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Abstract

We prove the existence of many different symmetry types lafive equilibria for systems of identi-
cal point vortices on a non-rotating sphere. The proofs lusedtational symmetry groupO(3) and the
resulting conservation laws, the time-reversing refleticymmetries ifD(3), and the finite symmetry
group of permutations of identical vortices. Results ideliboth global existence theorems and local re-
sults on bifurcations from equilibria. A more detailed stisimade of relative equilibria which consist of
two parallel rings witm vortices in each rotating about a common axis. The paperwitdgliscussions
of the bifurcation diagrams for systems of 3, 4, 5 and 6 idahtiortices.
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1 Introduction

Since the work of Helmholtzl[g] and Kirchoff [22] systems of point vortices on the plane have been widely
studied as finite dimensional approximations to vorticiplation in fluid dynamics. Small numbers of
point vortices model the dynamics of concentrated regidnsdicity while large numbers can be used
to approximate less concentrated regions. The equationsotibn can be derived by substituting delta
functions into the vorticity equation for a two dimensiordgal fluid. For general surveys of planar point
vortex systems see for exampg {, 6, 10, 47].

The analogous systems on the sphere provide simple modetssfdynamics of concentrated regions
of vorticity, such as cyclones and hurricanes, in planesainyospheres. The effects of ‘background’ con-
tinuous distributions of vorticity, such as the planetaoyticity of a rotating sphere, can also be included,
but are not considered in this paper. The equations of mdébiopoint vortices on the sphere are derived
in [9, 21, 36]. Like the planar case?p, 26, 27] these equations are Hamiltonian and this property has been
used to study them from a number of different viewpoints.getapace reduction shows that the three vor-
tex problem is completely integrable on both the plane apdghere (for references séd]). A detailed
analysis of its dynamics on the sphere is givenlig [L9] and streamlines for the corresponding fluid flows
on the sphere are studied . The energy-momentum method is applied to the stabilitthefrelative
equilibria of the three vortex problem id%]. Much less is known about systemsfpoint vortices when
N is greater than three. Results on the topology of reducedepbpaces and estimates of the numbers
of relative equilibria are given in2[3]. Phase space reduction techniques have also been deksicrifa®]
and {5]. The stability of a ring ofN identical point vortices is studied id ] and the results extended to
systems of finite area vortices, while the stability of rekaequilibria for 3 point vortices is described in
[49). Finally [30, 31] discuss the statistical mechanics of systems of poinisgston the sphere.

Our main aim in this paper is to show that the symmetry pragedf the point vortex equations of
motion on the sphere can be exploited to obtain detailednmdition about relative equilibria for any value
of N. The results include a classification of possible types MEtike equilibria, a number of existence
theorems and the construction of bifurcation diagramsdaones specific cases. A sequel to this pafe} [
will give an analogous discussion of the stability propestdof some of the relative equilibria described in
this paper. Applications to geophysical fluid dynamics wéldiscussed in3f3].

Point vortex systems on the sphere have three differenstgpsymmetries. The Hamiltoniad is
invariant under rotations of the sphere, reflections of giese and permutations of identical vortices. The
rotations of the sphere define an action of the three dimeakrotation grou5O(3) on the phase space
P. The reflections extend this to an action of the full orthag@moupO(3) and the permutations define an
action of a finite grouf®. Putting all these together gives an action of the grogp) x S. We denote this
group byG and the subgroupO(3) x Shy G.

The groupG = SO(3) x S actssymplecticallyon the phase space and this fact, combined with the
invariance of the Hamiltonian, implies that the equatiohmotion are equivariant. This means that they
restrict to any submanifold ¢ which is the fixed point set of a subgrobip< SO(3) x S. Such fixed point
spaces are symplectic submanifoldsffand the restricted equations of motion are again Hamiltonia
with Hamiltonian equal to the restriction of the full HansiltianH to the fixed point set. This ‘discrete
reduction’ technique (see eg4]) is especially useful for analyzing high dimensional sys$ with large
symmetry groups. In particular critical points of the reetéed Hamiltonian are equilibrium points of the
restricted flow and hence also equilibrium points for théffalv.

It is important to notice that discrete reduction does notkior general subgroups of the full sym-
metry groupG = O(3) x S. The reflections ifD(3) actanti-symplecticallpnP (see 8.2) and are therefore
time-reversingsymmetries of the equations of motial3] 28, 41]. Simple examples show that fixed point
sets of such time-reversing symmetries are not in generatiant submanifolds for the equations of mo-
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Figure 1: Relative equilibria for 3 identical vortices oretsphere

tion. However critical points of the restriction of the HatmhianH to such a fixed point setre critical
points of the full Hamiltonian and so are also equilibriunirge of the full flow. Thus ‘discrete reduction by
time-reversing symmetries’ can be used to find equilibriaisTs an example of therinciple of symmetric
criticality [427] in action.

This simple observation extendselative equilibria These are orbits of the group action which are
invariant under the flow and correspond to motions of the fpedmtices which are stationary in some
steadily rotating frame. Noether’s theorem for the actiér80(3) on P shows that the flow preserves
the level sets of the ‘centre of vorticity’ map (or, momentomap)® : P — R3, and relative equilibria are
critical points of the restrictionsl, of H to the level setsb~(p). The functionsH, are invariant under
the subgroupéu of O(3) x Swhich preservadb~1(u) and the critical points of their restrictions to fixed
point sets of subgroups 63“ are also critical points ofi, and hence relative equilibria. Figurésind?2
show the symmetric relative equilibria that are found bysthmethods for 3 and 4 identical point vortices,
respectively. R

We refer to the largest subgroup Gfthat fixes a particular configuration of vortices assggnmetry
groupZ. Group theoretically this is the isotropy subgroup of theresponding poinx € P:

S =Gy ={geG: gx=x}.

Points which lie in the same orbits of the action@fon P have conjugate isotropy subgroups and the
set of points inP which have isotropy subgroups conjugate to a given subgod® is called anorbit
type setand each connected component of this orbit type set isccali@rbit type stratum Inclusion of
one subgroup in another induces a partial ordering on thefsainjugacy classes of isotropy subgroups
of a group action which is closely related to the partial oirte on the set of orbit type strata given by
inclusion of one stratum in the closure of another. Thestggdarderings are frequently referred to@bit
type latticesand they play an important role in the bifurcation theoryystems with symmetries. See for
example 4] and references therein. The strata which are minimal isgtarderings, ie those which are
closed inP, play a particularly important rolel[ 37, 38]. A compact stratum must contain at least one
critical point of anyG-invariant function ori?, and the same will be true for non-compact minimal strata if
the function is unbounded as it approaches the ‘boundarieke stratum.

Much of this paper is dedicated to fully exploiting these evations (though hopefully natd nau-
sean). In Section2.3we give a detailed description of the symmetry groGmsndG and classify config-
urations of points vortices on the sphere according to fketropy subgroups under the actions of these
groups on the phase spae The symmetry types of configurations which lie in any givevel seid~ ()
are also discussed. Thdjacencyf one orbit type stratum to another is defined and a methodrapaiting
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Figure 2: Relative equilibria for 4 identical vortices oretbphere

adjacencies described. As an illustration of the generdhatkethe results are applied to the special case
of N identical vortices. In particular Tablzand Propositior2.12give the minimal strata for, respectively,
the actions ofc andG on P for arbitraryN. Proposition®.14and?2.15together describe the symmetry
types of configurations which lie in each level get!(p), again for arbitraryN. Table4 lists the minimal
strata for the actions & andG on P, and also thé& strata which are minimal i~1(1) whenp # 0, for

N = 3...12. Finally Figuregt and5 give the complete orbit type lattices for ttBeandG actions orP for

N up to 6 and 5, respectively. R

The results on the orbit type stratifications of the action€ andG on P are purely group theoretical
and are applicable to other problems which can be formulatetms of finite sets of ‘weighted’ points on
the sphere. Obvious examples include equilibrium confidgma of sets of charged particles on the sphere
(see eg 12]) and perhaps also models of superconductors on the sphfreClosely related problems
include the calculation of isotropy subgroups of represgons of the groupSU(2) andSO(3) [7, 17].
Points in these representation spaces can be representaahingeneous complex polynomials in two
variables. The roots of such a polynomial of degkegssociate to it a set &f points in complex projective
space, and hence on the sphere. An important differencaigepeated roots are not excluded and so
‘collisions’ of the patrticles are allowed.

In Section3 we state the main theorems of the paper. TheoBehgives sufficient conditions for
the existence of equilibrium points in minimal strata whilbeorem3.5 gives the analogous result for
the existence of relative equilibria in minimal stratad!(p). Section3.3 contains two results on the
existence of families of relative equilibria, parametedzy their centres of vorticity, which bifurcate
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from (relative) equilibria withu= 0. The methods used are adapted from an analogous treathnelattive
equilibria of molecules40]. Table5 summarizes the main results for bifurcations from equiilitor.

The results of SectioB are applicable to any Hamiltonian systemmwhich has the same symplectic
form and symmetries as the point-vortex Hamiltonian. Hasvem & we restrict attention to the point-
vortex Hamiltonian itself. The results oB& imply that any relative equilibrium that is not an equililom
must consist of a numbek,say, of ‘latitudinal’ rings of vortices with the same numper of vortices in
each and such that all the vortices in the same rings havathe gorticity. In addition there may lde=1
or 2 ‘polar’ vortices. Such configurations are dendB¢kR ¢p). These configurations are mathematically
analogous to the vortex polygons and vortex streets that begn extensively studied in the plane (s&8 [
and references therein arigh] 26, 27]). In Propositiord.3we give equations for such a configuration to be
a relative equilibrium and then discuss the solutions o¢requations whelk= 1 andk = 2. In particular
we show (Theorem.6) that wherk = 2 the two rings must be either ‘aligned’ or ‘staggered’ wisispect
to each other; these are deno@g(2R) andC,(R,R) respectively — see Figuifor an illustration. An
analogous result for systems of vortices on the plane appe?]. Some numerical observations of how
these relative equilibria can bifurcate as the centre dfcity is varied are also briefly reported on. Section
4.2contains an existence and uniqueness theorem for equititgdlutions with the vortices arranged round
the equator. It is hoped that the convexity argument usedaeepthis might be extended to more general
relative equilibria.

Finally, in Section5, we look at the relative equilibria dfl identical vortices whemN = 3,4 and 5
and in particular show how the methods developed in the pegreibe used to begin the construction of
energy-momentum relative equilibrium bifurcation diags Figuress, 7, and8. These include all the
relative equilibria of all the symmetry types that are pogelil by the results of Sectidh Comparison with
the orbit type lattices in Figuresand5 show that relative equilibria of many of the orbit types dawac
The discussion in Sectidghand these figures also summarize the non-existence resulisve been able
to deduce here or, in the caseNE 3, take from [L8]. However, we know that foN > 3 our bifurcation
diagrams are incomplete. Several arguments, summarizéeation5, indicate that there must be further
lower symmetry relative equilibria that we have not yet fdumndeed, it would be interesting to use the
numerical techniques of] to search for asymmetric relative equilibria. Work on thebdity of relative
equilibria and these bifurcation diagrams will continuel & reported on in32). In addition, one of the
authors 8] is applying the KAM theory to establish the existence of myéafamily of long-lived vortex
clusters on the sphere.
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supported by EPSRC Visiting Fellowship grants to suppaitvby Lim and Montaldi to the University of
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2 Symmetries of Vortex Systems on%

In this section we describe the symmetries of the equatiémaation of systems of point vortices on
the spheres? and classify the possible configurations of vortices byrtrsgitropy subgroups. Particular
attention is paid to time-reversing symmetries.
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2.1 Equations of motion

Let? =S x ... x &, the product oN copies of the unit sphere R*. The phase space for ti\evortex
problemisP =P\ A, whereA is the ‘big diagonal’ where at least two points coincide:

A = {x=(x1,...,xn) | Xi = x;j for somei # j}.
The symplectic structure dh is given by
W=} AT, 2.1)

wherer; is the Cartesian projection on to tfith factor,we is the natural symplectic form o8?, andj is
the vorticity of thej-th vortex. The Poisson structure is given by

{f.9} =Y Ay Hd;f.djg.x],
J

where[d; f,d;g,x;] is the triple producta,b,c] = a- (b x ¢) fora,b,c € R3. The Hamiltonian function is:

H(xg,...,xn) = —Z)\i)\jlog(l—xi-xj) (2.2)

i<]

and the Hamiltonian vector field is given by

(2.3)

As usual, the relationship between the Poisson structuamiltbnian and Hamiltonian vector field is given

by:
df
i df -Xq = {f,H}

for any functionf.

2.2 Symmetries of the equations

LetA = (A1,...,An) be the ordered collection of vorticities of thevortices. Denote b$(A) the subgroup
of the symmetric groufy which preserves:

SIN) = {0€ Sy |Aqg(j) =Ajforall j}.

We will often assume that all the vorticities are equal, sd 8i\) = S\.
Let G = SO(3) x S(A), andG = O(3) x S(A). ThenG andG act on the phase spageby

(A,O’)(Xl,...,XN)Z (AX0(1),---,AX0(N>)- (24)

If we define detA, o) = det(A) thenG = det %(1). Note thatG acts by symplectic transformations, while
elements oG\ G actanti-symplecticallythat is forg € G,

Wgx (dGk(V),dgk(w)) = det(g) w (v, w) (2.5)

forall vywin T, P.
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Proposition 2.1

1. The HamiltonianZ.2) for the N-vortex problem with vortex sétis invariant under the action of
G(A) onP.

2. The vector field X given by 2.3 is G semi-equivariant: for g G it satisfies

Xu(g-x) = det(g) dg(Xu (x)). (2.6)

PrROOF  Statement (i) is clear while the second follows from (i), etiger with the fact thag € G acts
symplectically orfP while g € G\ G acts anti-symplectically. m|

The transformation property2(6) implies that the elementg e G\G aretime reversingsymmetries
of Xy: if t — X(t) is the trajectory with initial value, then the trajectory with initial valug(xo) is
t — g(x(—t)). This situation, resulting from a group acting by a comborabf symplectic and anti-
symplectic symmetries, can be formalized as follows. Gete any group ang : G—-Z,= {1,-1} a
group homomorphism with kern@. Then an action o6 on a symplectic manifoldP,w) is said to be
semisymplectiwith temporal charactey;, if

wgx (dg(v),dg(w)) = X(g) wx (vw). (2.7)

In the case of thé&l-vortex problem the homomorphisgnis simply given byx (A, o) = deA). For more
details see41]

Hamiltonian systems with continuous symmetry groups f§atisnservation laws (Noether’s theorem).
These conserved quantities are the components ohdmreentum mag.

Proposition 2.2

1. After identifying the Lie algebra duab(3)* with R3 in ‘the usual way’, the momentum map for the
SO(3) action is

N
D(Xq,...,XN) = Z)\jxj.
=1

2. Letm: G — O(3) be the Cartesian projection. Themis G equivariant, withG acting onso(3)* = R3
via the representation.

The ‘usual’ identification ofo(3)* with R® relates the skew-symmetric matyixwith the vecton/which
satisfieia= [1x a, for allac R3. This is identical to the ‘usual’ identification 6b (3) with R3¢ 2 with
§a =& x a. The standard pairing afo(3)* with so(3) given by <p,§> = %tr(uTE) becomes the standard
pairing of R3 with itself: <f,&> = fi-&.

PrROOF  For the first part, from the definition of momentum maps we neeshow that{ f,®; }(x) =
dfx.&p(x) for each elemerg € s0(3). The expression fol in the proposition gives

Dg(x) = J A& x;
J
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and so, by definition of the Poisson structure,
{f.o1(x) = YA (djPg x ;) - djfy
]
= I (NExx) di
]
= dj fX'EP(X)v

as required. The second statement in the proposition fellownediately from the formula fob. o

We call®(x) the centre of vorticityof the configuratiorx.

Remark 2.3 For certain collections of vorticities, there are also-aytinplectic permutations, namely those
permutation® € Sy for whichA(j) = —Aj for all j. Such permutations preserve the Hamiltonian function
and therefore act on the vector field by time-reversing sytriese Leté(A) be the group of all permutations
for which there is g(0) = +1 such thatg ;) = X(0)A; for all j. Then the full symmetry group of the
Hamiltonian isO(3) x ). An element/A o) € O(3) x SA) is symplectic or anti-symplectic if the sign
of x(o)det(A) is, respectively, positive or negative. In this paper wepamacipally interested in the case
where all the vortices are identical, so we do not pursueatysfurther. &

2.3 Isotropy subgroups and the stratification

Recall that ifG is a Lie group acting on a manifoi, then thesotropy subgroupf a pointx is
Gx={geG|g-x=x}.

The conjugacy class @y is called theorbit type ofx, and the set of points of given orbit type is a union
of smooth submanifolds, whose connected components deel cabit type strata The set of all strata is a
partition of P known as arorbit type stratification Furthermore, i < G then theX fixed-point set is

Fix(Z,P)={xeP|o-x=x, Yo e Z}.

This is a closed submanifold & containing the strata of orbit ty#e

We will be working with a certain refinement of the notion obiitype, which we calpoint-orbit type
For most orbit types the two coincide; see Remark R

In the remainder of this section we compute the possi#adG orbit types of configurations of point
vortices on the sphere for any givBhandA. The corresponding orbit type strata are used in Se&imn
prove the existence of symmetric (relative) equilibriajlevithe adjacencies between the strata are used to
study bifurcations.

Note thatGy = éx NG and thatéX is either equal tds, or is an extension of order two. We also say
thatGx andGy are thesymmetry groupsf x. We are sometimes careless about distinguishing between a
subgroup and its conjugacy class, and wfite I’ when we mean thdt andl’’ are conjugate.

EachG orbit type stratum is a union @ orbit type strata, so th& orbit type stratification refines the
G orbit type stratification. This is readily seen by compaifigures4 and5 (pagesl7and18).

There is a very important difference between @andG orbit type strata. Because acts symplecti-
cally the set of points with isotropy subgro@ (for somex) is a symplectic submanifold that is invariant
under the flow generated by a@¢invariant Hamiltonian. And since th® orbit type strata are unions of
such submanifolds, they too are invariant under such flowss i§ not true for thé orbit type strata: tra-
jectories with initial conditions in one stratum do not nesa&rily stay in that stratum. However in the next
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section we show tha® invariant Hamiltonians will necessarily have some trajeiess, and in particular
relative equilibria, which do stay in the sar@estratum for all time, though not within a given fixed point
space.

__Inordertolist all the possible orbit type strata, we make efsthe following observation. Suppose<

G fixes a poinx = (xg,...,Xn) € P. Since the pointsy, ..., Xy are distinct, it follows that the permutation
groupS(A) acts freely orP, and so is isomorphic to its projectiof into O(3), thatisZ =T =1(%) <
O(3). Equivalently, any such subgrodp< G can be reconstructed from its projectibn= () as the
graph of a homomorphisin— S(A). Furthermore, we shall always assume tiat 2, which implies that
the symmetry group of any configuration is finite. The subgrou O(3) acts on the set of point vortices
by permuting them, and this set decomposes into finitely niaagucible sets, or orbits, which we call
point-orbits(to distinguish from the orbits d& in P). An analogous observation holds for subgroup&pof
with SO(3) replacingO(3).

Rather than looking directly for these isotropy subgroupsstart by describing all the possible config-
urations which are fixed by each finite subgrou@g8), and hence the values NfandA for which each of
these fixed point sets is non-empty. For any giMeandA it is then relatively straightforward to determine
all the possible isotropy subgroups. In each subsectioomhele first consider the more straightforward
case of finite subgroups &0(3) before continuing with the more general case of finite subgs®fO(3)
and theG-orbit types.

Tables1 and 2 The finite subgroups d8O(3) andO(3) are listed in Tabled and2 respectively, along
with a classification of their possible point-orbifsin S*. The first column in each table lists the groups,
using the usual Schonflies notation. The second columrsdhe labels we use to identify the different
types of point-orbit of the action of that group 84 The third column gives the isotropy subgroup for the
action at a point in that point-orbit and the fourth colume ttumber of points in the point-orbit. The fifth
column gives the dimension of the set of each type of poibitaand in the case that the dimension is zero,
in parentheses the maximum number of point-orbits of thae that the group has &. The final column
gives a brief description of the point-orbit. Anring is a regulan-gon. ‘Vertical’ refers to the axis of the
rotation subgroup in each case. ‘Vertically aligned’ metiras the vortices of one ring are directly above
those of the other ring, and ‘vertically staggered’ meas the upper one is rotated Ioy/n with respect

to the lower. For more details see the appendix, and for mofR, B, r.r’ etc. see Remark.4. Readers
unfamiliar with the Schonflies notation should consult #ippendix, which contains a description of each
subgroup together with its different point-orbits.

For each subgroup @(3) the finite sets of points i which are invariant under the group are finite
unions of the point-orbits listed in Tabldsand2. For example, if there are 54 identical point vortices
then there is a configuration with octahedral symmetry; dg@eortices at the vertices of the octahedron
(point-orbit typev), together with two sets of 24 vortices generated by any gmp®int on the sphere
(point-orbit typeR).

Notation It follows that for any giverN andA the isotropy subgroups SonP correspond exactly to the
isotropy subgroups of the action 6f(3) on finite sets of points %’ labelled by their vorticities. Exactly
the same statement holds for the isotropy subgrou@ ekcept thaD(3) is replaced bysO(3). We may
therefore denote the orbit types by symbols of the form

M(k1O1,k20o, ...,k Or),

which we callpoint-orbit type symbolsvhererl is the projection of the isotropy subgroup infig3) (or
SO(3)) and the terms in parentheses denote the way in whielsts on the finite set of point vortices:
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| O| K |]|O] | Dim | Description

Ch|R| 1 n |2 n-ring
p|Cn| 1 |0(2) | pole

Dh|R| 1 |2n]|2 pair of n-rings on opposite latitudes
r | Cz2| n | 0(2) | equatoriah-ring or dual
p|Cn| 2 |0(1) | pair of poles

T |R|1]|12]|2 regularT orbit
e | Cz| 6 |0(1) | mid-points of edges of tetrahedron
v | C3| 4 |0(2) | vertices of tetrahedron or dual

O|R| 1|24]|2 regularQ orbit
e | C2 | 12 | 0(1) | mid-points of edges of octahedron
f | Cs| 8 |0(1) | mid-points of faces of octahedron
v | Ca| 6 |0(1) | vertices of octahedron

I  R| 1|60]2 regularl orbit
e | C2 | 30 | O(1) | mid-points of edges of icosahedran
f | C3| 20 | 0(1) | mid-points of faces of icosahedron
v | Cs | 12 | 0(1) | vertices of icosahedron

Table 1: Classification of point-orbits of finite subgroupS®(3). See text for explanations

there arek; orbits (or point-orbits) of typ&1, k» of type 02 etc. We also tacitly assume that fiog j the
point-orbit typesD; andO; are distinct. For example, if the isotropy subgroup in gieess the orientation
preserving symmetry group of the cube, and if the vortices lie in the configurations desd above, then
the symmetry type is denotéd(2R,v).

Notice that the notatiof (kyO1,,k2O5, ...,k O;) does indeed determine tloebit typeof a particular
configuration, sincé is a finite subgroup 080(3) or O(3) up to conjugacyand the orbit€)y,..., O,
describe how the elementsiofact by permuting the set of vortices, but without labellihg vortices — so
specifying the homomorphisim— Sy, againup to conjugacy

Of coursd (kyO1,...,kgOq) will only occur as an orbit type for certal andA. SpecificallyN must
be equal tk1|O1] + - - - + kg| Og| @andA must assign the same vorticities to all the points in the Samire-
orbit of I'. Furthermore, certain point-orbit type symbols do not espond to isotropy subgroups; see
Propositior2.6 below.

Remark 2.4 There is one important point that merits further explamatigor theG-action, the orbit type
and the point-orbit type are equivalent, but for tBection the point-orbit type refines tiorbit type in a
few cases.

The basic case is that of the symmetry ty@g, whose point-orbits are each of the poles, certain
‘horizontal’ regulam-gons @-rings) and harizontal semi-regulangons. We denote a given ring R)
and its dual by(R). If nis even, thenR) and (R) in fact have non-conjugate (although isomorphic)
symmetry: for example, a square and its dual have the sammeymngroup, but it permutes the vertices
in different ways. Thus<C,,(2R) andCn,(R,R) need to be distinguished on grounds of pure symmetry.
However, ifn is odd, a ring and its dual haweonjugatepermutational symmetry, but we still need to
distinguish betwee@,(2R) andC(R, R') as they are geometrically distinct — the first consists ofingfa
n-rings which are aligned (on the same longitudes) while engcond they are staggered (on intermediate
longitudes), see Figurg for an illustration in the casa = 3. MoreoverCn,(2R) specializes tdDnn(R)
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r o K | |O| | Dim | Description
Cw!l R 1 2n | 2 semi-regular 8-gon
RR|Ch| n |1 regularn-ring or dual
p |Cw| 1 |0(2) |pole
Ch| R 1 |2n|2 pair of n-rings on opposite latitudes
R | Ch| n |1 equatoriah-ring
p Cn | 2 |0(1) | pair of poles
Din| Rs 1 |4n |2 vertically aligned pair of semi-regulanzjons
R |[Ch|2n |1 equatorial semi-regulam?gon
R, hl2n|1 vertically aligned pair oh-rings or duals
r,r" | Ca | n | 0(1) | equatoriah-ring or dual
p |Cw| 2 |O(1) | pairof poles
Dnd| Rs 1 |4n |2 vertically staggered pair of semi-regular-gons
R Ch| 2n |1 vertically staggered pair af-rings
r C2 | 2n | 0(1) | equatorial 2-ring
p |Cw| 2 |O(1) | pairof poles
Sn R 1 |2n |2 vertically staggered pair af-rings
p Cn | 2 |0(1) | pair of poles
Ch R 1 2 |2 vertically aligned pair of points
E Ch| 1 |1 equatorial point
Ci R 1 2 |2 pair of antipodal points
Ty R 1|24 |2 regularTy orbit
E Ch| 12 |1 generic orbit on edges of tetrahedron
e Co | 6 | 0(1) | mid-points of edges of tetrahedron
v Cav | 4 | 0(2) | vertices of tetrahedron or dual
Th R 1 ]124|2 regularTy, orbit
E Ch| 12 |1 generic orbit on ‘equator’
e Co | 6 | 0(1) | mid-points of edges of tetrahedron
% Cs | 8 | 0(1) | vertices of cube
On R 1|48 |2 regularQy, orbit
E Ch| 24 |1 generic orbit on edges of octahedron
E’ hl 241 generic orbit on face bisectors of octahedron
e Coy | 12 | 0(1) | mid-points of edges of octahedron
f Csy | 8 | 0(1) | mid-points of faces of octahedron
v Cay| 6 | O(1) | vertices of octahedron
T R 1 |120(2 regularly, orbit
E Ch| 60 |1 generic orbit on edges of icosahedron
e Coy | 30 | O(1) | mid-points of edges of icosahedron
f Cay | 20 | O(1) | mid-points of faces of icosahedron
v Csy | 12 | 0(2) | vertices of icosahedron

Table 2: Classification of point-orbits of finite subgroup${3). See text for explanations
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Ca(RR) Cav(2R)

Figure 3: Configurations of typ8s,(R,R') andC3,(2R), viewed looking down at the North pole. The solid
and open circles represent the two different point-orhitsach case.

when the two rings are on opposite latitudes, whilg(R, R') specializes under the same circumstances to
Dnd(R). In fact the two are different connected components (Stadtthe same symmetry type sets in the
orbit spacéD/é, as follows from Theoreri.1Q Since strata are by definition connected, it follows that th
resulting stratifications by orbit type and by point-oripé coincide.

Similar remarks are valid fdPnn(2R) andDpp(R, R'), as well as for more complicated combinations of
rings, such a€ny(3R, 2R, p) compared withCp,y(5R, p), or Dnn(R, 1, p) compared wittDyn(R, 1/, p).

On the other hand, for the tetrahedral grolipendTy there is the point-orbit consisting of the vertices
of the tetrahedron, which we denqte), and there is the point-orbit consisting of the verticeshef dual
tetrahedron, sayv'). If there are 8 vortices, occupying both sets of verticesywite T(2v) or Tq(2v),
rather tharl'(v,v') or T4(v,V') and there is no ambiguity: ifi(2v) the two point-orbits cannot coincide, so
they must be dual. The same remark is valid for the poles uryddic symmetry: we writeC(2p) rather
thanCy(p, p'), and similarly forCp,. O

The following proposition can be established by a lengtlspéttion of Tabld.

Proposition 2.5 If all the vorticities are identical and N> 2 then for any finite subgroup < SO(3) there
exists an isotropy subgropwith I' < 1(X) if and only if

kn+{0,1,2} if T=Cp
2kn+{0,2,n,n+ 2} if T =Dy
N = { 12k+{0,4,6,8,10,12,14} if T=T (2.8)

24k+{0,6,8,12,14,18,20,.26}  if T =0
60k+{0,12,20,30,32,42,50,62} if [ =1

where Kk is always a hon-negative integer.

A similar result can be obtained for tlﬁaaction; the details are left to the reader.

It should be pointed out that not all point-orbit type synshate the symbols of isotropy strata, whence
the inclusionl” < () in the proposition above. For example, any configuratiomwitmmetrySyn(R)
in fact has symmetrDoq(R), although for a given representative of the conjugacy cias&R) there are
infinitely many supergroups of tyf2,4(R), and which one is the symmetry group depends on the configu-
ration in question. On the other har@,(2R) is an isotropy type.
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Proposition 2.6 For N > 2 identical vortices, all point-orbit symbols correspondisotropy strata, with

the following exceptions:
1. For the G-action:

Orbit symbol| Symmetry typé
Dn(2r,¢p) Don(r,£p)
T (ke 2¢v) O(kv,£f)
where k/ =0, 1.
2. For theG-action:
Orbit symbol | Symmetry type|| Orbit symbol | Symmetry type
Cn(R,{p) Crv(R.¢p) Cnn(R%,2(p) Dnn(r,£p)
Cnh(szgp) Dnh(Rvgp) Dn(zrvép) D2nh(ra€p)
Din(r,r",£p) Dann(r, £p) Drnd(r, £p) Dann(r, £p)
Ci(2R) Dan(R) San(R) Dnd(R)
T(v) Tg(v) T (ke 2¢v) On(kv £f)
Tq(ke 2v) On(ky, f) Th(ke év) On (kv £f)
Ta(e) On(v)
O(kw, ke, ks f) | On(kyV, kee ks T) || T(kyv, ke ks ) | Tn(kyV, ke, Ks f)

where k= 0,1and/¢ = 0,1 or 2 if appropriate.

If the vortices are not all identical, then some of these porbit symbols will be isotropy types. For
exampleC;(2R) is an isotropy type if\ = (A1,A1,A2,A2) with A1 #£ Ap.

PrRoOF This follows from an exhaustive inspection of Tableand?2. |

2.3.1 Topology of strata

Having described which strata exist for which valueNofwe now proceed to consider their basic topo-
logical propertiesyiz. dimension and connectedness. The fact tha@laetion is symplectic implies that
all the fixed point spaces for th@@-action are even-dimensional, and one can deduce thathiteygre sets
are all connected. The situation is more complicated foGleaetion, but it turns out (Propositichg) that
provided all the vortices are identical, then all orbit tygsss in the orbit space (quotient spage)G are
connected. In 8.3.2below we describe how the different strata “fit together”.

Proposition 2.7 LetZ < G=SO(3) x S(A) be any isotropy subgroup for the G-actionBnthen the corre-
sponding orbit type set in the orbit spaP¢G is connected. Furthermore Xfis of typel” (kiay, . .., krar, krR),
thendim Fix(Z) = 2kg. Here the arepresent the non-regular point-orbits: that is, thoseygfe t p,v, f, e,
while R denotes the unique regular point-orbit type. Funthere the corresponding stratum in the orbit
spaceP /G satisfies

dim(P/G)(z) =dimFix(Z,P) —dim(N(T")),

where NT) is the normalizer of = 1(Z) in SO(3).

Note that the subgroups, andD,, have 1-dimensional normalizers, while the cubic groupsav
dimensional normalizers.
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PrROOF One can proceed by induction on the number of point-o@itsf I', since if~ < G is of type
M(kiO1,...,kO;) and’ of typel (kiOs, ...,k O, O) (the samd’), then

Fix(Z', P') = (Fix(Z,P) x Fix(Z@,Po)) \A

whereZp = I'(0) acts onPy C ()€, andA consists of any diagonal points in this Cartesian product,
andP’is P x Po \ A.

Itis therefore sufficient to establish the result for indival point-orbits, and this is clear by inspection.
For example, foir = Cp, the fixed point set foC,(R) is connected, while that fa€,(p) is not: it has
two components, one for each pole. Thus,@(kR ¢p) the fixed point set has at most two components
and these are identified by rotating the sphere so that tles poé exchanged, and possibly relabelling the
vortices. For = 2, two of the four possible components are excluded as thepia coincident vortices.
Consequently, these components are identified by a symmgénation, which means that they give rise to
the same set in the orbit spa@gG.

Finally, note that the set of points with a given isotropy gulupGy does not in general coincide with
the fixed point set for that subgroup as there is a submanifotte fixed point set with higher isotropy.
However, since all the fixed point spaces are symplectis,shbmanifold is of codimension at least 2, so
its complement is still connected. A similar argument shitved removing? does not disconnect the set
either.

For the dimension in the orbit space, it is a fact about astimhcompact Lie groups that the image
of Fix(Z) is of dimension dimFif) —dim(N(Z)/Z). In this case, we have thaig(Z) = Ngo3)(I") x
Ngin)(Te(Z)), wheret, : G — S(A) is the Cartesian projection. Since batlandS(A) are finite, the result
follows. a

We now turn to the case of ti@action. The sets of points in the orbit spa2G with a givenG-orbit
type is not necessarily connected in general as the follgwim examples show.

Firstly, suppose there are N vortices all with distinct igities and consider the configurations where
all N lie on the equator, that is orbit tyg&,(NE). There argN — 1)! /2 connected components with this
symmetry type irP /G (hereG = O(3)).

A second example, which even occurs when the vortices anéigdé; is given by the two typeSny(2R)
andC,(R R) — see Remark.4. If nis odd these are two connected components of the same fixed poi
set. It should be noted that the two strata in question arsgetcally distinct, and cannot be identified by
elements oD(3) x Sy.

To avoid the first of the two problems, we restrict attentmthie case where the vortices are all identical,
and to avoid the second we consider point-orbit types, raktaa orbit types.

Proposition 2.8 Suppose all the vortices are identical. ek O(3) x Sy be an isotropy subgroup, and

I (kiO1,...,kyOq) a corresponding point-orbit type. Then that point-orbipéyset is connected iR/G,
and is of dimension

ikj dim(0;) — dim(N(T)),
=

where NI') is the normalizer of” in G, anddim(O) is the dimension as given in the fifth column of Table
2.

PROOF Observe that the point-orbitg O, ..., kqOq correspond to a decomposition of the $ét=
{1,2,...,N} into disjoint subsetsV1 U... UNy whereN; consists of the labels of all the points in the
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orbits of type®;. Write Nj = |j|. Let S(Vj) be the subgroup d(A) of permutations of thes; points.
Then the homomorphisi : ' — S(A) which determine& satisfies Infy) < S(V1) x ... x S(Ny). Thus,
P can be written ag) = (P1,...,Pq), with @j : T — S(Nj). Forj =1,...,d write

Pj= <ﬁ§> \A.

Pj is the factor of the phase space corresponding to the paints,iso thatP = (r]?:lpj) \ 4, andS(Nj)
acts orP;j. Also letZ; be the graph of};.
Now observe that
Fix(Z,P) = Fix(Z1,P1) x -+ - x Fix(Zg4,Pq).-

There is no need to remove diagonal points as different tgppsint-orbit cannot occupy the same points
on the sphere. Furthermore

FiX(ZP) _ Fix(ZLPy)  Fix(Za,Pa)
Na(2)  N(Z1) No(Zq)

whereN, (%) is the normalizer of the imagg(I') in S(A) ~ Sy, and similarlyNx(;) is the normalizer of
the imagey; (") in S(Vj) ~ Sy;.

We wish to show then that for eagh=1,...,d, the set FiXZ;,P;)/N2(%;) is connected, and of di-
mensiork; dim(Oj). The result then follows. But this follows from an inspectiof Table2. For example,
for Cnv(KkR) the fixed point set is parametrized by specifylndistinct points on the intervgl-1/2,11/2)

(the latitude of each ring), and this set Hdsconnected components. However, after factoring out the
permutation groupl(Z) these are all identified, leaving one component in the opaits.

The remainder of the proof follows the last paragraph of tteefof Propositior?.7. o

2.3.2 Adjacencies

Recall that the set of points with a given orbit type is callesfratum of the orbit type stratification. The orbit
types, or the strata, are partially ordered by conjugacynefisotropy subgroup to a subgroup of another
or, equivalently, inclusion of the smaller orbit type strat(corresponding to the larger isotropy subgroup)
into the closure of the larger orbit type stratum. In thissca® say that the larger stratigpecializego the
smaller stratum, or that the smalleradjacentto the larger. The resulting partially ordered set is catllexl
lattice of orbit types. A good general reference for this latticeli§

We wish to give necessary and sufficient conditions for orasin to be adjacent to another. It is a stan-
dard result on the actions of Lie groups thafifs adjacent te&’ then the isotropy subgroup corresponding
to S’ is subconjugatéo the isotropy subgroup &. The following lemma gives a useful geometric criterion
for when one isotropy subgroup is subconjugate to another.

Lemma 2.9 Let = and 2’ be two isotropy subgroups of G @, of orbit typesrl (k104 ...,ksOq) and
r(kiO,. .., kOp) respectively. The' is subconjugate t@ if and only if " < I and the restriction td”’
of the action ofl” on kO U...UkgOyq is isomorphic (as &’-set) to the action of " on KO U... Uk O,.

ProoF Recall thats is the graph of a homomorphisgn: ' — S(A), and similarlys’ the graph of
W :T" — S(A). Clearly thenY' is a subgroup ok if and only if " < " andy/’ is the restriction ofp to "'
The homomorphismy expresses how each elemenfgiermutes the vortices, so the restrictionjoto I’
is just the permutation action &f on the sek;O; U...UkeOe, as required. O
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We wish to apply this group theoretic result to the adjacesof strata in the two orbit type stratifica-
tions. Suppos& is an isotropy subgroup of point-orbit typeki 01, ..., kqyOq), and letl” < . Then the
action ofl"" on the sek; 01 U... UkqyOq4 decomposes into orbitg 07 U ... UksOy, so that the correspond-
ing action of2’ = 1t 1(I'”"), wherert: = — O(3), is of typel(k; Oy, ..., K.OL). We call this latter type the
restricted point-orbit type

It follows from this lemma and the standard result from Lieup actions mentioned above, that if a
stratums of typel (kiO1,...,kyOq) is adjacent to a stratu’ of type ' (k1O ..., ksO%), thenl” acts
onk; O] U...UksOy as the restriction td’ of thel” action on the set;O1U... UkgOq. We now state the
converse for systems alentical point vortices.

Theorem 2.10 Suppose there are N 2 identical point vortices. Consider the point-orbit typeastim S
of typel (k1O1,....kOr), and letl"” < T be such that the restricted point-orbit typ&k;O},....kOy) is
also an isotropy type. Then the corresponding strafiiim adjacent taS’.

PROOF LetX be a subgroup o corresponding t&, andZ’ corresponding t&’. SinceZ’ < 2, we have
that
Fix(Z,P) C Fix(Z',P).

By Proposition2.8 the images irlP/é of these two fixed-point sets are connected, and so equakto th
closuresS andS’. Consequently, o

S cScS,
as required. ]

Remark 2.11 In fact the result given in the theorem remains valid evehéfvortices are not identical, at
least for the case @ orbit type strata. The proof is identical, using Propositio/ in place of Proposition
2.8 It appears that the same is true for tBaction, though we do not have a proof. O

2.3.3 Orbit type lattices and minimal strata

Using the results on the dimensions and adjacencies ofti@ sit is now a fairly routine exercise to give
complete point-orbit type lattices df identical vortices. The complexity of such lattices in@emquickly
with N, so in Figures} and5 we show some examples of these lattices Narp to 6 forG and up to 5 for
G.

A stratum is said to beninimalif it is minimal with respect to the partial ordering des@tbabove, i.e.
it does not specialize to another stratum, or in other wat@sclosed inP (or in P/G). In Section3, and
in particular Theoren3.2, we show that every minimal stratum contains an equilibrium

Table3 lists theG-orbit type strata which can be minimal for the caséafientical vortices and gives
the values o for which they are minimal.

Proposition 2.12 The minimal strata for the action @ = 0O(3) x Sy on the phase spack of N> 2
identical vortices are as follows.

1. Strata with isotropy subgroufig and Oy are minimal whenever they are non-empty.
2. A stratunily(kg, ke, ke, ky) is minimal if and only if k= 1.

3. For n# 2,4 a stratumDnn(KR,, Kre, kR, Kr' ke, ki, kp) is minimal if and only if both the following
conditions hold:

(8) ke ke OFke # ko
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Ds(r) )/ \ // \

C2(R 2p)

0 \
1T%:3) \ %4)

Figure 4: The orbit type lattice for the action 80(3) x Sy for N = 3,4,5 and 6 identical vortices. The
underlined strata are those which we prove contain relatiglibria for anyG-invariant Hamiltonian. The
strata marked with a dagdedto not contain any relative equilibria for the point-vortéamiltonian. See s
for summaries of these existence and non-existence results

(b) There do not exist an odd prime k and non-negative insegérsuch that

kr, = (kzl)(k +kr)+ka
e = Ptk tkb

4. A stratumDgn (KR, kre, Kr, k', Kr, ki, Kp) is minimal if in addition to the conditions of the previous
item it also satisfies the following pair of conditions:

(@) k #kp or kr# ks + 2kre or kg < kry — 3[kr,/3];
(b) ks #kp Or kg # kK +2Kre Or Kr < Kr; — 3[Kr,/3].
where|[x] is the integer part of x.

5. For n> 4 a stratumCny(Kr, kr, kg, Kp) is minimal if and only if k =1, kr # kg and there do not
exist an odd prime k and non-negative integer a such that
(k=1)

kr, = 3 (kr+kr) +ka
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Dsn(r) Dan(r, p)
Csv(R) Ca(R P Ca(R 2p)
AN
Cx(2Rp)  Ca(Rsp) Ca(RR,p)
/
C2(2R p)f (N=5)
Cn(2RE) Cn(SE) Cn(R,3E)
T
1

Figure 5: Orbit type lattice for the action 6f(3) x Sy for N = 3,4 and 5 identical vortices. The underlined
strata are those which we prove contain relative equilifotaany G-invariant Hamiltonian. The strata
marked with a daggérdo not contain any relative equilibria for the point-vortéamiltonian. See §for
summaries of these existence and non-existence results.
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Stratum N for minimality Dimension in quotien
Cn(Rp) n>4 N=n+1 1

Dn(r) n#£2 N=n 0

Dn(r,p) n#2,4 N=n+2 0

T(krR, ke€, V) N/2=2mod 3 2kr

O(krR kee ks f,kyv) | N/2=0,1 mod 3 2kr

I(krR, kee ks f,kyv) | N/2=0,1,6,10 mod 15 2kr

Table 3: Minimal strata for the action & = SO(3) x Sy on configurations oN identical vortices.

6. A stratumCay(kr,, kr, kr',Kp) is minimal if and only if in addition to the conditions of theepious
item it also does not satisfy

NI =

kR5: (kR_kR'—kp)+4a
for any non-negative integer a.

7. A stratumCoy (KR, kr, kr', Kp) is minimal if and only if in addition to the conditions of iterthere
do not exist an odd integer k 3 and non-negative integers a and b such that both the follgwin
conditions hold:

@) ks = Elkg+ka or ke, = & (ke — 1) +ka;
(b) ke = 2ky + kb.
8. Strata with isotropy subgroups conjugate to any othetdisubgroups of are not minimal.

The proof of the proposition is a routine, but extremely ¢edi, case-by-case analysis which makes heavy
use of Lemma&.9and Theoren2.1Q The following result is an easy consequence of the propaosit

Corollary 2.13 For a system of N identical vortices there exists a miniGabrbit type stratum with
isotropy subgroups projecting to:

1. Iy ifand only if N is even and R2 = 0,1,6,10 mod15;

2. Opifandonly if N is even and {2 = 0,1 mods3;

3. Ty if and only if N is even and )2 = 2 mod3;

4. Dypwith n=£ 2 4if and only if N=0,2 mod n;

5. D4y if N is even and M2 = 2 mod3 (but also for some other N);
6. Cpywith n> 3if and only if N=1 mod n;

7. Cyyifand only if N is odd and N> 9.

Table4 lists the minimal strata foN = 3... 12 identical vortices for both th@ andG actions.
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N | Minimal G-strata| Minimal G-strata Minimal G-strata in® 1 (p) for p+ 0
3 D3(I’) Dgh(l’) Cgv( ) CZV(R p)
4 | Da(r) Dan(r) Cav(R), C2v(2R), Cav(R, p)
T(v) Ty(v) CZV(R 2p), Cx(2R)
5 | C4(Rp) Cav(R p) Csv(R), Cav(R p), Cv(2R, p)
Ds(r), D3(r, p) D5h( ): Dan(r, p) Cav(R,2p)
6 | Cs(Rp) Csv(R p) Cev(R), Cav(2R), C(3R)
Ds(r) Den(r). Dan(R) Ca(2RR)
O(v) On(v) Csv(Rp), Cav(R 2p), Cov(2R,2p)
7 CG(Rv p) CGV(Rv p), C3V(2Rv p) V( ) CGV(R p) C3V(2R7 p)
D7(I’)7 D5(I’, p) D7h(r)7 D5h(r7 p) V( ) CZV(ZR R, p)7 C5V(Ra2p)
8 | C7(Rp) Cn(Rp) Cay( ) Cav(2R), C(4R)
D8(r)7 Dﬁ(rv p) D8h(r)7 Dﬁh(rv p)v D3h(R7 p) V(3R R) ZV(R57 2R)7 C7V(R7 p)
V(ZR R.p)
9 C8(Ra p) (Ra p)a C4V(2R? p)v ( ) C3V(3R) C3V(2R7 R)
D9(r)7 D7(rv p) (RSa 2R7 p)v D9h(r)7 D7h(r7 p)v CBV( ) C4V(2R p)v CZV(4R7 p)
Dgh(R,r), Dgh(R,r/) CZV(3R R’ p), Cz\/(Rs7 ZR, p), C7V(R,2p)
10| Co(R p) Cov(R p), Cav(3R, p) Ciov(R), Csv(2R), Cov(5R)
DlO(r)v D8(r7 p) Dth(r)v D8h(ra p)a CZV(4R7 R)a CZV(3R7 ZR)a CZV(RSa 3R)
D5h(R)a D4h(R7 p) CZV(R57 ZRaR,)v CQV(Rv p)a C3V(3Ra p)
T(e,v) Tq(e V) Cgv(2R7R’,p), Csv(R 2p), Cav(2R,2p)
v(4R72p)7 CZV(3RaRa2p)a
Cav(Rs, 2R, 2p)
11| C1o(R p) Ciov(R p), Csv(2R, p), Cinv(R), Ciov(R p), Csv(2R, p)
CZV(RS, 3R7 p)7 CZV(3R7 2R’a p) CZV(5R7 p)7 CZV(4R7 R,a p)a CZV(3Ra 2R7 p)
Dll(r)7 Dg(r7 p) Dl]h(r)7 Dgh(ra p)a D3h(R7 r, p) CZV(R57 3Ra p)a CZV(RSa 2R7 Rla p)
D3h(Rar/7 p) CQV(szp)v C3V(3R72p)7 C3v(2RaR,72p)
12 Cll(R, p) C]_]_V(R p) Clz\,(R), CGV(ZR), C4V(3R)
D12(r), D1o(r,p) | D1zn(r), Dion(r, p), Den(R), Cw(2RR), C3y(4R), C3y(3R R)
D5h(R p) 4h( ,I’) D4h(R r ) C3V(Rs, ZR), C2v(6R), CZV(5R,N)
Dan(Rr1,1'), Cav(4R,2R), Coy(Rs,4R),
O(e) On(e) Cav(Rs, 3R R)
H(V) ]Ih(V) Cj_]_v(R, p), C]_()\/(Rzp)7 C5V(2R,2p)

CZV(5R7 2p)7 CZV(4R1 Ra 2p)a
Cx(3R,2R,2p)
CZV(R57 3R)7 CZV(R57 2R7 Ra Zp)

Table 4: Minimal strata for the actions & = SO(3)

identical vortices with 3X N < 12,

X SN

andG = O(3) x Sy on configurations of\
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2.4 Orbit types for fixed centres of vorticity

In this subsection we describe the orbit types that can decarsingle fibred—(u) or, equivalently, the
symmetry types of configurations of vortices with fixed ceruf vorticity u. The actions of5 andG onP
restrict, respectively, to actions of the momentum isotrepbgroupss,, andGy, on & L(W). If u=0 then

Gy = G andGy = G. Whenp # 0 then without loss of generality we may supp@e—= SO(2) x Sy and
éu = 0(2) x Sy. A stratum is called @ero-momentum stratuifiit is contained in®—(0).

Proposition 2.14 All strata except those of typ€s,, Cny, C, and1 are zero-momentum strata.

PROOF By the equivariance ob, if x € Fix(Z,P) then®(x) € Fix(Z,R3). For all the symmetry groups
listed previously, except the three mentioned in the pritipos we have FixZ,R%) = 0. To see that each
of the four remaining strata are not containedin'(0), it is enough to find an example of a configuration
with that symmetry and witkd # 0. This is an easy exercise left to the reader. o

Thus the isotropy subgroups of pointsdr!() are greatly restricted whan# 0. For any particular
collection of vorticities\ it is a relatively straightforward exercise to calculate thinimal strata ird~2 ()
for u+# 0. The following result treats the caseMfidentical vortices. Without loss of generality we may
assume that they all have unit vorticity. In this cggeanges from O up to\.

Proposition 2.15 For N identical vortices with unit vorticity, and for# O,

1. The intersection of the stratu@n(kr,Kp) or Cnv(krs, kr, kg, Kp) with ®~1(p) is non-empty if and
only if one of the following conditions holds:
(@) kp=0orlandO< |y <N;
(b) ky=2and0< |y <N-2.

Every stratunCp kg, ke ) has a non-empty intersection wigh () for 0 < |y < N.
2. Theintersections of th@ strataCi kg, kp) andCh (kg, ke ) with =1 (L) are never minimal i~ (p).

3. If Crv(Kry, kr, kg, kp) has a non-empty intersection widh (1) (1= 0) then it is minimal ind~1(p)
if and only if kg # kg and there do not exist an odd prime k and non-negative integeich that

(k=1)

kR :ka—i—T

S

(kr+kg') -

In each case it is assumed that N has a value for which theustrég non-empty iP.

The proof is straightforward. Lemnta9is used to prove the minimality statements. The minimatastira
®1(w), u#0, forN = 3...12 identical vortices are listed in Table

3 Existence of Relative Equilibria

In this section we give a number of results which state theterte of equilibria and relative equilibria with
particular symmetry types. To a large extent the resultedépnly on the symmetries of the model, not on
any particular form of the Hamiltonian. However for someftdin we do require thad (x) — o asx — A,

a property which is always satisfied if the vorticities alvbghe same sign, but which may fail if there
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are vorticities of opposite signs. For the bifurcation tesusection3.3we also require a non-degeneracy
condition to be satisfied.

Recall that a relative equilibrium is a trajectory that liegshe group orbit or, almost equivalently, an
invariant group orbit. The fact that the trajectory lieshie group orbit means that the Hamiltonian vector
field is always tangent to this orbit, so thalies on a relative equilibrium if and only if there iae s0(3)
for which

Xu(X) = &p(X). (3.1)

This value of¢ is theangular velocityof the relative equilibrium in question. Using the sympie¢brm
this becomesiHy = & - d®y and so is equivalent to requiringto be a critical point oHg = H — & - ®. If

the level setb—() is non-singular, as it always is for point vortex system i- 2, then it follows that
x € ®1(p) lies on a relative equilibrium if and only ¥is a critical point of the restriction dfl to ®~().
Thus relative equilibria are given by constrained critjgaints ofH in much the same way that equilibria
are given by ordinary critical points.

If the pointx has a particular symmetry, then so must the angular velgcitis the following result
shows.

Proposition 3.1 Letx € P satisfy 8.1), and letGy be the isotropy subgroup. Thérsatisfies
Adg€ = det(g)&

for all g € Gy, wheredet(A, 6) = det(A).

PROOF If g € Gy then:
€-dd,=dHy =g todHog=g 1o (§ dPy)og=Adg&- (g 1 odP,0g) = det(g) Adg& - D,

sinced®y o g = detg)go dPy. The result follows from this. ]

We therefore define the action Gfon so(3) by
g-& = det(g) Adg¢.

This is evidently isomorphic to the action Gfon s0(3)* given in Propositior?.2

3.1 Equilibria

Apart from its intrinsic interest, the following result ses as a prototype for the existence theorem for
relative equilibria in 8.2 and the equilibrium points it provides are the starting pofor the bifurcation
theory in 8.3 Recall that an orbit type stratum iannected componeaof the set of points with a given
orbit type. It is therefore also a connected component o#ief points with a given point-orbit type —
see RemarRk.4.

Theorem 3.2 Let X C P be an orbit type stratum of the action of either G®oNP.

1. If X consists of a singl80O(3) orbit then every point of X is an equilibrium configurationesery
invariant Hamiltonian orfP.

2. IfH(x) — w0 asx — ANX in X, then there exists at least one equilibrium point ondlosure of X
in P. In particular, if X is a minimal stratum then there existdedst one equilibrium pointin X.
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PROOF The first statement follows immediately from the principfespmmetric criticality 42] since the
orbits are necessarily critical orbits H{X and hence critical orbits d.

For the second statement It be a connected component¥fc P C (SZ) and letXy be the closure
of XoinP = (S ) ThenXg is a compact submanifold 7. We claim thaIH|_ has a minimum not ir\.
This point is then an equilibrium point, for by the princiglesymmetric criticality, a critical point oI‘-I|><

is a critical point ofH.

To prove the claim, note that Ko NA is empty, there is nothing more to prove since any continuous
function on a compact set has a minimum. On the other haKgifA is non-empty, we need to use the
fact that ask — A soH(x) — . Letxg € Xo. ThenXy, := {x € Xo | H(x) <H(Xo)} is a closed subset of
Xo and so compact, and satisfiég NA = 0. It follows thatH|¥0 has a minimum iy, which is contained

in the closure 0¥, in P, as required. O
Corollary 3.3 For anyO(3) x Sy invariant Hamiltonian oriP there exist equilibrium points in the strata:
1. Dnn(ke,kp) if A= (nkAr,2kpAp) and so N= nk; + 2k;
2. Tq(ke, ky) if A = (6kehe,4kyAy) and so N=4,6,8,100r 14;
3. On(ke, ki, ky) if A= (12kehe,8kiA¢,6kAy) and so N=6,8,12 14,18 200r 26;
4. Tn(ke,Ks,ky) if A= (30kehe, 20k, 12kyAy) and so N=12,20,30,32,42,500r 62.

PROOF The strata listed are precisely those which consist of iedi8Q(3) orbits. O

Corollary 3.4 For N identical vortices with N= 3, ... 12there exist equilibrium points in each of the strata
listed in the second and third columns of Tallle

3.2 Relative equilibria

The following result is completely analogous to the existetheorem for equilibrium points in the previous
section.

Theorem 3.5 Let X C P be an orbit type stratum of the action of either G @ron P, and write X =
XNo~1(p).

1. If a connected component of ¥ contained in a singl&O(3) orbit then it is a relative equilibrium
configuration of every invariant Hamiltonian dn.

2. IfH(x) — 0 asx — A then there exists at least one relative equilibrium pointtmnclosure of each
connected component of, ¥ ®~1(). In particular, if Xy is minimal in®~1(y) then there exists at
least one relative equilibrium in X

PROOF The relative equilibriainb~1(p) are precisely the critical points of the restrictiorrbfo ®(p).
The proof of this result therefore follows that of Theor@rg, but withH replaced b3H|¢>—1(p>- m]

In particular it follows that if all the vorticities have tlsame sign then there will be at least one relative
equilibrium with centre of vorticityt in the closure of each stratum that intersebts (1), and at least one
in any minimal stratum. Equivalently we can say that therstrbe at least on@ orbit of relative equilibria
in the closure of the corresponding orbit type stratum irgihetient space. Some of these relative equilibria
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may in fact be equilibria. Recall from2&4that a zero-momentum stratum is one entirely containeden th
level-setd—1(0).

Proposition 3.6 Any relative equilibrium in a zero-momentum stratum is amildgrium point.

PROOF Let X be a zero-momentum stratum apé X be a relative equilibrium witd € so(3) the corre-
sponding angular velocity gt Letl” C G be the symmetry group of the poipt Then by PropositioB.1,
& € Fix(I,50(3)). Now Fix(I",s0(3)*) = 0 becaus& is a zero-momentum stratum, and so(Fi)so(3)) =0
and& = 0. O

Thusitis only possible to obtain relative equilibria whigte not equilibrium points in th€y,, Cp, Cn and
1 strata. We discuss the consequences of The@ré&fior each of these in turn.

Cy, relative equilibria

Recall from PropositioR.6thatCn(kr, kp) corresponds to an isotropy subgroupfbff and only ifkg > 1
andkp = 0,1 or 2. The quotient of the intersection of the stratGntkg, kp) with any level setb~1(p) is
connected. If all the vorticities have the same sign therittherem states that there will be at least Ghe
orbit of relative equilibria in the closure @, (kr,kp) for eachu for which the intersection is nonempty.
However the frontier o€, (kgr, kp) always contain€ny strata in which there must also be relative equilibria,
so the theorem does not prove the existence of relativeibqailvith preciselyC, symmetry. In 8.1we
prove that for the standard point vortex system the straair, kp) with kr = 2 never contains relative
equilibria. However it seems likely that relative equilbwith a larger number of rings and symmetry
group precisel\C,, do exist.

Cv relative equilibria

TheCry(kr, kg ,Kp) configurations consist &k aligned ‘latitudinal’n-rings, another set ¢z aligned rings
which are offset byrt/n with respect to the first set, agd = 0,1 or 2 polar vortices. If the vorticities of
the rings are all distinct then the quotients of the intetises of these strata with—%(l) are either empty
or havekgr!ky! connected components, one for each ordering okghe-rings and theky dualn-rings. If
some of the vorticities are equal then the extra permutatisymmetries identify some of these strata, and
if they are all equal then there is a unique component. Theréime states that if all the vorticities have the
same sign then there will beGorbit of relative equilibria in the closure of each conndatemponent. In
some cases these relative equilibria will have higher sytriese but in many cases tit&w(kr, kr', kp) are
minimal and so the relative equilibria will have precis€ly, symmetry. More detailed discussions of the
relative equilibria of type€ny(R, kp), Crnv(2R, kp) andCny(R, R, kp) for the point-vortex Hamiltonian(2)
are given in 8.1 There it is shown that is possible for these relative elidito havey = 0 andg # 0,
and vice-versa. This does not occur for simple mechanicdésys with Hamiltonians which are the sums
of potential and kinetic energy terms.

Ch relative equilibria

If all the ‘equatorial’ vorticities are distinct, th€(kg, kgr) strata in the orbit spac@/é have%(kE —
1)! connected components, one for each cyclic ordering of ¢égiatorial’ points. For the point vortex
symplectic form 2.1) its intersections with the level sets @fare either empty or again ha%ékg —1)!

connected components and there will b& arbit of relative equilibria in the closure of each of thebe i
all the vorticities have the same sign. 14.8 a convexity argument is used to show that for the specific
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point-vortex Hamiltonian4.2) there is auniqueequilibrium point § = 0,with p unspecified) in each of
these strata.

3.3 Bifurcation from zero centre of vorticity

In this section we describe some results that can be obthinadapting the ideas of Montaldi and Roberts
[39, 40] to systems of point vortices. These results give a methodiriding some branches of relative
equilibria which do not have maximal symmetry. The branctess then be followed using numerical
methods.

Since the action 080(3) is free we can apply the methods developed3i® {0 to analyze the bifur-
cations of relative equilibria. We briefly recall the pripal ideas. Lek € P, and letS be a slice to the
SQ(3)-action atx, so that:

TSP g-x=TP

whereg = s0(3). If the isotropy subgrouﬁX is non-trivial, we choos&to beGy-invariant. The Guillemin-
Sternberg-Marle normal formlp, 34] for symplectic group actions shows thatdf(x) = 0, then in a
neighbourhood of the point

S~Pyx g, (3.2)

wherePy is a neighbourhood of in the zero reduced space. Roclose to zero io(3)*, thep-reduced
space is then locally
Pu ~ 7)0 X Ou,

whereQ,, is the orbit of the coadjoint action &O(3) onso(3)* containingu. Forg = so(3) this is just the
sphere centre 0 radiyg.

SinceH is G-invariant, it restricts t&in a way that is independent of the choice®fldentifying S
with the product in 8.2), we writeH : Po x g* — R. A point (y,v) € Po x g* is a relative equilibrium
if the restrictionH, of H to P, has a critical point at that point. Moreover, the relativaiégrium is
non-degenerati that critical point is non-degenerate.

Suppos& € Pg is a non-degenerate relative equilibrium; thaHg,has a non-degenerate critical point
atx. Then the differentiatiH, o) is a linear map frong* to R and so naturally an element af*)* ~ g. It
is shown in B9 that under this identificatiodH, o) = &, the angular velocity of the relative equilibrium.
In particular, if€ # 0 then on each nearby reduced space there are preciselyierelguilibria (which by
a theorem of Patrick43] form a smooth curve irPg x g*). On the other hand, & = 0, then there will be
more relative equilibria on each nearby reduced space.

The general procedure for analyzing this bifurcation is $e the splitting lemma (or alternatively
Lyapounov-Schmidt reduction), which says that there @G aequivariant diffeomorphisi : Py x g* —
Po x g* in a neighbourhood of the poili, 0) of the form

Wy, W) = (WY, 1), W),

for which
H o W(y, 1) = Q(y) + h(p), (3.3)

whereQ is a non-degenerate quadratic form, &rd a smoothGy-invariant function org*. It follows that
(Yu, 1) € Po x g* is a relative equilibrium foH if, and only if, pLis a critical point of the restrictioh,, of h
to the spher@®,,, andy, = Y(0, ).

Thus the relative equilibria nearwith momentum valugt are in 1-1 correspondence with the critical
points of the restrictiom, of a Gx-invariant functionh on g*. Moreoverdhy = dH ) = &, the angular
velocity of the relative equilibriur. See fi0, Theorem 2.7] for a more detailed statement.
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Theorem 3.7 Let 2 be a subgroup o6, andx a non-degenerate relative equilibrium Fix(Z,P), with
®(x) =0, and letl = 1(Z) < O(3). Consider the usual action 6fon § C R3. Letl” < T be such that
Fix(Ir,$) # 0 and ¥’ = r}(I"")NZ. Then there is a relative equilibrium nearwith symmetry group
containing’.

Remarks
(1) If Fix(T", g) # {0} then FixTI", %) # 0. If furthermore # 0 then the only critical points will be those
with symmetryl". The interesting case is therefore wtées 0.
(2) A particularly useful case of the theorem is when(Fixg) = 0, and sof = 0. Then, if[’ < T is a
maximalisotropy subgroup of thE action onS?, there is a relative equilibrium with symmetry precisely
Y=mHrnz.
(3) A more precise statement of the relation betwEeand>’ can be formulated in terms of orbit types
as follows. SupposE is a subgroup 0©(3) and a system of point vortices @& has a non-degenerate
equilibrium of typel (kyO1,...,kgOq) with p= 0. If I < T then the corresponding isotropy subgroup
L{;g’l tc’},r./. ., KLOYL) is the orbit type decomposition obtained by restrictingah#on ofl" onkyO1 U .. g

d .

PrRoOF The theorem follows from the discussion above by the prieaiff symmetric criticality. The
relative equilibria correspond to the critical points oé ttestrictionh,, of a smootH -invariant functiorh,
and if"" C I thenhy, restricted to Fix[™’) must have a critical point.

The relationship betweer andl™ arises because the action Gfon g* factors through that 0®(3).
Moreover, since the permutation gro8@\) acts freely or?, the projectiort: G— 0O(3) gives an isomor-
phism when restricted to any isotropy subgraup |

For each straturh (k01 ...,kyOq4) a more detailed analysis can yield further information cenril-
ative equilibria bifurcating from an equilibrium point. A example we show that aguilibrium point
in a Cny(krs, kr, kv, Kp) stratum has more than just ti@, relative equilibria predicted by Theoren7
bifurcating from it.

Letd : P — R be the functio(x) = || ®(x)||?, where|| - || is anSO(3)-invariant norm orxo(3)* (unique
up to scalar multiple). Beiné-invariant, the restriction af to a slice is independent of the choice of slice.
Under the splitting described above; Sx s0(3)* — R takes the formb(y, W) = |2, so that?¢ is of rank
3.

Proposition 3.8 Suppose a system of point vortices 8m&s a non-degenerate equilibrivx(so& = 0) of
typeCnv(krs, kr, kr, kp) with p= 0, and suppose furthermore that the (cubic) polynomiai in

det[d3(H — a)(x)] (3.4)

has precisely 2 distinct roots, Wheré denotes the second differential restricted to any slicéneogroup
orbit. Then for each of the types

1. Cnv(kRskaakR’akp) (m: 2)1
2. (n odd)Ch(Ks, ke ) with Ky = o1 (ke + k) + nkgy, Ke = ke + ke + kp (M= 2);
3. (n even)Ch(kg, ki) with Ky = 2 ke + Tkg + nkgy, ke = 2kg+ kp (M= 1);

4. (nevenCh(kg, kg) with ky = Skr+ ‘”;2> kg + kg, kg = 2kg +kp (M= 1);
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there exists > 0 and precisely m inequivalent relative equilibria of thgtéin® (1) for each p satisfying
0< |y <E.

Remark 3.9 That (3.4) is a cubic polynomial i follows from the fact that®q(x) is of rank 3. Without
the Cpy or similar symmetry this polynomial will generically haved&tinct roots, in which case there are
6 families of bifurcating relative equilibria. For exampfer the free rigid body the three roots will be the
inverses of the principal moments of inertia (up to a factepehding on the choice of norm en(3)*).
This occurs not only for equilibria with trivial symmetryubalso for those with symmetry contained in
Doh.

On the other hand, if the equilibrium has cubic symmetry( or II) then @.4) will only have a single
root. For example, this occurs for ti@,(R, p) equilibrium with 4 identical vortices, which in fact has
symmetryTq4(Vv). In this case one has to look at the higher order derivati¥és.oFinally, for C, or Cpy
symmetry and for a generic invariant Hamiltonian with theperty thatf = 0 andu = 0 at the relative
equilibrium, 3.4) will have precisely 2 roots. &

PROOF Let Sbhe any slice to the group orbit atand lety = ®~1(0)NS. ThenY ~ Py (the zero reduced
space) and since the equilibrium is non-degenerate, théctEs to'Y of the Hessian matrig®H of H is
non-degenerate. We can therefore use the quadraticd®ifho splitSas a produck=Y x so(3)*, in such
a manner thaﬂéH is block-diagonalized. Then by, Theorem 2.7], the diffeomorphisk arising from
the splitting lemma can be chosen to have linear paxterjual to the identity. Differentiating3(3) twice

atx shows that
2 0
déH (X) = |: OQ dzh(O)] )

so that
det[d3(H — ad)(x)] = 29" detQ det[d*(h— o) (0)] ,

whered is the norm functionu — ||u||2. By hypothesisQ is non-degenerate, so the genericity hypothesis
of the theorem is equivalent to
det[d?(h— o@)(0)] (3.5)

having precisely two roots.

As explained above, the relative equilibria neacorrespond to critical points df restricted to the
coadjoint orbits (sphereg),, which are the level sets @. The Cn, symmetry of the equilibrium means
thath and¢ areCpy-invariant functions. Recall that,, symmetry is dihedraD, symmetry in thex—y
plane inso(3)* ~ R3. On each spher@,, the fixed point set Fi§Cny; O,) consists of two points — the
poles aix =y = 0. These are therefore critical pointstgf:= H|O“ and, being of maximal symmetry type,

were predicted by Theoref7 above. Choosing coordinates so t@a{ acts as described afdx,y,z) =
x? 4+ y? 4 72, we can write the Taylor series at Olofo order 2 as

h(x,y,2) = a0 +y?) +bZ + f(x,y,2), (3.6)

where f is of order 3. The roots of3(5 are thena = a (double) anda = b (simple), so the genericity
hypothesis is simply that # b.

For each subgrou@ of Cny, the fixed point space F&n; O,) is a circle containing the two poles. if
is even there are 2 distinct inequivalent such circles,aiifith is odd there is only one (‘inequivalent’ under
symmetry operations), but the argument in each case is the.sa

Restrictingh to Fix(Ch; O,) gives a function on the circle, which has critical pointsatieof the poles,
and we wish to show that & # b it has two further critical points. We do this by a blowing-agument
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very similar to the one used ir8f]. Rotate thex—y plane so that the circle is given lyy= 0. Then on
Fix(Ch;s0(3)*) we have
h(x,z) = a +bZ + f(x,0,2),

with a # b. In polar coordinates, we can writér, 8) = r2(aco 8 + bsir? 8) +r3f(r,8), or
rizh(r,e) = acog 0+ bsirf8+rf(r,0),

wheref is a smooth function of 8. Note that forr £ 0 the critical points of the restrictions @y, of hand
of h/r? coincide. Differentiatindy with respect t® gives

10h . &

235 = (b—a)sin(26) +r f'(r,0),

wheref’ = af~/69. At r = 0 this has 4 non-degenerate zeros, so by the implicit fund¢tieorem and the
compactness of the circle, it also has 4 non-degenerate farsufficiently small values af o

Table5 lists thel™ (K, O, . .., k;Og) for which Theoren8.7and Propositior3.8give bifurcating relative
equilibria for eacH (k1 O1,. .., kgOq) strata withl" = Cy, Dpn, Tg, On andl,.

Stabilities of these bifurcating relative equilibria cdtea be determined with the help ¢f(, Theorem
2.8]. In particular, if the equilibrium isxtremal(for example ifQ is positive definite), then the bifurcating
relative equilibria for which the constructed functibis minimal, when restricted to the sphepg, is then
also extremal, and so Lyapounov stable. Note that in termtheofTaylor series3.6), if a < b then the
relative equilibria with symmetrZ,,, are of lower energy, and so (both) stable, whilb if a then at least
one of the bifurcating relative equilibria of tyfi&, is Lyapounov stable. This argument will be pursued in
the forthcoming papei3p].

4 Rings and Poles

In this section we describe some results that depend on filiexorm of the point vortex Hamiltonians
(2.2), rather than just on its symmetry properties. In particwa derive algebraic equations for relative
equilibria (Propositiord.3) and then use these to discuss relative equilibria whiclsisbof either one
(84.1.0) or two (&8.1.2 rings of identical vortices, possibly with extra ‘polardstices. In the two ring
case we show that the rings must be either ‘aligned’ or ‘stegj (Propositiont.6). In 84.2 we give an
existence and uniqueness resultéquilibria where all the vortices lie on a great circle.

4.1 Relative equilibria with C,, and C,,, symmetry

By Proposition3.6 any relative equilibrium which is not an equilibrium poinust lie in aCy,, Cpy, Cp, or
1 stratum ( > 1). In this section we will obtain some results on the relatquilibria in theC, andC,
strata.

A relative equilibrium lies in the closure of@, stratum if and only if the point vortices form a number,
k say, of ‘latitudinal’ regulan-rings, together with L or 2 polar vortices. We will assume that the rings lie
in planes perpendicular to tlzeaxis and so the poles lie on tleaxis. The angular velocity can therefore
be written ag0,0,&) and the centre of vorticity a®,0, ). LetA; denote the vorticity of the vortices in the
i-th ring andA,, andAs the polar vorticities. We will assume that theare all non-zero, but allow, andAs
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Equilibrium | Bifurcating relative equilibrig No. | Orbit relations

CnV CnV(kR57 kRa kR’a kp) 13 1
Ch(Ks, Kz ) nodd nn | ks = T8 (kg + ke ) + nkg,
ke = kr+ kg +kp
Ch(Kk,kE) neven n | kh= "2 ke + Dk + kg,
kg = 2kr+kp
Ch(kk.Kg) neven n | kh=Jke+ "2k + kg,
ke = 2k +kp
D Crv(Kp,. Ki, Ky K5 2 | kg, =2kp,+kee, Ky =2Kkp

Ky =2ka+ke, Ky = 2ke + Ko
Cav(Kk., Kk, Ks,K0) nodd n,n | Ks, = nke, + P58 (ke + ke

ke = nkee + (52 (e + ko)
k'/Q:kR—f—le—f—kp, k/p:kr'f‘kr’
Cav(Kk,, Ki, Ky . ki) neven n | kg =nkg,+ (”;? kr+ ke

k= 2kp+kp, Ky =2k
Cov(Kk,, Ki, Ky ki) neven n | kg =nkg,+ Skr+ (”gz)kRu

Ky = ke + Bl + 5 20k)

kg = 2kr + Kp, kp:2kr/

Ty Cav(Kg,. K Ky KD) 4,4 [ kg =4kptke, K=k
kg = 2kg +ke+ky, Ky =ke
Cov(Kp,. Kk, iz, Kp) 6 | kp, = ke+2ke +6kg, ki =2ke
k"?:k"?:kE+kv
@h C4V(k&57k&’k/ ’k/p) 6 k&S:6kR+kE+2kE/, k/p=2kv

kg = 4ke + 2ke + ky
Ky = 2kg + ke + 2kt

Cav(kio ke ke Kp) 8 | Ky =Bkntdke +2ke ke, Ky=2Ki
k= kiy = 2Ker + ke + ks + ky
Cov(kr,: kr, ke Kp) 12 | K = 12g+4kg +5ker, Ky =2ke

kg = 4ke + ke + 2ky,
ke, = 2ker + 2Ky + ky

Ih Cov(Kr,: kr: kg Kp) 12 | kg, = 12Kr+4Ke +4ker + ke, Ky =2ky
k{;:k&, = 2Ke + 2kgs + 2ke + 2Kt + ky
Cav(kry Kr: K+ Kp) 20 | Ks, = 20Kz + 8Ke + 8k + A+ 2k
K= 2Ky
ki = Ky = 2kg + 2Kkgr + ke + Kt + 2ky
CZV(k;-'Qsa k‘—'{a K 7k/p) 30 k&s = 30KR—|— 13kE—|—

+13Kgs + Bke+ 3Kkt + ky
ki = kg = 2Kg + ke + 2Kt + 2Ky, ki = 2ke

Table 5: Types of relative equilibria bifurcating from eljfuiia with p= 0, as given by Theorerd.7 and
Proposition3.8 In the first column, the orbit type is understood, for exaa@y = Cnv(kr; Kr, kg, Kp)-



30 C.C. Lim, J.A. Montaldi and R.M. Roberts

to be zero. Denote the co-latitude of thth ring by 6;. Fix a particular vortex in each ring and denote its
longitude by@. Let@j = @ — @; (which is well-defined modulo72/n). Note that

k
U= An—As+ Z nAj cosB;. (4.1)
=1

Lemma 4.1 The Hamiltonian 2.2) for these configurations is given by:

H=-Anslog2— 5 (AHi +NAGHT +MAHY) — N jHj (4.2)
1<i<k 1<i<j<k
where
Hi = nlogn—in(n—1)log2+ n(n— 1)logsiné;
Hi = nlog(1-cosH))
H; = nlog(1+ cosh;)
ﬁij = nIog(C(ei,ej)+D(ei,9,-)cos(n(nj))
and
1 H H n
D(6i,8)) = —F(smeismej) (4.3)
C(6i,8)) = 1 (1—coseicosej—sineisinejcosm—n>
21dazn n
+} I (1—coseicosej—sineisinejcosw). (4.4)
2 n
1<a<n

PROOF  This consists of calculations, all of which are straightfard, except possibly the expression for
Hi;. For this we havédj; = logR; where

Rj = |'| (1—sin6i sing; cos(cnj +2(0‘—B)%[) — COs; COSBJ)-

1<a,p<n

The right hand side of this equation fBj is a trigonometric polynomial of degreein @;, and so can be
written as a linear combination of sim; and cogq; for £ = 1...n, the coefficients being trigonometric
polynomials in6; and8;. However it also follows from the formula th&; must be invariant under the
translationg;j — @; + 2r/n and the reflectio; — —@;. ThusRj = C+ Dcosngj. Substitutingp; =0
andri/n, respectively, in this expression gives

C+D = (1—cosei cosdj — sing; sind; cos@) (4.5)
1<o<n n

C-D = |_| (1— cos; coshj — sing; sing; cosw> (4.6)
1<a<n n

The expression fo€ follows immediately, while that fob follows from Lemma4.2 below, after taking
(sinG; sind;)" as a factor and substituting= (1 — cosB; cosBj)/(sin; sinB;). O
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Lemma 4.2 Let

=}

Di(x) = (x—cog2amy/n))
a=1
Da(x) = - (x—cog(2a+ 1)1/n)).
a=1
Then 1
D1(x) —D2(x) = “onz

PROOF Letx = cosb. If the equality can be established for= cosb (i.e.x € [—1,1]) the result follows,
for the expressiond;(x) are polynomials irx. We claim that

cognB)—1
on-1 ’

cognb) +1

Di(cosB) = ST

Dy(cosh) =
from which the result then follows.
To prove the claim, first note that

qﬁl (cose—cos(z%T)) = 2“0[|2|1 [sin (a?nng) sin (a?n_g)} :

and this expression is clear(gm/n)-periodic in6. Consequently, writin@1(cos8) as a Fourier polynomial
gives

D1(cosB) = ap+ acognb) + bsin(nd).
The parity of the expression shows that 0 and the fact that it vanishes fér= 2a1/n shows that
ap+a= 0. The expansion of the produdf (cosh) is a polynomial in co8 of degreen, whose coefficient

of cod'8 is 1. The expansion of c6sd) in terms of powers of cd®) has leading term™*cod'8, so that
a comparison of the coefficients shows that 21" = —ay. A similar argument works foby(cosB). O

Proposition 4.3 A system of k parallel regular n-rings is a relative equililon with angular velocity, if
and only if the co-latitude8; and longitudesp satisfy the equations

Aj(B,9A; = 0 (4.7)

=~ }[‘Mz—

sing; sing;

Bij(6,9A; = Esmei_)\”l—cosei+ 1+ cosh;

(4.8)

Il
.

fori=1...k, where

Ai6,9 = 0 |
Ao = %a‘%j - _C(Gi,ggi’gj()eilg?)m;omcnj 7
Bj(6,9) — 10H; % (61,8)) + 55.(61,8) cosng;

n a6, C(6i,8;) +D(6;,8;) cosng; A
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PrRoOOF The principle of symmetric criticality implies that the aéive equilibria of this form are the
solutions of the equations

OH o0 oH 0P

% o oa o o
where
k
O = Eu=¢ (An—)\5+ Z n)\jcoﬁ) .
=1
A straightforward computation gives the equations in tlageshent of the proposition. ]
Note that
C(6;,6)) = C(8:,6;) D(6;,6i) = D(6:,8;)
and so

Aji(6,9) = —Aij(6,9)
while B;i (6, @) is equal toB;;j (6, @) with 6; and®; interchanged.

4.1.1 Asingle ring

A configuration consisting of a single regutaring of identical vortices together witky = 0,1 or 2 ‘polar’
vortices lies in the stratur@ny(R, kpp).

Proposition 4.4 A configuration consisting of a single ring of n vortices witbrticity A £ 0 and polar
vortices with vorticitiesh\y and As is always a relative equilibrium. The angular velocity anehtre of
vorticity of a ring with co-latituded are given by

& = Si—r:]LZe{(n—l))\cose+[()\n—)\s)—i—()\n—i—)\s)cose]} (4.9)
NA COSB + Ap — As. (4.10)

U

A glance at these formulae shows that in general equili@iaaccur foru # 0 and non-equilibrium rel-
ative equilibria forp = 0. This is not the case for Hamiltonian systems of the formekic + potential’.

For systems witt8O(3) symmetry, (relative) equilibria with at most one pfand& vanishing are called
‘transversal’ in §4].

PROOF The expression fouis a special case of equations ). Sincek = 1 andA;; = 0 equation4.7)
is trivially satisfied while ¢.8) can be solved fok. |

Corollary 4.5 For a system of n vortices with vorticify, together with up to two further vortices with
vorticitiesAp, andAg:

1. There exists a uniquen(R, kpp) relative equilibrium for each p withu— (An —As)| < njA|;

2. TheCn(R kpp) equilibria (§ = 0) satisfy p= 0 if and only if eitherAn = As or A = Ap +As.
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Dritschel and Polvani{€] consider the stability of a single ring of identical vod&without polar vortices.
They show that the rin@n(R) is linearly stablewhen the co-latitud® satisfies:

n | range of stability]| n | range of stability|
3 all @ 4] cos¥®>1/3
5| cog6>1/2 ||6| cog0>4/5

while forn > 6 the ring is never stable. In a forthcoming pag@f ive show that the linearly stable rings are
in fact Lyapounov stable and we determine the stabilitiestbér symmetric relative equilibria, including
those of typeCny(R, p) andCny(R, 2p).

4.1.2 Two rings

Theorem 4.6 A relative equilibrium consisting of two regular n-ringsah consisting of identical vortices
with non-zero vorticities, together with, k= 0,1 or 2 ‘polar’ vortices, must lie in the closure of one of the
strataCny(2R kpp) or Cnv(R, R, kpp). If either& # 0 or p# 0 then it must lie strictly in one these strata.

Thus the two rings must be ‘aligned’ or ‘staggered’. Thisrisamalogue of a result for systems of vortices
on the plane obtained by Are?]|

ProoF If k=2 andA; andA; are non-zero, then equatiors?) reduce to

D(01,02) sinn@; 2 B
(61,62) + D(61,62) cosngrz

A12(01,02,910) = — c

SinceD(81,67) is never zero this holds if and only @2 is an integer multiple oft/n. Even multiples
give aligned rings, and hence relative equilibria in thesate ofCy\ (2R, kpp), while odd multiples give
staggered rings in the closure®fy(R, R, kpp).

All the strata in the frontiers o€n (2R, kpp) andCny(R, R, kyp) are zero-momentum strata. It therefore
follows from Proposition®.14and 3.6 that if eitherg £ 0 or L # 0 then the relative equilibrium must be
strictly in theCpy(2R, kpp) andCny(R, R, kpp) strata themselves. ]

Corollary 4.7 Strata of type€n (2R, kpp), Cnv(Rs, kpp) andDn (R, kpp) cannot contain relative equilibria.
PROOF Points in the strat€n (2R, kpp) andCny(Rs, kpp) andDn(R, £p) consist of two rings ankl, poles
(wherekp = 27 in the case oDy). By Theoremt.6relative equilibria of this form must lie in the closure of
Cnv(2R kpp) or Cny(R, R, kpp). However the intersections of these closures with the afergioned strata
are empty, giving the result. ]

For systems of two aligned or staggered rings the equatibis4(8) reduce to

cosH; B . sinBy sinB
(n—1) Sindy A1+ B12(01,02) A2 = ESInel—Anl_coﬁl + Sl—|—00£1 (4.12)
cos, B . sinB, sinBy
B21(01,602) )\1+(n—1) Sing, A = ESInez—)\nl_coﬁz + 51+CO£2 (4.12)

whereBi2(01,0;) = B,1(82,01) is the derivative of lo¢gC(61,6,)+D(61,62)) and logC(61,62) — D(61,67))
with respect tdB; in the aligned and staggered cases respectively. Expnass&oC + D andC — D are
given in equations4.5, 4.6). The next two paragraphs contain brief discussions of wiegknow about the
solutions to these equations in the aligned and staggeses caspectively.
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Aligned rings The strataCny(2R, kpp) have non-empty intersections with 1 (p) if and only if
An—=As— (A1 +[A2]) < B < An—As+n(A1|+]A2]). (4.13)

If A1 # A2 the quotients of these intersectionsmé each have two components, corresponding respec-
tively to 81 < 82 andB1 > 0,. If A1 = A, then the extra permutational symmetries result in condecte
guotient strata.
__ Ifall the vorticities are of the the same sign then Theoemimplies that there must be at least two
G orbits of relative equilibria for each allowed value pfvhenA; £ A2, and one whe\; = Ap. As |
approaches the upper and lower limits both rings must cgeverthe same pole. Numerical investigations
of equations4.11, 4.12 for a number of cases suggest that the numb& aibits of relative equilibria that
occur is in fact this minimum. It may be possible to prove thysa convexity argument similar to that in
Theorem4.8 below. However we haven't attempted to do this. ExamplelsidectheC,,(2R), Coy(2R, p),
C2v(2R,2p) andC3y(2R) relative equilibria folN = 4,5 and 6 identical vortices discussed i §
Conversely, if the vortices are not all of the same sign, weaibhave an existence theorem and the
analysis of specific examples shows that there can be vafyefoowhich C(2R kpp) has a non-empty
intersection withd®—(p), but this intersection does not contain any relative eudi Numerical results
suggest that relative equilibria do exist fonear to the upper and lower limits given b%.13. As these
limits are approached the rings must converge to opposlspBurther investigations of equatiods1(l,
4.12 are needed to determine the precise rangevaiues for which relative equilibria occur.

Staggered rings The strateCny(R, R, kpp) also have non-empty intersections with1(p) if and only if

u satisfies 4.13. However in this case the quotients are always connect@d@nwvhen\; andA; have the
same sign, TheorefM5only implies the existence of a singBorbit of relative equilibria for each allowed
value of. Moreover these relative equilibria are only guaranteelietin the closureof Cny(R, R, kpp).

If A1 = A2 then this closure contairGyn(R, kpp), ie single ring configurations with; = 6,. This stratum
must contain a relative equilibrium and so there may not heimiC, (R, R, kyp) itself. If A1 # A then
Cnv(R, R ,kpp) is minimal and so will contain relative equilibria.

Numerical investigations suggest thahif = A, and there are no polar vortices then in addition to the
single ring6; = 6, relative equilibria there is another family wifh # 6, which exists foru € (— o, Uo)
for some O< [p < n(|A1] + |A2]). As papproachespg these relative equilibria bifurcate from the single
2n-ring relative equilibria. Specific examples include @(R) to C,,(R,R) pitchfork bifurcation in &.2
and theCeg,(R) to C3y(R, R) bifurcation in &.4.

This behaviour persists in the presence of sufficiently spadar vorticities, as shown by the behaviour
of the Cy(R,R, p) branch in .3 However as the polar vorticities increase the interval ehlues for
which theC (R R, kpp) relative equilibria exist shrinks and eventually disappedhus it appears that
polar vorticity tends to suppress staggered pairs of rings.

An idea of the behaviour that is seen when# A,, but both have the same sign, can be seen by con-
sidering small perturbations from tidA@ = A, case. If the polar vorticities are not too large then perdrb
pitchfork bifurcation will appear and there must be a ranigevalues for which there are multiple branches
of relative equilibria of typeC(R,R . kpp). The end points of these ranges will be given by fold bifurca-
tions. As the polar vorticities increase the branch wilhigghten out until only a unique relative equilibrium
is left for each value oft allowed by ¢.13.

The case of two staggered rings with vorticities of opposites is even more complex. A = —A2
andA, = —Agthen it is easily seen from equations11, 4.12) that there is a branch of relative equilibria
with 81 = 11— 6, which exists throughout the whole rangeofalues given by4.13. Numerical evidence
suggests that in addition, if the polar vorticities are rat karge, there is a pair of pitchfork bifurcations
from this branch to families of staggered relative equiditwith 8; and6, closer to the diagon#; = 6,.
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At higher polar vorticities one of these pitchfork bifuricatts disappears and the other produces an almost
vertical branch of relative equilibria along which the twogs converge to the same pole. Perturbing away
from Ay = —A2, Ay = —Ag yields fold bifurcations coming from the perturbed pitctif® and also values

of p for which no staggered relative equilibria exist. A moreadet! analysis of equationd.(L1, 4.12) is
needed to understand these better.

4.2 Equatorial equilibria

In this section, we show that provided all the vortices hdnegame sign vorticity, then for each cyclic
ordering of the vortices there is a unique equilibrium camfigion with all vortices lying on the equator.
The uniqueness is, of course, modulo rotations. The fatstieh equilibria exist is an instance of Theorem
3.2(2), since the subset of phase space where all vortices lith@mrequator is the fixed point stratum
Ch(NE). The uniqueness depends on a convexity argument. A singlardtrmay be true for relative
equilibria, but we do not know.

The case when all the vorticities are equal suggests thall for3 these configurations are always
linearly unstable46, 32].

Theorem 4.8 Let the N vortices be of positive vorticity. Then there is &ua equilibrium pointx =
(X1,...,%y) such that all the xlie on the equator, x= (1,0,0) and the point{xi,...,xy} appear in cyclic
order around the equator.

PROOF Inthe notation of Tabl@, all vortices lying on a great circle corresponds to a paiqthiase space
of type Ch(NE). If, as in the statement of the theorem, we choose the gned¢ ¢o be the equator, then
the set of such configurations is parametrizeddy ..., ¢v), with eachg; € [0,21] and@ # @;. We are
therefore looking for critical points of the restrictionthie Hamiltonian to this stratum. Note that fixing the
great circle to be the equator restricts the orbits of3¢3) action toSO(2) orbits.

Since all the points lie on the equator, we have

N
H(@w,....,on) = = Nidjlog(1—cod@ — ¢))).

i<]

The second derivative of this function is given by

Ai
. Ji‘éjl_cos((ﬂ_(pj)
A Aij e
Hij = “1-coda—q) (i #1),

whereH;; = a(‘;z—l';(m. Note thatHj; > 0 andH;; < O (fori # j). Moreover the sum of every row of the Hessian

matrix d?H = (Hij) is zero (a consequence of the rotational symmetry) so ibvialfrom Gerschgorin’s
theorem that all the eigenvalues are positive or zero.

Furthermore, zero is an eigenvalue of multiplicity prelyise For suppose € RN is an eigenvector in
the kernel ofd?H andi is such that (after possibly rescaliny

u=1 and |uj| <1, Vj.
Then calculating thé" row of the equation?Hu = 0 gives

Hii + ZHijuj = 0,
JAi
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which implies that thes; = 1 too. Thusu = (1,1,...,1).

It follows that when restricted to any transversal to 8@ 2)-orbit, for examplep; = 0, the Hessian is
a locally convex function. In each connected component@ftithmain of definition, the function therefore
has precisely one critical point, which is in fact a local miom. The different connected components
correspond to the different cyclic orderings of the voice o

5 Examples

In this section, we consider the existence of symmetridiveaquilibria in the special casesNfidentical
vortices, withN = 3,4,5 and 6. Without loss of generality we suppadse=1forj=1,...,N. ForN =3,
the system is a special case of that studied by Kidambi anddte{t8] and by Pekarsky and Marsden
[45], whose results show that the relative equilibria we givioweare the only ones. In the other cases,
results due to Kirwan43] on the topology of the reduced phase spaces show that thgveskquilibria
listed below do not satisfy the Morse inequalities, so thaté must exist other relative equilibria.

Summary of non-existence results The only general non-existence result we have which is Vafiall
N is Corollary4.7. This implies that there are no relative equilibria wéhsymmetry typesCy (2R, ¢p),
Cv(Rs,£p), or Dn(R,¢p). In [18] it is shown that the only relative equilibria fd¢ = 3 identical vortices
are those of type€s,(R) andCyy(R, p). Further results can be obtained by direct case-by-cas®aly
computation. For example, fdt = 4 it is an easy computation in the 1-dimensional fixed poiatsgorre-
sponding td2n(R) to show that the only critical points are those with symme&ty(r). Consequently there
are no equilibria with symmetrp,,(R), and no relative equilibria either, &n(R) is a zero-momentum
stratum by Propositio.6. Similar arguments apply to strata of tygés,(R, R, 2p) (with N = 6)

Description of tables and figures Most of the results depicted in the tables and figures belewhiained
algebraically, by solving the equations for relative edpui. However, for strata of dimension greater than
2, when the algebraic manipulations are not feasible, wenuseerical methods with MPLE. Colour pic-
tures and some of the Maple files are available on the web, at

http://ww. inln.cnrs.fr/~nontal di / Research/ Vortices

The column headethultiplicity in the tables refers to the number of inequivalent relatiyeiléoria that
exist in a given stratum for each valuejof= |®|.

5.1 3identical vortices

ForN = 3 there is a unique equilibrium, which has symm@&gy(r) (an equilateral triangle on the equator),
and forp € (0,3) there are relative equilibria with symmetries as follows:

Symmetry type Domain of existence Limitaspu— 0 | Multiplicity
Ca(R) He (0,3) Dan(r) unique
CZV(R7 p) pe (Oa 3) D3h(r) two if He (Oa 1)

Recall that configurations of point vortices of ty@ey(R) consist of 3 points arranged in an equilateral
triangle around a fixed latitude. The motion of such a redagiguilibrium is just rigid rotation around that
latitude. The configuratio@,(R, p) consists of a polar vortex, and a pair (a “2-ring”) on a fixetitlae
and on opposite longitudes. The motion is rigid rotationuwtioe axis through the polar vortex. Note that
if the co-latitude i then|®d| = |1+ 2coH)|, so that for each valuge (0,1) of || there are two possible
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@) @ ()

u

Figure 6: The energy momentum diagram for all relative élopid for 3 identical vortices. The equilibrium
point E is an equilateral triangle of tyfdizsy(r). The relative equilibria are of types (&py(R, p) and (b)

latitudes, corresponding to a long or acute isoscelesgiéaand a flat, or obtuse isosceles triangle. This
explains the multiplicity 2 given in the fourth column.

5.2 4 identical vortices

ForN = 4 there are two equilibria. For one the vortices form a sqoare equator, with symmetBn(r),
and for the other they form the vertices of a tetrahedrorh symmetryT4(v). Both of these have centre
of vorticity ® = 0. Forp € (0,4) there are relative equilibria witlb| = p of types given in the following
table:

Symmetry type Domain of existence Limitaspu— 0| Multiplicity
Ca(R) He (0,4) Dan(r) unique
Cav(R p) ue (0,4) Ta(V) two if ue (0,2)
Ca(R 2p) pe (0,2) Dan(r) unique
Ca(2R) pe (0,4) Dan(r) unique
Cx(RR) ue (0,4v3/3) Ta(V) unique

Recall thatC,,(R,2p) consists of two polar vortices with two more on the sameudgtand opposite
longitudesCay(2R) consists of two aligned 2-rings arth,(R R') consists of two staggered 2-rings. The
non-uniqueness of th€sy(R, p) relative equilibria forp € (0,2) is due to the fact that ‘long’ and ‘flat’
configurations may have the same valug¢df

The first four entries in the table are minin@istrata (see Tabl®), while the occurrence of the last one
is predicted by studying bifurcations from tfig(v) equilibrium, as in 8.3 The precise domain of exis-
tence is found by solving the equation for relative equitilwithin the two-dimensional stratu@p, (R, R).
This computation also shows thatjas- 4/3/3, the relative equilibria of typ€,, (R, R') approach those of
type C4(R). This value ofuis the same as that for which ti&y (R, p) relative equilibrium loses stability,
as described in&81.1
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@ (b) (¢) (b) (d)

2 1l 4
Figure 7: The energy momentum diagram for the symmetritivelaquilibria for 4 identical vortices. The

equilibrium points S and T are squares and tetrahedra o§®pgr) andTq(v), respectively. The relative
equilibria are of types (al2y(R,2p), (b) Cay(R, p), (c) Cav(2R), (d) Cay(R) and (e)Co (R, R).

An ‘exchange of stability’ argument shows that 1ig,(R, R) relative equilibria are stable when they
bifurcate from theC4y(R) branch. However a stability analysis of the bifurcatiorsrirtheTq(v) equilib-
rium shows that they are unstable near that point. ConwetkelCsy(R, p) relative equilibria are global
minima of the Hamiltonian, and hence stable, when they béfta from thél'4(v) equilibrium, but this prop-
erty is lost agtincreases. This suggests that there are bifurcations fatimtheCy(R,R) andCsy (R, p)
branches that are not shown in the bifurcation diagram. Aagat the isotropy subgroup lattice in figlre
shows that there is a stratum of tyBg(R, 2E) which specializes to bot@,,(R,R') andC3,(R, p) and we
conjecture that the ‘missing’ bifurcating relative eqpila are of this type.

5.3 5identical vortices

For N = 5 there are three types of symmetric equilibrium: a reguéragon on the equat®s(r), a
non-equatorial square with a pdlay (R, p) and an equatorial equilateral triangle with two pdleg(r, p).
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Figure 8: The energy momentum diagram for the symmetritivelaquilibria for 5 identical vortices. The
equilibrium points are: P - a pentagon of tyPe,(r), S - a square and pole of ty@y, (R p) and E - an
equilateral triangle and two poles of typen(r, p). The relative equilibria are of types (& (2R, p), (b)
Cn(R,3E), (¢) Cav(R.2p), (d) Cav(R ), (€) Cn(2R,E), (f) C5y(R) and (9)C(R R, p) .

Forp e (0,5) there are symmetric relative equilibria wiih| = p of types given in the following table:

Symmetry typel Domain of existence Limitasp— 0 multiplicity
Csv(R) He (0,5) Dsn(r) unique
Cav(R p) He (0,5) Caw(Rp) | twoifpe (0,3)
Cav(R 2p) He (0,3) Dan(r, p) unique
Cx(2R, p) pe (0,5) Dsh(r) two if pe (0,3)
Cx(RR,p) pe (0,1) Dazn(r, p) two
Cn(2RE) pe (0,p) Cw(R p) unique
Cnh(R,3E) pe (0,u2) Caw(R,p) unique

Both branches of th€,(R,R, p) family of relative equilibria bifurcate from the respeaibranches of
C4V(R7 p) atp= 1

Numerical evidence (using MPLE) suggests that; = 5 andp, = 3 and that both th€,(2R,E) and
Ch(R,3E) relative equilibria persist until they approach the diagonlt also appears that the latter is
asymptotic to theCs, (R, 2p) family.
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5.4 6 identical vortices

For N = 6 there are four types of symmetric equilibrium: the vesioé an octahedrofd,(v), a regular
hexagon on the equatdrg,(r), a non-equatorial pentagon with a p&e,(R, p), and a ‘triangular prism’
Dsn(R). Foru e (0,6) there are relative equilibria witl| = p of types given in the following table:

Symmetry type Domain of existence Limitaspu— 0| Multiplicity
Cev(R) He (0,6) Den(r) unique
Csv(R p) He (0,6) Cov(Rp) | twoifpe (0,4)
Caw(R 2p) pe (0,4) On(v) unique
Cav(2R) ue (0,6) Dan(R) unique
Cx(3R) ue (0,6) Den(r) unique
Ca(2RR) pe (0,6) On(v) unique
Cx(2R,2p) ue (0,4) Den(r) unique
Cx(RR) ue (0,2v/5/5) On(v) unique
Ca(Rs,R) ue (0, ) Dan(R) two if psmall
Ch(2R, 2E) He (0,pn) Csv(R.P) two if psmall

As i — 21/5/5 theCa(R,R) family approaches th€g,(R) family.

The bifurcation result in Propositio®.8 shows that there are 2 families of relative equilibria ofayp
Ch(2R, E) bifurcating from theCsy (R, p) equilibrium aty = 0, whence the multiplicity 2 given in the table.
Numerical evidence suggests that one of these familiessdrisall € (0,6), so thaty, = 6, and the other
exists foru € (0,4), and ag1 — 4 one vortex approaches one pole and the remaining 5 appttoaciher
pole.

Again the existence of thézy(Rs, R) branch follows from the bifurcation result in Propositi®s3, this
time applied to thé®3,(R) equilibrium. We have not attempted to follow this branch lain an estimate
for poy.

It might be expected that fdl = 6 there are relative equilibria of typ@(R,R,2p), but in fact a
simple algebraic calculation shows there are none.

We have not attempted to produce even an incomplete bifarcdtagram for this case!

Appendix: The finite subgroups of O(3) and their orbit types
The finite subgroups of SA3)

Cn Thisis the cyclic group of orderacting by rotations about an axisR? which we will take to be the
z-axis. There are two types of orbit for the restriction obthction taS?, each of the two fixed points at the
poles (typep) and any horizontal regulargon (typeR). These regulan-gons we calh-rings.

D, Thisis the dihedral group of ordenZonsisting of the cyclic subgroup, described above together
with n rotations byrt about axes which lie in théx,y)-plane. The orbits ir§* are the two poles, forming
a single orbit p), an ‘equatorial’ regulan-gon in the(x,y) plane ¢), its dual (alsa’) and the single orbits
formed by any two regulam-gons placed at opposite latitudéd.(

T This is the group of orientation preserving symmetries oégutar tetrahedron iR3. It has three
different types of orbit irS?. One ) consists of the two orbits given by the set of vertices oftétehedron
and those of the dual tetrahedron, or equivalently the midip of the faces of the original tetrahedron.
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The next typed) is the single orbit of the mid-points of the edges of theate¢dron. Finally there are the
regular orbits R) given by generic points i62.

0,1 O s the group of orientation preserving symmetries of thaloetiron whildl is the group of orien-
tation preserving symmetries of the icosahedron. Eachmhas four orbit types, those corresponding to
the vertices of the polyhedrom)( those corresponding to the mid-points of its facBs ¢r equivalently the
vertices of the dual cube or dodecahedron, those given hyithgoints of the edges of the polyhedrai, (
and the regular orbit$R).

The other finite subgroups of O(3)

Cn The dihedral group of ordemXonsisting ofC,, together with reflections in equally angled planes
containing the rotation axis @@, which we continue to take as tzeaxis. The orbits for the action of this
group onS? are the poles (two single point orbits), regular horizontgbns and their duals (separate orbits
with n points in each), and generic orbits, taking the form of hamtal semi-regulari2gons. Note that
there is a difference betweereven and odd: the symmetry groups of a regutagon and its dual always
coincide, however their actions are not the same on the s&rti€es ifn is even, while ifn is odd they do
coincide (up to relabelling).

Cnh  The cyclic group of orderr2generated by the elements©f together with reflection in théx,y)-
plane. The possible orbits are the single orbit formed bynleepoles, equatorial regulargons, and pairs
of vertically alignedn-gons at opposite latitudes.

Dnh  The dihedral group of orderndobtained by combinin@n, and Cpp. It also contains th&O(3)
subgroupD,,. The orbits inS? are the two poles (forming a single orbit), an ‘equatoriefjularn-gon in
the (x,y) plane and its dual (two separate orbits), vertically al@ypairs ofn-gons at opposite latitudes,
equatorial semi-regulam2gons, and vertically aligned pairs of semi-regulargbns at opposite latitudes.

Dng  The group of order A generated by the dihedral grolly, together withn reflections in vertical
planes bisecting the 2-fold rotation axes@{. The orbits inS* are the two poles (a single orbit), an
equatorial regularr2gon, staggered pairs of regulaigons, and staggered pairs of semi-regulagans.
Here ‘staggered’ means that thegons or 2-gons are at opposite latitudes and offsetrby relative to
each other. In this case the staggered configurations ia@qgdatorial configurations as special cases.

Syn The index two subgroup @@, generated by rotation big/n composed with reflection in th, y)-
plane. Its orbits consist of the two poles, forming a singlgitpand vertically staggered pairs of regular
n-gons at opposite latitudes.

Cn The order two group generated by reflection in tkg)-plane. Orbits can consist of either a single
pointin the fixed point set (equator), or a pair of points amgame longitude and at opposite latitudes.

Ci The order two group generated by the antipodal ma§f oft acts freely, so every orbit consists of two
antipodal points.
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Tq The group of all rotational and reflectional symmetries oéguiar tetrahedron. The orbits & are

the vertices of the tetrahedron or its dual (two orbits wifioéhts in each), the mid-points of the tetrahedron
(forming the vertices of an octahedron), the orbits gererlly a generic point on an edge of a tetrahedron
(12 points per orbit), and reguldy orbits.

Ty, The group generated iy and the antipodal map d#. It contains reflections in 3 orthogonal planes
which we may take to be the coordinate planes. We call thesettions of the coordinate planes with
& ‘equators’. The points where the coordinate axes nS8eaire then the mid-points of the edges of a
tetrahedron and also the mid-points of the edges of its dite. orbits ofT},, on S are the set of vertices
of the tetrahedron and its dual (a single orbit with 8 points set of mid-points of the edges of the
tetrahedron, orbits of generic points in equators (12 ggiet orbit), and reguldlry, orbits.

On The group of all rotational and reflectional symmetries adgular octahedron. There are six different
orbit types for the action 08?: the vertices of the octahedron, the mid-points of the fattesmid-points
of the edges, orbits of generic points on face-bisectotstof generic points on edges, and regular
orbits.

I, The group of all rotational and reflectional symmetries af@uiar icosahedron. There are five different
orbit types: the vertices of the icosahedron, the mid-oifithe faces, the mid-points of the edges, orbits
of generic points on edges, and regdlaorbits.
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