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EXPERIENCE WITH A MATRIX NORM ESTIMATOR*

NICHOLAS J. HIGHAMt

Abstract. Fortran 77 codes for estimating the 1-norm of a real or complex matrix were presented
by Higham in [ACM Trans. Math. Software, 14 (1988), pp. 381-396]. The codes have found use in
various applications and have been adopted by two program libraries. Further observations about the
norm estimation algorithm and experience in using it are reported here. In particular, an example
is given where the algorithm requires nearly the maximum possible number of iterations.
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1. Introduction. In [9] Higham presented two Fortran 77 codes for estimating
the 1-norm of a real matrix or a complex matrix. The codes are in the NAG library
at Mark 13 [13, Chap. F04], are being used for all the condition number estimation
in LAPACK [3], and have been used with research or production codes by several
workers [1], [2], [5], [6], [12]. Because of this wide use of the routines we feel it is
worth reporting experience and insights accrued since the work in [9] was done. We
describe here a new example of slow convergence of the norm estimation algorithm,
point out that it is a special case of a more general iteration for estimating matrix
norms, summarize the practical performance of the estimator, and describe several
interesting applications.

First, we recall the original algorithm of Hager [7], on which the estimators in [9]
are based. Our notation is as follows: e is the vector of all ones, ej is the jth column
of the identity matrix, and sign(y) means i 1 or -1 according as yi _> 0 or
y<0.

ALGORITHM 1. Given B E lRnn this algorithm computes and y Bx such
that /_< 118111 with I]ylll/llxlll .

X e//t
repeat

y=Bx
sign(y)

z BT
Ilzll <

quit
end
x ej, where Izjl Ilzll (smallest such j)

end

An important feature of the algorithm is that it requires only a means for eval-
uating matrix-vector products Bx and BT--it does not require explicit access to
the matrix B. Of course, if B were available explicitly we could simply compute
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To derive Algorithm 1, Hager regards IIBI[1 as the maximum of F(x) IIBxlll
over the unit ball S in the 1-norm and, since F is nondifferentiable at points x where
Bx has a zero component, he applies an optimization technique based on subgradients.
A subgradient of F at x is any vector g such that

F(y) >_ F(x) + gT(y x) for all y E S.

See [7]-[9] for further details of the subgradient-based derivation. An alternative
derivation relying on a simple heuristic argument is given in [9].

Hager notes that Algorithm 1 requires at most n + 1 iterations, since F(x)
IlYlI zTx increases strictly on each stage and so each of the vertices ej is visited
at most once. He proves that the final vector x is a local maximizer for F as long as
y Bx has no zero components.

We noticed recently that Algorithm 1 is a special case of an iteration investigated
in [14] for estimating the mixed subordinate norm

(1) IIBIl ,e max B e ]Rmxn

#o Ilx[l 

where I1" I1, and I1" are arbitrary vector norms. The iteration is

(2) xk+ h(zk) h(BTg(Bxk)),

where g and h are subgradients of the -norm and the norm dual to the a-norm,
respectively. With a 1 this iteration reduces to the one in Algorithm 1. In
[14] it is proved that iteration (2) converges in a finite number of steps if one of the
a- and -norms is polyhedral (this class includes the 1- and a-norms, but not the
2-norm), but no properties of the limit point are determined. In [15] the special case
where a oc, / 1, and B is symmetric positive definite is examined in detail.
Unfortunately, the results in [14] and [15] do not seem to provide any new insight into
Algorithm 1.

Two key aspects of the behaviour of Algorithm 1 are as follows.
(1) The estimates produced by the algorithm are frequently exact (q, IIBII),

usually "acceptable" (/

_
IIBII/x0), and sometimes poor ( < IIBII/10). Several

families of matrices are known for which /IJBII can be arbitrarily small [8], [9].
(2) The algorithm almost always converges after at most four iterations [7]-[9].
Based on these, and other observations, the following changes to Algorithm 1

were made in [9]. We will refer to the modified algorithm as Algorithm EST.
Definition of estimate. To overcome most of the poor estimates, is redefined as

{ }Ilwlll where w By, vi (-1)i+ 1 +(3) max Ilyll , i1 ’11 
The vector v is considered likely to "pick out" any large elements of B in those cases
where such elements fail to propagate through to y.

Convergence test. The algorithm is limited to a minimum of two and a maximum
of five iterations. Also, convergence is declared after computing if the new is the
same as the previous one (which signals that convergence will be obtained on the
current iteration) or if the new IlYlI is no larger than the previous one. The latter
event can happen only in finite precision arithmetic and indicates that a vertex ej is
being revisited--the onset of "cycling."
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In the following, all comments about Algorithm EST apply also to a version
applicable to complex matrices [9], whose main difference from Algorithm EST is
that it does not have the test for repeated vectors.

Experience subsequent to the development of Algorithm EST has confirmed that
the above modifications work well, and we are not aware of any way to improve the
algorithm’s performance. We have applied Algorithm EST to the test matrices in
the collection [10], for values of n up to 100. This collection contains a wide variety
of matrices (for example, real, complex, well-conditioned, ill-conditioned, structured,
contrived, practically occurring), and many of them are parametrized. Our experi-
ments led to a new discovery, which is described in the next section.

2. Number of iterations. As mentioned above, Algorithm 1 usually requires
at most four iterations and it never requires more than n/ 1. In our numerical experi-
ments we found one particular family of matrices from [10] for which, depending on n,
up to n iterations were required (the matrices are B- inv(fiedler(seqm(-1, 2, n)))in
the notation of [10]). Consideration of this example led us to construct a symmetric
n n tridiagonal matrix Tn(a) (tij) for which it can be proved that n iterations
are required by Algorithm 1 if 0 _< a < 1. The matrix is defined by

2, i= 1,
ti i, 2_<i_<n-1,

--tn,n-1 + 0, n,

(i+1)/2-a) ifiisodd,
ti,+l -/2 if is even.

To illustrate,

-(1

-1
-1
a

-(2 c) 4
-2

-2
5

-(3 c) 3

Note that, for all a, an optimal x for Algorithm 1 is x en-1, that is,
IITn(a)ll. It is straightforward to show that if Algorithm 1 is applied to Tn(a) with
0 _< a < 1 then x ei-1 on the ith iteration, for 2,..., n, with convergence on
the nth iteration. The same would be true of Algorithm EST if it were not limited to
five iterations. For n _> 5, after five iterations we have y5 Tn(a)e4, so Ilyhll 8-a.
Since IITn(c)ll 2n- 2- a, we have

--+0 as rz --+ oo.
IlT, (o ) 2n- 2-

For a _> 1 we obtain convergence to x e on the second iteration and, similarly,
the underestimation ratio Ily2111/llTn(1)lll - 0 as n . For a < -1 Algorithm 1
requires n- 1 iterations, and x ei on the ith iteration. Fortunately, in all cases
the "extra vector" v in (3) enables Algorithm EST to produce a good norm estimate.
For a < 1 we have

IT, ( )llvl _>
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which implies

n2

and hence

(n2 -na)/(n) 1

II%()ll 2n- 2- a 3

For a > I it does not seem possible to obtain a concise lower bound for IIT,()vll, but
a rough analysis indicates that the extra estimate cannot differ greatly from
(and this is supported by numerical tests). In conclusion, Algorithm EST produces
an acceptable estimate of [[%()11 for n and . We are not aware of any matrices
for which the limit of five iterations in Algorithm EST is responsible for the algorithm
producing a poor estimate.

3. Worst-case norm estimates. A class of matrices B(O) is given in [9] for
which /[IB(O)II can be arbitrarily small for Algorithm EST. In practice, rounding
errors sustained in constructing B(O) usually make the computed matrix one for which
a good estimate is returned. Apart from the matrices B() we have found exceedingly
few matrices for which the estimate is less than llBll. Here we list a few of the
worst cases. Where A B-1 is specified we used Algorithm EST to estimate IIA-II,
which involves solving linear systems with A and AT as coefficient matrices. QR(B)
denotes the triangular QR factor of B. The matrices are specified using the notation
of [10]; they are of orders 16, 8, 50, and 100, respectively.

A vand(seqa(-1, 1, 16)),
A vand(seqa(-1, 1, 8)),
B QR(chebspec(50)),
A vand(100),

/IIBII 0.199,
/IIBII o.88,
")’/IIBII o.326,
")’/IIBII, 0.207, 6.66 x 1049.

In the last exanple Algorithm EST detected cycling. This matrix A is so violently
ill-conditioned that the computed quantities in Algorithm EST may have no correct
significant digits (the same applies to the "exact" IIA-1111 with which we compare
"!). These results were obtained using our PC-MATLAB implementation of Al-
gorithm EST. PC-MATLAB uses IEEE standard arithmetic with machine epsilon
2-52 10-16. Different results might be obtained in another computing environ-
ment. To indicate the sensitivity of these worst-case estimates to rounding errors we
mention that when A in the last example was scaled to A/3 Algorithm EST produced
an exact estimate!

4. Applications. The most obvious application of Algorithm EST is to the
estimation of the norm condition number p(A) IIAIIplIA-IIB, p 1,. We
summarize three other applications in which the algorithm has been found to be
useful.

(1) In [12] a hybrid algorithm is developed for computing the polar decomposition.
Algorithm EST is used to decide when to switch from one iteration to another by
testing the convergence criterion IIX[Xk- IIl < 1, where Xk E ]Rnxn. By using
Algorithm EST formation of the matrix product X[Xk is avoided.

(2) When a square linear system Ax b is subject to perturbations AA and Ab
satisfying inequalities IAAI _< E, IAbl _< f, a bound for the change in x can be
derived that involves the condition number

;E ,f(A, b) IA-IEIxl + IA-lf Iloo
Ilxll
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The following idea from [1] shows how s,f(A, b) can be estimated with the aid of
Algorithm EST. Defining z (EIx + f)/llXllo and Z diag(z) we have

aF,I(A, b) ]l [A-Iz [] It IA-Ize IIo
[[ IA-Zle [Ioo [ [A-Z[ I[

where B (A-1Z)T. To apply Algorithm EST we just need to evaluate products
Bx Z(A-Tx) and BT A-I(z), which is easily done given the ability to solve
linear systems involving A and AT. LAPACK [3] uses Algorithm EST to provide an
estimate of E,y(A, b) in routines for the solution of Ax b by Gaussian elimination
with iterative refinement.

(3) The componentwise perturbation analysis mentioned in (2) can be extended
to least squares problems [2], [4], [11] (i.e., to rectangular A and E), and a bound is
obtained that contains the terms

I IA+I(EIxl + f) II and I (ATA)-IIETIrl l
I1 11 

where A+ is the pseudo-inverse of A and r b- Ax. As in (2), each of these terms
can be reduced to the form IIBII1, where it is straightforward in the context of solving
a least squares problem to evaluate Bx and BT.

Acknowledgments. I thank Des Higham for poiming out an oversight in my
original analysis of the Tn (a) example. The associate editor Robert Skeel also offered
useful comments.
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