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Abstract

We present a new embedding theorem for time series, in the spirit of Takens’s
theorem, but requiring multivariate signals. Our result is part of a growing
body of work that extends the domain of geometric time series analysis to
some genuinely stochastic systems—including such natural examples as

Tir1 = ¢(xj) +nj

where ¢ is some fixed map and the 7; are i.i.d. random displacements.

1 Introduction

A natural development of efforts to apply dynamical systems theory to physical sys-
tems was a set of techniques—first proposed in the early 1980s—for relating time
series of experimental measurements to invariants of a putative underlying dynamical
system. In the most popular of these methods, now known as the method of delays,
one assembles d-tuples of successive values from a univariate time series, forming a
series of points in R%. One then regards these points in two ways: as a geometric
object with a dimension and topological invariants; and as the orbit of a dynamical
system, having, for example, Lyapunov exponents.

Takens’s embedding theorem![18] shows that both these views are correct; the
series of delay embedded points is related to the original dynamical system by what

1See [10] for a more accessible proof, [13, 15, 17] for extensions.



amounts to a nonlinear change of coordinates. Takens’ result is often cited as jus-
tification for using the method of delays to do geometric time series analysis, but
the original formulation neglected some important dynamical and signal processing
issues, most notably the presence of both additive noise, which corrupts the signals
one measures from a dynamical system, but does not affect the dynamics, and mul-
tiplicative or dynamical noise, which does affect the dynamics (and so, indirectly, the
signals). Although the only rigorous results about embedding in the presence of noise
are fairly recent (see [17] for a review), there is a great deal of practical experience
with additive noise on the measured signal (see, e.g., [6, 7, 8, 9, 11, 16]) suggesting
that at least some kinds may be overcome.

Dynamical noise has only recently begun to receive attention: again, see [17]
for a careful discussion of the appropriate framework and a review of recent results.
Here we treat some illustrative examples and formulate a new embedding theorem
suited to systems with intrinsically noisy dynamics. We begin by exploring a related
problem, that of embedding signals from what Michael Barnsley [3, 4] has called an
Iterated Function System (IFS). This example, which is a mild form of stochasticity,
will both set the stage for our main result and, in the limit of a large IFS, illustrate
the ways in which dynamical noise upsets the standard method of delays as applied
to univariate signals. We then frame a new result which, by considering multivariate
signals, overcomes these problems and offers the prospect of geometric time series
analysis for truly stochastic systems.

2 Embedding an IFS

Throughout the paper we will consider dynamical systems of the form

Tj1 = Pj(z)) (1)

where the z; are points in some m-dimensional manifold M and where the dynamics
are given by a sequence of maps ¢, : M — M; j € Z. For the moment, we will
restrict ourselves to the case of IFS’s, so we will imagine that the ¢; come from
some finite set, {f1, ---, fv}, and that at each step of the dynamics, one of the fj
is chosen independently with fixed probabilities, {p1, - - -py}. Our time series will be
the values of some real-valued measurement function v : M — R recorded along an
orbit: v; = v(z;).

A complete geometric analysis of such a time series should recover not only the
underlying manifold, but also the particular sequence of maps ¢; that governed the
temporal evolution. Fortunately, the standard method of delays works with only
minor modifications: recent work of Broomhead, Davies, Huke and Stark [5] shows
that if one constructs d-dimensional delay vectors

Vi = (Uji Ujt1y * " Uj+d71) (2)

in the usual way, then, provided d > 2m, one expects generically to find that the
embedded points lie on a finite collection of diffeomorphic images of M.



To see why, think of the embedding procedure (2) as a map ®;, from M to R

D;0(z5)

(v(z;), v(zj41), -5 V(@jra1)) s

(v(z), v(¢j(x)), v(¢j41(es(x))) - -+) (3)

Clearly this map depends on the particular sequence of ¢; that produced the orbit, but
the dependence is mild; @, , involves only (d— 1) successive steps in the dynamics and
so, as each step involves only one of the IFS’s N maps, there are only N@=1 distinct
possibilities for ®;, . In other words, each embedded point v; lies in one of finitely
many images of M. An argument similar to that in Takens’s original paper shows
that each of the delay-embedding maps is generically a diffeomorphism, so providing
their images do not overlap and Broomhead et al. [5] show that generically they
do not—then the usual method of delays solves the problem of geometric analysis for
time series arising from an IFS.

2.1 Limitations of the IFS model

It is instructive to try to push this idea further: what happens as one increases the
number of maps N? All N4V images of M must fit into a hypercube

[infer v(2), sup,ep U(I)]d

and thus must eventually become so crowded that one could not, in practice, separate
them. But an even more drastic problem occurs if one lets N — oo in such a way
that one replaces the finite collection of maps in the IFS with a continuously-indexed
family.

For suppose we wished to enumerate the embedding maps in (3) above; we could
label them with (d — 1)-tuples of integers, so that (1,2, ..., iq—1) would correspond
to the map @;, : M — R%

5 ld—1;V

Piy . igaio(@) = (0(2), v([fiy (2), 0(fir (fir (%)) - ) .

If we now replace the IFS’s finite index set with parameters from, say, some n-
dimensional manifold A/, then a labeling scheme like the one above would require
(d — 1)-tuples of points in A/. That is, the embedding maps would be indexed by
points in M@ Y. The most we could hope for would be that the union of all the
images of M under all the embedding maps would form a diffeomorphic image of

MXN x - xN, (4)
———

d—1

but this is a manifold of dimension (m + (d — 1)n) and so, barring a non-generically
fortuitous choice of coordinates, cannot generally be embedded in a space of dimension
lower than 2(m + (d — 1)n) + 1. Indeed, if n > 0, no choice of embedding dimension
d could ever be large enough to properly embed the product in (4).

The usual method of delays thus fails when the underlying dynamical system
is anything more random than an IFS. The problem is that the standard approach
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relies on composition with the dynamics to produce independent coordinate functions
on M. In the stochastic case the dynamics vary from step to step, so that even
in the favourable case we have just considered, where the stochastic dynamics are
characterized by a finite-dimensional parameter space, adding extra delays does not
help unless the parameter space is zero-dimensional (the IF'S case). In the next section
we show that an alternative approach, getting more information about M by taking
extra measurements, can resolve this problem.

3 Embedding Noisy Dynamical Systems

The problematic examples at the end of the last section are stochastic dynamical
systems on a product manifold whose temporal evolution is governed by £ : MxN —
M;

(@j41, yjr1) = (F(zj, y5),m5) - (5)
Here the x; € M are points in our system’s state space and one can think of the
y; € N as points in an n-dimensional manifold of parameters which determine the
action of the dynamics F. At each step one acts with the map determined by the
current parameters, then chooses the next set randomly: the 7; € N are a sequence
of points from N, chosen independently and distributed identically. The rest of the
paper is devoted to this sort of example, which might be termed finitely-parameterised
stochasticity.

Example 1 Our prototype example is a fized, purely-deterministic dynamical system
perturbed by small, random displacements. For example, imagine that M is R™; that
N is B,,(0,¢€), the closed m-dimensional ball of radius € centred on the origin, and
that the map F in equation (5) is

Fz, y) = ¢o(x) +y. (6)

Here ¢y : R™ — R™ is the deterministic part of the dynamics and y is a random
displacement chosen, say, uniformly from B,,(0,€). This ezample is a kind of skew
product and, bearing it in mind, we will sometimes refer to M as the base space
and N as the noise manifold. The role of measurements will be played real-valued
functions that depend only on the base space.

3.1 A theorem

A typical realization of a finitely-parameterized stochastic process consists of a se-
quence of i.i.d. parameter values y; € N, j € Z and the orbit of some point zy € M
under the corresponding dynamics

Tpt1 = F(Tn, Yn).

The natural phase space of such a system is the product manifold M x A and a
successful geometric time series analysis of such a system should be able to reconstruct
the product and ideally, preserve its product structure, so that in problems like (5)
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one can in some sense tease apart the i.i.d. selection of parameters from the dynamics
they induce.

Suppose, for example, that the map ¢ in (6) had a uniformly hyperbolic attract-
ing set. Stochastic perturbation would destroy this attractor, replacing it with, at the
simplest, a probability distribution concentrated in a small neighborhood of the un-
perturbed system’s attractor. But the dynamics (6) are not structureless: F' has two
interesting restrictions. In the first one fixes a set of parameters y € N and obtains
a diffeomorphism F(-, y) of M to itself; in the second one fixes a point z € M and
considers the image produced by F(z, -) : N' — M as the second arguement varies
over the manifold of parameters. The point of the theorem below is to determine
conditions under which this second restriction is experimentally accessible.

The idea is to to use a pair of consecutive, multivariate observations to pin down
both parts of the Cartesian pair (z,, y,). Where Takens’s original theorem used
composition of the dynamics with the measurement function to produce a suite of
coordinate functions, here we imagine that we can take so many simultaneous mea-
surements that embedding of the x, part is guaranteed by Whitney’'s embedding
theorem. We then combine this multivariate observation with its successor to get
information about the y,, part of (x,, y,).

Theorem 1 Let M and N be compact manifolds of dimension m and n respectively.
For pairs (F,v) with ' : M x N'— M a C* map such that

H1 F(-,y) : M — M is a C? diffeomorphism for each y € N; that is, F is a family
of diffeomorphisms in C*(M, M), parameterised by y € N

H2 F(z, ) : N — M is an embedding for each x € M.
H3 and v: M — R? a C? function and d > 2m;

it is a generic property that the map ®p,: M X N — R defined by

Ppp(z,y) = (v(2), v(F(z,9)))

is an embedding. Further, ® g, preserves the product structure of M x N in the sense
that

i. 1 (Pry(-, v) : M — R is an embedding for each y € N and
ii. mo (Ppy(z, <)) : N — R? is an embedding for each x € M,

where the operators w1 and wo project out either the first, or last d-tuple of components
in R*.

Proof: This is really nothing more than a corollary of Whitney’s embedding theorem
[19, 14]: the main conclusion, that @z, is an embedding, follows from the numbered
conclusions about the preservation of product structure. And the first of these is an
immediate consequence of Whitney’s embedding theorem and H3 while the second
follows from the first and H2.
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Figure 1: The hypothesis H2 can never be satisfied if M = S* and N' = [-1, 1].

Panel (a) shows several images of N in M, while panel (b) shows the vector field
induced by D,F(x, yo) -

3.2 Remarks on the hypothesis H2

The most difficult part of applying this theorem will be to find examples for which
the hypothesis H2, that the dynamics F(x, -) embed A in M, can be verified. Here
we discuss some topological issues related to this problem. As we will show below, it
is not always possible to satisfy H2, Indeed, there are pairs of manifolds A/ and M
for which it can never be satisfied.

But first, we consider the elementary arguments related to dimension counting.
At the very least, embedding requires n < m and could in principle be much more
restrictive—the Whitney bound suggests that generically one needs 2n < m, but this
seems extreme. Here is an example where n = m.

Example 2 Consider a variation on the system on Example 1 where we take M to
be a circle and the noise manifold N to be an interval of length 2¢. The dynamics
(6) become the composition of a random rotation through a small angle with some
fized map ¢o : S* — S*. Provided ¢ is small enough, H2 will be satisfied even though
dim N = dim M.

In general, however, there can be subtle topological obstructions, as the following
example shows.

Example 3 Take M = S?, the two-sphere, and N' = [—1, 1], an interval. It is
impossible for this system to satisfy H2; that is, it is impossible for all the maps
F(z, ) : N — M to be embeddings of N into M. To see why, fix a value of y € N,
say y = yo, and consider the derivatives DyF(x, yo) : TNy — TMpz, yy). As N is
Just an interval, the tangent space TN, is spanned by a single tangent vector that we
shall call ey,. The image of this vector under D,F is

DyF(z, yo)ey € TMpzyy).

a vector tangent to M at the point F(z, yo). By varying x in the expression above,
we obtain such a tangent vector at every point in M (here we use H2: the fact that
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F(-yo) : M — M is a diffeomorphism). That is to say, the images of the tangent
vector ey, form a vector field on M = S*. But any such vector field must vanish in
at least two places, hence F(x, -) must fail to be an immersion in at least two places
and so certainly cannot be an embedding.

3.3 Numerical examples

Takens’s original paper addressed a large body of already-existing practice: many
scientists had been using delay-embedding to measure such dynamical invariants as
Lyapunov exponents and, especially in the early eighties, the dimensions of attractors
(see, for example, the bibliography in [2]). As subsequent authors [13] have empha-
sized, failure of the delay-map ®p, to be an embedding would not necessarily affect
the dimension of the image of M x N; indeed, a rather unlikely and spectacular fail-
ure of embedding would be required. None the less, such calculations remain popular
and, in the case at hand, informative.

In section 3.1 we said that the point of our theorem was to exploit multiple simul-
taneous observations to make the the restriction F(z, -) experimentally accessible—
here we discuss that notion more thoroughly. The idea is to consider delay-embedded
points of the form

(v(z0), v(F (20, y)))

where F' and v are as in our theorem and o € M is some particular point in the base
space. Ideally one would examine points sharing a common value of the projection 7,
that is, points whose first d coordinates were the same. One could then, for example,
compute the dimension and topology of N using standard tools from geometric time
series analysis. In practice this would require very long time series and even then one
would probably have to consider delay-embedded points whose first d coordinates
were close, perhaps inside some small ball, rather than strictly identical.

In the rest of this section we will discuss some less demanding calculations bearing
on the same issues. All the examples below are correlation dimension calculations for
variously perturbed versions of the celebrated Lorenz system [12)]

T = —ox+o0y
= —xz+rr—y
Z = zy—bz (7)

with the canonical parameters o = 10, r = 28.0 and b = (8/3). These systems are
not, of course, strictly within the domain of our results: the phase space of the Lorenz
system is R?, which is not a compact manifold. The Lorenz attractor is, however,
contained in a compact subset of R’ and as Huke [10] has pointed out, there is an
analogue of the standard Takens theorem suited to this case.
The framework set out in section 3 encompasses a wide variety of finitely-parameterised

stochastic processes. At one extreme are those that approximate stochastic ODEs

the first two examples discussed below are of this kind—where random perturbation
affects the dynamics so profoundly as to require modifications to the notion of an
attractor [1]. Those experienced with the standard Takens theorem might imagine



that the addition of this kind of dynamical noise, which in one sense makes the sys-
tem inifinite dimensional, must preclude any sort of dimension calculations: this is
certainly not the case.

At the other extreme one might naively imagine that the separation produced by
our two projections is so effective that the embedded system has the structure

unperturbed attractor x N. (8)

This is not generally the case, though it does happen in the third of our examples.
Here the sampling period varies randomly, but the underlying continuous process
is an unmodified deterministic low. Similar examples arise quite naturally in the
measurement of physical system and in these cases the delay-embedded object is of
the form (8).

To address the issues discussed above we subjected the Lorenz system to three
kinds of random perturbation. All three examples involve simultaneously-recorded
time series of the three standard Lorenz variables, x, y and z. In the spirit of the
theorem, we investigated the dimension of the collection of points v} formed by con-
catenating two consecutive multivariate measurements:

vj = (wj’ Yis Zjy Tj+15 Yj+1s Zj+1)-

The results are pictured in figures 2-4. Each figure shows 6 curves, one each for
embeddings based on first m = 1, 2, 3, ..., 6 of the coordinates of 500,000 points. The
curves are numerical derivatives, Dy(m, €), of the log of the m-dimensional correlation
integral, Cy(m, €), with respect to loge. A scaling region appears here as a range of
log € over which the slope Dy(m, €) appears constant.

The system studied in figure 2 exhibits a straightforward sort of dynamical noise:
we integrated the equations of motion (7) with a fourth-order Runge-Kutta scheme
and a time step of 4t = 0.01. Every five time steps we recorded z, y and z, then applied
a random displacement to the z coordinate. The displacements were distributed
uniformly over the interval +0.10,, where 0,2 is the variance of the unperturbed
Lorenz x signal. Thus M = R3, N = (=0.10,, 0.10,) and the unperturbed dynamics
are the fifth iterate of a map ¢g5 : R* — R3 that approximates the time-dt evolution
operator of the Lorenz system.

The resulting embedded object is four-dimensional. That is, there is a recognizable
scaling region for all six curves and although the curves for dimensions 1 through 4
suggest that the data fill out those embedding spaces, the curves for dimensions 5
and 6 lie almost directly on top of that for dimension 4. Clearly the addition of
noise changes the dynamics dramatically; as viewed in the system’s phase space, the
noise destroys the original Lorenz attractor (which has a dimension slightly larger
than 2) and replaces it with a blurred object that, at least on small length scales, is
volume-filling. But the distribution of the ¥ is not without structure: had we not
known that the noise manifold N was 1-dimensional, we could have deduced it from
the way in which the slopes of the Dy(m, €) jump up by 1 when we include data from
the second set of measurements.

In the calculation pictured in Figure 3 we consider a perturbation that more
closely approximates a classical stochastic process. The noise still affects only the x
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Figure 2: Correlation dimension estimates for a Lorenz system perturbed by a one-
dimensional family of random kicks that acts once per sampling period.
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Figure 3: Correlation dimension estimates for a Lorenz system perturbed by a one-
dimensional family of random kicks that acts once per integration time-step: this
system is nearer to a diffusion process than to the example in Figure 2.
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Figure 4: Correlation dimension estimates for a Lorenz system sampled at irreqular
time intervals. This one-dimensional family of evolution operators shares the same
attracting set, but single-step multivariate delay embedding shows that the dynamics
are not the same from step to step.

coordinate, but now we permit it to act once per integration step rather than once
per sampling interval. The noise manifold is thus higher-dimensional; the random
kicks act 5 times per sampling interval, so dim A = 5 and one would not expect the
U; to lie on an object of dimension less than 3 +5 = 8. The Dy(m, €) bear this out:
those for dimensions 1 through 4 suggest that the data fill out the embedding space.
But in contrast to the previous example, the curves for dimensions 5 and 6 do not lie
on top of that for dimension 4; they do not offer an estimate of the dimension of N.

Finally, we examine a case where the perturbation does not change the appearance
of the attractor at all (see also Figure 5), but does affect the dynamics. The idea
is to perturb the sampling rate, so that rather than recording the data at regular
intervals, we choose successive sampling intervals independently from the interval
(0.01, 0.05). Once again, M is a compact subset of R? and A is an interval, but
this time the attractor’s structure in M is preserved: the first three Dy(m, €) curves
(which all depend on data gathered at the same instant in the Lorenz attractor’s
natural phase space) accumulate on a dimension slightly larger than 2. When one
adds the data from the next measurement, the apparent dimension of the embedded
object jumps to something nearer 3, but no higher, indicating that A/, the manifold of
parameters, has dimension 1. In this case the product structure of M x N is especially
straightforward: the embedded data lie on a kind of sheaf of Lorenz attractors, each
leaf associated with a fixed value of the sampling interval and containing a complete
copy of the attractor.
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Figure 5: Two thousand points from each of the trajectories of the stochastic processes
discussed above: panels A and B correspond to the cases where the x variable received
periodic kicks once (A) or five times (B) per sampling interval. In these cases the
fine structure of the Lorenz attractor is blurred. In the system pictured in panel C,
the sampling interval varies randomly, but as these variations cause displacements

only along an orbit of the Lorenz flow, the sampled points all lie on the unperturbed
attractor.
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3.4 Extensions and applications

Our embedding theorem evades the dimension-counting problem outlined at the end
of the section 2 by adding extra observations, so many extra that the measurements
taken at a single instant are sufficient to embed M. As a result, the product manifold
M x N gets embedded in a space of dimension higher than is strictly necessary. The
excess—always at least one—is even larger if n < m. This means that some of the
measurements are redundant: it would be interesting to know if this redundancy has
any structure that one could exploit.

More generally, one would like to know how to exploit the product structure of
M x N. In the irregularly-sampled series of Figure 4 the situation is fairly clear and,
provided one had sufficient data, one could hope to deduce the sequence of sampling
intervals. A related problem arises in the analysis of signals contaminated by cross-
talk in noisy, nonlinear channels. In that case, the underlying dynamical system is
the internal state of the channel; the noise process is the contaminating cross-talk and
our goal is to recover the contaminating signal with an eye to cancelling it. Another
promising class of applications involves the processing of spatio-temporal signals.
Here the kind of multi-channel observations required by Theorem 1 arise naturally.

One might, in this setting, want to use the sorts of processes discussed above as a
more sophisticated class of “noise” model. Here “noise” has the sense of “some unin-
teresting signal” as opposed to the more technical sense, “the stochasitc component
of some mixed stochastic/determinsitic process”, that it has had in the rest of the
paper. Imagine that some interesting signal is superimposed on a spatio-temporal
noise process which satisfies the hypotheses of Theorem 1 and that it is possible to
recombine the outputs of the measurement channels in such a way as to cancel the
interesting signal; naturally this would also distort the noise. But provided that the
recombined measurements still satisfied the hypotheses of the theorem, we could use
them to construct an embedding of M x N. This embedding would then be related
invertibly (indeed, diffeomorphically) to the embedding of M x N the would have
been constructed from the original measurements in the absence of the interesting
signal. This structure is a sort of spatio-temporal analogue to that required for the
signal-separation protocol of [6]; combining their ideas and this paper, one could
recover the interesting signal cleanly.

4 Conclusion

We have introduced a new theorem for the geometric analysis of time series measured
from systems perturbed by dynamical noise. It is worth emphasizing how our result
differs from Takens’s original. To begin with, we have given up the most remarkable
aspect of the first delay-embedding theorem: Takens showed that one can, in a rigor-
ous sense, learn much of what there is to know about a dynamical system by studying
a single univariate time series measured from it. One can calculate the dimension of
attractors, estimate such dynamical invariants as the Lyapunov spectrum and even
make predictive models.

By contrast, we require so many simultaneous measurements that an embedding
of the original state space becomes automatic. And we have also, by turning our
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attention to genuinely stochastic systems, given up many of the dynamical invariants
and much of the predictive power that one associates with geometric time series
analysis applied to deterministic systems. What we have gained is a framework in
which to analyse much larger classes of processes and signals. Our result is part
of a larger mathematical enterprise whose aim is to extend geometric time series
analysis from the domain of low-dimensional, deterministic dynamical systems into
the kingdom of stochastic processes and classical time series analysis.

We would like to thank James Theiler, Lenny Smith, Christine Ziehmann, Holger
Kantz and Mike Davies for enjoyable discussions and bracing skepticism.
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