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We present the results of an experimental investigation of the effect of a magnetic field
on the stability of convection in a liquid metal. A rectangular container of gallium
is subjected to a horizontal temperature gradient and a uniform magnetic field is
applied separately in three directions. The magnetic field suppresses the oscillation
most effectively when it is applied in the vertical direction and is least efficient
when applied in the direction of the temperature gradient. The critical temperature
difference required for the onset of oscillations is found to scale exponentially with
the magnitude of the magnetic field for all three orientations. Comparisons are made
with available theory and qualitative differences are discussed.

1. Introduction
Convective flows driven by horizontal temperature differences commonly occur in

heat and mass transfer problems such as geophysical flows and various engineering
applications. The stability of such convective flows is of particular interest in crystal
growth where convection arises because of the temperature gradient between the
melt and the solidified crystal. In most practical applications these flows are time-
dependent and the resulting temperature fluctuations at the solidification front have
been linked to the occurrence of layers with differing dopant concentrations, so-called
striations, in the grown crystal (Müller & Wiehelm 1964). Independently Hurle (1966)
and Utech & Flemmings (1966) demonstrated that striations can be eliminated if
crystals are grown in a sufficiently strong magnetic field. Applying a magnetic field to
the moving conducting fluid induces electrical currents which in turn interact with the
magnetic field resulting in a damping of the flow. In modern crystal growth facilities
magnetic fields are often applied to increase the homogeneity of crystals. The present
study is concerned with a laboratory model of the horizontal Bridgman method
which is used for the growth of crystals of a specific form (Müller & Ostrogorsky
1993). In an industrial setting, the crucible containing the molten crystal is withdrawn
horizontally from a furnace, resulting in a horizontal temperature difference which
in turn drives convective flows in the melt. This configuration is also of considerable
academic interest because of its relative simplicity which allows progress to be made
using analytical and numerical models of the flows.
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Figure 1. Geometry of the experiment shown for a magnetic field B0 of
transverse orientation.

In our experiment we applied a controlled horizontal temperature difference to
a sample of liquid gallium contained in an electrically and thermally insulating
enclosure of rectangular cross-section. A uniform magnetic field (B0) was applied
separately in the three principal orientations, namely the longitudinal (the magnetic
field was parallel to the temperature gradient), the vertical (the field was parallel
to gravity), and the transverse orientation (the magnetic field was perpendicular to
both the temperature gradient and gravity). A schematic diagram of the geometry
for the case of a magnetic field of transverse orientation is shown in figure 1. The
dimensionless parameters relevant to this problem are the Grashof, Hartmann and
Prandtl numbers. The Grashof number is proportional to the applied temperature
difference and it is a measure of the relative importance of buoyancy to viscous forces.
It is defined as, Gr = (αΘgh4)/(lν2) where h (l) is the height (length) of the cavity,
ν is the kinematic viscosity, g the acceleration due to gravity, α the coefficient of
thermal expansivity and Θ the applied temperature difference. The Hartmann number
is defined as Ha =B0h(σ/νρ)1/2 where ρ is the density, B0 the magnetic field and σ

the electrical conductivity. Ha is proportional to the strength of the magnetic field
and its square is a measure of the relative importance of the electromagnetic to the
viscous forces. Finally the Prandtl number is defined as Pr = ν/κ which is the ratio
of the kinematic viscosity to the thermal diffusivity.

The pioneering experimental study of this problem was carried out by Hurle,
Jakeman & Johnson (1974) who investigated the dependence of the onset of oscillatory
flows in liquid gallium on the strength of a transverse magnetic field. The gallium
sample was held in a ceramic channel with a free upper surface and was subject to a
horizontal temperature difference. The authors observed that the critical temperature
difference for the onset of oscillations increases in proportion to the square of the
field strength over the Hartmann number range investigated (0 < Ha < 17). In a
later experimental study McKell et al. (1990) investigated the transition to chaos
in the same apparatus and uncovered rich dynamical behaviour including a torus-
doubling route to chaos. The effect of a magnetic field on the heat transfer in strongly
time-dependent flows in a vertical slot has been addressed by Burr et al. (2003).

Kaddeche, Henry & BenHadid (2003) investigated the stability of an infinite fluid
layer confined by rigid top and bottom boundaries subject to a horizontal temperature
difference and a magnetic field of vertical, transverse or longitudinal orientation. The
vertical magnetic field stabilizes the flow most efficiently and suppresses transverse
two-dimensional modes as well as longitudinal three-dimensional modes. For Ha <

7 the authors observed that Grc/Grc(Ha = 0) ∼ exp(Ha2) for two-dimensional
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transverse modes and that Grc/Grc(Ha = 0) − 1 ∼ Ha2 for three-dimensional
longitudinal modes, where Grc is the critical value of the Grashof number at which the
instability occurs. Increasing Ha beyond approximately 15 leads to the disappearance
of both modes of instability. The strong stabilization of the two-dimensional modes is
directly connected to a strong reduction in the shear energy. The horizontal magnetic
fields have far less impact. The transverse field only affects three-dimensional modes,
whereas the longitudinal field only acts on two-dimensional modes. The stabilization
is very weak at small Ha with an asymptotic behaviour at large Ha of Grc ∼ Ha.
In a similar study BenHadid, Henry & Kaddeche (1997) investigated the stability of
an infinite fluid layer with a free top surface in the presence of a vertical magnetic
field. As in the case of a rigid surface, in the vertical field Grc for the transverse
two-dimensional instability increases in proportion to exp(Ha2) whereas for the
longitudinal three-dimensional mode Grc increases linearly with the square of the
Hartmann number. Alboussiere, Henry & Kaddeche (2003) focused on the limit of
weak magnetic fields and showed analytically that in the limit of small Ha the Hopf
bifurcation point increases in proportion to the square of the Hartmann number. By
means of a linear stability analysis of the flow in an infinitely long cavity with a square
cross-section, Bojarevics (1995) shows that the presence of lateral walls postpones the
onset of oscillatory rolls in a vertical magnetic field.

Gelfgat & Bar-Yoseph (2001) studied the stability of the flow in a laterally heated
two-dimensional channel computationally using a Galerkin method. The aspect ratio
(length/height) of the cell was 4. Stability curves were calculated for various field
orientations and the most effective suppression of oscillations was found for the
vertical orientation, whereas the longitudinal field was the least efficient. The stability
curves have a non-monotonic dependence on the Hartmann number, giving rise to
hysteresis phenomena. Various different oscillatory modes are encountered at onset
depending on the parameter settings.

In a recent combined experimental and numerical study of a gallium-filled cavity
of aspect ratios 5.0:1.3:1.0 Hof et al. (2004) investigated the nature of the oscillatory
instability. It was shown that oscillations set in at a supercritical Hopf bifurcation
(see also Hof & Mullin 2001). Excellent overall agreement was found between the
experimental data and the direct numerical simulations for the spatial nature of the
oscillation. The oscillatory mode was identified as a transverse standing wave where
oscillation amplitudes measured close to the left sidewall display a 180◦ phase shift
compared to measurements taken close to the right sidewall. This oscillation is clearly
of three-dimensional nature and therefore different from the instabilities encountered
in the two-dimensional models reported above. These observations are in agreement
with earlier experimental and numerical studies (Juel et al. 2001; Henry & Buffat
1998).

The goal of this investigation is to establish the orientation of the magnetic field
which damps the oscillations in the convective flow most efficiently. Experimental
studies of this problem are of particular importance since the steady base flow (see
Juel et al . 1999 for details) as well as the oscillatory mode are three-dimensional in
nature. This questions the applicability of scaling laws obtained from two-dimensional
models to practical flows.

2. Experimental apparatus
A detailed description of the experimental apparatus can be found in Hof, Juel &

Mullin (2003). Here we summarize the main features of the experiment. The sample
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of liquid gallium was held in an insulating enclosure of rectangular cross-section,
which was machined from Lexan, a transparent plastic with a thermal conductivity
150 times smaller than that of gallium (k = 0.2 W m−1 K−1). The conducting endwalls
were made of 1 mm thick molybdenum sheets which have a thermal conductivity
of approximately 5 times that of gallium. Molybdenum is also impervious to attack
by gallium. Great care was taken to ensure that the cell was completely filled with
gallium and sealed from the external environment. This ensured that all surfaces were
wetted and oxidation of the gallium sample was avoided. Each molybdenum wall was
inset into the side of a copper box through which silicone oil was circulated. The oil
temperature was controlled to within ±0.01 ◦C using a commercial circulator bath. In
order to avoid heat losses of the gallium to the surrounding the cavity was thermally
shielded as described in Hof et al. (2003).

The cavity was inserted between the iron cores of an electromagnet. It could be
placed with its endwalls either parallel or perpendicular to the faces of the pole pieces,
resulting in a longitudinal or transverse orientation of the magnetic fields respectively.
A vertical field was applied by rotating the magnet through 90◦. The magnetic fields
were measured to be uniform to within 1.5% along the length of the enclosure
and 0.5% across its width. Measurements of the convective flow were made using
14 type-K thermocouple probes of diameter 0.25 mm inserted by 1 mm into the
gallium. The exact positions of the thermocouples are described in Hof et al. (2004).
All thermocouples were carefully calibrated prior to the measurement, which enabled
us to measure temperatures to an accuracy of 0.01 K.

The experimental parameters Gr , Pr and Ha are functions of the fluid properties
and these vary with the temperature of the gallium sample. The temperature
dependences of the material properties of gallium were discussed by Braunsfurth et al.
(1997) and Hof et al. (2004). The values of the fluid parameters stated throughout
this paper were calculated for the mean temperature in the channel, which was set
to a constant value of Tm = 75 ◦C. Thus the Prandtl number remained constant at
Pr = 0.018. The range of attainable Grashof numbers was limited by the freezing
point of gallium and the melting point of the Lexan channel. At a mean temperature
of Tm = 75 ◦C the maximum value of the Grashof number that could be reached was
1.35 × 105. The experiment was fully automated and the sampling of the data, the
temperature settings of the circulators and the regulation of the magnetic field were
performed under computer control.

The investigation was focused on the onset of oscillations as a function of Gr and
Ha. The experimental protocol adopted was to first set Ha to a prescribed value
where the flow was steady and then to increment the temperature difference between
the hot and the cold wall in steps of 0.1 K (�Gr = 300). Between increments the
flow was left to settle for 30 minutes and temperatures were sampled for a further
30 minutes at a frequency of 5 Hz. This process was repeated until the steady flow
became unstable and oscillations set in. As described by Hof & Mullin (2001) and
Hof et al. (2004) the oscillatory flow arises at a supercritical Hopf bifurcation for
variations of Grashof as well as Hartman numbers and no hysteretic dependence of
the critical point was observed throughout the parameter regime investigated here. In
order to detect the bifurcation point a fast Fourier transform (FFT) was automatically
performed on each dataset. If the maximum of the FFT was at least one order of
magnitude larger than the background noise a critical Grashof number was deemed
to have been passed. From this weakly supercritical flow Ha was then incremented to
a value at which the oscillation was suppressed and the flow was steady. The above
procedure was repeated to determine the new bifurcation point and so forth. This
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Figure 2. Stability curves: the data points mark the Hopf bifurcation points in the (Gr,Ha)-
plane. �, vertical; �, transverse; �, longitudinal magnetic field.

automation process, and in particular the long settling times between increments,
enabled the accurate determination of the onset of oscillations. The error in the
critical Grashof number was less than one step size, which is typically �Gr = 300
and less than 1% of the absolute value.

3. Hartmann number dependence of the oscillation
One set of experiments was performed, for each of the principal directions of

the magnetic field (transverse, longitudinal and vertical). Changing the orientation
of the magnetic field between the three sequences of experiments involved major
changes to the experimental set up, including emptying and refilling of the gallium
channel. This resulted in a displacement of the critical Grashof number Grc at
Ha = 0, which is small in comparison to the range of Grashof numbers investigated.
The critical points found in the three experiments at zero Hartmann number are
Grc(Ha = 0) = 3.91 × 104, for the transverse field, Grc(Ha = 0) = 4.15 × 104 for the
longitudinal field and Grc(Ha = 0) = 4.03 × 104 for the vertical field.

The stability curves of the three orientations of the magnetic field are shown
in figure 2. For parameter settings below (above) the curves, flows were steady
(oscillatory). To enable a clear comparison between the three measurements, the
Grashof number has been rescaled in terms of its critical value at Ha = 0. Magnetic
fields applied in each of the three orientations suppress oscillations and the Hopf
bifurcation point for the onset of oscillations is shifted to larger Grashof numbers
with increasing Hartmann numbers. The same mode of oscillation was observed
throughout the investigated parameter regime. The vertical field is the most efficient
at suppressing oscillations, and the longitudinal field shows a significantly weaker
effect than either the vertical or the transverse orientation. Ha = 5.5 and Ha = 8
in the vertical and the transverse field respectively are sufficient to stabilize the
steady flow up to Gr = 1.1 × 105 (Grc/Grc(Ha = 0) = 2.75). However for the
longitudinal field a Hartmann number of 22 is required to move the bifurcation
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Figure 3. The natural logarithm of the rescaled critical Grashof number is plotted as a
function of Ha3 for the vertical field. The fitted (solid) line indicates that the critical value
of Grc/Grc(Ha = 0) for the onset of oscillations scales in proportion to exp(aHa3), where
a = 0.0055. The dotted curve corresponds to the first two terms of the Taylor expansion of
the fitted exponential.

point by the same amount. Hence the vertical and transverse fields damp oscillations
more efficiently than the longitudinal magnetic field. In two-dimensional numerical
calculations Gelfgat & Bar-Yoseph (2001) also observe a much stronger damping for
the vertical than for the longitudinal field. Interestingly for the damping effect on
steady flows, where considerably larger field strengths are required, Hof et al. (2003)
observe that the transverse field is only marginally more effective than the longitudinal
field. Both were found to be far less efficient than the vertical magnetic field, whereas
here for the suppression of oscillations both the vertical and the transverse field are
very effective.

The dependence of the critical value of Gr on Ha is given in figures 3, 4 and 5 for
the vertical, transverse and longitudinal fields respectively. Here ln(Grc/Grc(Ha = 0))
is plotted against a suitable power of Ha. In the case of the vertical field (figure 3),
Grc ∝ exp((0.00546 ± 0.00003)Ha3) and this functional dependence is accurate over
the entire range of Ha investigated. The dotted curve shown in the figure corresponds
to the first two terms of a Taylor expansion of the exponential fit. The curve begins
to deviate from the data points for Ha > 3. This clearly shows that the data follow
an exponential scaling, in contrast with the power-law behaviour suggested by the
stability analysis of Kaddeche et al. (2003). Plotting ln Grc/Grc(Ha = 0) versus
Ha2 for the transverse field, as shown in figure 4, suggests that the critical point
increases as exp((0.0141 ± 0.0001)Ha2). However, for Ha > 7, the scaling changes
and Grc increases more strongly. Changes in the scaling of the stability curves were
also observed by Gelfgat & Bar-Yoseph (2001) which occurred at parameter settings
where two modes intersect. In the experiment the mode of the oscillation remained
unchanged over the parameter range investigated. Again the power expansion of the
exponential fit, shown by the dotted curve, only holds for Ha < 3.

The scaling of Grc for the longitudinal field is found to be Grc ∝ exp(Ha2 (0.00201±
0.00001)) as shown in figure 5. A quadratic scaling with Hartmann number is only
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Figure 4. The natural logarithm of the rescaled critical Grashof number is plotted versus
Ha2 for the transverse field. The fitted line indicates that the Hopf bifurcation point scales in
proportion to exp(aHa2) for Ha � 7, with a = 0.0141. The dotted curve corresponds to the
first two terms of the Taylor expansion of the fitted exponential.
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Figure 5. The natural logarithm of the rescaled critical Grashof number is plotted versus
Ha2 for the longitudinal field. The linear fit indicates that the Hopf bifurcation point scales in
proportion to exp(aHa2), with a = 0.002. The dotted curve corresponds to the first two terms
of the Taylor expansion of the fitted exponential.

observed for Ha < 10 (see dotted curve in figure 5). The scalings observed in this study
clearly do not agree with those of the two-dimensional analytical models discussed
in §2. One reason for the different scaling behaviour found is that the instability
in the model is qualitatively different from that in the experiment. Specifically a
three-dimensional standing wave is observed in the experiment whereas longitudinal
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Figure 6. Scaling of the frequency with Grashof number: �, vertical magnetic field; �,
transverse magnetic field; �, longitudinal magnetic field; ∗, no magnetic field.

oscillatory rolls or transverse rolls are encountered in the infinite-layer model. However
it is interesting to note that an exp(Ha2) scaling for Grc which we observed in the
longitudinal and transverse field has been observed by Kaddeche et al. (2003) and
BenHadid et al. (1997) for the damping of the two-dimensional transverse instability
by a vertical magnetic field. It is also evident that the scaling observed for the
transverse field is different from the Grc ∝ Ha2 scaling found by Hurle et al. (1974)
for free-surface flows. Whereas Hurle et al. (1974) observed a quadratic scaling up to
Ha = 17 our data only show a quadratic behaviour up to Ha = 3.

In figure 6 the frequencies measured at each of the critical points are shown plotted
against the Grashof number. For the transverse and longitudinal magnetic fields the
frequency shows the same dependence on Gr and this also agrees with the frequency
dependence found in the absence of a magnetic field. Hence, the frequency of the
oscillation is largely independent of Ha and only depends on the Grashof number.
For the vertical field, however, the frequency is affected by the magnetic field and the
increase of the frequency is less steep than in the other cases. As shown by Hof et al.
(2003) the temperature field of the steady flow is considerably affected for Ha ≈ 5 in
a vertical magnetic field, whereas in the transverse and longitudinal fields Hartmann
numbers an order of magnitude larger are required to have the same effect on the
temperature field. The different frequency scaling found for the vertical field could
therefore be caused by modifications of the base flow by the vertical magnetic field.

4. Conclusion
We have shown that the onset of oscillations occurring in low-Prandtl-number

convection can be postponed using magnetic fields of relatively small magnitude.
The size of the field required is approximately one order of magnitude smaller
than that necessary to significantly damp the steady flow (Hof et al. 2003). The
efficiency of the magnetic field strongly depends on its orientation with respect to
the temperature gradient. Exponential scalings of the Hopf bifurcation point are
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observed over the investigated parameter range for all three field orientations. These
results clearly differ from the two-dimensional analysis and underline the relevance
of the three-dimensional structure of the flow. The most surprising observation is
the strong suppression of oscillations by the transverse field. From the results of the
stability analysis by Kaddeche et al. (2003) a substantially stronger damping was
expected for the vertical field than for the transverse field. In the experiment however,
both the vertical and the transverse magnetic fields show a strong suppression of
oscillations compared with the longitudinal field.
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