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STOCHASTIC BOUNDS FOR LÉVY PROCESSES

BY R. A. DONEY

University of Manchester

Using the Wiener–Hopf factorization, it is shown that it is possible to
bound the path of an arbitrary Lévy process above and below by the paths of
two random walks. These walks have the same step distribution, but different
random starting points. In principle, this allows one to deduce Lévy process
versions of many known results about the large-time behavior of random
walks. This is illustrated by establishing a comprehensive theorem about
Lévy processes which converge to ∞ in probability.

1. Introduction. If X = (Xt , t ≥ 0) is an arbitrary Lévy process, we would
frequently like to be able to assert that some aspect of its behavior as t → ∞ can
be seen to be true “by analogy with known results for random walks.” An obvious
way to try to justify such a claim is via the random walk S(δ) := (X(nδ), n ≥ 0),

for fixed δ > 0. (This process is often called the δ-skeleton of X.) However, it is
often difficult to control the deviation of X from S(δ). A further problem stems
from the fact that the distribution of S

(δ)
1 = X(δ) is determined via the Lévy–

Khintchine formula and not directly in terms of the characteristics of X, that is,
the Lévy measure �, the Brownian coefficient σ 2, and γ, the linear coefficient in
the Lévy–Khintchine formula.

An alternative approach is to use the random walk which results from
observing X at the times at which its “large jumps” occur. Specifically, we will
assume, here and throughout, that �(R) > 0, since otherwise X is a Brownian
motion or a pure drift and all the results we give are already known. Then we take
a fixed interval I = [−η1, η2] which contains zero and has � := �(Ic) > 0, put
τ0 = 0, and for n ≥ 1 write τn for the time at which Jn, the nth jump in X whose
value lies in I c, occurs. (It might seem to be natural to assume that η1 = η2, but it
is possible that the extra generality can be useful.) The random walk is then defined
by

Ŝ := (Ŝn, n ≥ 0), where Ŝn = X(τn).(1.1)

Of course (τn, n ≥ 1) is a Poisson process of rate � which is independent
of (Jn, n ≥ 1), and this latter is a sequence of i.i.d. (independent, identically
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distributed) random variables having the distribution �−11I c�(dx). We will write
Ŷ1, Ŷ2, . . . for the steps in Ŝ, so that, with er := τr − τr−1 and r ≥ 1,

Ŷr = X(τr) − X(τr−1) = Jr + X̃(τr) − X̃(τr−1)
D= Jr + X̃(er),(1.2)

where X̃ is “X with the jumps J1, J2, . . . removed.” This is also a Lévy process
whose Lévy measure is the restriction of � to I. Furthermore, X̃ is independent of

{(Jn, τn), n ≥ 1}, and since it has no large jumps, it follows that E{eλX̃t } is finite
for all real λ. Thus the contribution of

∑n
1 X̃(er) to Ŝn can be easily estimated, and

for many purposes Ŷr can be replaced by Jr + µ̃, where µ̃ = EX̃(τ1). In order to
control the deviation of X from Ŝ , it is natural to use the stochastic bounds

In ≤ Xt ≤ Mn for τn ≤ t < τn+1,(1.3)

where

In := inf
τn≤t<τn+1

Xt, Mn := sup
τn≤t<τn+1

Xt,(1.4)

and write

Mn = Ŝn + m̃n and In = Ŝn + ĩn.(1.5)

Here

m̃n = sup
0≤s<en+1

{X̃(τn + s) − X̃(τn)}, n � 1,(1.6)

ĩn = inf
0≤s<en+1

{X̃(τn + s) − X̃(τn)}, n � 1,(1.7)

are each i.i.d. sequences, and both m̃n and ĩn are independent of Ŝn. This method
also leads to some technical complications; see, for example, the proofs of
Theorems 3.3 and 3.4 in [2].

The main point of this paper is to demonstrate that there is a different
representation for the random variables Mn and In in (1.4) which allows us
to draw conclusions about the asymptotic behavior of Lévy processes from the
corresponding results for random walks in a simpler way.

THEOREM 1.1. Using the above notation we have, for any fixed η1, η2 > 0
with � = �(Ic) > 0,

Mn = S(+)
n + m̃0, In = S(−)

n + ĩ0, n ≥ 0,(1.8)

where both of the processes S(+) = (S
(+)
n , n ≥ 0) and S(−) = (S

(−)
n , n ≥ 0) are

random walks with the same distribution as Ŝ. Moreover, S(+) and m̃0 are
independent, as are S(−) and ĩ0.
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Comparing the representations (1.5) and (1.8), note that, for each fixed n,
the pairs (Ŝn, m̃n) and (S

(+)
n , m̃0) have the same joint law; however, the latter

representation has the great advantage that the term m̃0 does not depend on n.

A straightforward consequence of Theorem 1.1 is

PROPOSITION 1.2. Suppose that b ∈ RV(α), and α > 0. Then, for any fixed
η1, η2 > 0 with � = �(Ic) > 0, and any c ∈ [−∞,∞],

Ŝn

b(n)

a.s.→ c as n → ∞ ⇐⇒ Xt

b(t)

a.s.→ c

�α
as t → ∞.(1.9)

[Here RV(α) denotes the class of positive functions which are regularly varying
with index α at ∞.]

From this, and analogous statements for lim sup and lim inf, known results about
Lévy processes such as strong laws and laws of the iterated logarithm can easily be
deduced. But there is a vast literature on the asymptotic behavior of random walks,
and by no means all the results it contains have been extended to the setting of Lévy
processes. Using Theorem 1.1 we can show, for example, that the classical results
of [6] about strong limit points of random walks, and results about the lim sup
behavior of Sn/nα and |Sn|/nα and hence about first passage times outside power-
law type boundaries in [11], all carry over easily. A further case in point is that
of existence of moments for first and last passage times in the transient case; see
[5] and [8], which completed results of many earlier authors. It turns out that the
combination of the stochastic bound (1.3) and Theorem 1.1 is ideally suited to
analyzing the corresponding Lévy situation; see [3].

However, here we will concentrate on the extensive results which have emerged
in a series of papers by Kesten and Maller which explore various aspects of the
asymptotic behavior of random walks which converge to +∞ in probability. The
following theorem gives Lévy process versions of just a sample of their results;
specifically Theorem 2.1 in [7], Theorem 3 in [9] and Proposition 1 in [10].

We will use the following notation: our Lévy process will be written as

Xt = γ t + σBt + Y
(1)
t + Y

(2)
t ,(1.10)

where B is a standard BM, Y (1) is a pure jump martingale formed from the
jumps whose absolute values are less than or equal to 1, Y (2) is a compound
Poisson process formed from the jumps whose absolute values exceed 1, and B ,
Y (1) and Y (2) are independent. We will assume throughout that �(R) > 0.

For x > 0, we introduce the tail functions

N(x) = �{(x,∞)}, M(x) = �{(−∞,−x)},(1.11)

and the tail sum and difference

T (x) = N(x) + M(x), D(x) = N(x) − M(x), x > 0.(1.12)
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The rôles of truncated first and second moments are played by

A(x) = γ + D(1) +
∫ x

1
D(y)dy,

U(x) = σ 2 + 2
∫ x

0
yT (y) dy, x > 0.

(1.13)

Both A and U are continuous functions with A(x)/x → 0 and U(x)/x2 → 0 as
x → ∞. Finally, we introduce the two-sided exit time by

Tr = inf{t : |Xt | > r}.(1.14)

THEOREM 1.3. Assume M(x) > 0 for all x > 0. Then the following are
equivalent:

P
(
XTr > 0

) → 1 as r → ∞;(1.15)

P (Xt > 0) → 1 as t → ∞;(1.16)

Xt
P→ +∞ as t → ∞;(1.17)

Xt

b(t)

P→ +∞ as t → ∞ for some b ∈ RV(1);(1.18)

A(x)√
U(x)M(x)

→ +∞ as x → ∞.(1.19)

REMARK 1.1. The assumption that M(x) > 0 for all x > 0 is not essential;
in the contrary case, the theorem still holds, except that (1.19) should be replaced
by the condition EX1 > 0. (Note that since EX−

1 < ∞ in this case, EX1 is well
defined.)

REMARK 1.2. On the basis of Theorem 1 and Remark (viii) of [9], it is natural
to suppose that the following subsequential version of Theorem 1.3 is valid:

THEOREM 1.4. Assume M(x) > 0 for all x > 0. Then the following are
equivalent: (1.15) holds for some (deterministic) sequence rk → ∞; (1.16) holds
for some (deterministic) sequence tk → ∞; (1.17) holds for some (deterministic)
sequence tk → ∞; (1.19) holds for some (deterministic) sequence xk → ∞; and,
for some (deterministic) sequence tk → ∞,

Xtk√
tk

P→ +∞ as t → ∞.

This is in fact correct, and can be proved by arguments that are similar to, but
more complicated than, those we use to prove Theorem 1.3, but we omit the details.
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REMARK 1.3. It is not difficult to see that the results established in [10] about
random walks which leave regions of the form {(x, n) : |x| ≤ rnκ} at the upper
boundary with probability approaching 1 as r → ∞ can also be shifted to the
Lévy process setting by analogous arguments.

REMARK 1.4. In the applications discussed here, we work with a fixed choice
of the cut-off points η1 and η2. However, provided �(R) = ∞, we could get a
sequence of bounds by taking η

(n)
i ↓ 0 as n → ∞, i = 1,2. It is not difficult to

see that such a sequence would converge uniformly to X a.s. on compact time
intervals. This fact might have other applications, for example in the important
area of simulation.

2. Proofs.

PROOF OF THEOREM 1.1. The Wiener–Hopf factorization for X̃ (see [1],
page 165) asserts that the random variables m̃0 = sup0≤t<e1

X̃t and X̃e1 − m̃0

are independent, and that the latter has the same distribution as ĩ0 = inf0≤t<e1 X̃t .

[Recall that X̃ and e1 are independent and e1 has an Exp(�) distribution.] Since

M1 = sup
e1≤t<e1+e2

Xt = X̃(e1) + J1 + sup
0≤t<e2

{X̃(e1 + t) − X̃(e1)}

= m̃0 + {X̃(e1) − m̃0} + J1 + m̃1

:= m̃0 + Y
(+)
1 ,

where all four random variables in the second line are independent, we see that
Y

(+)
1 is independent of m̃0 and has the same distribution as J1 + X̃(e1), and

hence as X(e1). A similar calculation applied to Mn gives the required conclusions
for S(+), and since S(−) is S(+) evaluated for −X, the proof is completed. �

PROOF OF PROPOSITION 1.2. With Nt = max{n : τn ≤ t}, we have, from
(1.3) and (1.8),

ĩ0

b(t)
+ S

(−)
Nt

b(Nt)
· b(Nt)

b(t)
≤ Xt

b(t)
≤ S

(+)
Nt

b(Nt)
· b(Nt)

b(t)
+ m̃0

b(t)
.(2.1)

Clearly the extreme terms converge a.s. to zero as t → ∞, and by the strong law

b(Nt)/b(t)
a.s.→ 1/�α. So if Ŝn

b(n)

a.s.→ c as n → ∞, then S
(+)
n

b(n)

a.s.→ c and S
(−)
n

b(n)

a.s.→ c, and

hence Xt

b(t)

a.s.→ c
�α as t → ∞. On the other hand, if this last is true, we can use (2.1)

with t = τn to reverse the argument. �

PROOF OF THEOREM 1.3. Since M(1) > 0 by assumption, throughout this
proof we will take η1 = η2 = 1; note that this means that, in the notation of (1.10),

X̃t = γ t + Bt + Y
(1)
t and Y

(2)
t = ŜNt , where Ŝn =

n∑
1

Ŷm.(2.2)
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Consequently, we have EX̃1 = γ. We will first use Theorem 1.1 to show that (1.15)
is equivalent to (1.19). Recall that Theorem 3 of [9] states, for any random walk S,

that P (Sn > 0) → 1 if and only if P (S exits (−r, r) at the top) → 1. Next note
that it is easy to see that this statement still holds if we replace the interval (−r, r)

by (−r + b, r + c) for any fixed b and c. It also follows easily from (1.3) and (1.8)
that, for any fixed a > 0,

lim supP
(
XTr > 0

)
≤ lim supP {(Mn,n ≥ 0) exits (−r − a, r + a) at the top}

≤ lim sup
∫

P
{
S(+) exits (−r − a + x, r + a + x) at the top

}
P (m̃0 ∈ dx).

From this and a corresponding inequality for S(−), we conclude that

(1.15) ⇐⇒ P (Ŝn > 0) → 1.(2.3)

Now note that if we write Ŷm = Jm + γ/� + Zm, so that Zm = X̃(em) − γ/�,

we have

EZ1 = E(e1)EX̃1 − γ/� = 0.

Since VarZ1 < ∞, it is clear that if b ∈ RV (1), then
∑n

1 Zm/bn
P→ 0; thus

Ŝn/bn
P→ ∞ if and only if S∗

n/bn
P→ ∞, where S∗

n = ∑n
1 J ∗

m and J ∗
m = Jm + γ/�.

Since the condition P (Sn > 0) → 1 is equivalent, for any random walk, to the

existence of such a b with Sn/bn
P→ ∞ (see Proposition 1 of [10]), another appeal

to Theorem 3 of [9] shows we have established that

(1.15) ⇐⇒ P (S∗
n > 0) → 1

(2.4)
⇐⇒ A∗(x)√

U∗(x)F ∗(−x)
→ +∞ as x → ∞,

where F ∗ is the distribution function of J ∗
1 and

A∗(x) =
∫ x

0
{1 − F ∗(y) − F ∗(−y)}dy,

U∗(x) = 2
∫ x

0
y{1 − F ∗(y) − F ∗(−y)}dy.

However, since F ∗(dx) = �−11{|x|>1}�(dx), it is clear that when x > 1,

M(x) = �F ∗(−x), and N(x) = �{1 − F ∗(x)}. From this one easily checks that

A∗(x + γ/�) = 1

�

∫ x

1
D(y)dy +

∫ 1

−γ /�
P (J1 > y)dy

−
∫ 1

γ /�
P (J1 < −y) dy −

∫ x+2γ /�

x
P (J1 < −y) dy

= A(x) + C

�
+ O(M(x)) as x → ∞,
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where the constant C is given by

C = �

(∫ 1

−γ /�
P (J1 > y)dy −

∫ 1

γ /�
P (J1 < −y) dy

)
− γ − D(1).

A straightforward calculation, treating the cases |γ/�| < 1, γ ≥ � and γ ≤ −�

separately, shows that in fact C = 0. [For example, in the first case we have
�P(J1 > y) = N(1) and �P(J1 < −y) = M(1) for |y| < 1 so that

C = N(1)(1 + γ/�) − M(1)(1 − γ/�) − γ − N(1) + M(1) = 0.]
Since M(x)√

U(x)M(x)
=

√
M(x)
U(x)

→ 0 in all cases, and it is also clear that �U∗(x) ∼

U(x) if U(∞) = ∞, and otherwise both U(∞) and U∗(∞) are finite, the
equivalence of (1.15) and (1.19) follows.

For the other implications, note first that it is known that for any Lévy process X

and any fixed K, P (0 ≤ Xt ≤ K) → 0; see, for example, Lemma 2.5 of [4]; thus
(1.16) and (1.17) are equivalent. Next, we write

Xt = S∗
Nt

+ X̃t − γ t,(2.5)

where of course S∗, X̃ and (Nt, t ≥ 0) are independent. Since EX̃1 = γ and
Var X̃1 < ∞, we know that P (X̃t − γ t > 0) → 1/2, and it then follows that (1.17)

holds if and only if S∗
Nt

P→ +∞, and this is easily seen to hold if and only if

S∗
n

P→ +∞. (A proof of this statement is given in Lemma 5.2 of [2].) Similarly,

(1.18) can be seen to be equivalent to S∗
n/bn

P→ +∞, and of course these are both
equivalent to P (S∗

n > 0) → 1, and hence to (1.15). �
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