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STABILITY ANALYSIS OF ALGORITHMS FOR SOLVING CONFLUENT
VANDERMONDE-LIKE SYSTEMS*

NICHOLAS J. HIGHAMY}

Abstract. A confluent Vandermonde-like matrix P(ay, oy, -+ , ) is a generalisation of the confluent
Vandermonde matrix in which the monomials are replaced by arbitrary polynomials. For the case where the
polynomials satisfy a three-term recurrence relation algorithms for solving the systems Px = b and P7a = f in
O(n?) operations are derived. Forward and backward error analyses that provide bounds for the relative error
and the residual of the computed solution are given. The bounds reveal a rich variety of problem-dependent
phenomena, including both good and bad stability properties and the possibility of extremely accurate solutions.
To combat potential instability, a method is derived for computing a “stable” ordering of the points «;; it
mimics the interchanges performed by Gaussian elimination with partial pivoting, using only O(n?) operations.
The results of extensive numerical tests are summarised, and recommendations are given for how to use the
fast algorithms to solve Vandermonde-like systems in a stable manner.

Key words. Vandermonde matrix, orthogonal polynomials, Hermite interpolation, Clenshaw recurrence,
forward error analysis, backward error analysis, stability, iterative refinement
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1. Introduction. Let {pi(2)}%-o be a set of polynomials, where py is of degree k,

and let «g, o, - -+, o, be real scalars, ordered so that equal points are contiguous,
that is,
(11) a; = Qj (l<]) = 0T+ T T Q.

We define the confluent Vandermonde-like matrix
P=P(ag, a1, "+ o) = [do(@0), @1 (@), -+, gu( ) |ERF DX 4D,

where the vectors g;(¢) are defined recursively by

[po(1), pi(1), -+, Pa()] ifj=00r # a;1,

4G()=14 4 .
Z q;-1(1), otherwise.

In the case of the monomials, p,(¢) = t¥, this definition yields the well-known confluent
Vandermonde matrix [9], [4]. When the points «; are distinct we can write P =
(pi(a))? -0, and P is referred to as a nonconfluent Vandermonde-like matrix [12]. For
all polynomials and points, P is nonsingular; this follows from the derivation of the
algorithms in § 2.

Various applications give rise to confluent or nonconfluent Vandermonde or Van-
dermonde-like systems

(1.2) Px=b (primal)
and
(1.3) PTa=f (dual).

* Received by the editors December 7, 1987; accepted for publication (in revised form) March 22, 1989.
1 Department of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
(NA.NHIGHAM@NA-NET.STANFORD.EDU ).
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24 NICHOLAS J. HIGHAM

Three examples are the construction of quadrature formulae [2], [14], [15], rational
Chebyshev approximation [1], and the approximation of linear functionals [3], [22].

For the monomials, with distinct points o, efficient algorithms for solving the primal
and dual Vandermonde systems are given in [ 5]. These algorithms have been generalised
in two ways: in [4] they are extended to confluent Vandermonde matrices, and in [12]
they are extended to nonconfluent Vandermonde-like matrices, under the assumption
that the polynomials p, () satisfy a three-term recurrence relation. In § 2 we blend these
two extensions, obtaining algorithms for solving (1.2) and (1.3), which include those in
[51, 4], [12] as special cases. We also show how to compute the residual vector of the
dual system efficiently using a generalisation of the Clenshaw recurrence.

In § 3 we present an error analysis of the algorithms of § 2. The analysis provides
bounds for both the forward error and the residual of the computed solutions. It makes
no assumptions about the ordering or signs of the points «;, and thus extends the error
analysis in [11].

To interpret the analysis we compare the error bounds with appropriate “ideal”
bounds. This leads, in § 4, to pleasing stability results for certain classes of problem, but
also reveals grave instabilities in some other cases. The instabilities can be interpreted as
indicating that the natural, increasing ordering of the points can be a poor one. In § 5
we derive a technique for computing a more generally appropriate ordering. The method
is based on a connection derived between the stability of the fast algorithms and the
stability of Gaussian elimination. As a means for restoring stability, the re-ordering ap-
proach has several advantages over iterative refinement in single precision, which was
used in [12] and [21].

Numerical experiments are presented in § 6. Finally, in § 7 we offer recommendations
on the use of the fast algorithms for solving Vandermonde-like systems in a stable manner.

2. Algorithms. Assume that the polynomials py(¢) satisfy the three-term recur-
rence relation

(2.1a) Di+1(1)=0,(t—B)p{(t) —v;pj-1(1), JZ1,
with
(2.1b) Do()=1, D1(8)=00(t— Bo)po(t),

where 0; # 0 for all j. Algorithms for solving the systems (1.2) and (1.3) can be derived
by using a combination of the techniques in [4] and [12]. Denote by r(i) 0 the smallest

integer for which o; = o;—y = - -+ = a,(;). Considering, first, the dual system (1.3), we
note that
(2.2) o()= 2 a;pi(1)
i=0
satisfies

D ()= £, 0=i=n.

Thus ¢ is a Hermite interpolating polynomial for the data { «;, f;}, and our task is to
obtain its representation in terms of the basis { p;(¢)}7-o. As a first step, following [4],
we construct the divided difference form of ¢:

n i—1
(2.3) o()=2 a [ (1—a).
i=0

j=0
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The (confluent) divided differences ¢; = f[ay, ay, -+ * , @;] may be generated using the
recurrence relation [4], [20, p. 55]
(2.4)
f[aj~k, ,aj]—f[aj—k—x, ,Olj—ll , aﬁéaj—k—l,
O~ O — f— 1
f[aj—k—l’ L] =
Jrip+k o= o
(k+1)1° Ik

Now we need to generate the g; in (2.2) from the ¢; in (2.3). We can use the recurrences
in [12], which are unaffected by confluency; these are derived by expanding (2.3) using
nested multiplication, and using the recurrence relations (2.1) to express the results as
a linear combination of the polynomials p;.

In the following algorithm Stage I computes the confluent divided differences. We
use an implementation of (2.4) from [ 6, pp. 68-69], in preference to the more complicated
version in [4]. Stage II is identical to the corresponding part of the dual algorithm
in [12].

ALGORITHM 2.1 (Dual, Pa = f). Given parameters {6;, B;, v;} /¢, a vector f,
and points { a;} 7o satisfying (1.1), this algorithm solves the dual system PTg =f.

Stage I: Setc=f
Fork=0ton—1
clast = ¢
Forj=k+ 1ton
Ifaj=aj_k_1then
¢ = ¢lk + 1)

else
temp = ¢;
¢ = (¢, — clast)/(ej — 0otj _ 1 1)
clast = temp
endif
endfor j
endfor k

Stage II: Seta =c¢
Ar-1=0n-1+ (Bo— 0tn—1)an
an = an/00
Fork=n—21to0step —1
ar = ar + (Bo — ax)ak+1 + (v1/01)ak + 2
Forj=1ton—k—-2
Arj= A+ jl0i -1+ B — ) s jr1+ (Ve 1/0i+ 1)+ j+2

endfor j
an-1= an—l/on—-k—Z + (.Bn—k-l - ak)an
n = An/0n - k-1

endfor k |

In the algorithm the vectors ¢ and a have been used for clarity; in fact both can be
replaced by f, so that the right-hand side is transformed into the solution without using
any extra storage. Assuming that the values +;/0; are given (note that v; appears only in



26 NICHOLAS J. HIGHAM

the terms +;/6;) the computational cost of Algorithm 2.1 is n(2n + 1)M and at most
n(5n + 3)/2A, where M denotes a multiplication or division, and 4 an addition or
subtraction.

An algorithm for solving the primal system can be deduced immediately, using the
approach of [4], [5], [12]. We will show in § 3 that the dual algorithm effectively
multiplies the right-hand side vector f by P~T, employing a factorisation of P~ 7 into
the product of 2 triangular matrices. Taking the transpose of this product we obtain a
representation of P~!, from which it is easy to write an algorithm for computing
x=P7'b.

ALGORITHM 2.2 (Primal, Px = b). Given parameters {0;, 3, v,;} =0, a vector b,
and points { «; } /- satisfying (1.1), this algorithm solves the primal system Px = b.
StageI: Setd=»
Fork=0ton—2
Forj=n— kto 2 step —1
Aivj=(Vji-1/0i- i+ j—2 +Bi—1 — aiddisj—1 + dies j/0; -
endfor j
dic+1 = (Bo — o)di + dic + 1/00
endfor k
dn = (BO - OQp— l)dn—l + dn/00

Stage II: Set x = d
Fork=n—1to0step —1
xlast = 0
Forj=ntok+ 1 step —1
Ifaj T then
x; = xj/(k + 1)
else
temp = X;/(0j — &j— k1)
x; = temp — xlast
xlast = temp
endif
endfor j
Xk = Xx — Xxlast
endfor k O

Algorithm 2.2 has, by construction, the same operation count (to within one ad-
dition) as Algorithm 2.1. Values of 6;, 8;, v; for some polynomials of interest in Algorithms
2.1 and 2.2 are given in Table 2.1.

For practical use of Algorithms 2.1 and 2.2 it is important to be able to calculate
the residual, in order to test that the algorithms have been coded correctly (for example)
and, perhaps, to implement iterative refinement (see § 5). Ordinarily, residual compu-
tation for linear equations is trivial, but in this context the coefficient matrix is not given
explicitly, and computing the residual turns out to be conceptually almost as difficult,
and computationally as expensive, as solving the linear system!

To compute the residual for the dual system we need a means for evaluating ¢(¢)
in (2.2) and its first k = n derivatives, where k = max; (i — r(i)) is the order of confluency.
Since the polynomials p; satisfy a three-term recurrence relation we can use an extension
of the Clenshaw recurrence formula. The following algorithm implements the appropriate
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TABLE 2.1
Parameters in the three term recurrence (2.1).

Polynomial 0; B; o7
Monomials 1 0 0
Chebyshev 2* 0 1 *0p =1
2j+1 Jj
Legendre* I 0 }—+—l- *() =1
Hermite 2 0 2j
1 ) J
— 2j+1 e
Laguerre 71 j 1

recurrences, which are given in [18]; we note that an alternative derivation to that in
[18] is to differentiate repeatedly the original Clenshaw recurrence and to rescale so as
to consign factorial terms to a “clean-up” loop at the end.

ALGORITHM 2.3 (Extended Clenshaw recurrence [18]). This algorithm computes
the k + 1 values y; = ¢ V)(x), 0 = j < k, where ¢ is given by (2.2) and k < n. It uses a
work vector z of order k.

Sety,=z;=0 (i=0,1,---,k)
Yo = ap
Forj=n—1to0step —1
temp = Yo
Yo=0i(x—B)yo— vj+120 + a;
Zo = temp
Fori = 1tomin(k, n — j)
temp = y;
Vi=0((x = B))yi+ zi-1) — Yj+12i
z; = temp
endfor i
endfor j
m=1
Fori=2t0k
m = mi
Yi= mxy;
endfor i O

Cost. 3[n+kn—k(k—1)/2](M + 4) + 2 max {0, k — 1} M.
Computing the residual using Algorithm 2.3 costs between approximately
3n2/2(M + A) (for full confluency) and 3n?(M + A) (for the nonconfluent case).
The residual for the primal system can be computed in a similar way, using recur-
rences obtained by differentiating (2.1).

3. Rounding error analysis. In this section we derive bounds for the forward error
and the residual of the computed solution obtained from Algorithm 2.1 in floating point
arithmetic. Because of the inherent duality between Algorithms 2.1 and 2.2 all the results
that we state have obvious counterparts for Algorithm 2.2.

The key to the analysis is the observation that Algorithm 2.1 can be expressed
entirely in the language of matrix-vector products (a similar observation drives the analysis
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of a related problem in [19]). In Stage I, letting ¢¥ denote the vector c at the start of
the kth iteration of the outer loop, we have

(3.1) cO=f, kD=0 k=01, -+ ,n—1.

We will adopt the convention that the subscripts of all vectors and matrices run from 0
to n. The matrix L, is lower triangular and agrees with the identity matrix in rows 0 to
k. The remaining rows can be described by, for k + 1 =j = n,

TL e,T/(k+l) ifaj=aj_k_1,
ej L=
! (ef —el/(aj—aj_x—1) for some s<j, otherwise,

where ¢; is column j of the identity matrix. Similarly, Stage II can be expressed as
(3.2) a(n)zc(n)’ a(k)=Uka(k+1), k=n—1,n—2, -+ 0.

The matrix Uy is upper triangular, it agrees with the identity matrix in rows 0 to k — 1
and it has zeros everywhere above the first two superdiagonals.

From (3.1) and (3.2) we see that the overall effect of the Algorithm 2.1 is to evaluate
step by step the product

(3.3) a=UO"'Un—an—l"'LOfEP_Tf'
We adopt the standard model of floating point arithmetic [6, p. 9]:
(3.4) fi(xop y)=(xop y)(1+6), |8|=u, op=+,—,%,/,

where u is the unit roundoff. In line with the general philosophy of rounding error analysis
we do not aim for the sharpest possible constants in our bounds, and are thus able to
keep the analysis quite short.

THEOREM 3.1. Let Algorithm 2.1 be applied in floating point arithmetic to floating
point data { a;, f;}7-o. Provided that no overflows are encountered the algorithm runs to
completion, and the computed solution d satisfies

l[d—al =c(n,u)|Up| - |Us—y || Ly—1|- - | Lol | f1,

where, withpu = (1 + w)* — 1, c(n, u) = (1 + p)?>" — 1 = 8nu + O(u?).

Proof. First, note that Algorithm 2.1 must succeed in the absence of overflow, be-
cause division by zero cannot occur.

Because of the form of L, straightforward application of the model (3.4) to the
components of (3.1) yields

(3.5) ¢k D =Dy L é®,

where Dy = diag (d;), with d;=1 for 0=i=<k, and (1 —u)*=d;= (1 + u)?® for
k+1=i=n.Thus

| D —1I| =[(1 +u)d— 111,
and hence (3.5) may be written in the form
(3.6) R D=L+ ALy) ¢P, | AL;| S[(1+u)3—1]| L.

Turning to (3.2), we can regard the multiplication a® = Uga** ! as comprising
a sequence of three-term inner products. Analysing these in standard fashion, using (3.4),
we arrive at the equation

(3.7) V= (Ut AUYA** D, AU =[(1+u)* =11 Ukl
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wl}(ere we have taken into account the rounding errors in forming uf'fl, = 6; — oy and
uiir2 = Yie1/0is1 (i = k + ).
Since &© = £, and 4 = 4*, (3.6) and (3.7) imply that
(3.8) da=(Upt+AUp) - (Up-1+ AU, 1)(Lp-1+AL,— ) - (Lot ALo) S,
where, on weakening (3.6), we have
AU SulUkl, ALl =plLil, p=(1+u)*-1.

Now we make use of the following perturbation result that is easily proved by induction:
For matrices X; + AX;, if | AX;| = 6| X;| for all j, then

m m m

IT (x+ax)— IT X<t +8)"+ =11 T 1 X1

i=0 ji=0 ji=0
Applying this result to the difference of (3.8) and (3.3), we obtain the desired bound for
the forward error. O

In the course of proving Theorem 3.1 we derived (3.8), a form of backward error

result. However, (3.8) is of little intrinsic interest because the perturbations it contains
are associated with the matrices U, and L, and not in any exploitable way with the
original data { o, f; } (and, possibly, {6, 8, v;}). The appropriate way to analyse backward
error, as we will explain in § 4.2, is to look at the residual, r = f — P”a (cf. the similar
approach taken in a different context in [7]). Rearranging (3.8),

(39) f=(Lo+ALp)™"*(Ly-1+ALy— 1) "(Up— 1+ AU, - 1) 7"+ (Up+ AU) 7'd.
From the proof of Theorem 3.1 we can show that
(L + ALY =Li' + Ey, | Exl S[(1—u) = 1] L&' |.

Strictly, an analogous bound for (U, + AU,)™! does not hold, since AU, cannot be
expressed in the form of a diagonal matrix times U,. However, it seems reasonable to
make a simplifying assumption that such a bound is valid, say,

(3.10) (Ut AU) ™' =Ui' + Fy, | Fel =[(1—uw)* =111 U]
Then, writing (3.9) as
f=(L" +Eo) - (Lyt v+ By )URL 1+ Fymy) -+ (U + Fo)d

n—1
=PTd+( Ly' - LY \ExLih -+ LY Uzl - - Up!
k=0
n—1
+ 2 Lo Lyb Upl - Uh  FURL - -Ua‘)d+0(u2),

k=0

we obtain the following result.
THEOREM 3.2. Under the assumption (3.10), the residual of the computed solution

d from Algorithm 2.1 is bounded by

\f=PTal =du|Lg' |- | L1 [ 1UZL |-+ - | UG | d] + O(u?),

with d, = Tn. O
In common with most error analyses the one above uses a profusion of triangle and
submultiplicative inequalities, and consequently the bounds will usually be unrealistic
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error estimates. However, as we will see, they are well able to reveal extremes of behaviour,
with respect to accuracy and stability.

4. Implications for stability. Now we pursue the implications of the error analysis.
To interpret the forward error bound of Theorem 3.1 and the backward error bound of
Theorem 3.2 we need to use two different notions of stability. We consider these separately
in §§ 4.1 and 4.2, since there is no simple relation between them and each is of independent
interest. We will focus attention mainly on the nonconfluent case, making brief comments
about the effects of confluency.

4.1. Weak stability. To interpret the forward error bound
(4.1) ld—al =c(n,u)|Up| - |Up—1 || Loy |- | Lol | f]

from Theorem 3.1 we need an “ideal” bound with which to compare it. Following the
approach of [11, § 4] we consider the effect of a small, element-wise perturbation in f.
If PT(a + da) = f + of with |6f| = u |f|, then it is easy to show that

(4.2) [dal =ul P7T|| f],

and that equality is attained for suitable choice of §f. This prompts the informal definition
that an algorithm for solving P7a = f in floating point arithmetic is weakly stable if the
error in the computed solution is not much larger, in some appropriate measure, than
the upper bound in (4.2). A useful way to interpret the definition is that if the machine
right-hand side vector is inexact, then a weakly stable algorithm solves the machine
problem to as good an accuracy as the data warrants.

By comparing (4.1) and (4.2) we see that Algorithm 2.1 is certainly weakly
stable if

(43) 'UOI IUn—ll |Ln—l l |L0| §bn|P_T| =anUO'”Un~1Ln—1 LOl
for some small constant b, = 1. This condition requires that there be little subtractive
cancellation in the product Uy -+ U, - L,- -+ Ly. Suppose the points are distinct and

consider the case n = 3. We have
P—T= U0U1U2L2L1L0

1 ﬁo_ao 71/01 0 1 0 0 0
_ 05"  Bi—ao v2/02 1 Bo—ar  vi1/6,
B 07" Br—ao 05" Bi—a
05" 07!
[1 00 0 1
v 1 0 0 0 1
1 60—012 0 0 1
(4.4) L 0o 0 0 —1/(a—ap) 1/(az—ap)
[ 1
% 0 1
0 —1/(ax—ap) 1/(cz—ap)
L0 0 —1/(az—a;) 1/(az3—ay)

i 1

% —1/(a;—ap) 1/(o;—ap)

0 —1/(x—a;) 1/(aa—ay)

L 0 0 —1/(azs—az) 1/(az—az)
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There is no subtractive cancellation in this product as long as each matrix has the alter-
nating sign pattern defined, for 4 = (a;), by (—1)**/a; Z 0. This sign pattern holds for
the matrices L; if the points «; are arranged in increasing order. The matrices U; have
the required sign pattern provided that (in general)

(4.5) 6;>0, v;20 foralli, and Bi—o=0 foralli+k=n-—1.

Hence we obtain the following result, where we weaken the last condition to §; = 0 and
o; = 0 for all i since 8; = 0 holds for most of the commonly occurring polynomials.

COROLLARY 4.1. If 0= ap< oy < -+ < ay,and ;> 0, 8; = 0 and v; Z 0 for all
i, then

ld—al =c(n,u)| PT||f],

where c(n, u) is defined in Theorem 3.1, and hence, under these conditions, Algorithm
2.1 is weakly stable. O

Corollary 4.1 is stated without proofin [12, § 3]. In the special case of the monomials
(0, =1, 8; = v; = 0) Corollary 4.1 is essentially the same as the main result of [11, Thm.
2.3]. As shown in [11], the bound in the corollary can imply high relative accuracy even
when P~ 7 is large. To see this, note that under the conditions of the corollary P~7
has the alternating sign pattern, since each of its factors does; thus if (—1)'f; = 0 then
|P~T||f] = |P"Tf| = |a|, and the corollary implies that 4 is accurate essentially to
full machine precision.

The nonnegativity condition on the points «; in Corollary 4.1 is rather restrictive,
since points of both signs are likely to occur in practice. Suppose, then, that we alter the
conditions of Corollary 4.1 to allow that

(4.6) < <au<0=ap 1< <ay, 0=m=n-—1.
The matrices L, retain the alternating sign pattern, asdo Uy, 41, -+, Up—1. But Up, * - -,
U,, lose the sign property, and so there is subtractive cancellation within the product
Uy -U,_ L, Ly. It is possible to derive an a priori bound for the effect of this
cancellation. For example, we have U; 2 0 for 0 = { = m, and so
[Uol - |Up— i || Lu=r |+ | Lol =Up* * " Um| Uns 1 Uyt Ly * * Lo|
=B|B_IBUm+l v Uy Ly "'L0|
4.7
(4.7) =B|B'P7T|
=B|B7'||P7T],

where B = Uy - - U,,. However, in our experience this inequality is quite weak, and to
obtain a manageable bound for the term B| B~!| would produce a substantial further
weakening. Therefore we adopt an empirical approach.

For various distributions of distinct points o; € [—1, 1], ordered according to (4.6),
we evaluated for the monomials, and for the Chebyshev polynomials T(¢), the ratio

Ul 1Un i [ L= |-+ | Lol lloo
= o= 21
[P~

This quantity is a norm-wise analogue of b, in (4.3); we have taken norms because for
points satisfying (4.6) inequality (4.3) can fail to hold for any b, since P~ 7 can have a
zero element while the lower bound matrix in (4.3) has a nonzero in the same position.
Note that g, can be interpreted as a measure of the sensitivity of the factorisation
P T=Uy U, L, Ly to perturbations in the factors. Loosely, for a particular

(4.8) n
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problem we would expect Algorithm 2.1 to perform in a weakly stable manner only if
gn 1s not too large compared to one.

Values of g,, together with the condition number k., (P7) = | PT|| | P~ 7|, are
presented for two representative point distributions in Figs. 4.1 and 4.2. The g, values
for the monomials are reasonably small, but suggest some potential instability. More
seriously, the results indicate severe instability of Algorithm 2.1 for the Chebyshev poly-
nomials; for example, with » = 30 and «; the extrema of T}, there is a potential loss of
up to 14 figures in solving an almost perfectly conditioned linear system (cf. problem
(6.3)). Instability of this magnitude was diagnosed in [12], and a heuristic explanation
is given there. The present analysis reveals the source of the problem: the matrix factorisa-
tion at the heart of Algorithm 2.1 is, in some cases, an unstable one, in the sense that
the product is unduly sensitive to small perturbations in the factors.

If the order of confluency k is positive, and the points are in increasing order, then
the alternating sign condition fails to hold for at least one of Loy, -+, Ly—;. A result
similar to Corollary 4.1 can be obtained using the technique employed in (4.7). For
example, if k = 1 then the bound in Corollary 4.1 can be replaced by

ld—al =c(n,u)| P~T| | M||f],
where M = | Lg' || Lo| is unit lower triangular and satisfies |m;;| < 2.

4.2. Backward stability. We turn now to the residual bound in Theorem 3.2:

(4.9) |f = PTa| Sdwu| Lg" |-+ | Lyt [ 1URL |-+ [ UG | 1d] + O(u?).

For comparison, if d agrees with a to working precision (e.g., @ = fl(a)) then
a=d+dd, |6d] =uld|,

and so

(4.10) |f—PTd| = | PTod| =u| PT|d|.

We take (4.10), and the norm-wise version

(4.11) If=PTal =ull Pl Nl

as our model bounds for the residual vector. Connections with the usual notion of back-
ward error are that (4.10) is true if and only if, for some E [16], [17],

(4.12) (PT+E)a=f, |E| =u| PT|,
and (4.11) implies
(4.13) (P"+F)a=f, |Flo=n""u|P"l, (F=(f-P'a)a"/a"a).

Thus (4.10) and (4.11) are equivalent to the condition that 4 is the solution of a linear
system obtained from P7a = f by slightly perturbing P7, in the element-wise sense in
(4.12), or the norm-wise sense in (4.13). Note, however, that these perturbed matrices
are not, in general, Vandermonde-like matrices.

For the monomials, with distinct, nonnegative points arranged in increasing order,
the matrices L; and U, are bidiagonal with the alternating sign pattern, as we have seen
in § 4.1. Thus L' 2 0 and U;' 2 0, and since PT = Lg'---L;L UL, - Ug?', we
obtain from (4.9) the following pleasing backward stability result.

COROLLARY 4.2. Let0 = ag < oy < *** < o, and consider Algorithm 2.1 for the
monomials. Under the assumption (3.10), the computed solution d satisfies

|f = PTd| =d,u| PT| |d]| + O(u?),
with d, = Tn. O
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To investigate the general case (permitting confluency) it is useful to approximate
the matrix product in (4.9) by its lower bound in

[LI|U|:=|Le" - LY [ URL - UG | S LG - | LY [ UG |-+ - 1 UG

where PT = LU is an unnormalised LU factorisation. In so doing we make the residual
bound smaller and so we are still able to draw conclusions from a large value for the
bound. The significance of the approximation is that | L| | U] is the matrix that appears
in the backward error analysis of Gaussian elimination. For example, from [8] the LU
factors I and U computed by Gaussian elimination without pivoting on 4 € R"*" satisfy

nu

(4.14) LU=A+E, |E| = |L|0].

1—nu
Using our approximation in the bound (4.9), we obtain
(4.15) |f =PT4| =du|L||U| |4| +O0(u?) (PT=LU).

The similarity of (4.14) and (4.15) suggests that the backward stability of Algorithm 2.1
is related to that of Gaussian elimination without pivoting on P7. (Note that | L| |U| =
| LD| | D~'U| for any diagonal D, so the normalisation of our LU factorisation is un-
important.) For the same polynomials and points as in Figs. 4.1 and 4.2, Figs. 4.3 and
4.4 show values of

1L U
4.16 == 1
(4.16) &P

Again, the results predict serious instability of Algorithm 2.1 for the Chebyshev poly-
nomials, and, to a somewhat lesser extent, for the monomials.

(PT=LU).

5. Preventing and curing instability. Although the increasing ordering for the points
«; yields the favourable stability results in Corollaries 4.1 and 4.2, this ordering is not
universally appropriate for Algorithm 2.1, as evidenced by the instability for the Chebyshev

16 T T T T

14}

12 10Q10 koo (PT)

o 4

10
" 10G10 ke (PT)

5 10 15 20 25 30
n

FIG. 4.1. Monomials. X: o; = —1 + 2i/n; O: a,-; = cos (iw/n) (extrema of T,).
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FIG. 4.2. Chebyshev polynomials. X: a; = —1 + 2i/n; O: a,_; = cos (iw/n) (extrema of T,).
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FIG. 4.3. Monomials. X: o; = —1 + 2i/n; O: ap-; = cos (iw/n) (extrema of T,).

polynomials when there are points of both signs. How, then, in general, can we construct
a “good” ordering of the points?

Consider the nonconfluent case. We suggest the following approach that exploits
the connection with Gaussian elimination exposed in (4.14) and (4.15). The bound
(4.15) suggests that to make Algorithm 2.1 backward stable the points should be ordered
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FIG. 4.4. Chebyshev polynomials. X: a; = —1 + 2i/n; O: a,—; = cos (ir/n) (extrema of T,).

so that g, in (4.16) is reasonably small. But re-ordering the points is equivalent to per-
muting the rows of P7, and as is well known, Gaussian elimination with partial pivoting
is a very successful way to obtain a row permutation that keeps g, small. Now we make
the crucial observation that the permutation that would be produced by Gaussian elim-
ination with partial pivoting on P can be computed in O(n?) operations, without actually
performing the elimination. To see this, recall that PT = Lg'---L;L \U;L,---Ug' =
LU, and so if we take L unit lower triangular then (cf. the inverse of (4.4))

i—1

ui=h; H (ai— aj),

j=o0
where h; depends only on the 6;. At the kth stage of Gaussian elimination on P7 the
partial pivoting strategy interchanges rows k and r, where |u,,| = max,x | uy|. Because

of the equivalence between interchanges among the rows of P” and among the points
«;, it follows that r is characterised by

k-1 k-1
11 (a,—aj)|=max | [] (as—ay)|.
j=0 szk j=0
This relation forms the basis for the next algorithm.
ALGORITHM 5.1. Given distinct points «p, ay, *** , @, this algorithm re-orders
the points according to the same permutation that would be produced by Gaussian
elimination with partial pivoting applied to P7(«ag, a, -+ - , ,) (but see below). The

permutation is recorded in the vector p.

Swap (Olo, Olj) where a; = min,'go a;, Do =j
Swap (a;, a;) where o; = max; z o, pn=j
T 0T Qo (i=2,3,---,n)
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Fork=2ton—1
m = mix (o — ag—1) (i=k,---,n)
Find j where 7; = max;z; |m;|
Swap (ax, ay); Swap (mx, ),  pe =]

endfor k
Cost. Approximately n?/2 multiplications and comparisons.

In fact, Algorithm 5.1 does slightly more than imitate partial pivoting since it chooses
ap and «;, rather than just «;, to maximise the (1, 1) pivot o; — «p. This has the desirable
effect of making the output of the algorithm independent of the initial ordering of the
points.

If we apply the heuristic that g, ~ 1 for Gaussian elimination with partial pivoting,
then from (4.15) we obtain for the ordering of Algorithm 5.1 the approximate re-
sidual bound

If =Pl S daull PTGl oo + O(ue?).

Thus, under the several assumptions leading to (4.15), the ordering of Algorithm 5.1
renders Algorithm 2.1 (and similarly Algorithm 2.2) backward stable.

We note that Algorithm 5.1 never produces the increasing ordering, since it sets
oy := max; «;. It is also interesting to note that Algorithm 5.1 is invariant under the
linear transformation of the points «; := po; + A.

An alternative approach to achieving backward stability is to take an arbitrary or-
dering of the points and to follow Algorithm 2.1 with one step of iterative refinement in
single precision. This approach, advocated for general linear equation solvers in [13],
was used successfully with the nonconfluent version of Algorithm 2.1, with Chebyshev
polynomials, in [12]. However, we have no rigorous forward error bounds or residual
bounds for Algorithm 2.1 combined with iterative refinement.

In terms of computational cost the re-ordering strategy is preferable to iterative
refinement, since it requires only 5#2/2 multiplications in total, compared to the 7n?
multiplications required for two invocations of Algorithm 2.1 and a residual vector com-
putation. Moreover, in some applications a sequence of problems with the same, or
slightly changed, sequence of points may arise, in which case the re-ordering strategy
need be applied only once for the whole sequence.

In the confluent case Algorithm 5.1 can be applied to the distinct subset of the
points, with groups of equal points interchanged block-wise (since condition (1.1) must
be maintained). Note, however, that in this form the algorithm no longer mimics the
partial pivoting interchanges, and so the theoretical support is weaker.

6. Numerical experiments. We have carried out a wide variety of numerical ex-
periments to test the analysis of §§ 3-5, and to gain further insight into the behaviour of
Algorithm 2.1; we present detailed results for a subset of the tests in this section. The
tests were done using Borland Turbo Basic on a PC-AT compatible machine. Turbo
Basic uses IEEE-standard single and double precision arithmetic, for which the unit
roundoffs are ug, = 272 ~ 1.19 X 1077 and ug, = 27 ~ 2.22 X 107!, respectively.

We solved each test problem in single precision using each of the following four
schemes, which we will refer to by the mnemonics indicated.

(1) Alg: Algorithm 2.1.

(2) Ord: Algorithm 2.1 preceded by Algorithm 5.1.

(3) Sir: Algorithm 2.1 followed by one step of iterative refinement with the residual

computed in single precision using Algorithm 2.3.
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(4) Gepp: Gaussian elimination with partial pivoting, where P” is formed in double
precision using repeated calls to Algorithm 2.3 (with x = «;, and a = ¢; in
(2.2)).
In all our test problems the points are in increasing order (of course this is irrelevant
for Ord and Gepp). For each computed solution d we formed the norm-wise rel-
ative error

ERR = 14—l
uspllall
and the relative residual
— P74 w
RES = /= Pl

usp | P71l |l o™

Here, a := dg, is the solution computed by Algorithm 2.1 in double precision, and the
residual f — P74 is computed using Algorithm 2.3 in double precision. The order n was
restricted to ensure that dg, was correct to single precision, thus ensuring a correct value
for ERR. Note that ERR and RES are scaled to be “independent of the machine preci-
sion”’; thus both should be compared with 1 when assessing the accuracy of a computed
solution or the size of its residual.

Two further quantities computed were the model bound for ERR, from (4.2),

_IHP T e

! lalle

b

and g, in (4.16) (for the original, increasing ordering of the points).
The first problem,

(6.1) Chebyshev polynomials ¢ =i, fi~Unif[—1,1],

illustrates Corollary 4.1 (Unif denotes the uniform random number distribution); see
Table 6.1. The excellent accuracy of Algorithm 2.1 is forecast by the corollary since, as
is clear from the results, | | P~7| | f] | ~ llallo (a is a large-normed solution). Inter-
estingly, the favourable forward error properties are seen to be lost in the process of
iterative refinement, as has been observed in [12].

Next, we consider the monomials on problems with points of both signs. We tried
a variety of problems, aiming to generate the instability that the analysis of § 4 predicts
may occur for the monomials. In most problems, including all those from [5] and [11],
Algorithm 2.1 performed in both a weakly stable and a backward stable manner, yielding

TABLE 6.1
Results for problem (6.1). All values except n are logs to base 10.

ERR RES
n ko(PT)  lall. Al Ord Sir  Gepp Alg Ord Sir Gepp W &
10 8.6 6.5 -0.2 0.8 5.8 6.7 -1.6 -14 -15 -1.3 0.9 2.1
15 13.1 114 -0.3 0.4 10.3 6.9 -1.3 -1.6 -1.6 -1.3 0.1 35
20 17.6 13.9 1.0 1.6 14.7 6.9 -1.4 -1.8 -1.5 -1.7 2.1 5.2

25 22.1 19.6 02 08 19.3 6.9 -1.7  -16 -1.6 -09 08 64
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TABLE 6.2
Results for problem (6.2). All values except n are logs to base 10.

ERR RES
n ko(PT) llale Alg Ord Sir Gepp  Alg Ord Sir Gepp W, I

10 4.8 0.0 1.1 1.8 0.9 -03 -02 -15 -17 -3.6 1.3 22
15 1.3 0.0 2.2 3.9 2.0 1.2 1.6 -L1 -—12 -29 23 34
20 9.7 0.0 3.8 6.4 2.8 1.9 3.1 -15  -—-19 -3.1 33 48
25 12.2 0.0 5.1 9.2 5.5 34 44 =21 -09 -30 44 52
30 14.7 0.0 6.1 11.6 9.3 44 54 -18 1.2 -29 55 6.l

TABLE 6.3
Results for problem (6.3). All values except n are logs to base 10.

ERR RES
n ko(PT)  llal, Alg Ord Sir Gepp Alg Ord Sir  Gepp w, n
10 1.0 0.0 3.8 1.1 0.3 0.2 35 0.8 0.0 -0.2 0.4 4.2
15 1.2 0.0 6.5 1.0 0.3 0.5 5.9 0.3 0.1 -0.1 0.4 6.6
20 1.3 0.0 8.8 1.7 23 0.5 6.4 1.2 1.8 -0.1 0.4 9.1

25 1.4 0.0 10.9 2.1 6.5 1.9 6.5 1.4 5.8 0.1 0.5 10.3

ERR = w,, and RES = O(1). On examining the error analysis we selected the problem
(6.2) monomials o;=—1 +;l, f=PTe,,

reasoning that a = e, might “pick out” large elements in the matrix product in (4.9).
The results, summarised in Table 6.2, do indeed display instability, principally in the
residual, and they match well the predictions of the analysis, as can be seen by comparing
the values of RES (for Alg) and g,,.

The problem

i+~

(6.3) Chebyshev polynomials «, ;= cos ( ——

), f=Pe,

in which the points are the zeros of T}, +, illustrates the instability of Algorithm 2.1 for
the Chebyshev polynomials when there are points of both signs; the results are in Table
6.3. The re-ordering strategy successfully stabilises Algorithm 2.1, as does iterative re-
finement except at n = 25 (at this value even using double precision to compute the
residual brought no further improvement). Note that because P is well conditioned [10],
a small residual implies a small forward error in this problem.

Finally, we present two confluent problems. In these the order of confluency is four
and the distinct points {\;} -, occur in groups of successive sizes 4, 3,2, 1,4, 3, - - -,
where the obvious pattern repeats. The two problems are:

d

(6.4a) monomials ir
) )\d_,'=COS(—), i=0,1,---,d, f=e,.
(6.4b) Chebyshev polynomials

In Table 6.4 we see that both iterative refinement and the re-ordering approach behave
very unstably on (6.4a) in the sense of weak stability; in our experience this instability
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TABLE 6.4
Results for problem (6.4a). All values except n are logs to base 10.
ERR RES
n ko(PT)  lale Alg Ord Sir Gepp Alg Ord Sir Gepp W, &n
9 6.4 -0.3 0.3 3.7 0.3 3.5 -1.1 -0.9 -1.0 -1.2 0.0 1.0
19 12.3 2.3 1.0 6.4 6.1 6.9 -1.7 -1.8 -1.7 -1.5 0.0 3.0
29 17.4 5.7 2.8 10.6 10.9 6.9 -0.6 -2.3 0.4 -1.8 0.0 4.8
TABLE 6.5
Results for problem (6.4b). All values except n are logs to base 10.
ERR RES
n koPT)  lale Alg Ord Sir Gepp Alg Ord Sir Gepp W, '
9 6.6 -0.6 0.5 2.5 0.5 1.8 -3.7 -2.8 -2.5 -2.5 0.0 1.3
19 9.4 -0.9 49 4.2 2.1 4.6 -0.8 -2.4 -3.6 -23 0.0 4.1
29 11.3 -1.1 9.9 8.2 9.8 5.7 0.7 -0.8 1.0 -2.3 0.0 5.8

is unusual for the latter scheme. Table 6.5 demonstrates clearly that weak stability is not
implied by backward stability.

The complete set of test results contain several more features worth noting.

(1) The results for confluent problems were similar in most respects to those for
nonconfluent ones; the behaviour of Algorithm 2.1 seems to be minimally affected by
confluency. Test results for the Legendre polynomials were very similar in almost every
respect to those for the Chebyshev polynomials.

(2) The growth quantity g, for Gaussian elimination without pivoting is sometimes
many orders of magnitude bigger than RES for Alg, but approximate equality can be
attained, as in problem (6.2). This behaviour confirms our expectations—see the com-
ment at the end of § 3.

(3) For the monomials our experience is that the forward error from Alg is usually
similar to, or smaller than, the forward error from Ord.

(4) Unlike in the tests of [12], in which ug, ~ 107'°, we found that iterative re-
finement in single precision does not always yield a small residual (see Table 6.3, for
example). This does not appear to be due to errors in computing the single precision
residual via Algorithm 2.3, but seems to indicate that in order to guarantee the success
of iterative refinement in single precision a certain level of precision is required relative
to the degree of instability (indeed this is implied by the results in [13]).

(5) All our tests support the following heuristic, for which theoretical backing is
easily given:

The computed solution £ from Gaussian elimination with partial pivoting applied
to a linear system Ax = b usually satisfies | Xl = u™![|b]lo/ | 4]l w0, Where u is the
unit roundoff.

Thus, although Gaussian elimination with partial pivoting is guaranteed to produce a
small residual, it is unable to solve accurately Vandermonde problems with a very large
solution, such as problem (6.1). (Indeed, merely forming the machine matrix fl(P7)
may be enough to force |||l = u™!|| f|lo/ || PT||. for the machine problem!)
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7. Conclusions. To conclude, we offer some brief guidelines on the numerical so-
lution of Vandermonde and Vandermonde-like systems. First, we caution that construc-
tion of algorithms that involve the solution of a Vandermonde-like system is not generally
to be recommended. The tendency for Vandermonde matrices to be extremely ill-con-
ditioned may render such an approach inherently unstable, in the sense that the “ideal”
forward error bound (4.2) is unacceptably large; furthermore, as # increases the solution
components may soon exceed the largest representable machine number, producing
overflow. Despite these problems we have seen that many Vandermonde systems can be
solved to surprisingly high accuracy using Algorithms 2.1 and 2.2. A useful rule of thumb
is that it is those Vandermonde systems with a large-normed solution—one that reflects
the size of P~'—that are solved to high accuracy.

Our experience shows that of the four solution methods considered in § 6 (Alg, Ord,
Sir, Gepp), none consistently produces the smallest forward error or the smallest relative
residual. Nevertheless, the error analysis and the test results point to some clear recom-
mendations for the choice of solution method. Recall that Alg denotes Algorithm 2.1
(or Algorithm 2.2) with the points arranged in increasing order, and Ord denotes Al-
gorithm 2.1 (or Algorithm 2.2) preceded by Algorithm 5.1.

Monomials. Nonnegative points: Use Alg. In the nonconfluent case Corollaries 4.1
and 4.2 guarantee both weak and backward stability.

Points of both signs: (i) Use Alg. This usually behaves in a weakly stable and a
backward stable manner. (ii) If it is vital to obtain a small residual use Ord, perhaps
after first trying Alg. Note, however, that the forward error for Ord is usually no smaller,
and sometimes larger, than that for Alg (see Tables 6.2 and 6.4).

Other polynomials. Nonnegative points: Use Alg. In the nonconfluent case Corollary
4.1 guarantees weak stability if 6, > 0, 8; = 0, and y; 2 0 in (2.1), as for the Chebyshev,
Legendre, and Hermite polynomials.

Points of both signs: Use Ord (Alg is unstable).

If the points are all nonpositive then in both cases Alg should be used with the
points in decreasing order (appropriate analogues of Corollaries 4.1 and 4.2 can be derived
for this situation).
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