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Abstract. LAPACK and LINPACK both solve symmetric indefinite linear systems using the
diagonal pivoting method with the partial pivoting strategy of Bunch and Kaufman [Math. Comp.,
31 (1977), pp. 163–179]. No proof of the stability of this method has appeared in the literature. It
is tempting to argue that the diagonal pivoting method is stable for a given pivoting strategy if the
growth factor is small. We show that this argument is false in general and give a sufficient condition
for stability. This condition is not satisfied by the partial pivoting strategy because the multipliers
are unbounded. Nevertheless, using a more specific approach we are able to prove the stability of
partial pivoting, thereby filling a gap in the body of theory supporting LAPACK and LINPACK.
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1. Introduction. LAPACK is renowned for the numerical reliability of the al-
gorithms it employs. The LAPACK Users’ Guide [1] states that “almost all the
algorithms in LAPACK (as well as LINPACK and EISPACK) are [normwise back-
ward] stable” [1, page 74], and the algorithms not covered by this statement are known
to be stable in appropriately weakened senses. The analyses to back up these claims
of stability are spread throughout the research literature of the last 35 years. While
writing the book Accuracy and Stability of Numerical Algorithms [14] we realized that
there is no proof in the literature of the stability of the method used in LAPACK and
LINPACK for solving symmetric indefinite linear systems. Furthermore, the stability
is not a direct consequence of existing results. The purpose of this paper is to prove
the stability of the method and thereby to fill a gap in the body of theory supporting
LAPACK and LINPACK.

In the remainder of the introduction we briefly describe the method to be ana-
lyzed: the diagonal pivoting method with the partial pivoting strategy of Bunch and
Kaufman [5].

Let A ∈ Rn×n be symmetric. If A is nonzero, we can find a permutation Π and
an integer s = 1 or 2 so that

ΠAΠT =

[ s n−s
s E CT

n−s C B

]
,

with E nonsingular. Then we can compute the factorization

ΠAΠT =

[
Is 0

CE−1 In−s

] [
E 0
0 B − CE−1CT

] [
Is E−1CT

0 In−s

]
.(1.1)

This process can be repeated recursively on the (n− s)× (n− s) Schur complement

S = B − CE−1CT .
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The result is a factorization

PAPT = LDLT ,(1.2)

where L is unit lower triangular and D is block diagonal with each diagonal block
having dimension 1 or 2. This factorization is essentially a symmetric block form
of Gaussian elimination, with pivoting, and it costs n3/3 flops1 (the same cost as
Cholesky factorization of a positive definite matrix) plus the cost of determining the
permutations Π. This method for computing a block LDLT factorization is called the
diagonal pivoting method. Given the factorization (1.2) of a nonsingular A, a linear
system Ax = b is readily solved by substitution and by solving 2 × 2 linear systems
corresponding to any 2× 2 diagonal blocks of D.

The strategy for choosing Π is crucial for achieving stability. Bunch and Parlett
[7] proposed a complete pivoting strategy, which requires the whole active submatrix
to be searched on each stage of the factorization and therefore requires up to n3/6
comparisons. Bunch [3] proved that the diagonal pivoting method with complete piv-
oting satisfies a backward error bound almost as good as that for Gaussian elimination
with complete pivoting. Bunch and Kaufman [5] devised a partial pivoting strategy
that searches at most two columns at each stage and so requires only O(n2) com-
parisons. The LAPACK driver routines xSYSV (simple) and xSYSVX (expert) and the
LINPACK routines xSIFA/xSISL all use the diagonal pivoting method with partial
pivoting to solve a linear system with a symmetric (indefinite) coefficient matrix.

To describe the partial pivoting strategy it suffices to define the pivot choice for
the first stage of the factorization. Recall that s denotes the size of the pivot block.

Algorithm 1 (Bunch–Kaufman partial pivoting strategy). This algorithm de-
termines the pivot for the first stage of the diagonal pivoting method with partial
pivoting applied to a symmetric matrix A ∈ Rn×n.

α: = (1 +
√

17)/8 (≈ 0.64)
λ := ‖A(2:n, 1)‖∞
If λ = 0 there is nothing to do on this stage of the elimination.
r := min{i ≥ 2: |ai1| = λ}
if |a11| ≥ αλ

(1) s = 1, Π = I
else

σ: =

∥∥∥∥[A(1: r − 1, r)
A(r + 1:n, r)

]∥∥∥∥
∞

if |a11|σ ≥ αλ2

(2) s = 1, Π = I
else if |arr| ≥ ασ

(3) s = 1 and choose Π to swap rows and columns 1 and r.
else

(4) s = 2 and choose Π to swap rows and columns 2 and r,
so that |(ΠAΠT )21| = λ.

end
end

1A flop is a floating point addition, subtraction, multiplication, or division.
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To understand the partial pivoting strategy it helps to consider the matrix

a11 . . . λ . . . . . . . . .
...

...
λ . . . arr . . . σ . . .
...

...
... σ
...

...


and to note that the pivot is one of a11, arr, and

[
a11

λ
λ

arr

]
(or, rather, since λ = |ar1|,

this matrix with λ replaced by ar1).
The value of the constant α = (1+

√
17)/8 is determined by regarding α as a free

parameter and equating a bound for the element growth over two s = 1 stages to a
bound for the element growth over one s = 2 stage; see [5] or [14] for the details.

A growth factor can be defined for the diagonal pivoting method in just the same
way as for Gaussian elimination:

ρn =
maxi,j,k |a(k)

ij |
maxi,j |aij | ,

where the a
(k)
ij are the elements of the Schur complements arising in the course of

the factorization. From the derivation of the constant α it is easy to show that
ρn ≤ (1 + 1/α)n−1 = (2.57)n−1 for partial pivoting, which is larger than the bound
2n−1 for Gaussian elimination with partial pivoting (GEPP). But, it seems that as
for GEPP, large element growth is rare in practice [5], [9].

2. Stability of the diagonal pivoting method. Since the growth factor for
the diagonal pivoting method with partial pivoting is bounded and is usually small
in practice, does it not follow that the method is stable in the same sense as for
GEPP? This is a tempting argument, and one that is neither used nor warned against
in the existing literature. However, it is easy to show that the argument is false by
exhibiting an example where the diagonal pivoting method has a small growth factor
but is unstable. An example (not produced by partial pivoting) is, with n = 3 and
with a 2× 2 pivot followed by a 1× 1 pivot,

A =

 1 −(1 + ε2) −ε
−(1 + ε2) 1 −ε

−ε −ε −1


=

 1
0 1
ε−1 ε−1 1

 1 −(1 + ε2)
−(1 + ε2) 1

1

 1 0 ε−1

1 ε−1

1

 = LDLT ,(2.1)

where ε > 0. The growth factor ρn is 1, yet ‖L‖∞/‖A‖∞ is unbounded as ε → 0,
which suggests that the factorization, however it is computed, may not provide a stable
way to solve linear systems Ax = b in finite precision arithmetic. The instability is
confirmed by a Matlab experiment, in which the unit roundoff u = 2−53 ≈ 1.1 ×
10−16. We solved a linear system Ax = b, where b = A [1 2 3]T , in two different ways.
First, we computed the factorization in (2.1) using the diagonal pivoting method, as
specified in (1.1) (with Π = I), taking a 2×2 pivot on the first step and using GEPP
to solve linear systems involving this pivot. For comparison, we evaluated the explicit
formulae for the LDLT factors in (2.1) and used the explicit inverse of D(1: 2, 1: 2)
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Table 2.1

Backward error for computed solution of indefinite system of order 3.

Diagonal Explicit
ε pivoting factors

10−1 9e−17 6e−16
10−2 5e−17 2e−14
10−3 3e−15 5e−11
10−4 7e−14 4e−9
10−5 6e−13 6e−8
10−6 1e−13 1e−6
10−7 4e−11 1e−7

when solving the linear system involving D. Table 2.1 shows the normwise relative
backward error of the computed solution x̂,

η∞(x̂) := min{ ε : (A+∆A)x̂ = b+∆b, ‖∆A‖∞ ≤ ε‖A‖∞, ‖∆b‖∞ ≤ ε‖b‖∞ }
=

‖b−Ax̂‖∞
‖A‖∞‖x̂‖∞ + ‖b‖∞

(see [16] or [14, Theorem 7.1] for a proof of the latter equality), which would be
of order u for a stable solution method. As ε decreases the computations become
unstable. We note that stability is obtained if, in (1.1), we take the natural 1 × 1
pivot a11 instead of the ill conditioned 2× 2 pivot A(1: 2, 1: 2); interestingly, though,
the 2 × 2 pivot shares with those chosen by the Bunch–Kaufman partial pivoting
strategy the property that it is indefinite. Partial pivoting is stable on this example.

We conclude that a small growth factor is not, by itself, enough to guarantee
stability of the diagonal pivoting method. A sufficient condition for stability can
be obtained by regarding the block LDLT factorization computed by the diagonal
pivoting method as a special case of a block LU factorization. Error analysis for
block LU factorization is given by Demmel, Higham, and Schreiber [8], and a suitable
modification of this analysis gives the following result: if linear systems involving 2×2
pivots are solved in a normwise backward stable fashion then the condition

‖L‖∞‖D‖∞‖LT ‖∞ ≤ cn‖A‖∞,(2.2)

for a modest constant cn, is sufficient to ensure that the diagonal pivoting method
produces a factorization with a small relative residual and provides computed solutions
to linear systems that have a small backward error. Unfortunately, condition (2.2)
does not hold for the partial pivoting strategy of Bunch and Kaufman, as is shown by
the following example. For ε > 0, the diagonal pivoting method with partial pivoting
produces the factorization, with P = I,

A =

 0 ε 0
ε 0 1
0 1 1

 =

 1
0 1

1/ε 0 1

 0 ε
ε 0

1

 1 0 1/ε
1 0

1

 = LDLT .

As ε→ 0, ‖L‖∞‖D‖∞‖LT ‖∞/‖A‖∞ →∞, and indeed the multipliers are unbounded.
Even 1×1 pivots can lead to arbitrarily large elements in L, as the following example
with 0 < ε < α shows (again, partial pivoting selects P = I):

A =

 ε2 ε ε
ε 0 1
ε 1 0

 =

 1
1/ε 1
1/ε 0 1

 ε2 −1
−1

 1 1/ε 1/ε
1 0

1

 = LDLT .
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It is worth emphasizing that large elements in a factor of a matrix do not nec-
essarily imply that the factorization is unstable. For example, in the (point) LDLT

factorization of a symmetric positive definite matrix A with D = diag(dii), dii > 0,
the ratio ‖L‖∞/‖A‖∞ can be arbitrarily large, yet the factorization is guaranteed to
be stable. One such example is, with ε > 0,

A =

[
ε2 ε
ε 2

]
=

[
1 0
ε−1 1

] [
ε2 0
0 1

] [
1 ε−1

0 1

]
.

Our conclusion is that existing results for LU factorization and block LU fac-
torization do not directly imply the stability of the diagonal pivoting method with
partial pivoting. Any proof of stability must make use of the particular properties of
the partial pivoting strategy.

The only claims of stability that we have found in the literature are in the paper
by Bunch, Kaufman, and Parlett [6] and in the LINPACK Users’ Guide [9, p. 5.19];

in both cases, residual bounds of the form ‖A− L̂D̂L̂T ‖∞ ≤ p(n)ρn‖A‖∞u are stated
without proof, where p is a polynomial; we prove a result of this form and, in Theo-
rem 4.2, a backward error result for the computed solution of Ax = b. We note that
much of Bunch’s analysis of the diagonal pivoting method in [3] is specific to complete
pivoting, so his analysis does not readily yield results for partial pivoting.

In the rest of the paper we present a new analysis to show that partial pivoting
is indeed a stable pivoting strategy for the diagonal pivoting method.

3. Background results from error analysis. We collect in this section some
standard error analysis results that will be needed later. For our model of floating
point arithmetic we take

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /,(3.1)

where u is the unit roundoff. All the results we quote remain true under a weaker
model that accommodates machines without a guard digit [14, section 2.4], provided
some of the constants are increased slightly.

We introduce the constant

γn =
nu

1− nu
,

which carries with it the implicit assumption that nu < 1. Useful properties are (a)
γm + γn + γmγn ≤ γm+n and (b) if c ≥ 1 then cγn ≤ γcn.

Proofs of the following results can be found in [14]. First, for matrix multiplica-
tion,

fl(AB) = AB +∆, |∆| ≤ γn|A||B|, A ∈ Rm×n, B ∈ Rn×p.

Second, if T ∈ Rn×n is a nonsingular triangular matrix and the system Tx = b is
solved by substitution then

(T +∆T )x̂ = b, |∆T | ≤ γn|T |.(3.2)

Third, if a linear system Ax = b, where A ∈ Rn×n, is solved without breakdown by
Gaussian elimination without pivoting, then the computed solution satisfies

(A+∆A)x̂ = b, |∆A| ≤ 2γn|L̂||Û |,(3.3)

where L̂ and Û are the computed LU factors.
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We will use the norm defined by

‖A‖M = max
i,j

|aij |

(for which ‖AB‖M ≤ n‖A‖M‖B‖M is the best bound of this form that holds for all
A ∈ Rm×n and B ∈ Rn×p).

4. Error analysis.

4.1. 2× 2 linear systems. Crucial to the error analysis that follows is a back-
ward error result for the solution of linear systems involving 2× 2 pivots. Note that,
in the notation of Algorithm 1, the pivot is

E =

[
a11 ar1
ar1 arr

]
, |ar1| = λ.

For this subsection and the later analysis, it is convenient to tabulate the condi-
tions that must hold for a 2× 2 pivot to be selected:

|a11| < αλ,(4.1a)

|a11|σ < αλ2,(4.1b)

|arr| < ασ,(4.1c)

|a11||arr| < α2λ2,(4.1d)

where the fourth inequality is a consequence of the previous two (note that (4.1c)
implies σ 6= 0).

Suppose, first, that linear systems Ex = b are solved by GEPP. By (4.1a),
|a11| < α|ar1| < |ar1|, so GEPP interchanges rows 1 and 2 of E and computes the LU
factorization

PE =

[
ar1 arr
a11 ar1

]
=

 1 0

a11

ar1
1

 ar1 arr

0 ar1 − a11arr
ar1

 = LU.

From (3.3), we have the backward error result

(PE +∆E)x̂ = Pb, |∆E| ≤ 2γ2|L̂||Û |.
Now

|L||U | ≤
 |ar1| |arr|
|a11|

∣∣∣∣a11arr
ar1

∣∣∣∣+ ∣∣∣∣ar1 − a11arr
ar1

∣∣∣∣
 ≤ [ |ar1| |arr|

|a11| (2α2 + 1)|ar1|
]
,

using (4.1d). It follows that

(E + ∆̃E)x̂ = b, |∆̃E| ≤ 2γ2

[ |a11| 2|ar1|
|ar1| |arr|

]
≤ 4γ2|E|,(4.2)

using the numerical value of α specified in Algorithm 1. Strictly, we should append
“+O(u2)” to this bound to account for replacing |L̂||Û | by a bound for |L||U |; we omit
the second-order term for the moment and reinstate it later. Note that the result (4.2)
holds trivially for a 1× 1 pivot E.

The main alternative to using GEPP to solve the systems Ex = b is to use the
explicit inverse of E, as is done in the implementations of the diagonal pivoting method
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with partial pivoting in LAPACK and LINPACK (see the auxiliary routine xLASYF

in LAPACK and xSIFA in LINPACK). In both LAPACK and LINPACK, Ex = b is
solved by evaluating

x =
1

ar1

(
a11

ar1
· arr
ar1

− 1

)


arr
ar1

−1

−1
a11

ar1

 b,(4.3)

which corresponds to using an explicit formula for the inverse of a 2× 2 matrix (or,
equivalently, Cramer’s rule), with scaling to avoid overflow. The term

µ =
a11

ar1
· arr
ar1

− 1

appears to be a potential source of instability, since for arbitrary a11, ar1, and arr the
relative error in the computed µ̂ is unbounded. However, by exploiting the condition
(4.1d) for a 2× 2 pivot, which we rewrite as

|a11||arr|
a2
r1

≤ α2,

we can obtain a very satisfactory error bound for µ̂. Using the model (3.1) we have

µ̂ =

(
a11

ar1
· arr
ar1

(1 + δ1)(1 + δ2)(1 + δ3)− 1

)
(1 + δ4),

where |δi| ≤ u, i = 1: 4, which implies [14, Lemma 3.1]

µ̂ =
a11

ar1
· arr
ar1

(1 + θ4)− (1 + δ4), |θ4| ≤ γ4.

Hence

|µ− µ̂| ≤ γ4

( |a11arr|
a2
r1

+ 1

)
≤ γ4(α

2 + 1)

≤ γ4

(
1 + α2

1− α2

)
|µ| < 3γ4|µ|.

It is then straightforward to show that, denoting the matrix in (4.3) by Z,

x̂ = (ar1µ)−1(Z +∆Z)b, |∆Z| ≤ γ30|Z|.
Thus b− Ex̂ = −E((ar1µ)−1∆Z)b, so that

|b− Ex̂| ≤ γ30|E||E−1||b|
≤ γ30|E||E−1||E||x|
≤ γ180|E||x|,(4.4)

using (A.3). The Oettli–Prager theorem [15], [14, Theorem 7.3] then implies that

(E +∆E)x̂ = b, |∆E| ≤ γ180|E|.
Again, strictly a second-order term should be added to the bound, this time to account
for the fact that |x| rather than |x̂| appears on the right-hand side of (4.4).

The conclusion is that whether the linear system Ex = b involving the 2×2 pivot
is solved by GEPP or by using the explicit inverse, we have

(E +∆E)x̂ = b, |∆E| ≤ γc|E|(4.5)

for an integer constant c. It is worth stressing that such a result does not hold for an
arbitrary 2×2 (symmetric) matrix E—we have fully exploited the pivoting conditions
in the derivation.
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4.2. Componentwise backward error analysis. Now we carry out a com-
ponentwise backward error analysis of the diagonal pivoting method. We make only
one assumption about the pivoting strategy: that (4.5) holds for the 2×2 pivots. For
convenience, we assume, without loss of generality, that no interchanges are needed,
which amounts to redefining A := PAPT in (1.2).

To begin, we consider the first stage of the factorization, using the notation of
(1.1). The submatrix L21 = CE−1 ∈ R(n−s)×s satisfies L21E = C or ELT21 = CT . If
lj is the jth column of LT21 and cj is the jth column of CT , then, from (4.5),

(E +∆Ej)l̂j = cj , |∆Ej | ≤ γc|E|.

Hence, overall,

L̂21E = C +∆C, |∆C| ≤ γc|L̂21||E|.(4.6)

We assume that the Schur complement is computed as S = B − L21C
T , so that2

Ŝ = B − L̂21C
T +∆S, |∆S| ≤ γs+1

(|B|+ |L̂21||CT |).(4.7)

The remaining stages of the diagonal pivoting method factorize the Schur com-
plement as S = LSDSL

T
S , and we assume, inductively, that the computed factors

satisfy

L̂SD̂SL̂
T
S = Ŝ +∆S , |∆S | ≤ d(n− s, u)

(|Ŝ|+ |L̂S ||D̂S ||L̂TS |
)
,

where d(n−s, u) is a constant depending on n−s and u. We therefore have computed

factors L̂ and D̂ of A that satisfy

L̂D̂L̂T :=

[
I 0
L̂21 L̂S

] [
E 0
0 D̂S

] [
I L̂T21
0 L̂TS

]

=

[
E EL̂T21

L̂21E L̂21EL̂
T
21 + L̂SD̂SL̂

T
S

]

=

[
E (C +∆C)T

C +∆C L̂21EL̂
T
21 + Ŝ +∆S

]

=

[
E (C +∆C)T

C +∆C B + (L̂21EL̂
T
21 − L̂21C

T ) +∆S +∆S

]
.

Now, from (4.6) we have the inequalities

|L̂21EL̂
T
21 − L̂21C

T | ≤ γc|L̂21||E||L̂T21|

and

|L̂21||CT | ≤ (1 + γc)|L̂21||E||L̂T21|.(4.8)

Using (4.7) and (4.8) we have

|Ŝ| ≤ (1 + γs+1)(|B|+ (1 + γc)|L̂21||E||L̂T21|).
2If the Schur complement is computed as S = B − L21EL

T
21 then the same bound (4.9) ensues.
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Overall, then, we have

L̂D̂L̂T = A+∆A,

where ∆A11 = 0, |∆A21| ≤ γc|L̂21||E|, and

|∆A22| ≤ γc|L̂21||E||L̂T21|+ γs+1

(|B|+ (1 + γc)|L̂21||E||L̂T21|
)

+ d(n− s, u)
(
(1 + γs+1)(|B|+ (1 + γc)|L̂21||E||L̂T21|) + |L̂S ||D̂S ||L̂TS |

)
≤ (γc + d(n− s, u)(1 + γc))|B|+

(
γc(2 + γc) + d(n− s, u)(1 + γc)

2
)|L̂21||E||L̂T21|

+ d(n− s, u)|L̂S ||D̂S ||L̂TS |
≤ (γc(2 + γc) + d(n− s, u)(1 + γc)

2)
(|B|+ |L̂21||E||L̂T21|+ |L̂S ||D̂S ||L̂TS |

)
.

Hence

L̂D̂L̂T = A+∆A, |∆A| ≤ d(n, u)
(|A|+ |L̂||D̂||L̂T |),(4.9)

where d(n, u) is clearly of the form p(n)u+O(u2), where p is a linear polynomial.
Now we analyze the substitution stages when the LDLT factorization is used to

solve a linear system Ax = b. From (3.2) and (4.5), the computed solutions to the
three systems Ly1 = b, Dy2 = y1, L

Tx = y2 satisfy

(L̂+∆L1)ŷ1 = b, |∆L1| ≤ γn|L̂|,
(D̂ +∆D)ŷ2 = ŷ1, |∆D| ≤ γc|D̂|,

(L̂+∆L2)
T x̂ = ŷ2, |∆L2| ≤ γn|L̂|.

Thus

b = (L̂+∆L1)(D̂ +∆D)(L̂+∆L2)
T x̂ = (A+∆A+∆A2)x̂,

where |∆A| is bounded in (4.9) and

|∆A2| ≤ γ2n+c |L̂||D̂||L̂T |+O(u2).

On bringing back into account the row and column interchanges, we obtain the fol-
lowing result.

Theorem 4.1. Let A ∈ Rn×n be symmetric and let x̂ be a computed solution to
the linear system Ax = b produced by the diagonal pivoting method with any pivoting
strategy. If for all linear systems involving 2× 2 pivots (4.5) holds, then

(A+∆A)x̂ = b, |∆A| ≤ p(n)u
(|A|+ PT |L̂||D̂||L̂T |P )+O(u2),(4.10)

where p is a linear polynomial and PAPT ≈ L̂D̂L̂T is the factorization computed by
the diagonal pivoting method.

The bound in (4.10) is analogous to the bound in (3.3) that holds for Gaussian
elimination. We have already seen that the assumption (4.5) used in Theorem 4.1
holds for the partial pivoting strategy of Bunch and Kaufman, provided linear systems
Ex = b are solved by GEPP or by using the explicit inverse. It is easy to show that
this assumption also holds for the complete pivoting strategy of Bunch and Parlett [7]
under the same conditions. (Interestingly, for the 2× 2 pivots E that arise with the
Bunch–Parlett strategy, GEPP applied to Ex = b is identical to Gaussian elimination
with complete pivoting.)
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4.3. Normwise analysis for partial pivoting. To show that the diagonal
pivoting method is stable for a particular pivoting strategy, we need to show that
the matrix |L̂||D̂||L̂T | is suitably bounded. We now focus on partial pivoting. For

partial pivoting, L̂ can be arbitrarily large, so stability is not an immediate conse-
quence of Theorem 4.1. We therefore need to look closely at the elements of the
matrix |L̂||D̂||L̂T |. For simplicity, we bound the matrix |L||D||LT | containing the
exact factors, which makes only a second-order change to the overall bounds, since
|L̂||D̂||L̂T | = |L||D||LT |+O(u).

Initially, we examine the contribution from the blocks of L and D produced by
the first stage of the factorization. For this more delicate part of the analysis we take
full account of the interchanges in our notation. Note that

|L||D||LT | =
[

I
|L21| |LS |

] [ |E|
|DS |

] [
I |LT21|

|LTS |
]

=

[ |E| |E||LT21|
|L21||E| |L21||E||LT21|+ |LS ||DS ||LTS |

]
.(4.11)

We first bound

F := |L21||E| = |CE−1||E| ∈ R(n−s)×s.

For a 1 × 1 pivot, F is a vector with elements |cie−1
11 ||e11|, each of which is trivially

bounded by maxi,j |aij |.
Now consider a 2× 2 pivot. Algorithm 1 dictates that Π in (1.1) swaps rows and

columns 2 and r so that, as noted earlier,

E =

[
a11 ar1
ar1 arr

]
, |ar1| = λ.

Using (A.1) and (4.1a), we have

eTi F ≤ (eTi |C|)|E−1||E|

≤ 1

1− α2
[λ σ ]

 1 + α2 2|arr|
λ

2|a11|
λ

1 + α2


≤ 1

1− α2
[ (1 + α2)λ+ 2ασ 2|arr|+ (1 + α2)σ ]

≤ maxi,j |aij |
1− α2

[α2 + 2α+ 1 α2 + 3 ]

≤ max
i,j

|aij | [ 5 6 ] .(4.12)

Next, we need to bound

G := |L21||E||LT21| = |CE−1||E||E−1CT |.
First, consider a 1× 1 pivot. In cases (1) and (2) of Algorithm 1 we have

gij = |cie−1
11 ||e11||e−1

11 cj | =
|ai+1,1||aj+1,1|

|a11| ≤ λ2

|a11| ≤


λ

α
, case (1),

σ

α
, case (2).
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In case (3),

|gij | = |alr||amr|
|arr| (l,m 6= r)

≤ σ2

|arr| ≤
σ

α
.

For a 1× 1 pivot, then, |gij | ≤ α−1 maxi,j |aij | < 2 maxi,j |aij |.
For a 2× 2 pivot (case (4) of Algorithm 1), using (A.2) we have

|gij | ≤ (eTi |C|)
(|E−1||E||E−1|)|CT |ej

≤ 3 + α2

(1− α2)2λ2
[λ σ ]

[ |arr| λ

λ |a11|

] [
λ
σ

]

=
3 + α2

(1− α2)2λ2

(
λ2(|arr|+ σ) + σ(λ2 + |a11|σ)

)
=

3 + α2

(1− α2)2

(
|arr|+ 2σ +

σ2|a11|
λ2

)

≤ 3 + α2

(1− α2)2
(3 + α) max

i,j
|aij | (using (4.1b))

= 36 max
i,j

|aij |.(4.13)

The remaining blocks of |L||D||LT | are composed of blocks of L and D that make
up LDLT factors of Schur complements of A. But every Schur complement satisfies

‖S‖M ≤ ρn‖A‖M ,

where ρn is the growth factor. Hence, applying the bounds above recursively to the
(2, 2) block in (4.11), we deduce the (pessimistic) bound

‖ |L||D||LT | ‖M ≤ 36nρn‖A‖M .(4.14)

We mention in passing that in early drafts of this paper we had a weaker version
of (4.5) in which |E| in the bound was replaced by |E|+ |ar1|e2eT2 . We were still able
to obtain a satisfactory bound for ‖ |L||D||LT | ‖M , indicating that partial pivoting is
somewhat more tolerant of how the 2 × 2 systems are solved than might be thought
from the analysis above.

Using the bound (4.14) in Theorem 4.1 we obtain the following normwise back-
ward stability result for partial pivoting.

Theorem 4.2. Let A ∈ Rn×n be symmetric and let x̂ be a computed solution to
the linear system Ax = b produced by the diagonal pivoting method with the partial
pivoting strategy of Bunch and Kaufman, where linear systems involving 2× 2 pivots
are solved by GEPP or by use of the explicit inverse. Then

(A+∆A)x̂ = b, ‖∆A‖M ≤ p(n)ρnu‖A‖M +O(u2),(4.15)

where p is a quadratic.
Theorem 4.2 has the same form as Wilkinson’s result for GEPP applied to a

nonsymmetric system (see, e.g., [14, section 9.2]), though of course the numerical
value of ρn is usually different for the two methods.
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5. Discussion. The backward error matrix ∆A in (4.9) is necessarily symmetric,
but that in (4.15) is not, in general. However, we can take ∆A in (4.15) to be
symmetric, at the cost of increasing the bound by a factor n, because of the following
result of Bunch, Demmel, and Van Loan [4]: if (A+G)y = b then there exists H = HT

such that (A+H)y = b with ‖H‖2 ≤ ‖G‖2 and ‖H‖F ≤ √
2‖G‖F .

Sorensen and Van Loan [10, section 5.3.2] modify the Bunch–Kaufman partial
pivoting strategy by redefining, in Algorithm 1,

σ = ‖A(:, r)‖∞.

This small change has the pleasing effect of ensuring that for a positive definite matrix
no interchanges are done (and that, as for the Bunch–Kaufman strategy, only 1× 1
pivots are used in this case). At the same time it leaves the growth factor bound
unchanged, and all our analysis remains valid for this variant.

For sparse symmetric matrices, Duff, Reid, and coauthors compute the block
LDLT factorization using a pivoting strategy very different from that of Bunch and
Kaufman [11], [12], [13]. We describe the strategy in [13] as it applies to the first stage
of the factorization: a11 is defined to be an acceptable 1× 1 pivot, from the point of
view of numerical stability, if

|a11| ≥ θmax
i>1

|ai1|,(5.1)

where θ ∈ (0, 1/2] is a tolerance; the matrix

D1 =

[
a11 ar1
ar1 arr

]
is an acceptable 2× 2 pivot if

‖D−1
k ‖∞max{ |aij | : i 6= 1, r; j = 1, r } ≤ θ−1.(5.2)

From among the acceptable pivots one is chosen that best preserves sparsity, according
to some particular sparsity criterion. Conditions (5.1) and (5.2) ensure that ‖L‖∞
is bounded by a multiple of θ−1, which then implies bounds on the growth factor,
and hence on ‖D‖∞. The stability of this pivoting strategy is therefore immediate,
since (2.2) is satisfied. An interesting contrast is that the Bunch–Kaufman strategy
involves a fixed amount of searching for a pivot, and the reasons for its stability are
subtle, whereas the Duff et al. strategy more directly forces stability by bounding
the multipliers, but gives up the fixed amount of searching of the Bunch–Kaufman
strategy.

We emphasize that the aim of this work was to obtain a rigorous backward error
bound for the diagonal pivoting method with partial pivoting. The actual perfor-
mance of the method is affected by the size of the growth factor. More work is needed
to investigate the behavior of the growth factor, about which less is known than the
growth factor for GEPP. Although the unboundedness of ‖L‖∞ does not preclude
backward stability, it does have implications for the practical behavior of the method;
see Ashcraft, Grimes, and Lewis [2] for a thorough study for both dense and sparse ma-
trices. Finally, we mention that the implementation of the diagonal pivoting method
with partial pivoting in LAPACK 2.0 can be unstable when ‖L‖∞ is large, as pointed
out and explained in [2]. The potential instability stems from replacing a symmetric
rank-2 update by two rank-1 updates, via the use of an eigendecomposition. This
problem will be corrected in a future release of LAPACK.
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Appendix. In this appendix we bound three matrix expressions involving a 2×2
pivot from partial pivoting,

E =

[
a11 ar1
ar1 arr

]
, |ar1| = λ.

First, we note that

| det(E)| = |a2
r1 − a11arr| ≥ λ2 − α2λ2 = (1− α2)λ2,

using (4.1d). Hence

|E−1||E| ≤ 1

(1− α2)λ2

[ |arr| λ
λ |a11|

] [ |a11| λ
λ |arr|

]

=
1

1− α2

 |a11||arr|
λ2

+ 1
2|arr|
λ

2|a11|
λ

|a11||arr|
λ2

+ 1



≤ 1

1− α2

 1 + α2 2
|arr|
λ

2
|a11|
λ

1 + α2

 ,(A.1)

using (4.1d) again. Next,

|E−1||E||E−1| ≤ 1

(1− α2)2λ2

 1 + α2 2
|arr|
λ

2
|a11|
λ

1 + α2

[ |arr| λ
λ |a11|

]

=
1

(1− α2)2λ2

 (3 + α2)|arr| (1 + α2)λ+ 2
|a11||arr|

λ

2
|a11||arr|

λ
+ (1 + α2)λ (3 + α2)|a11|


≤ 1

(1− α2)2λ2

[
(3 + α2)|arr| (1 + 3α2)λ
(1 + 3α2)λ (3 + α2)|a11|

]

≤ 3 + α2

(1− α2)2λ2

[ |arr| λ
λ |a11|

]
.(A.2)

Finally,

|E||E−1||E| ≤ 1

1− α2

[ |a11| λ
λ |arr|

] 1 + α2 2
|arr|
λ

2
|a11|
λ

1 + α2



=
1

1− α2

 (3 + α2)|a11| 2
|a11||arr|

λ
+ (1 + α2)λ

(1 + α2)λ+ 2
|a11||arr|

λ
(3 + α2)|arr|


≤ 1

1− α2

[
(3 + α2)|a11| (1 + 3α2)λ
(1 + 3α2)λ (3 + α2)|arr|

]

≤
(

3 + α2

1− α2

)
|E| ≤ 6|E|.(A.3)
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