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Abstract

We consider robust relative homoclinic trajectories (rhts) forG-equivariant vector
fields. We give some conditions on the group and representation that imply existence
of equivariant vector fields with such trajectories. Using these results we show very
simply that abelian groups cannot exhibit relative homoclinic trajectories. Examin-
ing a set of group theoretic conditions that imply existence of rhts, we construct
some new examples of robust relative homoclinic trajectories. We also classify rhts
of the dihedral and low order symmetric groups by means of their symmetries.

1. Introduction

Although homoclinic and heteroclinic cycles are not structurally stable to per-
turbations in typical systems, they do play a very important role in organizing the
dynamics of trajectories that are nearby in phase and parameter space. In the pres-
ence of symmetries (or conserved quantities) it has been observed for many years
that extra structure can force homoclinic orbits to be robust (i.e. they can persist
under an open set of perturbations) and this gives their study in equivariant systems
a special importance.

More precisely, suppose we have a flow generated by

ẋ = v(x),

where x ∈M , a smooth manifold. Suppose that a compact Lie groupG acts smoothly
on M and that the flow generated by v commutes with this action of G. We say
X0 = G · x0 is a relative equilibrium if it is flow invariant, i.e. if v(x0) ∈ T (G · x0). A
relative homoclinic trajectory (rht) is a trajectory γ(t) with γ(t) ^ X0 but such that
d(γ(t), X0)→ 0 as t→ ±∞.

In the case of a finite group G a relative equilibrium consists of a finite number
of equilibrium points related to one another by the symmetry group, and a relative
homoclinic trajectory consists of a trajectory that is homoclinic to or more generally
heteroclinic between different points in the same relative equilibrium. More generally
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if G is continuous, there will be a (usually infinite) number of connections between
equilibria or invariant tori inX0. We say a homoclinic trajectory is robust if it persists
under an open set of sufficiently smooth perturbations.

Most studies of robust rhts in equivariant systems have been either general results
that assume the existence of certain structures (for example the conditions in [7]
that imply attractivity of cycles) or they are specific examples where a vector field
or normal form near bifurcation is studied in detail. In this paper we look at two
general questions that are intimately related:

(i) How can we characterize the geometry of a relative homoclinic orbit?
(ii) How can we characterize group actions that allow structurally stable relative

homoclinic trajectories?
After reviewing two motivating examples of Guckenheimer and Holmes [5] and of
Kevrekidis et al. [6] in the remainder of this introduction, in Section 2 we introduce
notation and describe the geometry of an rht and an element in the group that we
term the twist of an rht. This is used in Proposition 2·3 to prove that a necessary
condition for existence of a robust rht is that the isotropies of trajectory, endpoints
and twist are related in a certain way. As a trivial consequence, we deduce that one
cannot have robust rhts for abelian group actions.

In Section 3 we investigate the group theoretic conditions in Proposition 2·3 neces-
sary for existence of robust rhts. To this end, we introduce the notion of a homoclinic
triple; this is a triple (K, g,H) where K and H are subgroups and g is a group ele-
ment with certain properties that characterize the symmetries of a robust rht. After
demonstrating some useful invariance properties of homoclinic triples we classify in
Theorem 3·5 the set of all possible homoclinic triples in the dihedral groups Dn. This
is followed by a discussion of homoclinic triples in the symmetric groups Sn and also
in some wreath product examples.

Section 4 adds extra hypotheses such that sufficient (but not necessary) conditions
on a group action are found for robust rhts; one of these conditions is group theoretic
while the other concerns the geometry of the group representation. These conditions
are used to construct a new example of an action of SO(3) on a 16-dimensional vector
space with robust rhts and also a large class of finite groups that admit actions with
robust rhts. These include many with wreath product structure [1]. The section
ends with an example that explores the gap between the necessary and sufficient
conditions for robust rhts. Finally, Section 5 discusses extensions and consequences
of this work.

For the remainder of this introductory section we recall two standard examples of
systems and symmetry groups that permit robust relative homoclinic trajectories,
partly for motivation, but also for later discussion.

1·1. The Guckenheimer–Holmes robust rht

Consider the flow on R3 generated by

ẋ1 = x1(λ− x2
1 + bx2

2 + cx2
3)

ẋ2 = x2(λ− x2
2 + bx2

3 + cx2
1)

ẋ3 = x3(λ− x2
3 + bx2

1 + cx2
2)

(1·1)

where b � c are real constants. This is equivariant under the group G generated
by κ: (x1, x2, x3) 7→ (−x1, x2, x3) and ρ(x1, x2, x3) 7→ (x2, x3, x1) (we could denote
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the group G = Z2(κ) o Z3(ρ) using the wreath product notation, see [2], or Th in
the Schoenflies notation). For certain open sets of (b, c) with bc < 0, [5] observed
and proved the existence of relative equilibria G · (1, 0, 0) connected by a relative
homoclinic trajectory that is robust to any perturbation preserving the symmetry
G, and in particular to the addition of higher order polynomial terms for the above
vector field near λ = 0. The equilibria in question have symmetry Z2(κ)×Z2(ρκρ−1)
whereas the connections have symmetry Z2(κ) (up to conjugation).

1·2. The Kuramoto–Sivashinsky robust rht

As noticed by Kevrekidis, Nicolaenko and Scovel [6] the Kuramoto–Sivashinsky
equation

vt + 4vxxxx + α(vxx − vvx) = 0

posed on the line x ∈ [0, 2π] with periodic boundary conditions can display attracting
rhts for a certain range of parameter values. This system commutes with the group
O(2) of symmetries generated by translation x 7→ x + θ modulo 2π, and reflection
x 7→ 2π − x. This equation exhibits robust rhts which can be seen in numerical
simulations. In an N -mode truncated Fourier representation this can be seen by
writing

v(x, t) =
N∑
n=1

(yk(t)cos kx + yN+k(t)sin kx)

and then for α ∈ (16.13, 22.557) one can observe (in the truncated equations) rhts
connecting relative equilibria with yk = 0 for all k = 1, . . . , N and yN+k = 0 for all
odd k = 1, 3, 5, . . . , N . This rht is simply the group orbit of an rht contained in the
fixed point subspace of the subgroup generated by κ1:x→ 2π−x, κ2:x→ π−x and
ρ:x → x + π (all taken modulo 2π on the domain). In this subspace the equilibria
have symmetry Z2(κ1) × Z2(κ2) and the connections have symmetry Z2(κ1) only.
These rhts differ from the Guckenheimer–Holmes example in that any connections
between a pair of equilibria occur in pairs.

2. The geometry of relative homoclinic trajectories

We consider relative homoclinic trajectories with reference to the flow on the orbit
space M/G. Recall [3] that the orbit space M/G has a natural stratification by orbit
(isotropy) type, whose strata we denote by (M/G)(H), where (H) is the conjugacy
class of the subgroup H of G.

We now recall some standard notation needed and then state the problem more
precisely. The normalizer,NG(H), ofH inG is the group of g ∈ G such that gH = Hg.
Fix(H) is the fixed point space of H in M , i.e. the set of x ∈M such that hx = x for
all h ∈ H. If H is an isotropy subgroup then g maps Fix(H) to itself if and only if
g ∈ NG(H) [9]. For g ∈ G, we write Hg to mean the conjugate subgroup by g, i.e.
Hg = gHg−1. We also use the notation H < G to mean that H is a subgroup of G.

Let v be aG-equivariant vector field. The flow onM descends to a flow on the orbit
space M/G, induced by a stratified vector field v̄. A relative homoclinic trajectory, or
rht, of the dynamics onM is a trajectory whose image inM/G is simply a homoclinic
trajectory. For an rht γ(t) we denote its image in M/G by γ̄(t). The α- and ω-limit
sets of the image γ̄(t) are then the same equilibrium.
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Fix(K )
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Fig. 1. Schematic diagram showing (part of ) a relative homoclinic trajectory to a relative equi-
librium x in the phase space M . Note that there may be many connections to and from x in the
rht; indeed there may also be many connections between x and g · x. In this case, the rht has
isotropy K and twist g.

Let γ(t) be an rht. Then each point γ(t) has the same isotropy subgroup, which
we call the isotropy subgroup of γ and denote by K.

The limit sets α(γ) and ω(γ) are closed, connected flow-invariant subsets of the
relative equilibrium α(γ̄) = ω(γ̄). These flow-invariant subsets also have an isotropy,
and we denote the isotropy of α(γ) by H. By continuity we have that K < H.

If the group G is finite, then α(γ) is an equilibrium point x, and ω(γ) = g · x, for
some g ∈ G. This element g we call the twist of the rht. More properly, it is a twist,
for it is only well-defined modulo H; that is, the twist is naturally an element of
G/H, for if y = g · x then y = gh · x for all h ∈ H. The equilibrium point ω(γ) is of
isotropy Hg = gHg−1, and by continuity again K < Hg.

If on the other hand, G is merely compact, α(γ) is of the form T · x, for any
x ∈ α(γ), and some torus T < NG(H) < G (not necessarily maximal). Moreover,
g · x ∈ ω(γ), for some g ∈ G, and ω(γ) = gT · x = (gTg−1) · (g · x). In either case, we
call g the twist of the rht, and in this case it is well-defined modulo (G/H)/T . This
twist tells how the homoclinic trajectory on M/G lifts to a heteroclinic trajectory
on M . Again the points of ω(γ) have isotropy Hg, and again K < Hg. Figure 1
schematically shows the setup within M .

Thus, associated to any rht, there are subgroups K and H, and a twist g ∈ G
that is well-defined modulo H in the finite, or modulo HT in the compact case. We
write this triple as (K, g,H). If γ is an rht with triple (K, g,H) then for f ∈ G the
rht f · γ has triple (Kf , gf , Hf ) as is readily checked. Note that x will be a limit
point for several distinct trajectories in the rht, and indeed there may be more than
one rht between two given points x and y = g · x, as in the Kuramoto–Sivashinsky
example.

Example 2·1. In the Guckenheimer–Holmes example in Section 1·1, the isotropy
subgroup of the rht is K = Z2(κ), while that of the equilibrium x = (0, 0, 1) is
H ' Z2(κ)×Z2(ρκρ−1). The twist is then simply g = ρ. For an open set of coefficients,
the rht from (0, 0, 1) tends to (1, 0, 0), which is g·(0, 0, 1) for g(x1, x2, x3) = (x3, x1, x2).
Notice that g ^ NG(K).



Group theoretic conditions 129
Example 2·2. For the Kuramoto–Sivashinsky example in Section 1·2 we have K =

Z2(κ1), H = Z2(κ1)× Z2(κ2) and g = ρ. Hence K�Kg but H = Hg; in fact H is in
a conjugacy class of its own because its normalizer is the whole group.

We consider only homoclinic orbits in M that are homoclinic to normally hyper-
bolic relative equilibria, i.e. where the centre manifold W c(x) is contained in the
group orbitG·x and so γ ⊂W u(x)wW s(g ·x). This is not a serious restriction because
for generic equivariant vector fields, relative equilibria are normally hyperbolic (for
example, see [3, lemma 3.1.10]).

The following result gives a simple necessary condition for an rht to be robust.

Proposition 2·3. Let γ be a robust rht with isotropy type K and twist g, and let H
be the isotropy of α(γ). Then

(i) gH wNG(K) =6 and
(ii) K < H wHg.

The first property implies both that K�Kg−1
and that H is a proper subgroup

of G. The second property is equivalent to requiring that H strictly contains both
K and Kg−1

.

Remark 2·4. The quotient (H wHg)/K tells us about the number of heteroclinic
connections between x and g · x within a given rht, for if α(γ) = α(f · γ) = x and
ω(γ) = ω(f · γ) = g · x then f ∈ H wHg. Moreover, f · γ = γ if and only if f ∈ K.

Proof (of Proposition 2·3). For (i) it is enough to show that g ^ NG(K), for g is an
arbitrary twist. Suppose first that g ∈ NG(K) and so g maps Fix(K) to itself. Then
all equilibria and connections lie within M ′ = Fix(K) and so we consider the flow
on M ′, which is equivariant under the action of NG(K)/K. Note that the action of
NG(K)/K is free at all points γ(t).

Let x ∈ α(γ). Note that g · (W s(x) wM ′) = W s(g · x) wM ′ and so in particular
dimW s(x)wM ′ = dimW s(g ·x)wM ′. Since dim (W s(g ·x)wM ′)+dim (W u(x)wM ′) 6
dimM ′ any transverse intersection between W u(x) and W s(g ·x) must be trivial, i.e.
the connection cannot be robust; this proves (i).

To see (ii), note that g · x ∈ Fix(K) implies that x ∈ g−1 · Fix(K) and so x ∈
Fix(Kg−1). By (i) K�Kg−1 and so the isotropy H of x contains both K and Kg−1

but is not equal to either.

Corollary 2·5. If G is abelian there can be no robust rhts.

Proof. This is because if G is abelian then NG(K) = G for all K < G and so there
is no twist satisfying Proposition 2·3(i).

In Proposition 3·4 we show similarly that there are no robust rhts for actions of
the dihedral group Dn, unless n is a multiple of 4.

Remark 2·6. Although the previous corollary excludes the possibility of robust
rhts for abelian groups, one can find robust relative heteroclinic cycles for abelian
groups. For example, one can break the cyclic symmetry of the Guckenheimer–
Holmes cycle by making λ in (1.1) vary with index. This breaks the symmetry to
the abelian group (Z2)3 while leaving the same cycle robust. However, such pertur-
bations will break the relative equilibria into three families of relative equilibria and
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the connections will no longer be homoclinic. Work of Melbourne et al. in particu-
lar gives general methods for locating robust relative heteroclinic cycles in terms of
cycles in the isotropy lattice and conditions on the isotypic decompositions of certain
isotropy subgroups [8].

3. Classification of homoclinic triples

Motivated by Proposition 2·3 we make the following definition. Given a group G,
a homoclinic triple for G is a triple (K, g,H), where K and H are subgroups of G and
g ∈ G, satisfying

HT1: gH wNG(K) =6 and
HT2: K < H wHg.
Note that [HT2] is equivalent to assuming that H > KxKg−1. Homoclinic triples

in G do not always give rise to robust rhts of G-equivariant vector fields, though
we show in Section 4 that with an additional hypothesis they do.

It is clear that if (K, g,H) is a homoclinic triple for G, and G < G′ then (K, g,H)
is a homoclinic triple for G′.

Two homoclinic triples (K, g,H) and (K ′, g′, H ′) are said to be conjugate if there
is an element f ∈ G such that K ′ = Kf , H ′ = Hf and g′ = gf = fgf−1. Moreover, if
there is a vector field such that the first is the triple associated to an rht γ then the
second is the triple associated to the rht f · γ, for the same vector field.

A further equivalence can be given by the relation (K, g,H) ∼ (K, g−1, Hg). In-
deed, it is easy to see that if a vector field v gives a robust rht with triple (K, g,H),
then the opposite vector field −v gives a robust rht with triple (K, g−1, Hg).

What seems less obvious is the following fact, whose relationship with the dynam-
ics is not clear.

Proposition 3·1. If (K, g,H) is a homoclinic triple, then so is (K, νg,H) for all
ν ∈ NG(K).

Proof. Suppose (K, g,H) is a homoclinic triple, and let g′ = νg for ν ∈ NG(K).
Then, firstly, if gH wNG(K) =6 then νgH w νNG(K) =6, but νNG(K) = NG(K),
and secondly we have H > K and since Kg−1 = K (νg)−1

we have H > Kg′−1
as

required.

It is clear that if (K, g,H) is a homoclinic triple for G, and G1 < G is a subgroup
containing g, then (K wG1, g,H wG1) is a homoclinic triple for G1. More generally,
the property of being a homoclinic triple is preserved under pull-back:

Proposition 3·2. Let φ:G1 → G2 be a homomorphism, and let (K2, g2, H2) be a
homoclinic triple in G2, with g2 ∈ Im(φ). Define K1 = φ−1(K2), H1 = φ−1(H2) and let
g1 ∈ φ−1(g2). Then (K1, g1, H1) is a homoclinic triple in G1.

Proof. It is easy to check that if g1H1 w NG1 (K1)�6 then the image under φ
of any element in this intersection belongs to g2H2 wNG2 (K2) which by hypothesis
is empty, thus establishing [HT1]. Similarly, [HT2] also follows simply by applying
φ−1.

A useful result for classifying homoclinic triples is the following:
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Proposition 3·3. Suppose (K, g,H) is a homoclinic triple. Then so is (K, g,H0),

where H0 is the group generated by K and Kg−1
.

Proof. It is clear that [HT1] is still satisfied while [HT2] is satisfied by con-
struction.

Such triples (K, g,H0) are called minimal homoclinic triples, since necessarily
H0 < H.

The aim is to classify such minimal homoclinic triples up to the equivalence relation
generated by conjugacy and the equivalence of Proposition 3·1. The procedure is as
follows. Fix a subgroup K, and choose a distinct conjugate K ′ = Kg−1

, for some g
which is well-defined modulo NG(K) (as in the proposition above). Let H = H0 be
the group generated by K and K ′ (the smallest possible group satisfying [HT2′]),
and finally check the remaining criterion [HT1]. In simple cases – such as small
permutation groups – the checking can be carried out by Maple.

Having found the smallest possible H0 for a given pair (K, g) one can then consider
enlarging H until [HT1] is no longer satisfied.

The smallest non-abelian group is the symmetric group S3 = D3, but there is
only one non-normal subgroup of S3 up to conjugation, namely a Z2, and for this
subgroup there is no possible twist, as is readily checked.

One of the next smallest non-abelian groups is the symmetry group D4 of
the square, and for this there are homoclinic triples, as found in the Kuramoto–
Sivashinsky example. In fact there are two homoclinic triples, which are not con-
jugate, though they are equivalent under an outer automorphism of the group.

Another non-abelian example of the same size is the eight-element quaternion
group Q = {±1, ±i, ±j, ±k} where i2 = j2 = k2 = ijk = −1. The only non-trivial
groupsK andH such thatG > H > K are non-trivial containments haveK = {±1}.
As NG(K) = G [HT1] cannot be satisfied and Q supports no homoclinic triples.

In each of the tables of the sections that follow, the final column states whether K
is a normal subgroup of both H and Hg, or equivalently whether H is contained in
the normalizers of both K and Kg−1

. This is a condition we will use in the existence
theorem of Section 4.

3·1. Dihedral groups

Denoted Dn, these are the symmetry groups of the regular polygons. In order
to determine homoclinic triples in Dn we introduce some notation, and recall a few
basic properties of Dn. Let ρ be the rotation by 2π/n, and κ a reflection, so that
Dn = 〈κ, ρ〉, and ρκ = κρ−1. The elements of Dn can then be written as

{1, ρ, ρ2, . . . , ρn−1, κ, κρ, . . . , κρn−1}.

Any subgroup of the cyclic subgroup Zn of Dn, is normal in Dn, so candidates for the
symmetry group K of a robust rht must contain a reflection. If n is even then there
are two distinct conjugacy classes of reflection, given by κ and κρ. More generally,
κρr ∼ κρs if and only if r and s are of the same parity modulo n.
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G = D4

K generators of K twist, g H generators of H K /H,Hg

Z2 κ ρ D2 κ, ρ2 Yes
Z2 κρ ρ D′2 κρ, ρ2 Yes

One of these two homoclinic triples, say with K generated by κ, occurs in the
Kuramoto–Sivashinsky system. The other one does not as D′2 is not an isotropy
subgroup. It should be pointed out that the two rows are equivalent under an outer
automorphism of the group but they are not conjugate, which is why both are in-
cluded.

G = D8 This group contains D4 so two cases follow from those of D4, namely those
with twist ρ2.

K generators of K twist, g H generators of H K /H,Hg

Z2 κ ρ D4 κ, ρ2 No
Z2 κρ ρ D4 κρ, ρ2 No
Z2 κ ρ2 D2 κ, ρ4 Yes
Z2 κρ ρ2 D2 κρ, ρ4 Yes
D2 κ, ρ4 ρ D4 κ, ρ2 Yes
D2 κρ, ρ4 ρ D4 κρ, ρ2 Yes

The first two lines are equivalent under an outer automorphism of G, as are each of
the next pair and the final pair.

Proposition 3·4. Dn contains homoclinic triples if and only if n is a multiple of 4.

In particular, by Proposition 2·3 there are no robust rhts in systems with dihedral
symmetry Dn unless n is a multiple of 4.

Proof. First, if n is a multiple of 4, then D4 < Dn, so the result follows from
finding a homoclinic triple for D4. This is given in the table above.

For the converse, let K < G be a non-normal subgroup, and suppose (K, g,H) is a
homoclinic triple. As argued above, we may assume κ ∈ K. Without loss of generality
we can take the twist to be g = ρr for some r, for by Proposition 3·1 (K, pr, H) is
a homoclinic triple if and only if (K,κρr, H) is since κ ∈ K < NG(K). Then, Kg−1

contains ρ−rκρr = κρ2r. It follows in particular that h = ρ2r ∈ H.
Suppose first that n is odd, and put a = (n− 1)/2. Then gha = ρr(2a+1) = ρrn = 1 ∈

NG(K) contradicting the hypothesis that (K, g,H) is a homoclinic triple.
Now suppose n = 2p, with p odd. Then ρp (rotation by π in Dn) is in the centre

of Dn so that it belongs to NG(K) for any subgroup K. Now repeat the argument
above but with a = (p− 1)/2, and one finds that gha = ρp ∈ NG(K).

We now give a complete classification of homoclinic triples for subgroups of D4n.
For uniformity of notation, we write Z2 = D1 and denote by t(r) the multiplicity of
2 in the prime decomposition of the integer r.
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Theorem 3·5. Let G = D4n. Up to equivalence, the only homoclinic triples are of the

form (K, g,H) = (Dq, ρ
r,Dp), satisfying:

(i) q|n;
(ii) t(r) 6 t(n/q);

(iii) q|p, q� p, p|(2n) and r ≡ (2n/p) mod (4n/p).
Moreover all such triples are homoclinic triples.

Proof. As has already been pointed out, homoclinic triples cannot have K = Zq

for these are normal subgroups of G = Dn. Thus we can suppose K = Dq for some
q > 1 which necessarily divides 4n. Write s = 4n/q, and let κ be a reflection in K.
Thus Dq = 〈κ, ρs〉. The normalizer NG(K) is Dq′ , where q′ = q if s is odd, and q′ = 2q
if s is even. Thus, NG(K) = 〈κ, ρs′〉, where q′s′ = 4n. If K = 〈κ〉 (i.e., if q = 1) then
s = 4n and s′ = 2n.

Without loss of generality, we can assume the twist g = ρr for some r, for the
alternative form is κρr, but the two are equivalent by Proposition 3·1. Furthermore,
by the same equivalence, we can choose 0 < r < s′.

Let H0 be the subgroup generated by K and Kg−1
. Then

H0 = 〈κ, ρ2r, ρs〉,
and

gH0 = {ρr+k2r+`s, κρ−r+k2r+`s|k, ` ∈ Z},
so that gH0 wNG(K)�6 if and only if there are integers j, k, ` such that

ρr+js+2kr = ρ`s
′

or κρ−r+js+2kr = κρ`s
′
.

This is equivalent to there being integers k, ` such that

(2k + 1)r = `s′, (3·1)

If q does not divide n then s′ is odd and there are always solutions to this equation
(for all r), so establishing (i).

Now suppose q|n, so that s′ is even. Then (3.1) has solutions if and only if t(r) > t(s′)
so establishing (ii).

Finally, let H = Dp = 〈κ, ρa〉, for some a which must divide both s = 2s′ and 2r (so
that H contains both K and Kg−1

). If a divides r then g ∈ H which is not possible.
Thus a is even since it divides 2r, and r ≡ (a/2) mod a.

In this case gH wNG(K)�6 if and only if there are integers k, ` such that

r + ka = `s′.

Since a|s and s = 2s′ we have either s′ = 0 mod a or s′ ≡ (a/2) mod a. In the first
case there are no solutions to the equation, while in the second there are solutions,
so establishing (iii).

If K = Dq then, up to equivalence, the only case where K and Kg−1
are normal

subgroups of H is H = D2q and g = ρn/q.

3·2. Symmetric groups

G = S3 ' D3 We have already proved that this group has no homoclinic triples
(Proposition 3·4).



134 P. Ashwin and J. Montaldi
G = S4 ' Td The only inequivalent homoclinic triples are given in the following
table:

K generators of K twist, g H generators of H K /H,Hg

Z2 (1 2) (1 3)(2 4) D2 (1 2), (3 4) Yes
Z2 (1 2)(3 4) (1 3) V4 (1 2)(3 4), (1 4)(2 3) Yes

G = S5 The only homoclinic triples appear to be those that come from the inclusion
S4 < S5.

G = S6 This list is by no means expected to be exhaustive; there are many different
classes of subgroup of S6.

K generators of K twist, g H generators of H K /H,Hg

Z2 (1 2) (1 3)(2 4) D2 (1 2), (3 4) Yes
Z2 (1 2)(3 4) (1 3) V4 (1 2)(3 4), (1 3)(2 4) Yes
Z2 (1 2)(3 4) (1 5)(2 6 3) D4 (1 2)(3 4), (2 4)(5 6) No
Z2

2 (1 2), (3 4) (1 5)(2 6) Z3
2 (1 2), (3 4), (5 6) Yes

Z2
2 (1 2), (3 4) (1 3 5)(2 6) Z2 × S4 (1 2), (3 4), (3 5), (3 6) No

C3 (1 2 3) (1 4)(2 5)(3 6) Z2
3 (1 2 3), (4 5 6) Yes

C6 (1 2 3 4 5 6) (2 4) W (1 2 3 4 5 6), (1 2 3 6 5 4) No
D6 (1 6)(2 5)(3 4), (2 4) W (1 2 3 4 5 6), (1 2 3 6 5 4) No

(1 2 3 4 5 6)
Z6 (1 2 3), (4 5) (1 4)(2 5 3 6) S2

3 (1 2), (1 3), (4 5), (4 6) No
S3 (1 2), (1 3) (1 4)(2 5)(3 6) S2

3 (1 2), (1 3), (4 5), (4 6) Yes

The group W has order 36 and has the two generators as shown.

3·3. Wreath products

Wreath products are the natural form of symmetry group occurring in systems of
coupled cells. They are groups of the form G = L oG where G < Sn is a subgroup of
a permutation group and L is a non-trivial compact group; see for example [1, 2].
Here we consider two specific examples.

G = Z2 o Z3 ' A4 × Z2 ' Th This is the group occurring in the Guckenheimer–
Holmes example, see Section 1·1. We write ρ for the generator of Z3 and κj for the
generator of the jth copy of Z2.

K generators of K twist, g H generators of H K /H,Hg

Z2 κ1 ρ D2 κ1, κ2 Yes
Z2 κ1κ2 ρ D2 κ1κ2, κ1κ3 Yes
D2 κ1, κ2 ρ Z3

2 κ1, κ2, κ3 Yes
Z2

2 κ1, κ2κ3 ρ Z3
2 κ1, κ2, κ3 Yes

The first row is the case occurring in the Guckenheimer–Holmes example. Observe
that this is only one of a number of possible homoclinic triples.
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G = Z2 o S3 This is the octahedral group Oh. Write ρ = (1 2 3) and σ = (1 2) in S3

and let κj be the generator of Z2 in the jth position.

K generators of K twist, g H generators of H K /H,Hg

Z2 κ1 σ Z2
2 κ1, κ2 Yes

Z2 κ1κ2 σ Z2
2 κ1κ2, κ1κ3 Yes

Z2 σ κ1 D2 σ, κ1κ2 Yes
Z2 σκ3 κ1 D2 σκ3, κ1κ2σ Yes
Z2

2 σ, κ3 κ1 Z3
2 σ, κ1κ2, κ3 Yes

Z2
2 κ1, κ2 ρ Z3

2 κ1, κ2, κ3 Yes

Example 3·6. It is easy to extend some of these to the general case G = L oG. We
set K to be a subgroup consisting of L in only one component, say L1 and identity
elsewhere. If we take g ∈ G which takes cell 1 to say, cell 2 (e.g., g = (1 2) ∈ Sn
corresponding to σ in the table above or g = (1 2 3) corresponding to ρ in the previous
table) then NG(K) = L1 × (L o G′) for some subgroup G′ of G, and Kg−1

= L2. Let
H = L1×L2 (or any other subgroup ofNG(K) containing L1×L2) then in addition
to being a homoclinic triple, one also finds that K /H,Hg.

4. Construction of robust rhts

Proposition 2·3 gives group-theoretic conditions on the twist of an rht necessary
for it to be robust. We now give sufficient conditions that allow construction of robust
rhts.

Theorem 4·1. Let G be a compact Lie group acting on M. Suppose K and H are
isotropy subgroups of this action and (K, g,H) is a homoclinic triple satisfying the two
further conditions (one ‘local’ the other ‘global’):

HTL H < NG(K) wNG(Kg−1
),

HTG there is a point x ∈ M with isotropy H and a continuous path of points with
isotropy K that joins x to g · x ∈ Fix(Hg).

Then there exists a non-empty open set of equivariant vector fields on M with a robust
rht of isotropy K, based on a point in Fix(H) and with twist g.

Proof. Note that if K is an isotropy subgroup then so is Kg and by the fact that
(K, g,H) is a homoclinic triple, K and Kg−1

are distinct isotropy subgroups and so
have distinct fixed point subspaces. Let X1 be the non-empty open set of equivariant
vector fields on M for which there is a normally hyperbolic (relative) equilibrium
point x with isotropy H.

Consider the action of H on TxM , and consider the three subspaces TH =
Fix(H,TxM ), TK = Fix(K,TxM ) and T ′K = Fix(Kg−1

, TxM ). By [HTL] these are
each H-invariant subspaces. It follows that there is an H-invariant decomposition
of TxM as

TxM = TH ⊕ T0 ⊕ T1 ⊕ T2 ⊕W
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where

TH ⊕ T0 = TK w T ′K
TH ⊕ T0 ⊕ T1 = TK

TH ⊕ T0 ⊕ T2 = T ′K .

The fact that TH ⊂ TK w T ′K follows from the homoclinic triple property. T1 and T2

are of course of the same dimension. We treat explicitly the case where G is finite;
the general case can be deduced by intersecting the above decomposition with a local
slice to the group orbit through x.

While the linearization u 7→ Lu of the vector field at x leaves invariant each of
TH , TK , T

′
K and TK w T ′K , it does not necessarily leave invariant the entire decom-

position. However, there are eigenvalues associated to each subspace. For example
since TH and TH ⊕ T0 are invariant, it follows that the linear vector field descends
to a vector field on (TH ⊕ T0)/TH ' T0 whose eigenvalues we call σ0(L). Similar
constructions define σ1(L), σ2(L) etc.

Define the class X2 of vector fields in X1 for which

m+
1 +m−2 > dimT1,

where m+
1 is the number of eigenvalues in σ1(L) with positive real part, counting

multiplicity, and similarly m−2 counts, with multiplicity, the number of eigenvalues
in σ2(L) with negative real part. This class X2 is clearly open in X1 and non-empty.
Furthermore, the members of this class satisfy

(W u(x) w Fix(K)) + dim (W s(g · x) w Fix(K)) > dim Fix(K). (4·1)

This is because g · (W s(x) w Fix(Kg−1
)) = W s(g · x) w Fix(K).

Now consider any continuous path γ(t) with finite arc length, connecting x to g ·x
in Fix(K) such that γ(t) has isotropy K. Given a tubular neighbourhood N of γ such
that g(N ) does not intersect N , there is an open set X3 ⊂ X2 of vector fields such
that W u(x) and W s(g · x) intersect on a path within N .

To see that the set X3 is not empty, we need to construct the heteroclinic connec-
tion, and to do this we pass to the orbit space M/G. We write x̄ for the image of
x in the orbit space, and similarly Fix(K) etc. Consider a vector field in X2 and its
image on the orbit space, and restrict it to a neighbourhood of x̄. Now consider any
smooth path γ(t) (t ∈ R) in Fix(K) with limit point γ(±∞) = x̄ which is tangent to
the stable subspace for t→∞ and to the unstable subspace for t→ −∞. In a neigh-
bourhood of each point of the curve γ the orbit space can be written as a product
and so one can easily construct a vector field tangent to the curve and which extends
to a stratified C∞ vector field tangent in that neighbourhood. Taking a partition of
unity subordinate to a locally finite subcover, one constructs a C∞ vector field on
the orbit space (vanishing outside a neighbourhood of the curve γ) and which has
γ(t) as a homoclinic trajectory based at x̄. By the lifting theorem of Schwarz [10]
this vector field can be lifted to a C∞ G-equivariant vector field on M . Moreover the
lift of γ will contain an rht based at x. It follows that X3 is not empty.

Since dim (W u(x)wFix(K)) + dim (W s(x)wFix(K)) > dim Fix(K) + 1 there is an
open set X4 ⊂ X3 of flows that have transverse intersection of these manifolds and
hence the rhts in the open set X4 are robust as required.
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Remark 4·2. Notice that althoughK�Kg we do not require thatH andHg differ

for this result. The examples in Sections 1·1 and 1·2 have H � Hg and H = Hg

respectively. Moreover the constructed rhts may or may not be attractors.

Remark 4·3. Condition [HTL] is not necessary, but it simplifies the proof consider-
ably. Any more general hypothesis on the representation of H on TxM would suffice
provided it allows construction of open sets of vector fields satisfying equation (4·1);
see Section 4·3 for an example. It is worth noticing that [HTL] is satisfied whenever
H is abelian, which holds in almost all the examples in Section 3.

Remark 4·4. Condition [HTG] is obviously necessary, and requires knowledge of
the group action in order to be verified. However, if the action is a complex or
symplectic representation of a finite group then the symmetry-type sets (i.e. those
with constant isotropy) are always connected, so that [HTG] is always verified; see
Theorem 4·6.

4·1. An example of a robust rht with SO(3) symmetry

Theorem 4·1 can be applied to produce new examples of robust rhts in a variety
of contexts. For example, let G = SO(3) and let V1 be the 3-dimensional irreducible
representation of SO(3) (V1 = R3), and V2 the 5-dimensional irreducible represen-
tation, consisting of trace-0 3 × 3 real symmetric matrices (equivalently, the first
and second order spherical harmonics respectively). Let M = (V1⊕V2)⊕C. This is a
16-dimensional representation of SO(3), isomorphic to the sum C3 ⊕ V C

2 , where V C
2

consists of complex trace-0 symmetric 3× 3 matrices. SO(3) acts on V1 by multipli-
cation on the left, and on V2 by conjugation.

Note that action of SO(3) on V2 has non-trivial generic orbit type (equal to the
conjugacy class of the subgroup H defined below), since every symmetric matrix
is diagonalizable. On the other hand, if the real and imaginary parts of a complex
matrix in V C

2 have no common eigenvector then the isotropy of the point is trivial.
Denote by Rxθ the rotation by θ about the x-axis. Let H = D2 be the group

generated by Rxπ and Ryπ. Then Fix(H) consists of diagonal matrices. Let K = 〈Rxπ〉,
so that Fix(K) consists of certain block diagonal matrices, and let g = Ryπ/2.

Theorem 4·5. Suppose G = SO(3) and M is the 16-dimensional representation as
above. Then there exist robust rhts on M for vector fields with symmetry G.

Proof. We verify that the hypotheses of Theorem 4·1 are satisfied and then use
the conclusion of that theorem. To see that (K, g,H) is a homoclinic triple, note
that g does not fix Fix(K) as it maps the x axis onto the z axis, and observe that
H is generated by K and Kg−1

. For [HTL] it suffices to point out that NG(K) =
NG(Kg−1

) = O(2) (generated by all Rxθ and Ryπ), and this contains H.
There remains to show that the global connectivity condition is satisfied, which

can be achieved explicitly. Since SO(3) acts independently on each summand in M ,
it follows that for any subgroup

Fix(K,M ) = Fix(K,V C
1 )⊕ Fix(K,V C

2 ),

moreover, that Fix(K,V C) = Fix(K,V )C, and finally that the isotropy subgroup of
(u + iv, A + iB) ∈ M is the intersection of the isotropy subgroups of each of u, v,A
and B.
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Thus Fix(K,M ) consists of points of the form[(

t

0

)
,

(
a 0
0 A

)]
(4·2)

where a, t ∈ C and A is a 2 × 2 complex symmetric matrix of trace tr(A) = −a.
A typical point in Fix(H,M ) is a point of the form U = (0,diag[α, β, γ]), and then
g·U = (0,diag[γ, β, α]). We need to show that there is a path in Fix(K,M ) connecting
U and g · U consisting entirely of points with isotropy precisely K.

Now, dim Fix(K,M ) = 8, and dim Fix(H) = 4. Furthermore NG(K) ' O(2) <
SO(3), so that the set of points in Fix(K,M ) with orbit type (H) is of dimension
4 + 1 = 5 and so its complement in Fix(K) is connected. The only other points in
Fix(K,M ) with higher symmetry are those fixed by SO(2) < NG(K) (generated by
rotations about the x-axis) which are just those of the form (4·2) with A a multiple
of the identity, which is a set of real dimension only 4, and so again does not separate
Fix(K,M ).

4·2. A class of finite groups admitting robust rhts

The next result gives sufficient conditions on a finite group G such that a repre-
sentation M of G can be found that admits robust rhts for G equivariant vector
fields on M .

Theorem 4·6. Suppose that G is a finite group with a homoclinic triple (K, g,H)
satisfying in addition [HTL]. Let M be the complex regular representation of G (of real
dimension 2|G|). Then there is an open set of G-equivariant vector fields on M for which
there is an rht with isotropy K and twist g.

Proof. This follows from Theorem 4·1. Indeed, every subgroup of G is an isotropy
subgroup for this representation so that K, Kg−1

and H are isotropy subgroups
as required, and hypothesis [HTL] is satisfied by assumption. Since all strata are
even-dimensional there are no connectivity restrictions and we can satisfy [HTG].

Example 4·7. As an example of an application of this theorem, consider the eight-
element dihedral group

D4 = ({ρ, κ: ρ4 = κ2 = 1, ρκ = κρ−1}).
This has a subgroup K = 〈κ〉 and element g = ρ that satisfy the hypotheses of the
theorem (in this case H = 〈κ, ρ2〉) and so we can construct robust cycles with D4

symmetry for a flow on R16. This is identical in form to the Kuramoto–Sivashinsky
example in Section 1·2 but in a much higher dimensional space.

Example 4·8. Similarly, one can use Theorem 4·6 to show that the group occurring
in the Guckenheimer–Holmes example in Section 1·1 permits robust rhts. Namely,
let G = Z2 oS3, see Section 3·3 and consider K = 〈κ〉 and g = ρ. Again, this produces
a much higher dimensional space than the original example in R3.

Example 4·9. The homoclinic triples for wreath products defined in Example 3·6
with L finite satisfy the hypothesis [HTL] of Theorem 4·1. There are therefore open
sets of equivariant vector fields on the complex regular representation with rhts for
which these triples occur.
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Table 1. Character table for D8. The final two columns give the corresponding represen-
tations of D4 = 〈κ, ρ2〉 and Z2 = 〈κ〉 via restriction (the characters for the D4 and Z2

representations can be deduced from this table).

e (κ) (κρ) (ρ) (ρ2) (ρ3) ρ4 D4 Z2

A0 1 1 1 1 1 1 1 A′0 A′′0
A1 1 −1 −1 1 1 1 1 A′1 A′′1
A2 1 1 −1 −1 1 −1 1 A′0 A′′0
A3 1 −1 1 −1 1 −1 1 A′1 A′′1

E1 2 0 0
√

2 0 −√2 0 E′ A′′0 +A′′1
E2 2 0 0 −√2 0

√
2 0 E′ A′′0 +A′′1

F 2 0 0 0 −2 0 2 A′2 +A′3 A′′0 +A′′1

Remark 4·10. Many examples of robust rhts in the literature are for irreducible
representations (for example, the Guckenheimer–Holmes example in Section 1·1) or
for group actions where there are only a few irreducible components (for example,
the Kuramoto–Sivashinsky example in Section 1·2 where there are two). Our result,
Theorem 4·6, by contrast gives robust rhts on much larger dimensional spaces with
many irreducible components. Usually, no irreducible representation will be suf-
ficiently rich to satisfy the hypothesis of Theorem 4·1, and this begs the question of
how to obtain optimally small estimates for the dimension of the group action one
needs to consider in order to obtain robust rhts for a given group.

Remark 4·11. If G is a finite group that satisfies Theorem 4·6 we say that G is
robust. Clearly any finite group that has a robust subgroup is robust, giving another
way of constructing many groups admitting rhts.

4·3. An example with G = D8

We present an example demonstrating the difference between the necessary con-
ditions of Proposition 2·3 and the sufficient conditions of Theorem 4·1. It is in
some sense the simplest example of a homoclinic triple that does not satisfy the
extra sufficient condition [HTL] of Theorem 4·1, and appears in the D8-table in
Section 3·1. We consider complex representations so that the global connectivity
hypothesis [HTG] of Theorem 4·1 is automatically satisfied, as in Theorem 4·6.

Using the notation for the dihedral groups introduced in Section 3·1, consider
the homoclinic triple (K, g,H), where K = 〈κ〉, g = ρ and H = 〈κ, ρ2〉. This is a
homoclinic triple by Theorem 3·5, and indeed it is a minimal triple.

Consider the irreducible representations of G = D8, of which there are seven in
all (Table 1). It can be seen from the table that, for a representation V of D8, H is
an isotropy subgroup if and only if V contains at least one copy of A2, and K is an
isotropy subgroup if and only if V contains at least one copy of either E1 or E2.

Theorem 4·12. Let V be a complex representation of D8 for which K and H are
isotropy subgroups, where K = Z2 and H = D4 as above. There is an open set of
equivariant vector fields with homoclinic triple (K, g,H) with g = ρ if and only if V
contains at least one copy of the irreducible representation F (see Table 1).

Proof. This is based on the proof of Theorem 4·1 and Remark 4·3. Let x ∈ Fix(H).
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Then TxV = V and the linearization L of the equivariant vector field at x is H-
equivariant, and we need to consider the eigenvalues of L on each irreducible repre-
sentation. Consider the isotypic decomposition of V :

V = a0A0 ⊕ a1A1 ⊕ a2A2 ⊕ a3A3 ⊕ e1E1 ⊕ e2E2 ⊕ fF,
where a0, . . . , f are non-negative integers. Then

Fix(H,V ) = a0A0 ⊕ a2A2

Fix(K,V ) = a0A0 ⊕ a2A2 ⊕ e1E
(s)
1 ⊕ e2E

(s)
2 ⊕ fA′2

Fix(Kg−1
, V ) = a0A0 ⊕ a2A2 ⊕ e1E

(d)
1 ⊕ e2E

(d)
2 ⊕ fA′3.

Some of this notation needs explaining. The Ak parts should be self-explanatory. The
two representations E1 and E2 of D8 are the usual symmetry groups of the regular
octagon; in the first ρ acts by rotation by π/4 while in E2 it acts by rotation by
3π/4. Restricting the action to H, picks out a square in the octagon, whose vertices
lie at alternating vertices of the octagon say, and then E(s)

j is a line of reflection in

Ej passing through midpoints of a pair of sides of the square, while E(d)
j is a diagonal

line of the square. Note that anyH-equivariant linear vector field on E′j has the same
eigenvalues on both E(s)

j and E(d)
j , so if f = 0 in the representation, the eigenvalues

on Fix(Kg−1
, V ) and Fix(K,V ) cannot be distinct.

On the other hand, the irreducible representation F decomposes into two H-
irreducibles, F = A′2 + A′3. Indeed, in the action of D8 on F, ρ acts as rotation
by π/2, so that D8 acts as the symmetry group of the square, and the action of H
is just by a pair of reflections. These two reflections are in fact those in K and Kg−1

,
and so Fix(K,F ) = A′2 say, and Fix(Kg−1

, F ) = A′3. It follows that an H-equivariant
L can be chosen so that the eigenvalues on A′2 and A′3 are of opposite sign, and there
is an open set of such L. Consequently, if f > 1 then there is an open set of linear
vector fields L satisfying (4·1), as required by Remark 4·3.

5. Discussion

There has been much work on robust heteroclinic cycles that has looked at struc-
ture and existence of rhts for given group representations. What we have attempted
here is to understand better the group-theoretic conditions on a group necessary to
find a representation admitting rhts. We have found necessary conditions in Propo-
sition 2·3 and sufficient conditions in Theorem 4·1 but there remains a gap in the
hypotheses that would be nice to close. Specifically one would like to be able to char-
acterize a weaker version of [HTL] that would be both necessary and sufficient, and
Remark 4·3 together with the example in Section 4·3 shows that this condition must
include some information on the local structure of the action.

A number of other questions are suggested by this study. As mentioned already,
there are optimality questions; for example, given a group with a homoclinic triple
that does admit robust rhts, how small a representation can one consider to find a
robust rht? Also, how rare are robust rhts for equivariant systems? For example,
which finite groups of order n have the necessary complexity to admit robust rhts?
Which irreducible representations of finite groups of dimension n admit robust rhts?

It does not seem to be a trivial task to extend or generalize the results here to
apply to robust heteroclinic cycles, due partly to the fact that the interconnection
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possibilities are much greater, and ensuring their robustness requires that many local
and global conditions are fulfilled simultaneously (see for example [8]). However, it
should be possible to generalize the results to apply to homoclinic cycles between
classes of more general transitive invariant sets.
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