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COMPUTING THE POLAR DECOMPOSITION AND THE MATRIX

SIGN DECOMPOSITION IN MATRIX GROUPS∗

NICHOLAS J. HIGHAM† , D. STEVEN MACKEY‡ , NILOUFER MACKEY§ , AND

FRANÇOISE TISSEUR¶

Abstract. For any matrix automorphism group G associated with a bilinear or sesquilinear
form, Mackey, Mackey, and Tisseur have recently shown that the matrix sign decomposition factors
of A ∈ G also lie in G; moreover, the polar factors of A lie in G if the matrix of the underlying
form is unitary. Groups satisfying the latter condition include the complex orthogonal, real and
complex symplectic, and pseudo-orthogonal groups. This work is concerned with exploiting the
structure of G when computing the polar and matrix sign decompositions of matrices in G. We give
sufficient conditions for a matrix iteration to preserve the group structure and show that a family
of globally convergent rational Padé-based iterations of Kenney and Laub satisfy these conditions.
The well-known scaled Newton iteration for computing the unitary polar factor does not preserve
group structure, but we show that the approach of the iterates to the group is precisely tethered to
the approach to unitarity, and that this forces a different and exploitable structure in the iterates.
A similar relation holds for the Newton iteration for the matrix sign function. We also prove that
the number of iterations needed for convergence of the structure-preserving methods can be precisely
predicted by running an associated scalar iteration. Numerical experiments are given to compare the
cubically and quintically converging iterations with Newton’s method and to test stopping criteria.
The overall conclusion is that the structure-preserving iterations and the scaled Newton iteration are
all of practical interest, and which iteration is to be preferred is problem-dependent.

Key words. automorphism group, bilinear form, sesquilinear form, adjoint, complex orthogonal
matrix, symplectic matrix, perplectic matrix, pseudo-orthogonal matrix, polar decomposition, matrix
sign decomposition, structure preservation, matrix iteration, Newton iteration, convergence tests
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1. Introduction. The polar decomposition of A ∈ C
n×n factors A as the prod-

uct A = UH, where U is unitary and H is Hermitian positive semidefinite. The
Hermitian factor H is always unique and can be expressed as (A∗A)1/2, and the uni-
tary factor is unique if A is nonsingular [13]. Here, the exponent 1/2 denotes the
principal square root: the one whose eigenvalues lie in the right half-plane. The po-
lar decomposition is an important theoretical and computational tool, and much is
known about its approximation properties, its sensitivity to perturbations, and its
computation.

Closely related to the polar decomposition is the matrix sign decomposition, which
is defined for A ∈ C

n×n having no pure imaginary eigenvalues. The most concise
definition of the decomposition is

A = SN ≡ A(A2)−1/2 · (A2)1/2.
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Here, S = sign(A) is the matrix sign function, introduced by Roberts [23]. Note that
for scalar z ∈ C lying off the imaginary axis, sign(z) = 1 or −1 according as z is in
the right half-plane or left half-plane, respectively. An alternative definition is via the
Jordan canonical form

A = ZJZ−1 = Zdiag(J1, J2)Z
−1,

where the eigenvalues of J1 are assumed to lie in the open left half plane and those
of J2 in the open right half plane. With this notation,

A = SN ≡ Zdiag(−I, I)Z−1 · Zdiag(−J1, J2)Z
−1,

from which it is clear that S is involutory and the eigenvalues of N lie in the right
half plane.

The polar and matrix sign decompositions are intimately connected [9]. For
example, Roberts’ integral formula [23],

sign(A) =
2

π
A

∫
∞

0

(t2I + A2)−1dt,

has an analogue in

U =
2

π
A

∫
∞

0

(t2I + A∗A)−1dt.

This example illustrates the rule of thumb that any property or iteration involving
the matrix sign function can be converted into one for the polar decomposition by
replacing A2 by A∗A, and vice versa.

Practical interest in the polar decomposition stems mainly from the fact that the
unitary polar factor of A is the nearest unitary matrix to A in any unitarily invariant
norm [6]. The polar decomposition is therefore of interest whenever it is required
to orthogonalize a matrix [8]. The matrix sign function was originally developed as
a tool to solve algebraic Riccati equations [23] and it is also used more generally
in determining invariant subspaces corresponding to eigenvalues lying in particular
regions of the complex plane [1].

Almost all existing work on the polar decomposition and the matrix sign decom-
position assumes no special properties of A. However, in an investigation of factor-
izations in structured classes of matrices, Mackey, Mackey and Tisseur [22] consider,
among other things, the structure of the polar and sign factors. The structures they
work with include the automorphism group

G = {A ∈ K
n×n : 〈Ax,Ay〉

M
= 〈x, y〉

M
, ∀x, y ∈ K

n }(1.1)

associated with a bilinear or sesquilinear form defined by any nonsingular matrix M :

(x, y) 7→ 〈x, y〉
M

=

{
xT My, for real or complex bilinear forms,
x∗My, for sesquilinear forms.

Here K = R or C and the superscript ∗ denotes conjugate transpose. It is easy to see
that G is indeed a group under matrix multiplication. Recall that the adjoint A⋆ of
A ∈ K

n×n with respect to 〈·, ·〉
M

is defined by

〈Ax, y〉
M

= 〈x,A⋆y〉
M

∀x, y ∈ K
n×n.
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It can be shown that the adjoint is given explicitly by

A⋆ =

{
M−1AT M, for bilinear forms,
M−1A∗M, for sesquilinear forms.

The adjoint provides a useful alternative characterization of the automorphism group:

G = {A ∈ K
n×n : A⋆ = A−1 }.(1.2)

For further details of this background algebra see, for example, [14], [19], or [24].
Automorphism groups for which the matrix M defining the underlying form is

unitary (M−1 = M∗) play an important role in this paper. We use U to denote this
set of groups. Table 1.1 lists some examples of automorphism groups in U; here, the
matrix M is one of I,

R =

[
1...

1

]
, J =

[
0 In

−In 0

]
, Σp,q =

[
Ip 0
0 −Iq

]
∈ R

n×n.

We need the following results, all from [22].
Theorem 1.1. Let G ∈ U. Then any matrix in G has singular values that occur

in reciprocal pairs σ and 1/σ, with the same multiplicity.

Theorem 1.2. Let G ∈ U and A be any matrix in G. Then in the polar decom-

position A = UH the factors U and H also belong to G.

The following result places no restrictions on G.
Theorem 1.3. Let G be any automorphism group and A be any matrix in G

having a matrix sign decomposition A = SN . Then the factors S and N also belong

to G.

We give proofs of Theorems 1.2 and 1.3 at the end of Section 2 that provide
alternatives to the proofs in [22].

For the real orthogonal and unitary groups, Theorems 1.2 and 1.3 are trivial. For
the other groups the results are nontrivial, and indeed in three recent papers devoted
to some of these groups the structured nature of the polar and sign factors of matrices
in the groups is not noted [3], [4], [11].

This work is concerned with the exploitation of structure when computing the
polar or sign factors of matrices from an automorphism group. In Section 2 we identify
a general family of rational iterations that are structure-preserving, and we show that
certain globally convergent Padé-based iterations of Kenney and Laub belong to this
family. In Sections 3–6 we concentrate on the polar decomposition, for A ∈ G and
G ∈ U. In Section 3 we identify the most efficient implementations of the cubically
and quintically convergent iterations and compare them for efficiency with the scaled
Newton iteration. In Section 4 we show that although the Newton iteration does not
preserve the group structure, under a suitable condition on the scaling parameter it
has the remarkable property that its iterates Xk satisfy X⋆

k = X∗

k . This relation
implies that the approach of the iterates to the group is precisely tethered to the
approach to unitarity, and also that for certain automorphism groups the iterates
have a different structure that can be exploited.

Numerical stability of the iterations is discussed in Section 5. In Section 6 we show
that the number of iterations needed by one of our structure-preserving methods can
be predicted by running the corresponding scalar iteration starting with the largest
singular value of A. Corresponding results for the matrix sign decomposition are
summarized in Section 7. Numerical experiments are presented in Section 8 that
compare the Newton and quintic iterations and test different stopping criteria. Finally,
conclusions are given in Section 9.
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Table 1.1
A sampling of automorphism groups G ∈ U.

Space M A⋆ Automorphism group, G

Groups corresponding to a bilinear form

Rn I A⋆ = AT Real orthogonals

Cn I A⋆ = AT Complex orthogonals

Rn Σp,q A⋆ = Σp,qAT Σp,q Pseudo-orthogonals

Rn R A⋆ = RAT R Real perplectics

R2n J A⋆ = −JAT J Real symplectics

C2n J A⋆ = −JAT J Complex symplectics

Groups corresponding to a sesquilinear form

Cn I A⋆ = A∗ Unitaries

Cn Σp,q A⋆ = Σp,qA∗Σp,q Pseudo-unitaries

C2n J A⋆ = −JA∗J Conjugate symplectics

2. Structure-preserving iterations. A great deal is known about matrix it-
erations of the form

Xk+1 = f(Xk), X0 = A,

for computing the unitary polar factor or the matrix sign function; see, for example,
[8], [9], [15], [16]. Motivated by Theorems 1.2 and 1.3 we ask the question “If A
belongs to an automorphism group G, when do all the iterates Xk also belong to G?”
When this property holds, we say the iteration is structure-preserving for G. Sufficient
conditions for such an iteration are given in the next theorem. For a polynomial p
of degree m we introduce the notation revp(x) = xmp(1/x); thus revp is p with
its coefficients reversed. (Note that rev(revp) is not necessarily p, as the example
p(x) = x2 + x shows.)

Theorem 2.1. Let p be any polynomial with real coefficients and let f be a matrix

function having the form

f(X) = Y p(Z)[revp(Z)]−1.(2.1)

Assume that the appropriate inverses exist, so that f is well-defined.

(a) If Y and Z are integer powers of X ∈ G, then f(X) ∈ G for any automor-

phism group G.

(b) If Y and Z are finite products of X, X−1 and X∗, in any combination, where

X ∈ G, then f(X) ∈ G, for any automorphism group G ∈ U.

Proof. We note first the properties that (ST )⋆ = T⋆S⋆ for all S and T and
(S−1)⋆ = (S⋆)−1 for all nonsingular S, the latter equality implying that we can write
S−⋆ without ambiguity. Observe also that since p has real coefficients, p(T )⋆ = p(T⋆)
for all T .

For part (a), Y and Z are readily seen to belong to G, since G is a group under
multiplication. For part (b), G ∈ U implies M−1 = M∗, and so (T⋆)∗ = (T ∗)⋆ for all
T . Consequently X ∈ G implies X∗ ∈ G; hence Y and Z belong to G.

Marshalling these facts, and denoting by m the degree of p, we obtain

f(X)⋆f(X) = [revp(Z)]−⋆ · p(Z)⋆ · Y ⋆ · Y︸ ︷︷ ︸
I

· p(Z) · [revp(Z)]−1

=
(
[revp(Z)]⋆

)
−1 · p(Z⋆) · p(Z) · [revp(Z)]−1
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=
(
[revp(Z⋆)]

)
−1 · p(Z−1) · p(Z) · [revp(Z)]−1

=
(
Z−mp(Z)

)
−1 · p(Z) · p(Z−1) · [Zmp(Z−1)]−1

= I.

We mention that a converse of part (a) in Theorem 2.1 is proved in [12], from
which it follows that any rational function f that maps G into itself for all G can be
expressed in the form (2.1), with p a polynomial with real coefficients.

Theorem 2.1 says nothing about the convergence of the iteration Xk+1 = f(Xk),
so further restrictions on f are needed to obtain a useful iteration. By using only
elementary means, one can construct rational iteration functions of the form (2.1)
with any specified odd order of convergence. The first two functions in this sequence
are

xk+1 = f11(xk), f11(x) =
x(3 + x2)

1 + 3x2
,(2.2)

xk+1 = f22(xk), f22(x) =
x(5 + 10x2 + x4)

1 + 10x2 + 5x4
,(2.3)

which, for x0 ∈ C not on the imaginary axis, converge to sign(x0) at a cubic1 and
quintic rate, respectively. See [20] for details of this approach. It turns out that the
functions fii thus constructed belong to the family of rational iterations

xk+1 = fℓm(xk) = xk
Pℓm(1 − x2

k)

Qℓm(1 − x2
k)

(2.4)

studied by Kenney and Laub [15], where Pℓm(t)/Qℓm(t) is the [ℓ/m] Padé approximant
to (1−t)−1/2, with the polynomials Pℓm and Qℓm having degrees ℓ and m, respectively.
These iterations are designed to compute sign(x0), and the iterations with ℓ = m and
ℓ = m − 1 are shown in [15] to be globally convergent, that is, they converge to
sign(x0) for any x0 ∈ C not on the imaginary axis. For ℓ = m and ℓ = m − 1 it
is also noted in [15] that −xPℓm(1 − x2) and Qℓm(1 − x2) are, respectively, the odd
and even parts of (1 − x)ℓ+m+1. For ℓ = m − 1, the iteration is easily verified not to
be structure-preserving for G. But from the odd-even property just mentioned, the
iteration for ℓ = m can be seen to have the form (2.1) with Y = Z = X, and therefore
by part (a) of Theorem 2.1 the iteration is structure-preserving for all automorphism
groups G.

Theorem 2.2. Let A ∈ K
n×n and consider the iterations

Yk+1 = Yk Pmm(I − Y 2
k )Qmm(I − Y 2

k )−1, Y0 = A,(2.5)

and

Zk+1 = Zk Pmm(I − Z∗

kZk)Qmm(I − Z∗

kZk)−1, Z0 = A,(2.6)

with m ≥ 1. Assume that A has no eigenvalues on the imaginary axis for (2.5).
(a) If G is any automorphism group and A ∈ G, then Yk ∈ G for all k, and Yk

converges to sign(A).
(b) If G is any automorphism group in U and A ∈ G, then Zk ∈ G for all k, and

Zk converges to the unitary polar factor of A.

1The iteration (2.2) is Halley’s method for x2 − 1 = 0 [7].
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Moreover, both sequences have order of convergence 2m + 1.

Proof. The preservation of structure has already been shown. It remains to prove
convergence. The existence of the inverse in (2.5) and the global convergence of (2.5)
to sign(A) with order 2m + 1 are established in [15, Thm. 5.3]. That (2.6) converges
globally to the unitary polar factor at the same rate can be shown by using the singular
value decomposition of A to reduce (2.6) to n independent scalar iterations on the
singular values, whose convergence to 1 follows from that of (2.5).

A proof of Theorem 1.3 now follows immediately from part (a) of Theorem 2.2:
since G is a closed set, lim Yk = sign(A) belongs to G, and since G is a group under
multiplication, the factor N in the matrix sign decomposition of A must also belong
to G. In an entirely analogous way, a proof of Theorem 1.2 follows from part (b) of
Theorem 2.2.

In the next four sections we restrict our attention to the polar decomposition. In
Section 7 we explain to what extent our analysis for the polar decomposition can be
adapted to the matrix sign decomposition.

3. Iterations for the polar decomposition. We begin by examining the first
two iterations of the previous section and their computational cost.

The cubically convergent iteration (2.2) is, in matrix form for computing the polar
decomposition,

Xk+1 = Xk(3I + X∗

kXk)(I + 3X∗

kXk)−1, X0 = A.(3.1)

We will measure the cost of iterations by counting the number of (general) matrix
multiplications, mult, and the number of (general) matrix inversions, inv. When
evaluating a term of the form AB−1 it is less expensive to factor B and then solve a
multiple right-hand side linear system than to explicitly invert B, so we will assume
the former is done and record the cost as a corresponding multiple of inv. In our
iterations B is Hermitian positive definite and AB−1 is Hermitian; if we exploit this
structure the cost of computing AB−1 is (5/6)inv.

One iteration of (3.1) costs (3/2)mult+(5/6) inv per iteration. By rewriting the
iteration the cost can be reduced: for

Xk+1 =
1

3
Xk

[
I + 8

(
I + 3X∗

kXk

)
−1]

, X0 = A,(3.2)

the cost per iteration is (3/2)mult + (1/2)inv.

The quintically convergent iteration (2.3) becomes

Xk+1 = Xk

[
5I +10X∗

kXk +(X∗

kXk)2
][

I +10X∗

kXk +5(X∗

kXk)2
]
−1

, X0 = A,(3.3)

which costs 2 mult+(5/6) inv per iteration. This iteration can be rewritten in various
more efficient ways. We state the two of most interest in scalar form, for readability;
for matrices, x2 should be replaced by X∗

kXk and the divisions by matrix inversions.
First, we have the continued fraction form

xk+1 =
1

5
xk

[
1 +

8

x2 +
7

5 +
16

7x2 + 1

]
, x0 = a,(3.4)
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which costs (3/2)(mult + inv) per iteration. The alternative form

xk+1 = xk

[
1

5
+

8

5x2
k + 7 − 16

5x2
k + 3

]
, x0 = a,(3.5)

requires just (3/2)mult + inv per iteration, so is the least expensive of the three
variants.

For any m, the iterations (2.6) can also be expressed in partial fraction form [17,
(35)]. The cost of evaluation is (3/2)mult+(m/2) inv per iteration, which in the cases
m = 1 and m = 2 is the same as the cost of evaluating (3.2) and (3.5), respectively.

Also of interest is the well-known Newton iteration

Xk+1 =
1

2
(Xk + X−∗

k ), X0 = A.(3.6)

This iteration is not structure-preserving for automorphism groups G, since G is not
closed under addition, but, as we will see, the iteration is nevertheless of interest
when A ∈ G. In practice, the Newton iteration is usually implemented with scaling
to accelerate the initial speed of convergence. The scaled iteration is

Xk+1 =
1

2

[
γ(k)Xk +

1

γ(k)
X−∗

k

]
, X0 = A,(3.7)

where the scaling parameter γ(k) ∈ R is intended to make Xk+1 closer to U . Higham
[8] identified the scaling

γ
(k)
opt =

(
σmin(Xk)σmax(Xk)

)
−1/2

,

where σmin and σmax denote the smallest and largest singular values, respectively, as
optimal in the sense of minimizing a bound on ‖U − Xk+1‖2/‖U + Xk+1‖2, and this
scaling leads to convergence in s iterations, where s is the number of distinct singular
values of A [16, Lem. 2.2]. Among more economical choices analyzed in [16] is the
Frobenius norm scaling

γ
(k)
F =

(‖X−1
k ‖F

‖Xk‖F

)1/2

,(3.8)

which has the property that it minimizes ‖Xk+1‖F over all γ(k) [5]. Both these scalings
have the property that

X0 ∈ G ∈ U ⇒ γ(0) = 1,(3.9)

by virtue of the reciprocal pairing of the singular values when G ∈ U (see Theorem
1.1).

We do not investigate scaling for the structure-preserving iterations, because for
Xk ∈ G and f in (2.1), f(γ(k)Xk) 6∈ G in general, and so scaling destroys group
structure.

We first ask which of the three iterations (3.2), (3.5) and (3.6) is the most compu-
tationally efficient, independent of structure considerations. In answering this ques-
tion we need to take account of the fact that the iterations comprise two phases: the
initial phase in which the error ‖Xk − U‖2 is reduced to safely less than 1, and then
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Table 3.1
Cost estimates for (3.2), (3.5) and (3.6), assuming ‖X0 − U‖2 = 0.25.

Iterations Resulting error Cost

2 quintic iterations 0.2525 = 9 × 10−16 3 mult + 2 inv
3 cubic iterations 0.2527 = 6 × 10−17 (9/2)mult + (3/2)inv

5 Newton iterations 0.2532 = 5 × 10−20 5 inv

the phase in which asymptotic convergence sets in at a quadratic, cubic or quintic
rate. Working in IEEE double precision arithmetic, the furthest we iterate is until
the error reaches the unit roundoff u ≈ 10−16, so the higher order iterations are not
in their asymptotic phase for long. In the initial phase, our three iterations converge
essentially linearly, with rate constants 1/2, 1/3 and 1/5, respectively (this can be
seen by considering the scalar iterations with 0 < x0 ≪ 1 and x0 ≫ 1). Hence for
large ‖X0−U‖2 the quintic iteration requires the least work to reduce the error below
1, followed by the cubic and then the Newton iterations. Once the error is safely
below 1, the three iterations cost roughly the same amount to reduce the error to the
unit roundoff level; see Table 3.1. Our conclusion is that if ‖X0 − U‖2

<∼ 1 there is
little to choose between the iterations in cost, but for ‖X0 − U‖2 ≫ 1 the quintic
iteration has the advantage. In the scaled Newton iteration (3.7), with the Frobenius
norm scaling (3.8), the first phase of convergence is shortened considerably. Practical
experience, supported by theory [16], shows that about 9 or 10 iterations at most are
required for any A in IEEE double precision arithmetic. Therefore scaled Newton is
competitive in cost with the quintic iteration, albeit not structure-preserving.

4. Structure in the Newton iteration. We have seen that the cubic iteration
(3.2) and the quintic iteration (3.5) are structure-preserving for automorphism groups
G ∈ U, while the Newton iteration (3.6), and its scaled form (3.7), are not. We now
consider precisely how the Newton iteration affects structure, and to do so we first
develop a measure of departure from G-structure. Throughout the rest of this section
we assume that G ∈ U, that is, that M is unitary.

The characterization (1.2) says that A is in the automorphism group G if A⋆ =
A−1. To obtain a measure of departure from G-structure that is less dependent on
the conditioning of A, we rewrite this relation as A⋆A = I. Consider A + ∆A, where
A ∈ G and ‖∆A‖2 ≤ ǫ‖A‖2. Using the fact that M is unitary, we have ‖A⋆‖2 = ‖A‖2

for all A, and hence

‖(A + ∆A)⋆(A + ∆A) − I‖2 = ‖A⋆∆A + ∆A⋆A + ∆A⋆∆A‖2

≤ 2‖A‖2‖∆A‖2 + ‖∆A‖2
2

≤ (2ǫ + ǫ2)‖A‖2
2.

This inequality suggests that an appropriate relative measure of departure from G-
structure is

µG(A) =
‖A⋆A − I‖2

‖A‖2
2

.(4.1)

In the particular case G = O, the unitary group, we have

µO(A) =
‖A∗A − I‖2

‖A‖2
2

,(4.2)
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which is a standard measure of departure from unitarity. Further justification for this
measure is given by showing that if µ

G
(A) is small then A is close to a matrix in

G. For this, we use the generalized polar decomposition, which is closely related to
the polar decompositions in indefinite scalar product spaces studied by Bolshakov et
al. [2].

Theorem 4.1 (generalized polar decomposition [22]). Let G be an automorphism

group corresponding to a bilinear or sesquilinear form for which (A⋆)⋆ = A for all

A ∈ K
n×n. For any A ∈ K

n×n such that A⋆A has no eigenvalues on the nonpositive

real axis, A has a unique decomposition A = WS, where W ∈ G (that is, W⋆ = W−1),
S⋆ = S, and sign(S) = I.

We note that the condition in this theorem on the adjoint being involutory holds
precisely when MT = ±M for bilinear forms and M∗ = αM with |α| = 1 for sesquilin-
ear forms [22], and that these conditions hold for all the groups in Table 1.1.

Lemma 4.2. Let A ∈ K
n×n have a generalized polar decomposition A = WS with

respect to an automorphism group G ∈ U. If ‖W−1(A − W )‖2 < 1, or equivalently

‖S − I‖2 < 1, then

‖A⋆A − I‖2

‖A‖2(‖A‖2 + ‖W‖2)
≤ ‖A − W‖2

‖A‖2
≤ ‖A⋆A − I‖2

‖A‖2
2

‖A‖2‖W‖2.

The lower bound always holds.

Proof. Using W⋆ = W−1 and S⋆ = S we have

(A + W )⋆(A − W ) = A⋆A − A⋆W + W⋆A − W⋆W

= A⋆A − S⋆W⋆W + W⋆WS − I = A⋆A − I.

The lower bound follows immediately. For the upper bound, we need to bound ‖(A+
W )−⋆‖2. Note that W−1(A − W ) = W−1(WS − W ) = S − I and A + W = 2W (I +
(S − I)/2). Hence, using the fact that G ∈ U,

‖(A + W )−⋆‖2 = ‖(A + W )−1‖2 = ‖ 1
2

(
I + (S − I)/2

)
−1

W−1‖2

≤ 1

2
‖W−1‖2

1

1 − 1
2‖S − I‖2

≤ ‖W−1‖2,

which yields the result.

Lemma 4.2 shows that there is a matrix W ∈ G within relative distance µ
G
(A)

of A, modulo a factor ‖A‖2‖W‖2, as we wanted to show.
We now present a numerical experiment in which we compute the orthogonal

polar factor of a random symplectic matrix A ∈ R
12×12 with ‖A‖2 = 3.1 × 102 =

‖A−1‖2. All our experiments were performed in MATLAB, for which u ≈ 1.1×10−16.
Table 4.1 reports the behaviour of the Newton iteration, both without scaling and
with Frobenius norm scaling, the cubic iteration (3.2) and the quintic (3.5). We report
iterations up to the last one for which there was a significant decrease in ‖X∗

kXk−I‖2.
First, note that the convergence is entirely consistent with our description earlier, with
the quintic and scaled Newton iterations spending the least time in the first phase.
Next, we see from the first line of the table that the matrix A is indeed symplectic
to machine precision, but far from orthogonal. The Newton iterations destroy the
symplectic structure on the first iteration, but gradually restore it, as they must,

9



Table 4.1
Results for a symplectic matrix A ∈ R12×12 with κ2(A) = 9.6 × 104. Here, µ

G
and µ

O
are

defined in (4.1) and (4.2), and E = mink ‖U − Xk‖2.

k Newton Newton (scaled) Cubic, (3.2) Quintic, (3.5)
µO(Xk) µG(Xk) µO(Xk) µG(Xk) µO(Xk) µG(Xk) µO(Xk) µG(Xk)

0 1.0e+0 7.0e-18 1.0e+0 7.0e-18 1.0e+0 7.0e-18 1.0e+0 7.0e-18
1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 8.9e-17 1.0e+0 1.1e-15
2 1.0e+0 1.0e+0 8.6e-01 8.6e-01 1.0e+0 8.1e-16 9.9e-01 1.7e-14
3 1.0e+0 1.0e+0 2.0e-01 2.0e-01 9.9e-01 6.3e-15 8.5e-01 3.0e-13
4 1.0e+0 1.0e+0 3.2e-03 3.2e-03 9.4e-01 5.0e-14 7.0e-02 1.7e-12
5 9.9e-01 9.9e-01 9.0e-07 9.0e-07 5.7e-01 2.8e-13 7.6e-09 1.8e-12
6 9.6e-01 9.6e-01 6.0e-14 1.3e-13 3.6e-02 5.2e-13 4.8e-16 1.8e-12
7 8.5e-01 8.5e-01 4.3e-16 1.1e-13 3.2e-06 5.3e-13
8 5.4e-01 5.4e-01 3.8e-16 5.3e-13
9 1.4e-01 1.4e-01

10 5.5e-03 5.5e-03
11 7.7e-06 7.7e-06
12 1.5e-11 1.5e-11
13 4.4e-16 1.1e-13

E 4.4e-13 4.4e-13 7.3e-13 1.9e-12

since the limit U is symplectic. However, we see that for these two iterations the
relation µ

O
(Xk) = µ

G
(Xk), that is,

‖X∗

kXk − I‖2 = ‖X⋆
k Xk − I‖2,

holds from iteration 1 until close to convergence, at which point rounding errors vitiate
the relation—thus the approach to symplecticity is precisely tethered to the approach
to orthogonality in this example. In fact, this is always true, as is an even stronger
condition: the Newton iterates satisfy X⋆

k = X∗

k for k ≥ 1, for both the unscaled
and Frobenius norm scaled iterations! Hence although the Newton iteration destroys
the group structure, from this structure it creates and preserves a different kind of
structure.

Theorem 4.3. Let G ∈ U, A ∈ G, and Xk be defined by the Newton iteration

(3.6) or by a scaled Newton iteration (3.7) for which (3.9) holds. Then, for k ≥ 1,
X⋆

k = X∗

k .

Proof. We will use two properties that we recall from the proof of Theorem 2.1 and
that hold for all B ∈ K

n×n: (B−1)⋆ = (B⋆)−1, and G ∈ U implies (B∗)⋆ = (B⋆)∗.
For the scaled iteration, (3.9) implies γ(0) = 1, and hence for both the scaled and
unscaled iterations

X⋆
1 =

1

2
(A + A−∗)⋆ =

1

2

(
A⋆ + (A−∗)⋆

)

=
1

2

(
A−1 + (A−⋆)

∗

) =
1

2
(A−1 + A∗) = X∗

1 .

Now assume that X⋆
k−1 = X∗

k−1. Then, writing γ = γ(k−1),

X⋆
k =

1

2

(
γXk−1 + γ−1X−∗

k−1

)⋆

=
1

2

(
(γXk−1)

⋆ + (γ−1X−∗

k−1)
⋆)

10



=
1

2

(
γX∗

k−1 + γ−1X−1
k−1

)
= X∗

k .

The result follows by induction.

Corollary 4.4. Under the conditions of Theorem 4.3, for k ≥ 1,
(a) MXk = XkM and MX∗

k = X∗

kM for real bilinear and complex sesquilinear

forms,

(b) MXk = XkM and MX∗

k = XT
k M for complex bilinear forms.

Proof. Theorem 4.3 gives X⋆
k = X∗

k for k ≥ 1.
(a) We therefore have M−1X∗

kM = X∗

k , or X∗

kM = MX∗

k . Taking the conjugate
transpose and using M∗ = M−1 gives MXk = XkM .

(b) Similarly, M−1XT
k M = X∗

k , or XT
k M = MX∗

k . Taking the conjugate trans-
pose and using M∗ = M−1 gives MXk = XkM .

While Theorem 4.3 establishes the tethering between our measures of departure
from G-structure and unitarity, Corollary 4.4 has some further implications. In the
case where A is pseudo-orthogonal, M = Σp,q, and to commute with Σp,q is to be
block-diagonal! So all iterates Xk, k ≥ 1, and the unitary polar factor itself, are
block diagonal. For symplectic A, all the Newton iterates have the block structure[

E
−F

F
E

]
, and for perplectic A all the Newton iterates are centrosymmetric, that is,

ai,j = an−i+1,n−j+1 for 1 ≤ i, j ≤ n. Computational savings can readily be made in
all these cases. For example, in the symplectic case we need compute only the first n
rows of the iterates, since the last n rows can be obtained from them.

5. Numerical stability. All the iterations under consideration involve matrix
inversion, either explicitly or via the solution of linear systems with multiple right-
hand sides, and when the corresponding matrices are ill conditioned numerical insta-
bility is a concern. Many years of experience have shown that the Newton iteration
(3.7) is less prone to instability than might be expected. Indeed, it performs better
than the best available bounds suggest; for a recent rounding error analysis of the
iteration see [18]. Table 4.1 provides some insight, and is representative of the typical
behaviour of the four iterations it illustrates: the computed iterates converge to a
matrix that is orthogonal to working precision, and the error ‖U − Xk‖2 is of order
at most κ2(A)u, as is the measure µ

G
(Xk) in (4.1) of departure from G-structure.

Of the other iterations we have found empirically that (3.1) and (3.4) are numer-
ically stable, but (3.3) is not; the latter iteration produces an error ‖U − Xk‖2 and
loss of structure µ

G
(Xk) observed to be of order κ2(A)2u and fails to converge when

κ2(A) >∼ u−1/2.
We have found the partial fraction form of the quintic, mentioned in Section 3,

to have the same numerical stability as (3.5).

6. Convergence tests. An important question is how to terminate these matrix
iterations. Since the Padé-based iterations compute X∗

kXk, a convergence test of the
form ‖X∗

kXk − I‖ ≤ tol can be used at no extra cost. For small tol, this test directly
controls the error, since from Lemma 4.2 with G = O, using in the upper bound a
refinement specific to this case from [10, Prob. 19.14],

‖X∗

kXk − I‖2

σmax(Xk) + 1
≤ ‖U − Xk‖2 ≤ ‖X∗

kXk − I‖2

σmin(Xk) + 1
.

The Padé-based iterations also have special properties that can be exploited. For
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the iteration function fℓm in (2.4), it can be shown that fmm has the properties

fmm(σ−1) = fmm(σ)−1,(6.1a)

1 < σ ⇒ 1 < fmm(σ) < σ,(6.1b)

1 ≤ µ < σ ⇒ fmm(µ) < fmm(σ),(6.1c)

fmm(1) = 1.(6.1d)

Let A ∈ G and G ∈ U. Then, by Theorem 1.1, A has singular values that we may
index

σ−1
1 ≤ · · · ≤ σ−1

q < σq+1 = · · · = σn = 1 < σq ≤ · · · ≤ σ1.

Using (6.1), we find that Zk from (2.6) has singular values

f (k)
mm(σ1)

−1 ≤ · · · ≤ f (k)
mm(σq)

−1 < σq+1 = · · ·
= σn = 1 < f (k)

mm(σq) ≤ · · · ≤ f (k)
mm(σ1).(6.2)

Applying this argument repeatedly, we deduce that Zk from (2.6) satisfies

‖U − Zk‖2 = f (k)
mm(σ1) − 1.(6.3)

The practical significance of this equality is that we can precisely predict the conver-
gence of the matrix iteration simply by performing the iteration on σ1, which is a
scalar computation. If σ1 is not known, or is too expensive to compute or estimate,
then we can instead use

‖U − Zk‖2 ≤ f (k)
mm(‖A‖F ) − 1.

The scalar computations can be done in advance of the matrix iteration, if required.
Another useful property of the iterates Zk when A ∈ G and G ∈ U can be derived

from (6.1) and (6.2): the sequence ‖Zk‖F decreases monotonically to
√

n. This means

that the iteration can be terminated when the computed iterates Ẑk satisfy

‖Ẑk+1‖F

‖Ẑk‖F

≥ 1 − δ,(6.4)

for some tolerance δ depending on u, that is, when rounding errors start to dominate.
Similar techniques apply to the Newton iteration. Convergence prediction can be

done for the unscaled Newton iteration (3.6) for any A, as observed by Kenney and
Laub [16], though with a simplification when A ∈ G and G ∈ U. The iteration h(x) =
(x+1/x)/2 shares the properties (6.1b)–(6.1d) of fmm and satisfies h(σ−1) = h(σ) in
place of (6.1a). Therefore2

‖U − Xk‖2 = h(k)(σ1) − 1;(6.5)

again, we can use ‖A‖F in place of σ1 and obtain an upper bound. Convergence
prediction based on a scalar iteration is not possible for the Newton iteration with
Frobenius norm scaling.

For any A, the Newton sequence norms ‖Xk‖F decrease monotonically for k ≥ 1,
both for the unscaled iteration and for the iteration with Frobenius norm scaling.
This follows from the properties of h in the unscaled case and for Frobenius norm
scaling can readily be proved from its definition, as shown by Dubrulle [5]. Therefore
the stopping criterion (6.4) is applicable, and indeed it is advocated by Dubrulle [5]
for the Frobenius norm scaling.

2For general A, (6.5) holds for k ≥ 1 with h(k) replaced by h(k−1) and with σ1 now the largest
singular value of X1.
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7. Matrix sign decomposition. Much, but not all, of the analysis of the pre-
vious four sections applies with minor modification to the matrix sign decomposition.

The rewritten forms of the cubic and quintic iterations remain valid, with X∗

kXk

replaced by X2
k . Their costs are slightly higher than in the polar decomposition case,

since X2
k is not Hermitian. The scaled Newton iteration for the matrix sign function

is

Xk+1 =
1

2

[
γ(k)Xk +

1

γ(k)
X−1

k

]
, X0 = A.(7.1)

Among many proposed scalings is the determinantal scaling, γk = |det(Xk)−1/n|.
This scaling satisfies (3.9), which continues to be an important property.

Theorem 4.3, which shows that the (suitably scaled) Newton iterates satisfy X⋆
k =

X∗

k , has the following analogue.
Theorem 7.1. Let A ∈ G, where G is any automorphism group. Let Xk be

defined by the Newton iteration (7.1), either unscaled (γ(k) = 1) or with a scaling for

which γ(0) = 1. Then X⋆
k = Xk for k ≥ 1.

Corollary 7.2. Under the conditions of Theorem 7.1, for k ≥ 1,
(a) MXk = XT

k M for bilinear forms,

(b) MXk = X∗

kM for sesquilinear forms.

Theorem 7.1 implies that the Newton iterates for the matrix sign function satisfy
the condition X2

k − I = X⋆
k Xk − I, and so the approach to the group structure is

tethered to the approach to involutory structure.
The convergence tests discussed in Section 6 are not applicable to the sign iter-

ation. In particular, since A is generally non-normal the errors are not determined
solely by the eigenvalues of the iterates.

8. Numerical experiments. Returning to the polar decomposition, we now
compare experimentally the quintic iteration (3.5) with the Newton iteration (3.7)
with Frobenius norm scaling. We generated random complex orthogonal A1, A16 ∈
R

16×16, where Ak denotes a product of k random complex orthogonal G-reflectors
[21]. Results are shown in Tables 8.1 and 8.2. In these tables the term errk =
‖U −Xk‖2 is computed from (6.3) using a scalar recurrence. Also shown is the value
1 − ‖Xk+1‖F /‖Xk‖F arising in the convergence test (6.4).

The results, and others from similar experiments, reveal a number of interesting
features.

1. The monotonicity test (6.4), and, for the quintic iteration, convergence pre-
diction based on (6.3), both provide reliable termination criteria. For the
former, δ ≈ √

u seems an appropriate choice, and for the latter, errk ≈ u.
2. The Newton iterations (scaled and unscaled) can produce a computed unitary

polar factor with smaller errors and better structure preservation than the
quintic iteration (by a factor of up to 104 in Table 8.2), though all these
quantities are empirically bounded by about κ2(A)u.

3. The quintic iteration’s faster initial linear convergence and faster asymptotic
convergence enable it to require fewer iterations than scaled Newton when
‖A − U‖2

<∼ 1, but nevertheless the scaled Newton iteration usually requires
the fewest flops.

9. Conclusions. When a problem has structure it is important to exploit it to
advantage. This work was motivated by the discovery of Mackey, Mackey and Tisseur
[22] that the polar and matrix sign factors of matrices from automorphism groups G
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Table 8.1
Results for a complex orthogonal matrix A1 ∈ R16×16 with κ2(A) = 6.6. Here, µ

G
and µ

O

are defined in (4.1) and (4.2), errk = ‖U − Xk‖2 is computed from a scalar recurrence, and E =
mink ‖U − Xk‖2.

k Newton (scaled) Quintic, (3.5)

µO(Xk) µG(Xk) 1 −
‖Xk+1‖F

‖Xk‖F
µO(Xk) µG(Xk) errk 1 −

‖Xk+1‖F

‖Xk‖F

0 9.8e-01 6.7e-17 9.8e-01 6.7e-17 7.1e+0
1 9.4e-01 9.4e-01 2.3e-01 7.0e-01 3.3e-15 8.2e-01 5.3e-01
2 6.5e-01 6.5e-01 3.4e-01 8.3e-03 7.5e-15 4.2e-03 4.7e-02
3 1.5e-01 1.5e-01 1.2e-01 1.5e-13 7.6e-15 7.7e-14 2.2e-06
4 4.8e-03 4.8e-03 1.2e-02 5.6e-16 7.5e-15 0.0e+0 0.0e+0
5 4.3e-06 4.3e-06 3.5e-04
6 3.4e-12 3.4e-12 3.1e-07
7 4.7e-16 1.1e-15 2.4e-13
8 5.5e-16 1.2e-15 0.0e+0

E 1.4e-15 5.6e-15

Table 8.2
Results for a complex orthogonal matrix A16 ∈ R16×16 with κ2(A) = 6.5 × 109. Here, µ

G
and

µ
O

are defined in (4.1) and (4.2), errk = ‖U − Xk‖2 is computed from a scalar recurrence, and

E = mink ‖U − Xk‖2.

k Newton (scaled) Quintic, (3.5)

µO(Xk) µG(Xk) 1 −
‖Xk+1‖F

‖Xk‖F
µO(Xk) µG(Xk) errk 1 −

‖Xk+1‖F

‖Xk‖F

0 1.0e+0 2.9e-16 1.0e+0 2.9e-16 8.1e+04
1 1.0e+0 1.0e+0 2.9e-1 1.0e+0 7.9e-15 1.6e+04 8.0e-1
2 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.9e-13 3.2e+03 8.0e-1
3 9.7e-01 9.7e-1 9.5e-1 1.0e+0 4.8e-12 6.4e+02 8.0e-1
4 5.3e-01 5.3e-1 6.2e-1 1.0e+0 1.2e-10 1.3e+02 8.0e-1
5 5.9e-02 5.9e-2 1.3e-1 1.0e+0 3.0e-09 2.5e+01 8.0e-1
6 4.8e-04 4.8e-4 8.7e-3 9.6e-01 7.3e-08 4.2e+0 7.5e-1
7 3.8e-08 3.8e-8 4.3e-5 4.4e-01 1.1e-06 3.4e-01 3.7e-1
8 6.1e-16 1.1e-8 2.9e-9 2.5e-04 1.9e-06 1.2e-04 1.1e-2
9 6.3e-16 1.1e-8 0.0e+0 1.5e-15 1.9e-06 2.2e-16 2.0e-9

10 7.3e-16 1.9e-06 0.0e+0 0.0e+0

E 3.6e-10 1.8e-6

also lie in the group: unconditionally for the sign decomposition, and provided the
matrix of the underlying form is unitary for the polar decomposition. We have iden-
tified a family of globally convergent rational iterations that preserve group structure
and shown how structure preservation leads to particularly convenient convergence
tests in the case of the polar decomposition.

The most surprising results in this work concern Newton’s method. Although
Newton’s method for the polar decomposition immediately destroys the underlying
group structure, when G ∈ U it forces equality between the adjoint and the conjugate
transpose of each iterate. This implies that the Newton iterates approach the group at
the same rate that they approach unitarity. It also yields “commutativity” relations
that for certain groups imply a different, exploitable structure. Similar properties hold
for Newton’s method for the matrix sign function, here with no restrictions on G.

We have identified various pros and cons in the “structured iteration versus scaled
Newton” comparison, including the slightly better empirically observed numerical
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stability of Newton, the convergence prediction possible with the structured iterations,
and the fact that in practice scaled Newton usually requires the fewest flops.

Our conclusion is that the Newton iteration (3.7) with Frobenius norm scaling
(3.8) and the cubic (3.2) and quintic (3.5) structure-preserving iterations are all well-
suited to computing the polar decomposition of a matrix from one of the automor-
phism groups under consideration. Likewise, for the matrix sign decomposition the
scaled Newton iteration (7.1) and the obvious analogues of the cubic and quintic it-
erations are all suitable. Which of the iterations is to be preferred depends on the
matrix A, the group G, and the user’s accuracy requirements.
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