.

We have shown how to apply fast hyperbolic rotations and unified rotations
in a mixed form, and presented new error results to show that these methods are
stable. New theorems have been given to show conditions for the existence of
the HR factorization and the hyperbolic QR factorization, and we have shown

how to compute the hyperbolic QR factorization in a stable way.
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Chapter 3

Computing the Condition
Number of Tridiagonal and
Diagonal-Plus-Semiseparable

Matrices in Linear Time

3.1 Introduction

Consider a nonsingular matrix A € R"*" and the linear system Ax = b. The

condition number of A,

K(A) = [[AIIIIATY],

is often computed or estimated since it provides a measure of the sensitivity of
the solution to perturbations in A and b. The condition number depends on

the choice of matrix norm. We will consider the matrix 1-norm

|All+ = mj?lxz |aij].
7

Various techniques exist for estimating the condition number of a general ma-

trix in O(n?) operations, given a suitable factorization of the matrix.
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Some matrices with a special structure allow the linear system to be solved
in O(n) operations rather than the O(n?®) operations required for a general ma-
trix. Techniques for estimating the condition number of such matrices typically
reduce to O(n) operations. However, the structure of the inverse may make
it possible to compute the condition number exactly in O(n) operations. Two
types of matrices for which this can be achieved are tridiagonal and diagonal-
plus-semiseparable matrices.

Tridiagonal matrices occur in many areas of numerical analysis. The in-
verse of a tridiagonal matrix is a semiseparable matrix, which is the sum of the
strictly upper triangular part of a rank-1 matrix and the lower triangular part
of another rank-1 matrix. Another link between tridiagonal and semiseparable
matrices is that a symmetric matrix can be reduced to either of these forms us-
ing orthogonal transformations. This has led to new algorithms for solving the
symmetric eigenvalue problem by reduction to semiseparable form [55] instead
of tridiagonal form.

A diagonal-plus-semiseparable (dpss) matrix is the sum of a diagonal matrix
and a semiseparable matrix. Recently several algorithms have been developed
to solve Az = b, where A is a dpss matrix, in O(n) operations [6], [13], [19], [40].
Applications of solving linear systems of this form include boundary value prob-
lems for ordinary differential equations [24], [38], [47], integral equations [36]
and orthogonal rational functions [5].

The semiseparable structure of the inverse of a tridiagonal matrix is ex-
ploited by Higham to give several algorithms for computing the 1-norm of the
inverse in O(n) operations. However, the algorithms for a general tridiagonal
matrix are prone to underflow and overflow. The algorithm for the positive
definite case, which is implemented in LAPACK ([3], is shown not to have such
problems.

Dhillon [17] describes four algorithms based on LDU factorizations. The
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first of these is less prone to underflow and overflow than Higham’s algorithms
but has restrictions on the tridiagonal matrix. These restrictions are eliminated
using IEEE arithmetic [35] in the second algorithm, and various tests to guard
against underflow and overflow problems are added to give the third and fourth
algorithms. The resulting codes are complicated as they contain various tests
to deal with degenerate cases.

Unlike tridiagonal matrices, we know of no existing methods for computing
the condition number of a dpss matrix exactly in O(n) operations.

In Section 3.2 we use the properties of the QR factorization of a tridiag-
onal matrix to present two new algorithms for computing the 1-norm of the
inverse of a tridiagonal matrix in O(n) operations. The algorithms are more
elegant and simpler than Dhillon’s algorithms since they do not require tests
for degenerate cases. Numerical experiments show that the second algorithm is
marginally slower than the quickest of Dhillon’s algorithms, but is faster than
his recommended algorithm. A rounding error analysis of the first algorithm
is given.

In Section 3.3 we extend the techniques developed for the tridiagonal case
to the dpss case, to present an algorithm that computes the 1-norm of a dpss
matrix in O(n) operations. The condition number of a dpss matrix can in-
stead be estimated in O(n) operations by adapting the LAPACK [3] condition
number estimator to take advantage of the structure of the dpss matrix; we
show, however, that our new algorithm is quicker than the possibly inaccurate

estimate.
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3.2 Tridiagonal Matrices

Let the tridiagonal matrix

K
P a2 7
T = By . e e R™". (3.1)
Qn—1 Tn-1
L Bn-1 Oy

Since we can solve a tridiagonal system in O(n) operations, we would also
like to compute the condition number at the same cost. Computing ||7'||; can
trivially be done in O(n) operations so the problem remains to compute ||77!||;
in O(n) operations.

We present two new algorithms for computing ||7!{|; in O(n) operations.
The algorithms use the properties of QR factorizations of tridiagonal matrices
and extend some of the ideas of Bini, Gemignani and Tisseur [7] for computing
the trace of the inverse of a tridiagonal matrix. The new algorithms attempt to
avoid underflow and overflow without the need for tests to deal with degenerate

cases as in [17].

3.2.1 A New Algorithm to Compute |77

The QR factorization of T" in (3.1) can be obtained using n—1 Givens rotations,
G, so that
QIT=R and QT =G,_:...G,G, (3.2)

where R is upper triangular. The Givens rotation G; is equal to the identity
except for rows and columns % and 7 + 1, where
i i
—Yi G

Gi([i,i+1],[i,i +1]) =

] , P+l =1. (3.3)
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Since T is tridiagonal, the upper triangular matrix R is of the form

[T S1 t T

R = Tn-2 Sp-2 tn o
Tn—1 Sp—1
L Tn .

The following theorem [21] describes the structure of @”, which allows us to

compute the elements of 7-! in O(n) operations.

Theorem 3.2.1. Let T € R™*" be tridiagonal and unreduced and let T = QR

be its QR factorization computed according to (3.2). Define

D = diag(1, =1, Y1, - .., (=1)" "1t - - ),

u = D_l[la ¢1; ¢2a ey ¢n—1]Ta
v=Dlp1,¢,...,0n-1,1]".

Then
Cviur Y 0 7

Va1  V2Ug ¢2

Up—1Un—1 77bn71

L UpU1  UplUo - - UnUp—1 UpUp,
Proof. The proof is by induction. If n = 2,
o1
- |
—th1 b

for which it is trivial to confirm that the theorem is true.

Now assume that the result is true for a tridiagonal matrix 7’

Then
[ viug (2 0 i
~7 52'1,11 T . . . ( 1) ( 1)
_ n—1)x(n—
Qn—l - . . € R ’
: T ¢n—2
| Up—1U1  **° Up—1Up—2 VUp_1Up—1 ]
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where

D= diag(1, =1, Y192, ..., (=1)" *P1the - - Pp_2),
;L\I'/ = ﬁ_l[la ¢17 ¢27 LR ¢n—2]T7

'5 = 5[¢1) ¢2, teey ¢n72a ]-]T

If the dimension of T is increased by 1 then an extra Givens rotations is required

and therefore

T N:”F_l 0 T
Qn = anl 0 1 = anlanl'

Note that the first n — 2 rows of Q2 and Q! ;| are the same, and also
U(l n— 1) = ﬂ, Up—1 = ¢n—15n—17 Up = _Qﬁn—lan—l; ¢n—1 = UnUn.
If ey denotes the kth column of the identity matrix then

654@2 = qsn—lan—l[/ajra 0] + ¢n—1€3;

= [Un—lul, Upn-1U2,...,Up—-1Un—1, ¢n—1]
and
eXQF = —tpu_1Tn 1[0, 0] + Pn_rel
= [UpU1, VpUsa, - - -, Upln_1, Uply),
which completes the proof. O

From Theorem 3.2.1, the (7,7) element of T~ M;j, 1s given by
Mij = elT'e;=el R7'Q"e; = uje; R v, i>3j.
Defining w as the solution of Rw = v, we have
Nij = uje; w = ujw;, > J. (3.6)

We can therefore find the elements of 7! in the lower triangle using (3.6).
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We note that we can obtain the strictly upper triangular part of T-! by

applying the above procedure to
- an /Bn_l —

7n—1 (077} /671—2

T = Yn—2 y
(&%) 51
L 71 O

so that ) )

nnn e nnl
T-' =

Tlho T

L Thn =7 The Tt d

The QR factorization of T (which is essentially the QL factorization of T') is
given by T = QVE, where @ is made up of n—1 Givens rotations and Ris upper
triangular. By Theorem 3.2.1 the lower triangular part of @T is determined
by vectors u and v, where the components of u and v are defined by the n — 1

Givens rotations. Hence the (i, j) element of T™! is given by

~ Tr-1, _ Tp-1AT, _ ~ Tp-l~_ ~ T~ __~ ~ : .
ni;=¢€ T e;=¢ RQ e; =uje; R v =uje; w=ujw;, 127,

where @ is the solution of R = 7.
The (7,7) element of 77!, i < j, is therefore given by
Nij = Up—j+1Un—it1-

We now return to the elements of 7! in the lower triangle. The computa-
tion of v and v using (3.4) may cause underflow and overflow since the diagonal
entries of D are products of 1; with [¢;| < 1. In [7] it was noted that a way
of avoiding such problems for computing the diagonal elements of T-! is to

scale the triangular system Rw = v with the diagonal matrix D. This gives

R'w' =v', where

R =D'RD, w'=D"'w, v =D'"w=[¢1,...,0n_1,1]". (3.7)
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Using this scaling avoids products of ;. The entries of R’ are given by
ri=ry 8= —Uisi, b= Yihiats, (3.8)
and since |1;| < 1, these values cannot overflow.
Let
ul = [1a ¢1, ¢2, ey anfl]T- (39)

As ¢? + ? = 1, the components of v are all bounded by 1 in modulus. Since

w = Dw' and u = D'/, the diagonal elements of T~! are given by

e
Ny = ww; = ww;, 1= 1l:n.

The strictly lower triangular elements are given by

i ! ! . .
J

and hence
mil = ;- - -T/’i—lugw“a 1>,
for which we clearly have possible underflow problems if 7;; is computed in this
way.
Fortunately, this problem can be overcome by considering how to compute
the 1-norm of the jth column of the strictly lower triangular part of 7-!, which

is given by
o5 = [wi|([w) ;] + W) gsbia| + -+ lwpy . ba]), j=1in—1.

If 0, is computed in this way O(n?) operations would be required to compute
oj for j = 1:n—1. The underflow problem can be overcome and the operation
count reduced by an order of magnitude using nested multiplication. We can

rewrite o; as

o = [ug| (((- - ((on—1wn| + Jwp s D[n—of + [wh o)) - b | + [wfys D)),

j=L1ln—-1.
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Therefore o; can be computed using

Op_1 = |Pn_1wy,]
forj=n—1:.-1:2
i1 = (0 + [wjl) 41|
end (3.10)
forj=1:n-1

o; = |u;|03

N O Ot AW N =

end

This method of computing o;, avoids forming explicit products of 1; and allows
0, j = 1lin —1, to be computed in O(n) operations. For underflow to occur
oj/|uj| must underflow, and since o;/[u}| > oy, this can only occur if o;,
the 1-norm of the jth column of the strictly lower triangular part of 77!,
underflows. We note that this is very unlikely and that underflow does not
cause the algorithm to break down.

When considering ’Z~’, we can use a similar approach that also adds the
absolute values of the diagonal elements of 7!. This enables us to compute
the 1-norm of the jth column of the upper triangular part of 7!, denoted
by o;, in O(n) operations without the risk of underflow. Defining o, = 0 the

1-norm of 7! is then given by
172 = max(o; + ;).

The pseudocode in the following algorithm summarises the method de-
scribed above. The function (¢, ¢, r) = Givens(a,b) computes r = v/a? + b,

¢ =a/r and 1 = b/r, and guards against overflow.

Algorithm 3.2.2. Computes 7 = ||T||1, where T is given by (3.1).

1 fork=1:2

2 a=ay, g=7, up=1

3 fortr=1n-1

4 (¢i, Vi, i) = Givens(a, f;)
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5 if rl =0, 7 = oo, return, end

6 s; = —i(dig + icvit1)

7 a= =g+ ¢itiy1, Ui = Gy, V; = @;

8 ifi <n—1, t; = ¥viq1, 9= ¢iYit1, end
9 ifi>1, t,_, =t,_;, end

10 end

11 r,=a, v, =1

12 if r; =0, 7 = oo, return, end

13 wh =l /1!

14 W1 = (Up_1 — WySp_1)/Ths

15 fori=n—2:-1:1

16 Wy = (0] — w5 — w8/

17 end

18 ifk=1

19 Compute o, using the code given in (3.10)
20 a=a(n:—1:1), 60=0, B=v(n—1:—1:1),y=6(n—1: —1:1)
21 else

22 on = |w),|

23 fori=n—-1:-1:1

2 0; = Oit1|ti] + [wi]

25 end

26 fori=1:n—1, ; = 0;|u}|, end

27 end

28 end

29 T = maX;—1.,(0; + On_it1)

Cost: Assuming the function Givens requires 6 operations, the total cost
is 51n operations.

Lines 2-12 compute the vectors 7/, s', ¢’ in (3.8), v’ in (3.9) and ¢ in (3.7)
and lines 13-17 solve the linear system R'w’ = v’. The 1-norms of the columns
of the strictly lower and the upper triangular parts of T~ ! are computed in
lines 19 and 22-26 respectively. The only divisions in the algorithm are by
r;. Hence the test on line 5 prevents division by zero, which is possible if T is
singular.

Algorithm 3.2.2 does not have to deal with the reduced case (defined in
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the next section) separately as in [28], or have numerous tests to deal with the
reduced case as in [17]. It can also be easily adapted to compute ||[T7!||; for
T € C**™ by using complex Givens rotations and the complex conjugate of v’
in (3.7).

We note that there are certain similarities between Algorithm 3.2.2 and
those in [17]. All the algorithms use factorizations: triangular factorizations
in [17] and orthogonal factorizations in Algorithm 3.2.2. Also, Algorithm 3.2.2
and the algorithms in [17] both compute two factorizations, with the first pro-
ceeding from the top of T' to the bottom and the second from the bottom of
T to the top. In Algorithm 3.2.2 this takes the form of a QR factorization fol-
lowed by a QL factorization, whereas in [17] the factorizations T = L, DU,
and T"'= L_D_U_ are computed, where L, and L_ are lower bidiagonal, U,

and U_ upper bidiagonal, and D, and D_ diagonal.

3.2.2 Reducing the Operation Count

The matrix 7" in (3.1) is said to be unreduced if B;y; #0 fori =1:n — 1. If T

is unreduced then it can be scaled using the diagonal matrix

D =diag(d;), dy=1, d;= M i>1,

Y1 Yi-1
so that T = TD is symmetric. In this section we will use this property to
obtain an algorithm for computing ||77!||; that requires approximately half
the number of operations of Algorithm 3.2.2.

We first note that it is also possible to use a similar scaling so that 7 = DT
is symmetric, where D is diagonal and is defined by products of +; /Bi- A naive
method of computing ||T!||; would be to use this scaling to form 7', compute
the absolute column sums of 7! using the ideas of Section 3.2.2 and making
use of its symmetry, and then recover the absolute column sums of T~! using

T-!' =T 'D. Explicitly forming 7 in this approach can lead to underflow and
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overflow due to the computation of the elements of D. We will use the scaling
T = TD without forming T and use the structure of 7= to deal with reduced
T.

The QR factorization of 7 has the form
Q"T = RD,

where @ and R satisfy Q7T = R and can be computed using (3.4). The matrix

@ is defined by (3.5). The (i, ) element of T‘l, Ni;» is therefore given by
Tij = di ‘ujw,

where w is the solution of the triangular system Rw = v.
In Section 3.2.1 we showed how to scale the system Rw = v to avoid

underflow and overflow. Using the same procedure here we find that
7] = |d; by - hiauwl], i > g,
where v’ is defined by (3.9) and w' is defined by (3.7).
Since T~! = DT ! the (i, j) element of T, 1, satisfies
il = [y .. hisww], 0>,

which is precisely what we found in Section 3.2.1. Therefore the 1-norm of
the jth column of the strictly lower triangle of 771, 0, can be calculated as
described in Section 3.2.1.

Using the symmetry of 7! the upper triangular elements of 7~ satisfy
7551 = |d; i ..y, i < g

and therefore using 7-! = DT~

d; . .
il = | S yots] i<
J
’YZ . ,YJ 1 ! !
i uws 3.11
Bz /B] llﬂZ wj i ! ( )
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Using nested multiplication, similar to that described for computing o;, we

can compute the 1-norm of the jth column of the upper triangle of 771, &,

using
1 0y = |u]
2 forj=1n-1
3 Ojp1 = 05|05/ Bsl + ||
4 end (3.12)
5 for j=1:n
6 ;= |wlo;
7 end

Computing o; in this way allows us to make use of the lower triangular part
of T~! to find the upper triangular part and therefore approximately halves
the number of operations required compared with the method of the previous
section. We note that we encounter division by zero when computing o; if
B; = 0 and hence the procedure described above is only valid for tridiagonal
matrices with all 8; # 0. However, it is possible to remove this restriction by
considering the structure of 7" when b, = 0 for some k.
If the tridiagonal matrix 7" has [, = 0 then we can write it as

T C

T = T, € RExk T, € R(n—k)x(n—k)’ Ce Rk:X(n—lc)’

Y ?

0 T
where C = v, 1e,el and e; denotes the jth unit vector. The inverse of the

tridiagonal matrix is then given by

[t -rtent
T = ,
0 Tyt
and
T'OTy = o1 (T e (T tey) T (3.13)

We note that the kth absolute column sum of zy”, where z,y € R", is ||z||1|yx]|
and therefore we can find the absolute column sums of (3.13) using the last

absolute column sum of 7, and the first row of T; *.
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Suppose we are using the procedure described in (3.12) to compute ;. Then
if we encounter a (3; that is zero at line 3, the last absolute column sum of T’ ot
is given by wjo;. The absolute values of the entries of the upper triangular
part of T, ! are given by (3.11). Since we know the last absolute column sum
of 7! and the absolute values of the first row of T, ', we can combine these
and the absolute values of the upper triangular part of 7, * to give the 1-norm
of the jth column of the upper triangular part of T-! for j = k + 1:n. This is
achieved by setting

Oj+1 = |5J’wﬂj“;'+1‘ + ‘u;'—i—l‘a
instead of line 3. The |uj,,| term corresponds to the 1-norm of the upper
triangular part of 7, ' and the other term corresponds to the 1-norm of the
columns of (3.13). Clearly these ideas apply to 7;" and T, ' and therefore the
procedure will work if there are several 8 equal to zero. We summarise this
method of computing the absolute column sums of the upper triangular part

of T~! as follows:

1 o1 = |uy

2 forj=1in-1

3 if 3, =0

4 5]'4.1 = |5jw;fyju;-+1\ + |u;.+1|
5 else

6 i1 = 05995/ Bj| + 4] (3.14)
7 end

8 end

9 forj=1n

10 0; = |wjlo;

11 end

Defining 0, = 0, we have ||T7!|y = max;_1,(0; + ;). The following

algorithm computes ||7!||; using the method described in this section.

Algorithm 3.2.3. Computes 7 = |T||,, where T is given by (3.1).
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1 Use lines 2-12 and 19 in Algorithm 3.2.2 to compute o;
2 Compute o; using the code in (3.14)

3 7= maxizlm(ai —+ 5,)

Cost: Assuming the function Givens requires 6 operations, the total cost
is 31n operations.

Algorithms 3.2.2 and 3.2.3 have been implemented in the style of an LA-
PACK routine, and are given in Appendix B. The codes are written in Fortran
77 with careful consideration so as to maximise the speed of the algorithms.

The equivalent codes for the complex case are also given.

3.2.3 Rounding Error Analysis

A rounding error analysis of Algorithm 3.2.2 is given. We have been unable to
give a rounding error analysis of Algorithm 3.2.3 since when considering the
upper triangular part of 7! we obtain error results which are bounded by
the norm of T = T D, which cannot be bounded a priori. However, extensive
numerical experiments suggest that Algorithm 3.2.3 behaves in a stable way.
Given a tridiagonal matrix 7' € R™ "™, the first step of the algorithm is
to compute the QR factorization of 7. From [30, Thm. 19.10] we have that
there exists an orthogonal () such that the computed upper triangular matrix
R satisfies
T+ AT =QR, [|AT||r <FullT]p. (3.15)

We make the simplifying assumption that the defining variables of the n —1
Givens rotations, ¢q,...,¢, 1 and 91, ...,%, 1, are computed exactly. Using
D = diag(dy,...,d,), where D is given by (3.4), the components of the com-

puted scaled upper triangular matrix R (3.8) satisfy

~

o~
TZ_TZ7

dit1
:9\; = Z;—l SZ(]_ + ASZ'), |ASZ| S 1,
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diio~
7

We now consider solving the triangular system R'w' = 7 and the er-
rors involved in solving the system using backward substitution. Since we
have made the assumption that ¢1,..., ¢,_1 are computed exactly, the vectors
v' = D7l = [¢1,...,0p_1,1]F and o' = Du = [1,¢1,...,¢,_1]" must also
be computed exactly. The last component of the computed solution to the

triangular system therefore satisfies

P (1+6;) = 2—",

n
which simplifies to

duTn(1 4 Arp) @, = vn, | Ara| < .

The computed component @], _, satisfies

-~ -~ n— -~ dn -~
rnflw;rl(l + 9,1) = % - w;bd Snfl(l + Asnfl)(l + 03),

n—1 n—1

which simplifies to
dn—l?n—l(l + AT’n_l)’l/l}\;l_l = Up — ﬁ)\édn/S\n_l(l + Asn_l),

where |Avrn_1\ < and |K9n_1| < 4.
Similarly for i = 1: n — 2, W} satisfies
diTi(1+ Ar)) @} = v; — Wy dis15i(1 + As;) — @y odisoti(1+ Aty),
where
|Ary| < v, |Asi| <, AL < s

Combining the above results for all the components of @’ and using Lemma 1.2.1
gives

(R+ AR)D@ = v, (3.16)
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where

IAR||r < || Rllr < %I TllF + Ou).

By considering the errors in computing o; using nested multiplication as
described in Section 3.2.1, the computed 1-norm of the jth column of the lower

triangular part of T~ ! is found to satisfy

- (Z mj\) (14 7m2), (317)

where

ﬁz’j = (_1)Z+]w] i lAI w;

where

IAT | = |AT + QAR|# < Ful| Tl
Using Lemma 1.2.2 we have
AT ||y < nAnlIT])s-

Using the result [48]

IE1:
Al

AT -(A+E) e

— 9 <1,
A~ l—e
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and defining (T");; = 7j;; we have

1T =T _ (T +AT) - s

T, 1T
e 1AT|4
< , e=r (T < 1.
STe RN
Therefore
~ AT\, || T!
”T—l_T—l“1 < Iil(T)” ||1|| ||1
174
< n%/ﬁ(T)HT_lHl. (3.18)

Using (3.17) and (3.18)

Z(\ﬁ”\ - |77z’j‘)

=3

n
< z |ﬁz] - 77ij|
i=j

< b1 (T) T 1.

|05 — 04| &

A similar result holds for the 1-norm of the columns of the upper triangular
part of T~!. Hence if we denote by 7, our approximation to |7||;, computed
in floating point arithmetic, we have

el | [

< 2n73,k1(T). 3.19
||T_1||1 = Y 1( ) ( )

This error result is the best we can expect, since it can be shown that the con-

dition number of computing the condition number is the condition number [25].

3.2.4 Numerical Experiments

We compare the accuracy of our new algorithms against Dhillon’s recommended
algorithm nrminv_final2, Algorithm 4.2 from [28] and MATLAB’s cond, which
computes the condition number of a matrix in O(n3) operations. The speed of
the new algorithms is tested with Dhillon’s nrminv_final2 but also the quicker

algorithm nrminv_finall. The test matrices are described in Table 3.1.
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Table 3.1: Test matrices.

Matrix Type

Description

1

0o ~J O Ot i~

10

Nonsymmetric random tridiagonal, elements uniformly
distributed in [—1,1].
gallery(’randsvd’,100,1e15,2,1,1) in MATLAB,
which creates a random tridiagonal matrix with all sin-
gular values close to 1 except for one that is of order
107*?, so that the 2-norm condition number is 10%5.
gallery(’randsvd’,100,1e15,3,1,1) in MATLAB,
which creates a random tridiagonal matrix with geomet-
rically distributed singular values and 2-norm condition
number 10%5.

Tridiagonal with «; = 108, 8; = ; = 1.

Tridiagonal with o; = 1078, 3; = ; = 1.
gallery(’lesp’,100) in MATLAB.
gallery(’dorr’,100,1e-4) in MATLAB.
Nonsymmetric tridiagonal, elements uniformly dis-
tributed in [—1,1] except S50 given by 1 x 107°° mul-
tiplied by a random number in [—1, 1].

Nonsymmetric tridiagonal, elements of o and < uni-
formly distributed in [—1,1] and f3; given by 1 x 107
multiplied by a random number in [—1,1], for i = 1:n.
Symmetric tridiagonal with o;; = 0, 5; = v; = 1.

The results, given in Table 3.2, show that the new algorithms give the
results up to four decimal place of accuracy for all but test matrix 7. Also,
the new algorithms do not suffer from the underflow and overflow problems of
Higham’s algorithm, which breaks down for test matrices 2, 4, 6, and 9 due
to overflow. All the algorithms correctly detect the singular test matrix 10.
The difference in results for test matrix 7 are due to rounding errors, and in
fact all the methods tested are inaccurate since the actual condition number
is 8.885 x 10%%. As noted in Section 3.2.3, the best error bound we can expect
to obtain for computing the condition number is of the form (3.19). In this

case the bound (3.19) is approximately 10%* which suggests that the computed

condition number may be inaccurate.
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Table 3.2: Computation of x1(7T) on test matrices. Test matrices 1 to 9 are of
order 100 and test matrix 10 is of order 99.

Matrix  Higham’s  nrminv_final2  Algorithm  Algorithm MATLAB'’s
Type algorithm 3.2.2 3.2.3 cond
1 2.9946e+03  2.9946e+03  2.9946e+03 2.9946e+03 2.9946e+03
2 NaN 1.4979e+15  1.4979e+15 1.4979e+15 1.4979e+15
3 4.5336e+15  4.5336e+15  4.5336e+15 4.5336e4+15 4.5336e+15
4 NaN 1.0000 1.0000 1.0000 1.0000
5 100.0000 100.0000 100.0000 100.0000 100.000
6 NaN 67.1164 67.1164 67.1164 67.1164
7 2.3712e+19  2.7617e+19  1.9403e+19 2.1895e+19 3.5211e+19
8 1.0568e+04  1.0568e+04  1.0568e404 1.0568e+04 1.0568e+-04
9 NaN 6.1603e+10  6.1603e+10 6.1603e+10 6.1603e+10
10 00 00 00 00 00

Before we consider the times taken by the various algorithms we first con-
sider the cost. For Algorithms 3.2.2 and 3.2.3, this depends on how the function
Givens is implemented. In our experiments we use the LAPACK [3] routine
DLARTG in place of Givens, which requires at most 10 operations but typically 6.
The maximum number of operations required by the algorithms for computing

|T-||; are given in Table 3.3.

Table 3.3: The maximum number of operations required to compute the 1-
norm of the inverse of an n x n tridiagonal matrix for Dhillon’s algorithms and
the algorithms presented here.

Algorithm  nrminv_finall nrminv_final2 Algorithm 3.2.2 Algorithm 3.2.3

Total 22n 27n 59n 35m

Table 3.4 shows the times taken for the new algorithms and Dhillon’s al-
gorithms to compute k;(7) for nonsymmetric random tridiagonal matrices.
The algorithms were implemented in Fortran 77 and compiled using the NAG-

Ware Fortran 95 compiler with the normal optimisation level (-02) and IEEE
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arithmetic. The machine used was a 2010MHz AMD Athlon machine running
Linux.

The results show that nrminv_finall is the quickest as expected. How-
ever, Algorithm 3.2.3 runs much more quickly than the operation count would
suggest, which could be due to the fewer if-statements required. As a re-
sult, Algorithm 3.2.3 is only marginally slower than nrminv_finall. However
Algorithm 3.2.3 is quicker than nrminv_final2, which is the recommended al-
gorithm in [17] due to less element growth in its computation. Interestingly,
Algorithm 3.2.3 is as quick as nrminv_finall if both are compiled with no op-

timisation (-00).

Table 3.4: Time taken in seconds to compute the 1-norm of the inverse of a
random n x n tridiagonal matrix, for various n.
Dimension 105 2x10° 4x10° 6x 10 8x10°
nrminv_finall 0.31  0.60 1.22 1.78 2.54
nrminv_final2 0.37 0.73 1.45 2.17 3.08
Algorithm 3.2.2 0.60  1.20 2.37 3.54 4.87
Algorithm 3.2.3 0.33  0.65 1.26 1.93 2.72

3.3 Diagonal-Plus-Semiseparable Matrices

A semiseparable matrix, S, is the sum of the strictly upper triangular part of

a rank-1 matrix and the lower triangular part of another rank-1 matrix,
S = tril(gp”, 0) + triu(zy”, 1).

Here, tril(A,¢) denotes a matrix A with the entries above the ith diagonal set
to zero, where ¢ = 0 is the leading diagonal and 7 > 0, 7 < 0, is above and
below the leading diagonal respectively. Similarly triu(A, ¢) denotes A with the

entries below the ith diagonal set to zero.
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A diagonal-plus-semiseparable (dpss) matrix, A, is the sum of a diagonal

matrix and a semiseparable matrix:

(P11 + 21 Ty e T1Yn
_ P1G2 g :
A =diag(z) + S = _ ' . (3.20)
. ‘- Tp—1Yn
L Didn e Pn-19n DPnQn + Zp

We assume that A is nonsingular.

Assuming that the defining vectors p, ¢, x, y and z are given, we show how
to compute the condition number of A in O(n) operations. This is achieved
in a similar way to the tridiagonal case in Section 3.2.1. We will again make
use of the special structure of () and R in the QR factorization of A, solve a
scaled linear system and form absolute column sums using methods that avoid
underflow and overflow.

We first note that it is possible to compute ||A||; in O(n) operations since

the 7th absolute column sum can be computed using
il (|21] + 22| + -+ [z 1)) + il (1| + lgivel + -+ |anl) + |pigi + 2l

By accumulating the sums ||+ |zo| +- - -+ |7;_1| and [git1| + |giso| +- - -+ |gn|
we can compute the absolute column sums and hence ||A||; in O(n) operations.

The problem remains to compute ||A™"||;.

3.3.1 Computing the 1-Norm of the Inverse of a DPSS

Matrix

The QR factorization of a diagonal-plus-semiseparable matrix can be consid-
ered in two stages. First, it is shown in [6] that by applying Givens rotations
and scaling we can find an orthogonal matrix @; € R™" so that QT A = H,
where H is upper Hessenberg. We require the condition ¢, # 0, however we

later show that if ¢, = 0 we need only consider a principal submatrix of A. The
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special structure of H and (), is described in the following proposition which

summarises the result from [6].

Proposition 3.3.1. The upper Hessenberg matric H = QT A has an upper
triangular part that is equal to the upper triangular part of the rank-2 matrix

ab” + fg" € R™" and subdiagonal h € R*~! | where

1T [ pith + 21q1 i
0 (q121)y2 + Papi2 + 2242
a=| ¢ |, b= (Z?Zl Qi)Y + p3ps + 23q3 |, (3.21)
L Grn—1 4 = (Z?;ll Qixi)yn + Dnpbn + 2nQp
_ 0 } _
[ —z1p2
—H1T1
1 —Ro M3
f= _(Zi:1 CIﬂi)CIQ — M2Z2 , g=vy, h= ] ,(3.22)
_ L —2p—1M4n
- _(2?212 Qixi)qn—l — Hp—1Tp—1

with p; = q? + -+ + q2. The orthogonal matriz QT is upper Hessenberg with
an upper triangular part that is equal to the upper triangular part of the rank-1

matriz rs? € R™" and subdiagonal t € R*! | where

-1 A
e
q1
—H3
r=1| ¢ |, s=g¢q, t= . . (3.23)
L _,U'n .
| gn—1

We note that the defining vectors of H and Q7 can all be computed in O(n)
operations.

The second stage is to reduce H to upper triangular form, which can be
achieved by n — 1 Givens rotations, G;, defined by (3.3).

The first Givens rotation (G; is chosen to zero the first element of the subdi-

agonal of H, and is therefore defined by ¢ = (a1 + fig1)/m and ¢, = hy/7
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with 71 = \/(a1b1 + f191)2 + h?. Since G; zeros hy and the upper triangular
part of H is the upper triangular part of ab” + fg”, we apply G; to a and f
to give a(V) = Gya and f) = G f. Except for the first diagonal element, the
upper triangular part of Gy H is the upper triangular part of the rank-2 matrix
aMpT + fMgT The first diagonal element is given by 7.

This can be repeated to zero the ith subdiagonal element of G; |...G1H

by choosing

T = \/(aEH)bi + £ Vg2 + B,
¢i = (@ Vb + Vg /7,
;= hi/Tia
and forming a®) = G;a® Y and fO = G, f6D,
After the n — 1 Givens rotations have been applied

QQIA=Q;H=GCGyy...GiH=R, (3.24)

where R is upper triangular. The strictly upper triangular part of R is the

strictly upper triangular part of ¢ Vb7 4+ f(* D¢ where
o™V =@G,_...Gia and [V =G, ,...G\f,

and the 7th diagonal of R is given by 7; for ¢ = 1: n — 1 and the nth diagonal
element is given by 7, = " Vb, + £"Vg,. Since QY is a product of n —
1 Givens rotations applied from top to bottom the structure of Q7 is given
by (3.5).

From (3.24), we have A! = R 'QYTQT. In order to compute ||[A7!||; we
first show how to find the lower triangular elements of R~1QZ by using a similar
approach to how the lower triangular elements of the inverse of a tridiagonal

matrix are found in Section 3.2.1.

The (i, ) element of R~'Q7 is

(R'Qy)ij =€ R™'Qae; = uje; R, 0>,
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where e; denotes the ¢th unit vector. If we let w be the solution of the triangular
system Rw = v then
(R7'Q3)i = wjwi, 2.

In [6] it is shown that if the strictly upper triangular part of R is the strictly
upper triangular part of a rank-2 matrix then the triangular system Rw = v
can be solved in O(n) operations. However this method would require products
of 1; in v and v which may cause underflow and overflow problems. Instead,
as in Section 3.2.1 we scale Rw = v using the diagonal matrix D (3.4) in order

to avoid products of v;, to give R'w’ = v’ where
R =D'RD, w'=D"'w, vV =D '=[¢1,...,0,1,1]".

The scaled system can also be solved in O(n) operations due to the structure

of D. Given R, D and %', the following solves R'w' = v’ where R' = D™'RD.

1w, =/,
2 §'= (_l)n_1¢n—1w;z[bn gnl"
3wy = (U — (=1)"?an-1 fa-1]s')/Ta
4 fori=n—2-1:1 (3.25)
5 s' = (5" + (=1)'wiyy[bir1 gia]") s
6 wi = (v — (=1)"a; fils'")/m:
7 end
Let

' =[1,01,...,¢n1]".
Since w = Dw' and u = D '/, the diagonal elements of R QI are given by
ww; = wpwy, 1= lin. (3.26)

The strictly lower triangular elements are given by
wjw; = (1) w0 > g (3.27)
The lower triangular part of R™'Q? is therefore defined by the three vectors,

u', w' and .
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The structure of tril(R™'Q3,0) and Q] can now be exploited to find the jth
absolute column sum of the strictly lower triangular part of A=! = R7'QTQT.
Using (3.26), (3.27) and (3.23), the (4,7), ¢ > 7, element of A™" is given by

J

1—1 1—1
(A=Y ((—nk“-l le)u;w;msj " ((—1)]‘“ 11 wl)ug-ﬂw;tj
=k

k=1 I=j+1
= ((—1)z+9 H 1/%) w; (S]- z ((_1)J+k H W) uTE + ”;'+1tj) .
I=j+1 k=1 I=k

The jth absolute column sum of the strictly lower triangular part of A~! is

therefore given by

n

S ((—nﬂ'ﬂ‘lﬁ wl)w;

J
Sj Z <(—1)k+] H@bl) ’U,;C’/'k + U;-_Htj

J
O'j =
k=1 =k

By considering
n 1—1
4= 3 (o [T w)ul
i=j+1 I=j+1
and ) .
J o
y; =8 Z ((—1)k+J H ¢l> ’U,;CT]C + u;'—l—ltj’
k=1 1=k

separately, given w', u’, 9, r, s and ¢ we can compute o; for j = 1:n—1in O(n)

operations as follows:

1 p=—¢

2 Y1 = thuin

3 @, = |wy

4 fori=2:n—1

5 yé = (yz{—l + u;ﬁ)dh (3.28)
6 Ty = Ty i1 Unir1 + Wi

7 end

8 fori=1:n-1

9 0; = Tj|y;s; + uj bl
10 end

In order to find the jth absolute column sum of the upper triangular part of

A1 5;, we can consider A=JAJ , Where J has only ones on the antidiagonal.
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By swapping p and ¢ with y and = respectively, reversing the order of the
vectors z, p, ¢, x and y, and setting z; = x;y; + z; — p;q; for i = 1:n, we can
repeat the above process on A to find the absolute columns sums of the strictly
lower triangular part of A~! and hence the absolute column sums of the strictly
upper triangular part of AL,

We have shown how to find the strictly lower and strictly upper triangular
parts of A1, and it remains to find the diagonal elements of A=!. Given the
strictly lower and strictly upper triangular parts of A~! it is possible to use
AA™! =T to find the diagonal elements of A~ in O(n) operations. However,
this requires division by the diagonal elements of A, and the diagonal may
contain zeros or elements close to zero that cause either breakdown of the
algorithm or inaccurate results.

An alternative is to consider RA~! = Q¥ QT and make use of
R(Z: : )A_l(: ) 2) = (Qng)u

The diagonal elements of A=! therefore satisfy

T T,;i— 2,2+1: A~1(34+1: K .
(QF QDR mAT i)

A_l i — Ti 329
(A7) iy . (3.29)

It is possible to divide by 7; = R(i,1) since 7; # 0 as A is nonsingular. The
structure of QT and Q7 is described in Proposition 3.3.1 and Theorem 3.2.1
respectively, and it is not difficult to check that given that we have used the
code in (3.25) and (3.28), the following computes ¢; := (Q3 Q7 ) for i < n in

O(n) operations.

s =w}[bn gn]
Cp—1 = %43’[%4 fnfl
forr=n—-—2:-1:1
s' = Yip18 + Wi [biv1 giti]
ci = y;s'[a; fi]T
end

]T

(3.30)

S Ut AW N =
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Similarly, by considering the structure of R and the strictly lower triangular

part of A=, we can compute ¢; := R(i,i+1:n)A~'(i+1:n,1) for i < nin O(n)

operations as follows.

o N O Ut ks W N =

end

El = u'lal

forz=2:n

=~ !
Ci = G 11 + w0y

(3.31)

forr=1:n-1

Ci = CiV;Si + it

end

Cp = gnvnsn

The absolute column sums and the absolute value of the diagonal of A~!

can now be combined to give

A7 |y = max(o; + G + [ (A™)a).

The following algorithm computes ||[A~!||; in O(n) operations.

Algorithm 3.3.2. Computes £ = ||[A7Y|1, where A is an n X n dpss matriz

given by (3.20) with ¢, # 0 and z; # 0.

1
2
3
4
)
6
7
8
9

10
11
12
13
14

Compute vectors in (3.21), (3.22) and (3.23) efficiently
fori=1n-1
(s, i, i) = Givens(a;b; + f;g:, hi) and let G; be given by (3.3)
a=Ga, f=G;f
Uit1 = @iy Vi = @i
end
Tn = nbp + fngn
Solve R'w' = v’ using the code in (3.25)
Compute o; for i < n using the code in (3.28)
Set 0 = ¢ and repeat above on A
Compute (Q3QT);; using the code in (3.30)
Compute R(i,i+1:n)A"Y(i+ 1 :n,i) using the code in (3.31)
Compute (A1) for i < n using (3.29)

£ = maX;—1.,(0; + Op_iy1 + |(A71)n—i+1,n—i+1|)
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Cost: Assuming the function Givens requires 6 operations, the total cost is
133n operations.

The restrictions ¢, # 0 and z; # 0 in Algorithm 3.3.2 can easily be removed
by considering the structure of A~!. For example, if ¢;, ..., g, are all zero, then
the last m — ¢ + 1 columns of the strictly lower triangular part of A™! are zero
and (A 1);; = 1/z for j = i:n. Therefore, the absolute column sums of the
strictly lower triangular part of A~! can be computed by applying lines 1-9 on

A(l:i—1,1:i— 1),

3.3.2 Numerical Experiments

To test Algorithm 3.3.2 we gave the defining vectors of a dpss matrix random
elements in [—1,1]. We tested the resulting dpss matrix and the matrices
obtained by raising the components of the defining vectors to the powers 2 to
6 elementwise. This was repeated twenty times to give 120 test matrices with
condition numbers varying from approximately 10* to 5 x 10?°. The condition
numbers of these test matrices were computed using Algorithm 3.3.2 and by
forming the dpss matrices and using MATLAB’s cond. The quantity 5 = (£ —
k1(A))/k1(A)? was computed, where £ denotes the condition number computed
using Algorithm 3.3.2 and & (A) denotes the condition number computed using
cond, and they are shown in Figure 3.1. We divide by x(A)? since the condition
number of computing x1(A) is k1(A) [25]. Thus we expect 8 = O(u) for a
forward stable method, where u a2 10716 is the unit roundoff. The results show
that Algorithm 3.3.2 performs in a forward stable way.

The test matrices described above are all full matrices. Diagonal-plus-
semiseparable matrices with various components of the defining vectors set to
zero were also tested for which accurate results were obtained.

The condition number of a general real matrix can be estimated in O(n?)
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Figure 3.1: 8 = (£ — k1(A))/k1(A)? for 120 test matrices A € RI¥100 with
varying condition numbers.

operations using the LAPACK [3] routine DLACON. The algorithm estimates
|| B||; iteratively, for an arbitrary B, by computing the matrix-vector products
Bz and BTy at each iteration for carefully chosen z and y. No more than
five iterations are usually required [30, Sec. 15.3]. Therefore if we have a
factorization of A such as an LU factorization or a QR factorization then we
can form the matrix-vector products for B = A~! in O(n?) operations and
hence estimate ||[A7!||; in O(n?) operations.

In [6], given the defining vectors of a dpss matrix, A, the QR factorization
of A is considered to give an algorithm for solving the linear system Az =
b in O(n) operations. By storing the required vectors that define the QR
factorizations of A and AT, the LAPACK algorithm can be adapted to estimate
|A7']|; in O(n) operations. We emphasise that this method only estimates
|A7!||; and that inaccurate estimates can easily occur.

We have found experimentally that estimating the 1-norm of the inverse

of a dpss matrix in this way requires two iterations, but this still requires
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177n operations which, is 44n more than that required for Algorithm 3.3.2.
Table 3.5 shows the times taken in seconds to estimate ||A~!||; using an adapted
version of the LAPACK algorithm for dpss matrices and the times taken to
compute ||A~!||; using Algorithm 3.3.2. The algorithms were implemented
using Fortran 95 and run on a 2010MHz AMD Athlon machine. The results

show that Algorithm 3.3.2, which actually computes ||A7!||;, is quickest.

Table 3.5: Time taken in seconds to compute the 1-norm of the inverse of a
random n X n dpss matrix, for various n.

Algorithm n=5x10> n=10 n=2x10° n=>5x10°
Algorithm 3.3.2 0.78 1.55 3.04 7.44
LAPACK style 1.15 2.23 4.52 10.83

3.4 Conclusion

We have presented two algorithms that compute the condition number of a
tridiagonal matrix in O(n) operations. The algorithms avoid underflow and
overflow and do not require tests for degenerate cases as in [17]. The second
algorithm is marginally slower than the quickest algorithm in [17], but is faster
than the recommended algorithm in [17]. Our Fortran 77 implementations
of these algorithms, which are presented in Appendix B, have been success-
fully tested using LAPACK testing codes. It, has been proposed that they be
included in a future release of LAPACK.

An O(n) algorithm to compute the condition number of a diagonal-plus-
semiseparable matrix has also been given. Not only does this compute the
condition number exactly, but it is also significantly quicker than a specialised

implementation of the LAPACK condition number estimator.
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Chapter 4

Efficient Algorithms for the

Matrix Cosine and Sine

4.1 Introduction

The matrix exponential, undoubtedly the most-studied matrix function, pro-
vides the solution y(t) = ey, to the first order differential system dy/dt = Ay,
y(0) = yo, where A € C**" and y € C*. Trigonometric matrix functions play

a similar role in second order differential systems. For example, the problem

d2y / /
@+Ay:0, y(0) = yo, y(O):yO

has solution®

y(t) = cos(VAt)yo + (VA) " sin(vA)yj, (4.1)

where v/ A denotes any square root of A. More general problems of this type,
with a forcing term f(¢) on the right-hand side, arise from semidiscretisation
of the wave equation and from mechanical systems without damping, and their

solutions can be expressed in terms of integrals involving the sine and cosine

This formula is interpreted for singular A by expanding (VA )71 sin(v/At) as a power
series in A.
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[44]. Despite the important role played by the matrix sine and cosine in these
second order differential systems, their numerical computation has received
relatively little attention. As well as methods for computing them individually,
methods are needed for simultaneously computing the sine and cosine of the
same matrix, as naturally arises in (4.1).

A general algorithm for computing the matrix cosine that employs ratio-
nal approximations and the double-angle formula cos(2A4) = 2 cos®(A) — I was
proposed by Serbin and Blalock [45]. Higham and Smith [34] developed a par-
ticular version of this algorithm based on Padé approximation and supported
by truncation and rounding error analysis. In this work we revisit the algo-
rithm of Higham and Smith, making several improvements to increase both
its efficiency and its accuracy and adapting it to compute cos(A) and sin(A)
together.

First, we state the original algorithm [34, Alg. 6.1]. This algorithm, and
all those discussed here, are intended for use in IEEE double precision arith-

metic [35], for which the unit roundoff v = 2753 ~ 1.11 x 107.

Algorithm 4.1.1. Given a matrix A € C"™" this algorithm approzimates
X = cos(A4).

Find the smallest nonnegative integer m so that 27™||A||, < 1.
Co =1gs(27™A), where rgg(x) is the [8/8] Padé approximant to cos(x).
fort=0m—1
Cir =202 — T
end
X =0Ch

S Ot s W N =

Cost: (4 + ceil(log, ||A||ec)) M + D, where M denotes a matrix multiplication
and D the solution of a linear system with n right-hand side vectors.
The algorithm can be explained as follows. Line 1 determines the scaling

needed to reduce the co-norm of A to 1 or less. Line 2 computes the [8/8] Padé
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approximant of the scaled matrix; it is evaluated by the technique described
in Section 4.2 (cf. (4.7)) at a cost of 4M + D. The loop beginning at line 3
uses the double-angle formula cos(2A4) = 2 cos(A)? — I to undo the effect of the
scaling.

Higham and Smith [34] show that

|| cos(A) — rgs(A)

[l _16
<326x 107 ~3u  for ||All < 1. (4.2)
| cos(A) |l

Hence in Algorithm 4.1.1, rgg(27™A) approximates Cy = cos(2"™A) to essen-
tially full machine accuracy.
Algorithm 4.1.1 can optionally make use of preprocessing, which is imple-

mented in the next algorithm.

Algorithm 4.1.2. Given a matrix A € C**" this algorithm computes X =

cos(A) by preprocessing A and then invoking a given algorithm for computing

cos(A).

1 A+ A—mql, where q is whichever of 0, floor(x) and ceil(u) yields the
smaller value of ||A — 7q!||s, Where u = trace(A)/(nm).

B = D 'AD, where D balances A.

if || B||oo < ||A]|cos A = B, end

Apply the given algorithm to compute C' = cos(A).

X = (-1)1C

if balancing was performed, X <~ DXD™!, end

(=

Lines 1-3 carry out preprocessing prior to the main computations; they
apply a similarity transformation and a shift in an attempt to reduce the norm.
Lines 5 and 6 undo the effect of the preprocessing. See [34] for an explanation
of the preprocessing.

The impetus for this work comes from two observations. First, the analysis
of Higham and Smith focuses on the [8/8] Padé approximant, but the use of

an approximant of a different, A-dependent degree could potentially yield a
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more efficient algorithm. The recent work of Higham [32] on the scaling and
squaring method for the matrix exponential shows how to choose the degree of
the Padé approximant and the norm of the scaled matrix at which the approx-
imant is evaluated in order to obtain an optimally efficient algorithm, and the
same approach is applicable to the double-angle algorithm for the cosine. The
second relevant observation is that the double-angle steps in Algorithm 4.1.1
can potentially magnify both truncation and rounding errors substantially, so
reducing the number of such steps (while not sacrificing the efficiency of the
whole algorithm) could bring an important improvement in accuracy. Indeed
it is shown in [34] that the computed @ =: C; + E; satisfies
1Eilloe < (4-1)1BoloolICol oo IChlloo - - - [|Ci1ll oo
i—1

ngr 2 AL 221G + DIl - [Cicilloe, (4.3)

§=0
where 7y, = ku/(1—Fku), which warns of error growth exponential in the number
of double-angle steps, but Algorithm 4.1.1 does not attempt to minimise the
number of such steps.

In this work we show how to choose the degree of the Padé approximant
to minimise the computational effort while at the same time (approximately)
minimising the number of double-angle steps, and where minimisation is sub-
ject to retaining numerical stability in evaluation of the Padé approximant. We
also show how to exploit the fact that the cosine is an even function to reduce
the work, possibly by a large amount.

In Section 4.2 we develop an improved version of Algorithm 4.1.1 that in-
corporates these ideas. In Section 4.3 we argue that imposing an absolute,
rather than relative, error criterion on the Padé approximant leads to a more
efficient algorithm whose accuracy is in general no worse. The numerical ex-
periments of Section 4.4 compare Algorithm 4.1.1 with the two new algorithms

derived in this chapter and also with MATLAB’s funm applied to the cosine.
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These sections concentrate on the cosine. There is no natural analogue of Al-
gorithm 4.1.1 for the sine, because the corresponding double-angle recurrence
sin(2A) = 2sin(A) cos(A) would require cosines. However, computing the sine
reduces to computing the cosine through sin(A) = cos(A — Z1).

Building on the new algorithms for the cosine, in Section 4.5 we develop an
algorithm for simultaneously computing cos(A) and sin(A) at lower cost than
if they were computed independently, which is useful when evaluating (4.1),
for example. Concluding remarks are given in Section 4.6.

Throughout this chapter an unsubscripted norm denotes an arbitrary sub-

ordinate matrix norm.

4.2 An Algorithm with Variable Degree Padé
Approximants

We denote by 7,(2) = pm(x)/¢m(x) an [m/m] Padé approximant of a given
function f(x). By definition, p,, and ¢,, are polynomials in z of degree at most

m and

f(@) = rm(z) = O(@"™*1).

We will normalise so that p,, and ¢, have no common zeros and ¢,,(0) = 1.

For later reference we write

pm(z) = Z a;z’, gm(x) = szmz (4.4)

As discussed in [34], it is not known whether Padé approximants of cos(z)
exist for all m, though formulae of Magnus and Wynn [39] are available that
give the coefficients of p,, and g, in terms of ratios of determinants of matrices
whose entries involve binomial coefficients. Since cos is an even function we

need consider only even degrees 2m. Both ps,, and ¢, are even polynomials
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and

cos(z) — rom(z) = O(z*™1?).

Our first task is to bound the truncation error, which has the form

oo

cos(A) — rom(A) = Z coi A

1=2m+1

Hence
o0

[eos(A) = ram (A < D leail6”, (4.5)

1=2m+1

where

b =06(4) = |47

Note that we have expressed the bound in terms of ||A?||'/? instead of the

(no smaller) quantity ||A||. The reason is that ||A2||'/? < ||A|| is possible for

nonnormal A. Since our algorithm will require the matrix A% to be computed,

it makes sense to use knowledge of its norm in the derivation; this was not done

in [34] and so is one way in which we gain an improvement over Algorithm 4.1.1.
It is easy to see that

[
2! 4l

|| cos(A)|| > 1— .+ =1 — (cosh(||A%||*/?) — 1) = 2 — cosh(#).

Combining this bound with (4.5), we conclude that

[cos(A) = ram (A _ XiZomsa [c2i]0”
|| cos(A)|| ~ 2 —cosh(#)

for § < cosh™(2) ~ 1.317.  (4.6)

To design the algorithm we need to know for each m how small § = || A2||}/2

must be in order for ry,, to deliver the required accuracy. Adopting the ap-
proach used by Higham [32] for the exponential, we therefore determine the
largest value of 6, denoted by 6y, such that the relative error bound in (4.6)
does not exceed u. To do so we compute the cy; symbolically and evaluate the
bound (4.6) in 250 decimal digit arithmetic, summing the first 150 terms of
the series, all with MATLAB’s Symbolic Math Toolbox. We use a zero-finder
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Table 4.1: Maximum value 5, of § = ||A2%||'/? such that the relative error
bound (4.6) does not exceed u = 273,

2m | 2 4 6 § 10 12 14
fom | 6.1e-3 1.1e-1 4.3e-1 9.5e-1 1.315 1.317 1.317

to find 6,,,, obtaining the values shown in Table 4.1. We see that 65, rapidly
approaches cosh *(2) as m increases: 6y, and 6y, differ by about 107°.

When we rerun the computation with 2m = 8, aiming for a relative error
bound 3.26 x 1076, we find that fs = 1.005, which shows that the bound (4.2)
is close to optimal (modulo its use of ||A| in place of || A2||'/?).

Now we need to determine the cost of evaluating ry,,. Given the absence
of any convenient continued fraction or partial fraction forms, we will explic-
itly evaluate ps, and ¢, and then solve the multiple right-hand side system
Q2mTom = Pom- As noted in Section 1.7.1, the most efficient method of evaluat-
ing a single polynomial is the Paterson Stockmeyer method [43]. To evaluate
both p,, and g¢s,,, the most efficient scheme we have found is to treat the two
polynomials as degree m polynomials in A? and apply the Paterson—Stockmeyer
method, adapted for the simultaneous evaluation of two polynomials of the
same argument and degree as suggested by Higham [29]. Of equal cost for

8 < 2m < 28 are the schemes of the form illustrated for 2m = 12 by

A2 = AQ; A4 = Aga AG = A2A4a
D12 = CLQI + G,QAQ + CL4A4 + a/ﬁAﬁ + As ((LgAQ + a10A4 + CI,12A6), (47)
qi2 = bo[ =+ b2A2 =+ b4A4 + b6A6 =+ Ag(bgAg -+ b10A4 =+ b12A6).
Table 4.2 summarises the cost of evaluating ps,, and gy, for 2m = 2:2: 30.
In view of Table 4.1 we can restrict to 2m < 12, since 6,4 is only slightly

larger than ;5. Since Table 4.2 shows that 715 can be evaluated at the same

cost as the less accurate 71y, we can remove 2m = 10 from consideration. Hence
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Table 4.2: Number of matrix multiplications 7y, required to evaluate po,,(A)
and dom (A)

8§ 10 12 14 16 18 20 22 24 26 28 30
4 5 5 6 6 7 7 8 8 9 9 9

2m |2 4 6
Tom |1 2 3
we need consider only 2m = 2,4,6, 8, 12.

If 6 = || A%||*/? < Oy, for 2m = 2,4, 6,8 or 12, then we should take 7y,,(A)
with the smallest such m as our approximation to cos(A). Otherwise, we will
need to scale: we simply divide A by 2°, with s chosen minimally so that
1272 A)?||%? < Oy, for some m, with 2m = 8 and 2m = 12 being the only
possibilities (since g < 612/2, 2m = 6 offers no computational saving over
2m = 12). This strategy minimises the number of double-angle steps, with
their potential error magnification, while at the same time minimising the total
work.

We now need to consider the effects of rounding errors on the evaluation of
Tom- Consider, first, the evaluation of p,,, and gs,,, and assume initially that
A? is evaluated exactly. Let go,,,(A?) denote either of the even polynomials

Pam(A) and g9, (A). It follows from a general result in [32, Thm. 2.2] that

192m (A*) = FUgom (AN < T Gom (1A%]]), (4.8)

where ¢, denotes g¢o,, with its coefficients replaced by their absolute values.
We have determined numerically that g, (||4]|%) < 2 for §(A) < 6, and
2m < 16, so the bound (4.8) is suitably small. However, when we take into
account the error in forming A% we find that the bound (4.8) is multiplied by
a term that is approximately u(A) = |||A[?||/||4%|| > 1. The quantity u can be
arbitrarily large. However, p is large precisely when basing the algorithm on
6(A) rather than ||A|| produces a smaller s, so potentially increased rounding

errors in the evaluation of ps,,, and ¢, are balanced by potentially decreased
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Table 4.3: Upper bound for (go,, (A)) when 6 < 65, based on (4.9) and (4.10),
where the 65, are given in Table 4.1.

2m | 2 4 6 8 12
Bound [1.0 1.0 1.0 1.0 1.1

error propagation in the double angle phase.
Since we obtain 79, by solving a linear system with coefficient matrix
Gom(A), we require ¢a,(A) to be well conditioned to be sure that the system is

solved accurately. From (4.4), we have

gom (A < bk 67" (4.9)
k=0

Using the inequality ||(I + E)7Y| < (1 — ||E||)~! for ||E|| < 1 gives

1 1
m S m °
[bo| = 1 22k=1 bak AZE[| ™ [bo| = D2k= |bak |67

Table 4.3 tabulates the bound for %(gom(A)) = ||gom(A)]|||g2m(A) 7| obtained

lg2m (4) 71| < (4.10)

by combining (4.9) and (4.10). It shows that g, is well conditioned for all the
m of interest.

The algorithm that we have derived is as follows.

Algorithm 4.2.1. Given a matrix A € C"™" this algorithm approrimates
C = cos(A). It uses the constants Oy, given in Table 4.1. The matriz A

can optionally be preprocessed using Algorithm 4.1.2.

1 B=A?

2 0= Bl

3 ford=1[246812]

4 if 0 < 0y

5 C =rq4(A) % Compute Padé approximant, making use of B.
6 quit

7 end

8

end
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9 s = ceil(logy(6/6012)) % Find minimal integer s such that 2750 < 6.
10 B+ 47°B
11 if || B||* < 65, d =8, else d = 12, end
12 C =ry4(27°A) % Compute Padé approximant, making use
of B=(27°A)%.
13 fori=1:s
14 C+20?-1
15 end

Cost: (m4+ ceil(logy(||Alloe/0a))) M + D, where d is the degree of Padé ap-
proximant used and #; and 7, are tabulated in Tables 4.1 and 4.2, respectively.
To summarise, Algorithm 4.2.1 differs from Algorithm 4.1.1 in two main

ways:

1. It supports variable degree Padé approximation, with the degree chosen

to minimise both the work and the number of double-angle steps.

Y2 rather than ||Al|co and so uses truncation

2. It bases its decisions on || A?|
error estimates that are potentially much sharper, though the bounds for
the effect of rounding errors on the evaluation of the Padé approximant

can be larger.

Note that Algorithm 4.2.1 requires as input only A2, not A. Consequently,
if it is used to compute the cosine term in (4.1) there is no need for a square

root to be computed.

4.3 Absolute Error-Based Algorithm

Algorithm 4.2.1 uses a Padé approximant of maximal degree 12. The limitation
on degree comes from requiring the relative error bound (4.6) to be no larger
than u: the need to ensure cos(A) # 0 enforces the restriction § < cosh™"(2),

which makes higher degree Padé approximants uneconomical. If this restriction
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could be removed then larger degrees, which would allow fewer double-angle
steps and hence potentially more accurate results, would be competitive in cost.
Imposing an absolute error bound on the Padé approximant achieves this goal,
and it can be justified with the aid of the error bound (4.3) for the computed
C; =: C; + E;.

In both Algorithm 4.1.1 and Algorithm 4.2.1, Cy is a Padé approximant
evaluated at 27™A, and from ||Cy|lec = || c0s(27™A)||c < cosh(#(27™A)) we
have ||Co||oc < cosh(1) = 1.54 in Algorithm 4.1.1 and ||Cy||ee < cosh(by2) =~ 2

in Algorithm 4.2.1. Hence, ignoring the rounding errors in evaluating the Padé

approximant, we have ||Ep|lco S ¢||Collo S u, and (4.3) can be written

~J

1Emlloe S (4-1)™ul|Collool|Crloo - - - [Crmtlloo

m—1

F Yopr D AT 221)C512% + DIICsalloo - - - [|Cmet [ oof4.11)
§=0

But this is exactly the form that (4.3) takes with an absolute error bound
|IEo|| < u. Therefore comparing the effect of absolute and relative bounds on
Cy reduces to comparing the norms of the matrices Cy, ..., C,,—1 in the two
cases. This is difficult in general, because these matrices depend on the choice
of scaling and on m. Since the aim of using an absolute criterion is to allow the
norm of the scaled matrix to be larger, we can expect an upper bound for ||Cy||
to be larger in the absolute case. But if the absolute criterion permits fewer
double-angle steps (a smaller m) then, as is clear from (4.11), significant gains
in accuracy could accrue. In summary, the error analysis provides support for
the use of an absolute error criterion if ||Cy|| is not too large. We now develop
an algorithm based on an absolute error bound.

Define 65, to be the largest value of # such that the absolute error bound
in

(e}

[cos(A) = ram(A)| < D Jexil6™ (4.12)

1=2m+1
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Table 4.4: Maximum value 6, of 6 such that the absolute error bound (4.12)
does not exceed u = 273,

2m 2 4 6 8 10 12 14 16
Oom, | 6.1e-3 0.11 0.43 098 1.7 2.6 3.6 4.7

2m 18 20 22 24 26 28 30
Oom, | 5.9 71 83 9.6 109 12.2 13.6

Table 4.5: Upper bound for x(ga, (A)) when 6 < 6,,,, based on (4.9) and (4.10),
where the 6y, are given in Table 4.4. Bound does not exist for 2m > 26.

2m ‘2 4 6 § 10 12 14 16 18 20 22 24
Bound‘l.O 1.0 1.0 1.0 1.1 1.2 14 1.8 24 35 7.0 9.0el

(a restatement of (4.5)) does not exceed u. Using the same method of deter-
mining the 5, as in the previous section we find the values listed in Table 4.4.
The corresponding bounds for the condition number of ¢,,, which are finite
only for 2m < 24, are given in Table 4.5.

Now we consider the choice of m. In view of Table 4.5, we will restrict
to 2m < 24. Table 4.6, which concerns error bounds for the evaluation of
Pom and go,,, as discussed in the previous section, suggests further restricting
2m < 20, say. From Table 4.2 it is then clear that we need consider only 2m =

2,4,6,8,12,16,20. Recall that dividing A (and hence ) by 2 results in one

Table 4.6: Upper bounds for ||pom||cc and ||Gom||eo for 6 < bap,.

2m 2 4 6 8 10 12
IP2m |0 | 1.0 1.0 1.1 1.5 2.7 6.2
lg2mlloo | 1.0 1.0 1.0 1.0 1.1 1.1

om 14 16 18 20 22 24
|Pamlloo | 1.6e1 4.3e1 1.2¢2 3.7¢2 1.2e3 3.7e3
l@mllee | 1.2 13 14 16 1.7 20
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Table 4.7: Logic for choice of scaling and Padé approximant degree. Assuming
A has already been scaled, if necessary, so that § < 65y = 7.1, further scaling
should be done to bring # within the range for the indicated value of d.

Range of 6 d
[0, 616] = [0,4.7] smallest d € {2,4,6,8,12,16} such that 6 < 6§,
(916; 2012] = (47, 52] 12 (scale by 1/2)
(26012, 6] = (5.2,7.1] 20 (no scaling)

extra matrix multiplication in the double-angle phase, whereas for 6 < 6y, the
cost of evaluating the Padé approximant increases by one matrix multiplication
with each increase in m in our list of considered values. Since the numbers 64,
016, B2 differ successively by less than a factor 2, the value of m that gives the
minimal work depends on 6. For example, if # = 7 then d = 20 is best, because
nothing would be gained by a further scaling by 1/2, but if # = 5 then scaling
by 1/2 enables us to use d = 12, and the whole computation then requires one
less matrix multiplication than if we immediately applied d = 20. Table 4.7
summarises the relevant logic. The tactic, then, is to scale so that # < 65, and
to scale further only if a reduction in work is achieved.

We find, computationally, that with this scaling strategy, ||Collco < 583.
Since this bound is not too much larger than 1, the argument at the beginning

of this section provides justification for the following algorithm.

Algorithm 4.3.1. Given a matrix A € C"™" this algorithm approrimates
C = cos(A). It uses the constants Oy, given in Table 4.4. The matriz A

can optionally be preprocessed using Algorithm 4.1.2.

B = A?
0 =Bl
ford=1[246 812 16|
if 0 <6,
C =rq4(A) % Compute Padé approximant, making use of B.

S Ut s W N =

quit
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7 end

8 end

9 s = ceil(logy(0/02)) % Find minimal integer s such that 2756 < 6.

10 Determine optimal d from Table 4.7 (with 6 < 27°0) and
increase s as necessary.

11 B+ 4°B

12 C =rqe(27°A) % Compute Padé approximant, making
use of B = (27%A)2.

13 fori=1:s

14 C«+20?-1

15 end

Cost: (m4+ ceil(logy(||Alloe/0a))) M + D, where d is the degree of Padé ap-
proximant used and 6; and 7w, are tabulated in Tables 4.4 and 4.2, respectively.
Algorithm 4.3.1 allows the norm ||(27°A4)2||%.? for the scaled matrix 25 A

to be as large as 7.1, compared with just 1.3 for Algorithm 4.2.1.

4.4 Numerical Experiments

Testing of Algorithms 4.1.1, 4.2.1, and 4.3.1 was performed in MATLAB 7
in IEEE double precision arithmetic. We used a set of 54 test matrices that
includes 50 10 x 10 matrices obtained from the function matrix in the Ma-
trix Computation Toolbox [27] (which includes test matrices from MATLAB
itself), together with the four test matrices from [34]. The norms of these
matrices range from order 1 to 107, though more than half have co-norm 10
or less. For comparison, we also applied MATLAB’s funm function (invoked
as funm(A,@cos)), which implements the Schur—Parlett method [16]. This
method uses Taylor series evaluations of any diagonal Schur blocks of size
greater than 1. It requires roughly between 28n® flops and n*/3 flops, so is
significantly more expensive than Algorithms 4.1.1, 4.2.1, and 4.3.1 except,

1/2
o0

possibly, when || A2||s5° is large: say of order 10°.
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We evaluated the relative error

IC — Clloo
IClle

where C is the computed approximation to C, and the exact C' = cos(A4) is
computed in 50 significant decimal digit arithmetic using MATLAB’s Symbolic
Math Toolbox. The algorithms were applied both with and without prepro-
cessing. The results for no preprocessing are shown in Figures 4.1; those for
preprocessing are very similar so are omitted. The solid line is the unit roundoff

multiplied by an estimate of the relative condition number

) || cos(A + E) — cos(A)||2
cond(A) = lim a }
(4) =0 [|Bl|2<el[All2 €|l cos(A)]l2

We compute such an estimate using the finite-difference power method of Ken-
ney and Laub [37] as described in Section 1.7.2. A method that is forward
stable should produce errors not lying far above this line on the graph. Fig-
ure 4.2 shows performance profile curves for the four solvers. For a given «
on the x-axis, the y coordinate of the corresponding point on the curve is the
probability that the method in question has an error within a factor « of the
smallest error over all the methods on the given test set.

The results show a clear ordering of the methods for this set of test problems,
with Algorithm 4.3.1 in first place, followed by funm, Algorithm 4.2.1, and
finally Algorithm 4.1.1.

The mean of the total number of matrix multiplications and multiple right-
hand side linear system solves over the test set is 10, 9.1 and 8.6 for Algorithms
4.1.1, 4.2.1 and 4.3.1, respectively, without preprocessing, and 9.8, 8.9 and
8.4 with preprocessing. For the involutory matrix gallery(’invol’,8)*8%pi
from [34], Algorithm 4.1.1 requires 29 multiplies and solves, versus only 10 for
Algorithms 4.2.1 and 4.3.1.

MATLAB’s funm is generally competitive in accuracy with Algorithm 4.3.1.

The worst case for funm—the matrix giving error about 107'° on the left of
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Figure 4.1—is the Forsythe matrix, which is a 10~® perturbation of a Jordan
block. The computed eigenvalues lie approximately on a circle, and this is
known to be a difficult case for funm [16]. Increasing the blocking tolerance,
through the call funm(A,Q@cos,struct(’TolBlk’,0.2)) results in an accurate
evaluation.

We repeated the experiment with every matrix scaled so that [|A]« =
25. The results without preprocessing are shown in Figure 4.3; those with
preprocessing are very similar, with just a modest reduction of up to a factor
3 or so of the maximum and mean error for Algorithms 4.1.1, 4.2.1 and 4.3.1.
The performance profile is shown in Figure 4.4. Clearly the (generally) larger
norm causes difficulty for all the methods, but much less so for Algorithm 4.3.1
than for Algorithms 4.1.1 and 4.2.1. In this case, the means costs are 10, 9.4

and 9.1 without preprocessing and 9.6, 9.1 and 8.6 with preprocessing.

4.5 Computing the Sine and Cosine of a Ma-
trix

Suppose now that we wish to compute both sin(A4) and cos(A). Since cos(A) =
(et + €7™)/2 and sin(A4) = (e — e7*)/(2i), we can obtain both functions
from two matrix exponential evaluations. However, when A is real the argu-
ments of the exponential are complex, so this approach will not be competitive
in cost even with computing sin(A) and cos(A) separately. A further disadvan-
tage is that these formulas can suffer badly from cancellation in floating point
arithmetic, as shown in [34].

We will develop an analogue of Algorithm 4.3.1 that scales A by a power
of 2, computes Padé approximants to both the sine and cosine of the scaled

matrix, and then applies the double-angle formulas cos(24) = 2cos?(A) — I
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Figure 4.1: Errors for Algorithms 4.1.1, 4.2.1, and 4.3.1 without preprocessing.
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Figure 4.2: Performance profile for the four methods, without preprocessing,
on the test set.
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Figure 4.3: Errors for Algorithms 4.1.1, 4.2.1, and 4.3.1 without preprocessing
on matrices scaled so that ||A|. = 25.
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Figure 4.4: Performance profile for the four methods, without preprocessing,
on the test set with matrices scaled so that ||Al|. = 25.
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Table 4.8: Maximum value f3,, of || A such that the relative error bound (4.13)
does not exceed u = 273,
m 2 3 4 5 6 7 8 9 10 11 12
Bm | 1.4e-3 1.8e-2 6.4e-2 1.7e-1 0.32 0.56 0.81 1.2 1.5 2.0 2.3
m 13 14 15 16 17 18 19 20 21 22 23 24
Bm 2.9 3.3 3.9 44 50 55 62 6.7 74 79 87 9.2

and sin(24) = 2sin(A) cos(A). Computational savings are possible in the
evaluation of the Padé approximants and in the double-angle recurrences by
re-using the cos terms.

Let us denote the [m/m| Padé approximant to the sine function by 7, (x) =

Pm(2)/Gm(z). Then the error in 7, has the form
sin(A) = Fm(A) = Y i1 A

Since this expansion contains only odd powers of A we bound the series in

terms of ||Al| instead of 8(A) (cf. (4.5)):
Isin(A) = 7m(A) < D lezina 6%, B=IA].- (4.13)

Define ,, to be the largest value of 3 such that the bound (4.13) does not
exceed u. Using the same technique as for the cosine, we computed the values
shown in Table 4.8. These values of 3, can be compared with the values of 5,
in Table 4.4. Although 6y, is defined as the largest value of f(A) = || A2||}/2
such that the absolute error bound (4.12) for || cos(A) — rom(A)|| does not
exceed u, Oy, can also (trivially) be regarded as the largest value of || A|| such
that the bound (4.12), with # interpreted as ||Al|, does not exceed wu.

On comparing Table 4.8 with Table 4.4 we see that for 4 < 2m < 22 we
have Bom < bom < Boms1. We could therefore scale so that ||27°A| < Bom
and then use the [2m/2m| Padé approximants to the sine and cosine, or scale

so that [|27°A|| < 6, and use the [2m/2m] Padé approximant to the cosine
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Table 4.9: Number of matrix multiplications 7y, to evaluate po,,(A), gam(A),

§2m+1 (A), and §2m+1 (A)
2m | 2 4 6
Tom | 2 3 4

8§ 10 12 14 16 18 20 22 24
5 6 7 8 9 10 10 11 11

and the [2m + 1/2m + 1] Padé approximant to the sine. Since the diagonal
Padé approximants to the sine have an odd numerator polynomial and an even
denominator polynomial [39], and since we can write an odd polynomial in A as
A times an even polynomial of degree one less, it is as cheap to evaluate 79,1
and 79, as to evaluate 7o, and ro,. Therefore we will scale so that [|275A]| <
65, and then evaluate ro,, for the cosine and 79,1 for the sine. Evaluating
DPoms Q2m» Pom+1 and Gom,y1 reduces to evaluating four even polynomials of degree
2m if we write po,,.1 as A times an even polynomial of degree 2m. This can
be done by forming the powers A%, A* ..., A?™ at a total cost of m + 1
multiplications. However, for 2m > 20 it is more efficient to use the schemes
of the form (4.7). We summarise the cost of evaluating pom,, ¢am, Dom+1 and
Gom1 for 2m = 2:2:24 in Table 4.9.

Now we consider the choice of degree, 2m. Bounds analogous to those in
Table 4.5 show that go,,.1 is well conditioned for 2m < 24, and bounds for
DPom+1 and gop,y1 analogous to those in Table 4.6 suggest restricting to 2m < 20
(the same restriction that was made in Section 4.3 for the Padé approximants
for the cosine). It is then clear from Table 4.9 that we need only consider
2m = 2,4,6,8,10,12,14,16,20. Noting that dividing A by 2 results in two
extra multiplications in the double-angle phase and that increasing from one
value of 2m to the next in our list of considered values increases the cost of
evaluating the Padé approximants by one multiplication, we can determine
the most efficient choice of 2m by a similar argument to that in the previous

section. The result is that we should scale so that 8 < 69y, and scale further
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according to exactly the same strategy as in Table 4.7, except for the fact that
in the first line of the table “14” is added to the set of possible d values.

The algorithm can be summarised as follows.

Algorithm 4.5.1. Given a matrix A € C"™" this algorithm approrimates
C = cos(A) and S = sin(A). It uses the constants Oy, given in Table 4.4.
The matriz A can optionally be preprocessed using an obvious modification of

Algorithm 4.1.2.

for d =[24 6812 14 16]
i 4]l < 0
C =r4(A), S =74(A)
quit
end
end
s = ceil(logy(8/62)) % Find minimal integer s such that 2750 < 6y.
Determine optimal d from modified Table 4.7 (with 6 < 27°0)
and increase s as necessary.
9 C=ry(27%A4), S =742%A)
10 fore=1:s
11 S+« 208,C«+20%-1
12 end

o J O Ut ks W N

Cost: (744 ceil(logy(||Alle/0a))) M + D, where d is the degree of the Padé
approximants used and #; and 7, are tabulated in Tables 4.4 and 4.9, respec-
tively.

How much work does Algorithm 4.5.1 save compared with separate compu-
tation of cos(A) and sin(A) = cos(A — ZI) by Algorithm 4.3.17 The answer is
roughly 27y — 4 matrix multiplies, which rises from 1 when d = 4 to 4 when
d = 20; the overall saving is therefore up to about 27%.

We tested Algorithm 4.5.1 on the same set of test matrices as in Sec-
tion 4.4. Figure 4.5 compares the relative errors for the computed sine and

cosine with the corresponding errors from funm, invoked as funm(A,@sin) and
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Figure 4.5: Errors for Algorithm 4.5.1 without preprocessing and funm.

funm(A,@cos). Note that the cost of the latter two computations can be re-
duced by using the same Schur decomposition in both cases. Algorithm 4.5.1
provides similar or better accuracy to funm on this test set. Its cost varies
from 9 matrix multiplies and solves to 54, with an average of 16, so the algo-
rithm can require significantly fewer flops than are needed for a single Schur

decomposition.

4.6 Conclusion

We have improved the algorithm of Higham and Smith [34] in two respects:
by employing variable degree Padé approximants, with the degree chosen to
minimise the computational cost, and by employing truncation error bounds

|1/2

expressed in terms of || 42||'/2 in place of ||A||. Our two improved algorithms,

Algorithms 4.2.1 and 4.3.1, both out-perform the Higham and Smith algorithm
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in accuracy and cost. Of the two, Algorithm 4.3.1, based on an absolute error
bound for the Padé approximant, emerges as the clear winner. By its design,
it allows larger degree Padé approximants to be evaluated at matrices of sig-
nificantly larger norm, but in so doing it does not sacrifice accuracy, as we
have shown by analysis (see (4.11)) and experiment. Analogously to our ex-
perience with the matrix exponential [32], designing our algorithms to achieve
low cost brings an added benefit of better accuracy through the need for fewer
double-angle steps.

We have also shown how, using the Padé double-angle approach, cos(A)
and sin(A) can be evaluated together at lower cost than if they are evaluated
separately.

The design of the algorithms involved making compromises between max-
imising efficiency and minimising the effects of rounding errors. Compared
with the Schur-Parlett method applied to the sine and cosine the algorithms

require fewer flops unless || A2||*/2

is large, and on our test set they are generally
more accurate; this provides confidence that the compromises have been well

chosen.
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Chapter 5

Summary

A collection of algorithms has been presented for applying J-orthogonal and
(J1, J2)-orthogonal transformations. This includes a variety of methods for con-
structing and applying hyperbolic rotations, fast hyperbolic rotations, unified
rotations and hyperbolic Householder transformations. We have provided an
extensive rounding error analysis to identify which of these methods are stable
and have given numerical experiments to show which are not. We also consid-
ered the hyperbolic QR factorization, including new theorems for its existence.
However, there are several issues that still warrant further investigation. We
have been unable to find a stable method for constructing a hyperbolic rota-
tion that zeros the second component of a complex vector. The problem is
that we are unable to compute z? + z3 — 23 — 23, for z; € R, accurately. If
this problem could be solved then it may be possible to extend the method to
compute 27 Jz, where x € R* and J = diag(£1). This would then provide a
stable method of applying hyperbolic Householder transformations, for which
it is currently unclear if this is possible. We have shown that nonoverlapping
hyperbolic transformations can be applied in a stable way, but we are uncertain
of the stability properties for overlapping hyperbolic rotations, and feel that

further investigation would be of interest.
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We have presented two new algorithms for computing the 1-norm condition
number of a tridiagonal matrix in O(n) operations, which avoid underflow and
overflow, and are simpler than existing algorithms. A rounding error analy-
sis of the first algorithm shows it to be stable, while numerical experiments
suggest that the second algorithm is also stable and competitive in speed with
existing algorithms. We have been unable to prove the second algorithm to be
stable but feel that it may be possible with further investigation. It has been
proposed that our codes for these algorithms should be included in a future
release of LAPACK. We then considered diagonal-plus-semiseparable matrices
and showed how it is possible to compute the 1-norm condition number of
such matrices in O(n) operations. There are many other structured matrices
A € R™" such that the linear system Az = b can be solved in O(n) operations
but for which it is still an open problem to compute the condition number in
O(n) operations. For example, it would be useful to be able to compute the
condition number of a pentadiagonal matrix or a general banded matrix in
O(n) operations.

Two new algorithms for computing the matrix cosine have been presented.
Numerical experiments and theory show improved accuracy and efficiency over
existing methods. We also extended the ideas developed for the matrix co-
sine to present an algorithm that simultaneously computes the matrix cosine
and sine, and does so more efficiently than if they were computed separately.
The ideas used in the design of the algorithms could be extended to vari-
ous other matrix functions. Algorithms for computing cosh(A), or cosh(A)
and sinh(A) simultaneously, are easily obtained by adapting the algorithms
for their trigonometric counterparts. However, it is not possible to compute
sinh(A) by making use of cosh(A) unlike sin(A) = cos(A — ZI). Therefore, it
may be of interest to investigate an algorithm that scales the matrix by powers

of 3 and makes use of the triple angle formula sinh(A) = 3sinh(A)+4sinh®(A).

161



It may also be interesting to consider an algorithm that computes tan(A) by
making use of scaling, a Padé approximation and the double angle formula

tan(2A4) = 2tan(A)(I — tan?(A))~".
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Appendix A

Hyperbolic Transformations
Toolbox for MATLAB

The algorithms described in Chapter 2 have been implemented in MATLAB

and are presented here. A summary of the M-files is given by the following

tables.
Transformations

hrotate Constructs a hyperbolic rotation using formulae H3 or H4.
happly Applies a hyperbolic rotation directly or in mixed form.
happly_od Applies a hyperbolic rotation by the OD procedure.
urotate Constructs a unified rotation equivalent to formulae H3 or H4.
uapply Applies a unified rotation directly or in mixed form.
uapply_od Applies a unified rotation using the OD procedure.

grotate_fast
gapply_fast
hrotate_fast
happly_fast

Constructs a fast Givens rotation.
Applies a fast Givens rotation.
Constructs a fast hyperbolic rotation
Applies a fast hyperbolic rotation.

hhouse Computes hyperbolic Householder vector.
uhouse Computes v and k that define a unified Householder matrix.
Hyperbolic QR Factorization
hqr Hyperbolic QR factorization using nonoverlapping hyperbolic rotations
applied directly or in mixed form.
hgr_od Hyperbolic QR factorization using nonoverlapping hyperbolic rotations

applied by the OD procedure.
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Applications

choldown Solves the Cholesky downdating problem by hyperbolic QR.
ils Solves the indefinite least squares problem by hyperbolic QR.

A.1 Transformations

function [c,s] = hrotate(x,rep)
#HROTATE Constructs a hyperbolic rotation.

h
h
h
h
h
h
h
h
h
b

[c,s] = HROTATE(x,rep) calculates scalars c and s
that define a hyperbolic rotation H = [CONJ(c)
-CONJ(s); -s c] with ABS(c)"2-ABS(s)"2 = 1 such
that H*x, (x a 2*%1 real or complex vector) has a
zero second element. The representation of the
hyperbolic rotation depends on rep.
If rep = 1 (default) : x1°2-x272 computed by
(x1+x2) (x1-x2),
rep = 2 : x172-x272 computed by 2e-e”2, where
e = (abs(xl)-abs(x2))/abs(x1).

if nargin < 2

rep = 1;

end

if abs(x(1)) <= abs(x(2))

error (’Hyperbolic rotation only exists if [x(1)[>[x(2)[’)

end
if x(2) == 0
c=1; s =0;
elseif rep "= 2
t = sqrt((abs(x(1))+abs(x(2)))*(abs(x(1))-abs(x(2))));
c =x(1)/t; s = x(2)/t;
else
= (abs(x(1))-abs(x(2)))/abs(x(1));
= sign(x(1))/sqrt(2*e-e~2);
= (x(2)/x(1))*c;
end

function X = happly(c,s,X,app)
#HAPPLY Applies a hyperbolic rotation.
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% Y = HAPPLY(c,s,X,app) applies the hyperbolic rotation

% matrix H = [CONJ(c),-CONJ(s);-s,c] to the 2%n complex
% matrix X in either direct form or mixed form,

h producing Y=H*X. If app = 1 then the direct method
h is used and if app = 2 then the mixed method is

h used (default).

if nargin < 3

error(’At least 3 input arguments must be supplied.’)
elseif nargin ==

app = 2;
end

n = size(X,2);

if app "= 2 % Direct method.
temp = X(1,:);
X(1,:) = conj(c)*X(1,:)-conj(s)*X(2,:);
X(2,:) = -sxtemp+c*X(2,:);

else % Mixed method
X(1,:) = conj(c)*X(1,:)-conj(s)*X(2,:);
X(2,:) = (-s*X(1,:)+X(2,:))/conj(c);
end

~
|

function X = happly_od(x1,x2,X)
ZHAPPLY_0D Applies a hyperbolic rotation by the 0D-procedure.

% Y = HAPPLY_0D(x1,x2,X) applies the hyperbolic

b rotation, H, that zeros the second component of a
% real vector [x1;x2] to the real matrix X so that
b Y = HxX.

if nargin < 3

error (At least 3 input arguments must be supplied.’)
end
if abs(x1l) <= abs(x2)

error (’Hyperbolic rotation only exists if |[x1[>[x2]’)
end

size(X,2);

sqrt ((x1+x2) /(x1-x2));
= [1 -1; 1 1]%X;

[d/2 0; 0 1/(2%d)]1*X;
[1 1;-1 1]1%X;

<o o< oaB
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function [c,s,J2] = urotate(x,J1,rep)
%UROTATE Constructs a unified rotation.

% [c,s,J2] = UROTATE(x,J1,rep) computes scalars c and s
h that define a unified rotation

% H = [CONJ(c),J1(1,1)*J1(2,2)*CONJ(s);-s,c] such that
% Hxx, (x is a real or complex 2%1 vector) has a zero
% second element. If J1 = +/-EYE(2) then a Givens

h rotation is defined, otherwise a Type 1 or Type 2

yA hyperbolic rotation is defined. H is

% (J1,J2)-orthogonal, where J2 = H’*J1x*H.

% If rep = 1 (default) : x1°2-x272 computed by

h (x1+x2) (x1-x2)

% rep = 2 : x172-x272 computed by 2e-e~2, where

% e = (abs(x1)-abs(x2))/abs(x1).

if nargin < 2
error (At least 2 input arguments must be suplied.’)
elseif nargin ==

rep = 1;
end
m= J1(1,1)%J1(2,2);
J2 = J1;
if x(2) == 0
s =0; ¢c =1;
return
end
if J1(1,1)*abs(x(1)) == -J1(2,2)*abs(x(2))
error (’Hyperbolic rotation not defined for [x(1)| = [x(2)].?)
end
if abs(x(1)) > abs(x(2))
ifm==1 % Givens rotation.
t = x(2)/x(1);
= 1+abs(t)"2;
c = sign(x(1))/sqrt(abs(d)); s = t*c;
else % Hyperbolic type 1 rotation.
if rep "= 2
t = sqrt((abs(x(1))+abs(x(2)))*(abs(x(1))-abs(x(2))));
c =x(1)/t; s = x(2)/¢;
else
e = (abs(x(1))-abs(x(2)))/abs(x(1));
d = sqrt(2xe-e~2);
c = sign(x(1))/d;
s = (x(2)/x(1))/d;
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end

end
else
ifm==1 % Givens rotation.
t = x(1)/x(2);
d = 1+abs(t)"2;
s = sign(x(2))/sqrt(d); c = txs;
else % Hyperbolic type 2 rotation.
J2 = -J2;
if rep "= 2
t = sqrt((abs(x(1))+abs(x(2)))*(abs(x(2))-abs(x(1))));
c =x(1)/t; s = x(2)/¢;
else
e = (abs(x(2))-abs(x(1)))/abs(x(2));
s = sign(x(2))/sqrt(2xe-e~2);
c = (x(1)/x(2))x*s;
end
end
end

function X =
%UAPPLY

h

h

h

A

A

%

h

if nargin <
error(’A
elseif nargi
app = 2;
end

t = J1(1,1)%*
temp = X(1,:
X(1,:) = con
if app "= 2

X(2,:) =
else

uapply(c,s,X,J1,J2,app)

Applies a unified rotation.

Y = UAPPLY(c,s,X,J1,J2,app) applies the unified
rotation H = [CONJ(c),J1(1,1)*J1(2,2)*CONJI(s);-s,c],
to the 2*n complex matrix X in either direct form or
mixed form, producing Y = H*X. Jl1 and J2 are
signature matrices such that H is (J1,J2)-orthogonal.
If app = 1 then the direct method used and if app = 2
the mixed method is used (default).

5
t least 5 input arguments must be supplied.’)
n==

J1(2,2);
);
j(c)*X(1,:)+t*xconj(s)*X(2,:);
% Direct method.
-s*temp+c*X(2,:);
% Mixed method.
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if t == % Givens rotation.
X(2,:) = -sxtemp+c*X(2,:);

elseif J1(1,1) == J2(1,1); 7% Hyperbolic type 1 rotation.
X(2,:) = (-s*X(1,:)+X(2,:))/conj(c);

else % Hyperbolic type 2 rotation.
X(2,:) = (-c*X(1,:)-temp)/conj(s);

end

end

function [X,J2] = uapply_od(x1,x2,X,J1)
HUAPPLY_OD Applies a unified rotation using the 0D procedure.

% [Y,J2] = UAPPLY_0D(x1,x2,X,J1) applies a unified

h rotation, H, that zeros the second component of the

% real vector [x1;x2], to the 2*n matrix X, producing

% Y = HxX. Given the 2 by 2 signature matrix J1, the

% unified rotation is (J1,J2)-orthogonal, where J2 is a
yA signature matrix. The Type 1 and Type 2 hyperbolic

b rotations are applied using the 0D procedure.

if nargin < 4
error (’At least 4 input arguments must be supplied.’)
end

if J1(1,1)*abs(xl) == -J1(2,2)*abs(x2)
error (’Hyperbolic rotation not defined for [x(1)| = [x(2)].?)
end

s = J1(1,1)*J1(2,2);

if s ==
if abs(xl)>abs(x2) % Givens rotation
t = x2/x1;
d = 1+abs(t)"2;
c = sign(x1)/sqrt(abs(d)); s = t*c;
else
t = x1/x2;
d = 1+abs(t)"2;
s = sign(x(2))/sqrt(d); c = txs;
end
temp = X(1,:);
X(, = conj(c)*X(1,:)+conj(s)*X(2,:);

)
X(2,:) = -sxtemp+c*X(2,:);
J
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else
if abs(xl) > abs(x2)

m=1; % Type 1 hyperbolic rotation
else
m=-1; % Type 2 hyperbolic rotation
end
d = sqrt((x1+x2) /m* (x1-x2)) ;
J2 = mxJ1;
X=1[1-1; 1 1]%X;
X = [d/2 0; 0 1/(2xd)]*X;
X=[m 1;-m 1]*X;
end

function [alpha,beta,k,typel = grotate_fast(x,d)
%GROTATE_FAST Computes a fast Givens rotation.

h
h
h
b
b
h
h
h

x1l =
d1
dix1

if x

type
beta

x(1); x2
d(1); d2

[alpha,beta,k,type] = GROTATE_FAST(x,d) computes the
scalars alpha, beta and vector k which define the fast
Givens rotation. The vector d is the original diagonal
factor and k is the updated diagonal factor. The fast
rotation zeros the second component of 2*%1 vector

y = DIAG(d)*x (x must be real). The variable type
specifies the form of fast Givens rotation used and
determines how it is applied.

x(2);
d(2);

= dixx1; d2x2 = d2*x2;
k = zeros(2,1);

non
o~
)
'_I
el
5
o
I
o

return

end

if abs(dix1l) >= abs(d2x2)

C
s
else

end

1/sqrt (1+(d2x2/d1x1)"2);
(d2x2*c) /dix1;

1/sqrt (1+(d1x1/d2x2)"2);
(d1x1xs)/d2x2;
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if ¢ >= 0.5
alpha = -x2/x1;
beta = -alphax*(d2/d1)"2;
k(1) = cxdl; k(2) = cxd2;
type = 2;

else
alpha = x1/x2;

beta = alphax(d1/d2)"2;
k(1) = sxd2; k(2) = s*si;
type = 3;

end

function A = gapply_fast(A,alpha,beta,type)
%GAPPLY_FAST Applies a fast Givens rotation.

% Y = GAPPLY_FAST(A,alpha,beta,type) applies the
% fast Givens rotation, defined by alpha and beta,
h to the 2*n matrix A, producing Y.

if nargin < 4

error(’At least 2 input arguments must be supplied’)
end
if type ==

tmp = A(1,:);

A(1,:) = A(1,:)+betaxA(2,:);

A(2,:) = alphaxtmp+A(2,:);
elseif type ==

tmp = A(1,:);

A(1,:) = betaxA(1,:)+A(2,:);

A(2,:) = -tmp+alphax*A(2,:);
end

function [alpha,beta,k,type]l = hrotate_fast(x,d)
#HROTATE_FAST Computes a fast hyperbolic rotation.

A [alpha,beta,k,type] = HROTATE_FAST(x,d) computes the

A scalars alpha, beta and vector k which define the

b fast hyperbolic rotation. The vector d is the original
h diagonal factor and k is the updated diagonal factor.

h The fast hyperbolic rotation zeros the second component
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% of the 2%1 vector y = DIAG(d)*x (x must be real), and the

% representation of fast rotation is chosen to reduce the
% risk of underflow and overflow. The variable type

h specifies the form of fast hyperbolic rotation used

b and determines how it is applied.

x1 = x(1); x2 = x(2);

di = d(1); 42 = d(2);

dixl = dix*x1l; d2x2 = d2*x2;

if abs(dixl) <= abs(d2x2)
error (’Fast hyperbolic rotation not defined’)

end
= (abs(dix1)-abs(d2x2))/abs(dix1);
= 1/sqrt (2*e-e~2);
= (d2x2/d1x1)*c;
if x2 ==
type=1;

beta=0; alpha=0;
elseif abs(dl) >= abs(d2)
alpha = (dl*c*s)/(d2);

beta = (d2*s)/(dlxc);
k(1) = cxd1; k(2) = d2/c;
type = 2;

else
alpha = (s*d1)/(c*d2);
beta = cxs*d2/d1;
k(1) = di/c; k(2) = d2x*c;
type = 3;

end

function A = happly_fast(A,alpha,beta,type)
#HAPPLY_FAST Applies a fast hyperbolic rotation.

% Y = HAPPLY_FAST(A,alpha,beta,type) applies the fast
A hyperbolic rotation, defined by alpha and beta, to the
h 2*n matrix A, producing Y.

if nargin < 4
error (’At least 2 input arguments must be supplied’)
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end
if type == 2
A(1,:) = A(1,:)-betaxA(2,:);
A(2,:) A(2,:)-alphax*A(1,:);
elseif type ==
A(2,:) = A(2,:)-alpha*A(1,:);
A(1,:) = A(1,:)-betaxA(2,:);
end

function [v,betal = hhouse(x,J,k)

#HHOUSE Computes hyperbolic Householder vector.

A [v,beta] = HHOUSE(x,J,k) computes the hyperbolic

A Householder vector v that defines the hyperbolic

A transformation H = J-(2%v*v’)/(v’*J*v) such that Hx*x
% zeros all but the kth component of x which is equal
b to beta. H is J-orthogonal.

if nargin < 3, k = 1; end
t = x’*(diag(J) .*x);

if t ==
error (’Hyperbolic Householder transformation does not exist.’)
end

if sign(t) == sign(J(k,k))

beta = -J(k,k)*(x(k)/abs(x(k)))*sqrt(abs(t));

v = J*x;

v(k) = v(k)-beta;
else

error (’Hyperbolic Householder transformation does not exist.’)
end

function [v,k,beta] = uhouse(x,J,opt)
AUHOUSE Computes variables defining a unified Householder matrix.

% [v,k] = UHOUSE(x,J,opt) computes v and k that define

% the unified Householder matrix H = P(J-(2vv’)/(v’Jv))

b such that all but the first element of y = Hxx are

% zero and the first element is beta. P is a permutation

172



% matrix which swaps the first and pth rows.
if nargin < 3, opt = 0; end
t = x’*(diag(J) .*x);
if t ==
error (’Hyperbolic Householder transformation does not exist.’)

end

index = find(diag(J) == sign(t));

if opt ==
k = index(1);

else
[val,k] = max(abs(x(index)));
k = index(k);

end

beta = -J(k,k)*(x(k)/abs(x(k)))*sqrt(abs(t));

v = J*x;
v(k) = v(k)-beta;

A.2 Hyperbolic QR Factorization

function [Q,R,B] = hqr(A,p,rep,app,B)
%HQR Hyperbolic QR factorization using hyperbolic rotatioms.

% [Q,R,C] = HQR(A,p,rep,app,B) computes an upper triangular
% R and J-orthogonal Q, where Q*A = R and

% J = DIAG(I_p,I_(m-p)). If B (an m*s matrix) is given then
% C is returned as C = Q*B. Two different representations
b of hyperbolic rotations and two methods of applying these
% can be chosen.

% rep: representation of hyperbolic rotation used.

b (default=1)

h rep = 1 : x172-x272 computed by (x1+x2) (x1-x2)

A rep = 2 : x17°2-x2"2 computed by 2e-e”2, where

% e = (abs(x1)-abs(x2))/abs(x1)

% app: method of applying hyperbolic rotation used.

b (default=1)

h app = 1 : direct method used

% app = 2 : mixed metrhod used

% R = hqr(A,p,rep,app,B) only outputs upper triangular R.

[m,n] = size(A);
if nargin < 2

173



error (At least 2 input arguments must be supplied’)

elseif nargin == 2
rep = 1; app = 1;

elseif nargin == 3
app = 1;

end

Q = eye(m);

if isequal(A(1l:p,:),triu(A(l:p,:))) ==
[Q(l:p,1:p),A(L:p,:)] = qr(A(Ll:p,:));
Q=Q;
if nargin > 4
B(l:p,:) = Q(1l:p,1:p)*B(1:p,:);
end
end

for j = 1:min([m-1,n,pl) % Householder transformation.
[v,beta,s] = gallery(’house’ ,A(p+1i:m,j));
A(p+ti:m,j) = [s; zeros(m-p-1,1)];
tmp = v’*A(p+l:m,j+1:n);
A(p+1l:m,j+1:n) = A(p+l:m,j+1:n)-betaxvxtmp;
tmp = v’*Q(p+l:m,:);
Q(pti:m,:) = Q(p+l:m,:)-beta*xvxtmp;
if nargin > 4
tmp = v’*B(p+l:m,:);
B(p+l:m,:) = B(p+l:m,:)-betakxvxtmp;
end
[c,s] = hrotate(A([j,p*1],j),rep); % Hyperbolic rotation.
A([j p*1],j:n) = happly(c,s,A([j,p*+1],j:n),app);
Q([j,p+11,:) = happly(c,s,Q([j,p+1],:),app);
if nargin > 4
B([j,p+1]1,:) = happly(c,s,B([j,p+1],:),app);
end
A(j+1:m,j) = 0;
end

if p<n
[Q1,A(ptl:end,ptl:end)] = qr(A(p+l:end,p+l:end));
Q(ptl:end,:) = Q1’*Q(p+l:end,:);
if nargin > 4
B(p+l:end,:) = Q1’*B(p+l:end,:);
end
end
if nargout == 1
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else

end

function [Q,R,B] = hqr_od(A,p,B)
#HQR_OD Hyperbolic QR factorization using hyperbolic rotations.

% [Q,R,C] = HQR_OD(A,p,rep,app,B) computes an upper

% triangular R and J-orthogonal (, where (Q*A = R and
A J = DIAG(I_p,I_(m-p)). The matrix A must be real.

A If B (an m*s matrix) is given then C is returned as
h C = Q*B. Hyperbolic rotations are applied using the
% 0D procedure. Also R = hqr_od (A,p,rep,app,B) only
% outputs upper triangular R.

[m,n] = size(A);
if nargin < 2

error(’At least 2 input arguments must be supplied’)
end

Q = eye(m);

if isequal(A(l:p,:),triu(A(l:p,:))) ==
[Q(1:p,1:p),A(1:p,:)] = qr(A(1l:p,:));
Q=0
if nargin > 2

B(1:p,:) = Q(1:p,1:p)*B(1:p,:);

end

end

for j = 1:min([m-1,n,pl) % Householder transformation.
[v,beta,s] = gallery(’house’,A(p+1i:m,j));
A(p+1:m,j) = [s; zeros(m-p-1,1)];
tmp = v’*A(p+l:m,j+1l:n);
A(p+1l:m,j+1:n) = A(p+l:m,j+1:n)-betaxvxtmp;
tmp = v’*Q(p+l:m,:);
Q(p+i:m,:) = Q(p+1l:m,:)-beta*vktmp;
if nargin > 2
tmp = v’*B(p+l:m,:);
B(p+l:m,:) = B(p+l:m,:)-betakxvxtmp;
end
x1 = A(j,j); x2 = A(p+1,7); % Hyperbolic rotation.
A([j pt1],j:n) = happly_od(x1,x2,A([j,p+1],j:n));
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Q([j,p+1],:) = happly_od(x1,x2,Q([j,p+1],:));
if nargin > 2
B([j,p*11,:) = happly_od(x1,x2,B([j,p+1],:));
end
A(j+1:m,j) = 0;
end

if p<n
[Q1,A(p+l:end,ptl:end)] = qr(A(p+l:end,p+l:end));
Q(p+l:end,:) = Q1’*Q(p+l:end,:);
if nargin > 2
B(ptl:end,:) = Q1’*B(p+l:end,:);
end
end
if nargout == 1
Q = A;
else

A.3 Applications

function R = choldown(A,B,rep,app)
%CHOLDOWN  Cholesky downdating problem using hyperbolic QR.

h R = CHOLDOWN(A,B,rep,app) computes the Cholesky

% factor, R, of C = A’xA-B’*B by computing the

pA hyperbolic QR factorization of [A;B] so that

b R’*R = C. A is a p*n matrix and B is a g*n matrix.

A Two different representations of hyperbolic rotations
yA and two methods of applying these can be chosen.

A rep: representation of hyperbolic rotation.

b (default=1)

A rep = 1 : x172-x272 computed by (x1+x2) (x1-x2)
b rep = 2 : x172-x2"2 computed by 2e-e"2, where
% e = (abs(x1)-abs(x2))/abs(x1)

h app: method of applying hyperbolic rotation.

b (default=2)

h app = 1 : direct method used

b app = 2 : mixed method used

if nargin < 2
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error(’Must supply variables A and B’)
elseif nargin ==

rep = 1; app = 2;
elseif nargin ==

app = 2;
end

[p,n] = size(A);
[q,n2] = size(B);
if n "= n2
error(’A and B must have the same number of columns’)
end

R = hqr([A;B],p);

function x = ils(A,b,p,rep,app)
HILS Indefinite least squares problem by hyperbolic QR.

% ILS(A,b,p) solves the indefinite least squares problem
% min(b-Ax)’J(b-Ax) over x, where

A J = diag(eye(p) ,-eye(m-p)). Two different

h representations of hyperbolic rotations and two methods
b of applying these can be chosen.

h rep: representation of hyperbolic rotation used.

b (default=1)

h rep = 1 : x17°2-x272 computed by (x1+x2) (x1-x2)
h rep = 2 : x172-x272 computed by 2e-e”2, where

% e = (abs(x1l)-abs(x2))/abs(x1)

% app: method of applying hyperbolic rotation used.

b (default=2)

A app = 1 : direct method used

A app = 2 : mixed method used

if nargin < 3
error (At least 3 input arguments must be supplied.’)
elseif mnargin ==

rep = 1; app = 2;
elseif nargin == 4
app = 2;
end

[m,n] = size(A);
ifm<n
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error((’m*n matrix A must have m >= n’)
end
[Q,R,b] = hqr(A,p,b,rep,app); % Hyperbolic QR factorization.
x = R(1:n,:)\b(1:n);
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Appendix B

LAPACK Style Codes for the

Condition Number of a
Tridiagonal Matrix

Algorithms 3.2.2 and 3.2.3 have been implemented in the style of LAPACK
using Fortran 77. The codes for both double precision and complex double

precision tridiagonal matrices are given here.

B.1 Double Precision Codes

SUBROUTINE DGTCN1(N,b,a,c,rcond,work,info)

. Scalar Arguments ..
INTEGER N, info
DOUBLE PRECISION  rcond

* .
* . Array Arguments ..
DOUBLE PRECISION a( * ), b( * ), c( * ), WORK( * )
%
%
* Purpose
* =======
*
* DGTCN1 computes the reciprical of the 1-norm condition number
* of a real tridiagonal matrix A using Algorithm 3.2.2. At
* most 61N operations are required.
*
* Arguments
% =========
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N (input) INTEGER
The order of the matrix A. N >= 0.
a (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
b (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal
matrix A.
c (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) superdiagonal elements of the tridiagonal
matrix A.
rcond (output) DOUBLE PRECISION
The reciprical of the 1-norm condition number of A.
WORK (workspace) DOUBLE PRECISION array, dimension (6*N)
INFO (output) INTEGER
INFO = 0 if the matrix is nonsingular.
INFO = -i, the i-th argument had an illegal value.
. Parameters
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
. Local Scalars ..
DOUBLE PRECISION temp,g,ci,tmp2,inorm,tnorm
INTEGER i,n2,n3,n4,nb5
Intrinsics
INTRINSIC ABS
. External Functions
DOUBLE PRECISION  DLANGT
EXTERNAL DLANGT
Test the input arguments.
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info = 0

if( N.LT.0 ) then
INFO = -2

end if

if ( INFO.NE.O ) then
call XERBLA( ’algorithml’, -INFO )
return

end if

Computes the 1-norm of A

DLANGT(’1’,n,b,a,c)
0

tnorm
inorm

Quick return if possible

if (n.eq.zero) then

rcond = one
return

end if

IF( tnorm.EQ.ZERO ) THEN
rcond = zero
RETURN

end if

IF( N.eq.1) THEN
RCOND = one
RETURN

END IF

Partition Workspace

n2 = 2xn
n3 = 3%n
nd = 4xn
nb5 = b5%n

QR factorization

temp = a(1)
g = c(1)
do 10 i =1, n-1
call DLARTG(temp,b(i),ci,tmp2,work(i))
if (work(i) == 0) then
rcond = 0
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return
endif
work(n+i) = -tmp2*(ci*g+tmp2*a(i+l))
temp = -tmp2*g+cixa(i+l)
work(n3+i) = ci
if (i < n-1) then
work(n2+i) = tmp2**2xc(i+1)
g = cixc(i+1)
endif
if (i > 1) then
work(n2+i-1) = tmp2*work(n2+i-1)
endif
work (n4+i) = tmp2
continue
work(n) = temp
if (work(n) == 0) then
rcond = 0
return
endif
work (n3+n) = 1.0

Solve linear system

work(n) = work(n3+n)/work(n)
work(n-1) = (work(n3+n-1)-work(n)*work(n+n-1))/work(n-1)
do 20 i = n-2,1,-1

work(i) = (work(n3+i)-work(i+1)*work(n+i)-work(i+2)*
$ work (n2+i)) /work (i)
continue

Compute 1-norm of columns of strictly lower triangular part

work(n5+n) = 0
work (n5+n-1) = ABS(work(n4+n-1)x*work(n))
do 30 i = n-1,2,-1

work(n5+i-1) = (work(n5+i)+ABS(work(i)))*ABS(work(n4+i-1))
continue
do 3561 =2,n

work(n5+i) = work(n5+i)*ABS (work(n3+i-1))
continue

QL factorization

temp = a(n)
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g = b(n-1)
do 40 i = n,2,-1
call DLARTG(temp,c(i-1),ci,tmp2,work(i))
if (work(i) == 0) then
rcond = 0
return
endif
work(n+i) = -tmp2+*(ci*g+tmp2*a(i-1))
temp = -tmp2*g+cixa(i-1)
work(n3+i) = ci
if (i > 2) then
work(n2+i) = tmp2**2xb(i-2)
g = ci*xb(i-2)
end if
if (i < n) then
work (n2+i+1) = tmp2*work(n2+i+1)
end if
work(n4+i) = tmp2
continue
work(1) = temp
if (work(1) == 0) then
rcond = 0
return
endif
work(n3+1) = 1.0

Solve linear system

work (1) work(n3+1) /work (1)
work (2) (work (n3+2) -work (1) *work (n+2) ) /work (2)
do 50 i = 3,n
work(i) = (work(n3+i)-work(i-1)x*work(n+i)-work(i-2)*
$ work (n2+i)) /work(i)
continue

Compute 1-norm of columns of upper triangular part
work (n2+1) = ABS(work(1))
do 60 i = 1,n-1
work(n2+i+1) = work(n2+i)*ABS(work(n4+i+1))+ABS(work(i+1))

continue

Add parts together to get the condition number
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70

inorm = work (n5+n)+work (n2+n)
do 70 i = 1, n-1
temp = ABS(work(n3+i+1))*(work(n2+i)) +
work (nb+i)
if(temp > inorm) then
inorm = temp
endif
continue
rcond = (1.0/inorm)/tnorm

End of DGTCN1

end

subroutine DGTCN2(N,b,a,c,rcond,work,info)

. Scalar Arguments
INTEGER N,info
DOUBLE PRECISION  rcond

. Array Arguments
DOUBLE PRECISION a( * ), b( * ), c( * ), WORK( * )

Purpose

DGTCN2 computes the reciprical of the 1-norm condition number
of a real tridiagonal matrix A using Algorithm 3.2.3. At
most 35N operations are required.

Arguments

N (input) INTEGER
The order of the matrix A. N >= 0.

a (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
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b (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal
matrix A.
c (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) superdiagonal elements of the tridiagonal
matrix A.
rcond (output) DOUBLE PRECISION
The reciprical of the 1-norm condition number of A.
WORK (workspace) DOUBLE PRECISION array, dimension (5%N)
INFO (output) INTEGER
INFO = 0 if the matrix is nonsingular.
INFO = -i, the i-th argument had an illegal value.
. Parameters
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
. Local Scalars ..
INTEGER n2,n3,n4, j

DOUBLE PRECISION temp, tmp2,g,tnorm,inorm,ci

Intrinsics
INTRINSIC ABS

. External Functions
DOUBLE PRECISION DLANGT
EXTERNAL DLANGT

Test the input arguments.

info = 0

if( N.LT.0 ) then
INFO = -2

end if

if ( INFO.NE.O ) then
call XERBLA( ’algorithm2’, -INFO )
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return
end if

Computes the 1-norm of A

DLANGT( ’1’, n, b, a, ¢ )
0

tnorm
inorm

Quick return if possible

if (n.eq.zero) then
rcond = one
return

end if

IF( tnorm.EQ.ZERO ) THEN
rcond = zero
RETURN

end if

IF( N.eq.1) THEN
RCOND = one
RETURN

END IF

Partition Workspace

n2 = 2%*n
n3 = 3%n
n4 = 4%n

QR factorization

temp = a(1)
g = c(1)
do 10 j = 1, n-1
call DLARTG(temp,b(j),ci,tmp2,work(j))
if (work(j) == 0) then
rcond = 0
return
endif
work(n+j) = -tmp2*(ci*g+tmp2*a(j+1))
temp = -tmp2*g+cixa(j+1)
work(n3+j) = ci
if (j < n-1) then
work(n2+j) = tmp2**2xc(j+1)
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g = cixc(j+1)
endif
if (j > 1) then
work(n2+j-1) = tmp2*work(n2+j-1)
endif
work(n4+j) = tmp2
continue
work(n) = temp

if (work(n) == 0) then
rcond = 0
return

endif

work(n3+n) = 1.0

Solve linear system

work(n) = work(n3+n)/work(n)
work(n-1) = (work(n3+n-1)-work(n)*work(n+n-1))/work(n-1)
do 20 j = n-2, 1, -1

work(j) = (work(n3+j)-work(j+1)*work(n+j)-work(j+2)x*
$ work (n2+j) ) /work(j)
continue

Compute 1-norm of columns of strictly lower triangular part

work(n+n) = 0.0
work(n+n-1) = ABS(work(n4+n-1)*work(n))
do 30 j = n-1,2,-1
work(n+j-1) = (work(n+j)+ABS(work(j)))*ABS(work(n4+j-1))
continue

Compute 1-norm of columns of upper triangular part

work(n2+1) = 1.0
do 40 j = 1,n-1
if ((j) == 0) then
work(n2+j+1) = ABS(work(n2+j)*work(j)*c(j)*work(n3+j))
$ +ABS (work (n3+3))
else
work(n2+j+1) = work(n2+j)*ABS (work(nd+j)*c(j)/b(j))+
$ ABS (work (n3+j))
endif
continue
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Add parts together to get the condition number

inorm = work(n+1)+work(n2+1)*ABS (work (1))
do 50 j = 1, n-1

temp = ABS(work(n3+j))*work(n+j+1) +
$ ABS (work (j+1)) *work (n2+j+1)

if (temp > inorm) then

inorm = temp
endif
50 continue

rcond = (1.0/inorm)/tnorm
End of DGTCN2

end

B.2 Complex Codes

* %

¥R X X K K X X K X X ¥ ¥ X X X

SUBROUTINE ZGTCN1(N,b,a,c,rcond,work,info)

. Scalar Arguments
INTEGER N, info
DOUBLE PRECISION rcond

. Array Arguments
COMPLEX*16 a( * ), b( * ), c( * ), WORK( * )

Purpose

ZGTCN1 computes the reciprical of the l-norm condition number
of a complex tridiagonal matrix A using Algorithm 3.2.2
adapted for the complex case.

Arguments

N (input) INTEGER

The order of the matrix A. N >= 0.

a (input) COMPLEX*16 array, dimension (N)
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The n diagonal elements of the tridiagonal matrix A.

b (input) COMPLEX*16 array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal
matrix A.
c (input) COMPLEX*16 array, dimension (N-1)
The (n-1) superdiagonal elements of the tridiagonal
matrix A.
rcond (output) DOUBLE PRECISION
The reciprical of the l1-norm condition number of A.
WORK (workspace) COMPLEX*16 array, dimension (6%N)
INFO (output) INTEGER
INFO = 0 if the matrix is nonsingular.
INFO = -i, the i-th argument had an illegal value.
. Parameters
DOUBLE PRECISION  ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )

. Local Scalars
COMPLEX*16 temp, g, tmp2
DOUBLE PRECISION inorm, tmpc,tnorm,ci

INTEGER

Intrinsics
INTRINSIC

i,n2,n3,n4,nb5

ABS

. External Functions

DOUBLE PRECISION

ZLANGT

EXTERNAL ZLANGT

Test the input arguments.

info = 0

if( N.LT.0 ) then
INFO = -2

end if
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if( INFO.NE.O ) then
call XERBLA( ’algorithmi’, -INFO )
return

end if

Computes the 1-norm of A

ZLANGT(’1’,n,b,a,c)
0

tnorm
inorm

Quick return if possible

if (n.eq.zero) then

rcond = one
return

end if

IF( tnorm.EQ.ZERO ) THEN
rcond = zero
RETURN

end if

IF( N.eq.1) THEN
RCOND = omne
RETURN

END IF

Partition Workspace

n2 = 2%n
n3 = 3%n
n4d = 4xn
nb5 = bxn

QR factorization

temp = a(1)
g = c(1)
do 10 i =1, n-1
call ZLARTG(temp,b(i),ci,tmp2,work(i))
if (ABS(work(i)) == 0) then
rcond = 0.0
return
endif
work(n+i) = -conjg(tmp2)*(ci*g+tmp2*a(i+l))
temp = -conjg(tmp2)*g+cixa(i+1)
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work(n3+i) = ci
if (i < n-1) then
work(n2+i) = conjg(tmp2)*tmp2*c(i+1)
g = cixc(i+1)
endif
if (i > 1) then
work(n2+i-1) = conjg(tmp2)*work(n2+i-1)
endif
work(n4+i) = tmp2
continue
work(n) = temp
if (ABS(work(n)) == 0) then
rcond = 0.0
return
endif
work(n3+n) = 1.0

Solve linear system

work(n) = work(n3+n)/work(n)
work(n-1) = (work(n3+n-1)-work(n)x*work(n+n-1))/work(n-1)
do 20 i = n-2,1,-1

work(i) = (work(n3+i)-work(i+1)x*work(n+i)-work(i+2)*
$ work (n2+i)) /work (i)
continue

Compute 1-norm of columns of strictly lower triangular part

work(nb5+n) = 0.0
work(n5+n-1) = ABS(work(n4+n-1)*(work(n)))
do 30 i = n-1,2,-1
work(n5+i-1) = (work(n5+i)+ABS(work(i)))*ABS(work(n4+i-1))
continue
do 35 i =2,n
work(n5+i) = work(nb5+i)*ABS (work(n3+i-1))
continue

QL factorization
temp = a(n)
g = b(n-1)

do 40 i = n,2,-1
call ZLARTG(temp,c(i-1),ci,tmp2,work(i))
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if (ABS(work(i)) == 0) then
rcond = 0.0
return
endif
work(n+i) = -conjg(tmp2)*(ci*g+tmp2*a(i-1))
temp = -conjg(tmp2)*g+cixa(i-1)
work(n3+i) = ci
if (i > 2) then
work(n2+i) = conjg(tmp2)*tmp2*b(i-2)
g = cixb(i-2)
end if
if (i < n) then
work(n2+i+1) = conjg(tmp2)*work(n2+i+1)
end if
work(n4+i) = tmp2
continue
work(1) = temp
if (ABS(work(1)) == 0) then
rcond = 0.0
return
endif
work(n3+1) = 1.0

Solve linear system

work (1) work (n3+1) /work (1)
work(2) (work (n3+2)-work (1) *work (n+2) ) /work(2)
do 50 i 3,n
work(i) = (work(n3+i)-work(i-1)*work(n+i)-work(i-2)*
$ work(n2+1i)) /work (i)

continue

Compute 1-norm of columns of upper triangular part

work (n2+1) = ABS(work(1))
do 60 i = 1,n-1

work(n2+i+1) = work(n2+i)*ABS (work (n4+i+1))+ABS(work(i+1))
continue

Add parts together to get the condition number
inorm = work(n5+n)+work(n2+n)

do 70 i = 1, n-1
tmpc = ABS(work(n3+i+1))*ABS(work(n2+i)) +
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70

work (n5+i)
if(tmpc > inorm) then
inorm = tmpc
endif
continue
rcond = (1.0/inorm)/tnorm

End of ZGTCN1

end

subroutine ZGTCN2(N,b,a,c,rcond,work,info)

. Scalar Arguments
INTEGER N,info
DOUBLE PRECISION rcond

. Array Arguments
COMPLEX*16 a( * ), b( * ), c( * ), WORK( * )

Purpose

ZGTCN2 computes the reciprical of the 1-norm condition number
of a complex tridiagonal matrix A using Algorithm 3.2.3
adapted for the complex case.

Arguments

N (input) INTEGER
The order of the matrix A. N >= 0.

a (input) COMPLEX*16 array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.

b (input) COMPLEX*16 array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal
matrix A.
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c (input) COMPLEX*16 array, dimension (N-1)
The (n-1) superdiagonal elements of the tridiagonal
matrix A.

rcond  (output) DOUBLE PRECISION
The reciprical of the 1-norm condition number of A.

WORK (workspace) COMPLEX*16 array, dimension (5%N)
INFO (output) INTEGER

INFO = 0 if the matrix is nonsingular.
INFO = -i, the i-th argument had an illegal value.

. Parameters
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERDO = 0.0D+0 )

. Local Scalars
INTEGER n2,n3,n4,j
COMPLEX*16 temp, tmp2,g
DOUBLE PRECISION tnorm,inorm,tmpc,ci

Intrinsics
INTRINSIC ABS

. External Functions

DOUBLE PRECISION ZLANGT
EXTERNAL ZLANGT

Test the input arguments.

info = 0

if( N.LT.0 ) then
INFO = -2

end if

if ( INFO.NE.O ) then
call XERBLA( ’algorithm2’, -INFO )
return

end if
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Computes the 1-norm of A

tnorm
inorm

ZLANGT( ’1’, n, b, a, ¢ )
0

Quick return if possible

if (n.eq.zero) then
rcond = one
return

end if

IF( tnorm.EQ.ZERO ) THEN
rcond = zero
RETURN

end if

IF( N.eq.1) THEN
RCOND = omne
RETURN

END IF

Partition Workspace

n2 = 2%*n
n3 = 3%n
n4 = 4%*n

QR factorization

temp = a(1)
g = c(1)
do 10 j = 1, n-1
call ZLARTG(temp,b(j),ci,tmp2,work(j))
if (ABS(work(j)) == 0) then
rcond = 0O
return
endif

work(n+j) = -conjg(tmp2)*(ci*g+tmp2*a(j+1))

temp = -conjg(tmp2)*g+ci*a(j+1)
work(n3+j) = ci
if (j < n-1) then
work(n2+j) = conjg(tmp2)*tmp2*c(j+1)
g = cixc(j+1)
endif
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if (j > 1) then
work (n2+j-1) = conjg(tmp2)*work(n2+j-1)
endif
work(n4+j) = tmp2
continue
work(n) = temp

if (ABS(work(n)) == 0) then
rcond = 0
return

endif

work(n3+n) = 1.0

Solve linear system

work(n) = work(n3+n)/work(n)
work(n-1) = (work(n3+n-1)-work(n)*work(n+n-1))/work(n-1)
do 20 j = n-2, 1, -1

work(j) = (work(n3+j)-work(j+1)*work(n+j)-work(j+2)*
$ work (n2+j) ) /work(j)
continue

Compute 1-norm of columns of strictly lower triangular part

work(n+n) = 0
work(n+n-1) =
do 30 j = n-1
work(n+j-1
continue

0
ABS (work(n4+n-1)*work(n))
,2,-1

) = (work(n+j)+ABS(work(j)))*ABS(work(n4+j-1))

Compute 1-norm of columns of upper triangular part

work(n2+1) = 1.0
do 40 j = 1,n-1
if ((j) == 0) then
work(n2+j+1) = ABS(work(n2+j)*work(j)*c(j)*work(n3+j))
$ +ABS (work (n3+j))
else
work (n2+j+1) = work(n2+j)*ABS (work(nd+j)*c(j)/b(j))+
$ ABS (work (n3+j))
endif
continue

Add parts together to get the condition number
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50

inorm = work(n+1)+work(n2+1)*ABS (work(1))
do 50 j = 1, n-1

tmpc = ABS(work(n3+j))*work(n+j+1) +

ABS (work (j+1))*work (n2+j+1)
if (tmpc > inorm) then
inorm = tmpc

endif

continue

rcond = (1.0/inorm)/tnorm

End of ZGTCN2

end
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