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1 Introduction

The purpose of these notes is to give a brief survey of bifurcation theory of
Hamiltonian systems with symmetry; they are a slightly extended version of
the five lectures given by JM on Hamiltonian Bifurcations with Symmetry.
We focus our attention on bifurcation theory near equilibrium solutions and
relative equilibria. The notes are composed of two parts. In the first, we re-
view results on nonlinear normal modes in equivariant Hamiltonian systems,
generic movement of eigenvalues in equivariant Hamiltonian matrices, one and
two parameter bifurcation of equilibria and the Hamiltonian-Hopf Theorems
with symmetry. The second part is about local dynamics near relative equi-
libria. Particular topics discussed are the existence, stability and persistence
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358 VI Symmetric Hamiltonian Bifurcations

of relative equilibria, bifurcations from zero momentum relative equilibria and
examples.

We begin with some basic facts on Lie group actions on symplectic man-
ifolds and Hamiltonian systems with symmetry. The reader should refer to
Ratiu’s lectures for more details and examples.

Semisymplectic actions A Lie group G acts semisymplectically on a sym-
plectic manifold (P, ω) if g∗ω = ±ω. In this case the choice of sign deter-
mines a homomorphism χ : G → Z2 called the temporal character, such that
g∗ω = χ(g)ω. We denote the kernel of χ by G+; it consists of those elements
acting symplectically, and if G does contain antisymplectic elements then G+
is a subgroup of G of index 2. Some details on semisymplectic actions can be
found in [MR00].

Not every semisymplectic action contains an antisymplectic element of or-
der 2, but if it does then we can writeG = G+oZ2(ρ), where ρ is the element
in question.

We write K < G to mean K is a closed subgroup of G. The fixed point set
of a subgroup K < G is

Fix(K,P) = {x ∈ P | g · x = x, ∀g ∈ K};

it is a closed submanifold of P . If K < G+ is compact then Fix(K,P) is a
symplectic submanifold. That compactness is necessary can be seen from the

simple example of t ∈ R acting on R2 by

(

1 t

0 1

)

: the fixed point space is

then just the x-axis.
Throughout these lectures, we assume that G acts properly on P . Let g be

the Lie algebra of G and Gx = {g ∈ G | g · x = x} the isotropy subgroup of
x ∈ P . The properness assumption implies in particular that Gx is compact.

To each element ξ ∈ g there is an associated vector field on P:

ξP(x) =
d

dt
exp(tξ) · x|t=0

The tangent space at x to the group orbit through x is g ·x = {ξP(x) | ξ ∈ g}.
The adjoint action of g on g denoted ξ 7→ Adg ξ, is the tangent map of

Ig : G → G, h 7→ ghg−1 at e, TeIg(ξ). In the case of matrix groups, this is
just

Adg ξ = gξg−1.

Finally, dual to the adjoint action on g is the coadjoint action on g∗:

〈Coadg µ, η〉 :=
〈

µ,Adg−1 η
〉

.
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In the case of matrix groups, if we identify g∗ with matrices via 〈µ, ξ〉 =
tr(µT ξ), then the coadjoint action becomes

Coadg µ = g−TµgT .

where g−T = (g−1)T = (gT )−1. For compact groups and for semisimple
groups, the adjoint and coadjoint actions are isomorphic, but in general they
can be quite different—this is already the case for the 3-dimensional Euclidean
group SE(2). See Section 5 (in Part II) for how the momentum map relates to
a semisymplectic action.

Hamiltonian formalism A Hamiltonian system with symmetry is a quadruple
(P, ω,G,H) where:
• (P, ω) is a symplectic manifold,
• G is Lie group acting smoothly and semisymplectically on P ,
• H : P → R is a G-invariant smooth function.

The Hamiltonian vector field XH is defined implicitly by ω(−, XH) = dH

and of course defines a dynamical system on P by

ẋ = XH(x). (1.1)

When working in the neighbourhood of a point x ∈ P , the equivariant Dar-
boux theorem states that there exists a coordinate system such that the sym-
plectic form is locally constant. Therefore, without loss of generality we can
reduce the Hamiltonian to a vector space by identifying a neighbourhood of x
in P with V = TxP and the G action on P with the G action on TxP . Note
however that for symmetric Hamiltonian systems, Montaldi et al. [MRS88]
and Dellnitz and Melbourne [DM92] show that symplectic forms are not al-
ways locally isomorphic if the isotypic decomposition of the space contains
irreducible representations of complex type.

If G is formed of symplectic elements, then XH is G-equivariant; that is, if
x(t) is a solution curve of XH then so is g · x(t) for all g ∈ K.

On the other hand, suppose that ρ ∈ G is an antisymplectic symmetry, that
is ρ∗ω = −ω or ω(ρu, ρv) = −ω(u, v), then it is time-reversing; that is, x(t)
is an integral curve of the XH vector field implies ρ · x(−t) is also an integral
curve of the vector field.

If K is compact and formed of symplectic symmetries, then Fix(K,P) is
invariant under the flow of the dynamical system. If in addition K is compact,
then Fix(K,P) is a Hamiltonian subsystem with Hamiltonian given by the
restriction of H to Fix(K,P).

The remainder of these notes is structured as follows. There are two main
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parts. The first covers local dynamics near equilibria and the second local
dynamics near relative equilibria.

In Section 2, we begin with the local dynamics near equilibria when the
Hamiltonian has a nondegenerate quadratic part, and present the equivari-
ant Weinstein-Moser Theorem on the existence of nonlinear normal modes
in equivariant Hamiltonian systems. In Section 3 we look at bifurcations near
equilibria. We start with a brief review of generic movement of eigenvalues in
equivariant Hamiltonian matrices depending on parameters. Then we look at
steady-state bifurcations in parameter families of Hamiltonian systems, and in
particular the one-parameter case. We conclude this part with the Hamiltonian-
Hopf Theorem with symmetry.

The second part deals with bifurcations from relative equilibria. In Sec-
tion 5 the momentum map is defined and its equivariance is shown. Using
this information, it is shown how to define reduced spaces for the dynamics
using the momentum map. Then in Section 6, relative equilibria are defined
and we explain how to find relative equilibria, and determine their stability
and their persistence. Section 7 discusses bifurcations from zero-momentum
states and in Section 8 three examples of bifurcations from zero-momentum
are presented: relative equilibria of molecules, relative equilibria in point vor-
tex models in the plane, and relative equilibria in point vortex models on the
sphere.

PART I: LOCAL DYNAMICS NEAR EQUILIBRIA

2 Nonlinear normal modes

Suppose that the Hamiltonian system (1.1) has a steady-state (equilibrium) so-
lution at some x0 ∈ P . Such solutions are critical points of H . The linearized
vector field at x0 is

v̇ = Lx0
v.

The matrix Lx0
is Hamiltonian; a matrix A is Hamiltonian if ω(Av,w) +

ω(v,Aw) = 0. The set of Hamiltonian matrices on R2n is denoted sp(2n).
The set spG(2n) ⊂ sp(2n) is the subspace of matrices that commute with G.
The eigenvalues of Hamiltonian matrices arise in quadruplets {λ,−λ, λ− λ},
see Lemma 4.1 of Meyer’s lectures in this volume or Meyer and Hall [MH92].

Suppose that Re(λ) 6= 0 for all eigenvalues λ of Lx0
then by the Hartman-

Grobman theorem the vector field (1.1) is homeomorphic to its linear part
v̇ = Lx0

v in a neighbourhood of x0; x0 is a hyperbolic saddle point. In
generic (non-hamiltonian) systems, this is usually enough to describe the lo-
cal dynamics, since the eigenvalues do not (generically) lie on the imaginary
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axis. However, for Hamiltonian systems this is no longer true: having pure
imaginary eigenvalues is a structurally stable property.

A linear Hamiltonian system with a simple nonresonant imaginary eigen-
value has a family of periodic solutions of constant period in the eigenspace
of the imaginary eigenvalue. These families of periodic solutions are called
normal modes. In nonlinear Hamiltonian systems, the search for families of
periodic solutions near a steady-state or nonlinear normal modes has attracted
a lot of interest since the seminal work of Lyapunov [L]. The Lyapunov Centre
Theorem, see Meyer’s lectures or [AM78] states that for each simple nonres-
onant eigenvalue there exists a nonlinear normal modes. A normal mode is
a family of periodic orbits in a linear system, of constant period, and sweep-
ing out the eigenspace corresponding to an imaginary eigenvalue; a nonlinear
normal mode is a family of periodic orbits parametrized by energy containing
a steady-state solution and tangent to the eigenspace of the imaginary eigen-
value, with period close to that of the linear system. There have been many
particular extensions of this theorem, but the most general results are due to
Weinstein [W73] and Moser [Mos76] who allow for multiple eigenvalues and
resonance relations. Montaldi et al [MRS88] extend the results of Weinstein
and Moser to take account of symmetry.

As we have already noted, if a compact subgroup K of G acts symplecti-
cally, then Fix(K,P) is a sub-hamiltonian system and so Lyapunov’s theorem
can be applied to this subsystem. The resulting periodic orbits are said to have
spatial symmetry: the solution γ(t) satisfies g · γ(t) = γ(t) for each t, and for
each g ∈ K. However, using spatio-temporal symmetries one can go further,
and we now describe this idea.

Let v(t) be a 2π-periodic solution of theG-invariant Hamiltonian system (1.1)
then, g.v(t) is also a periodic solution of (1.1) for all g ∈ G. By uniqueness
of solutions of differential equations, either {v(t)} ∩ {g.v(t)} = {v(t)} or
{v(t)} ∩ {g.v(t)} = ∅. In the former case, g.v(t) = v(t − θ) for some phase
shift θ. We identify phase shifts with elements of the circle group S1 using the
identification S1 = R/2πZ. The set

Σv(t) = {(g, θ) ∈ G× S1 | g.v(t) = v(t− θ)} < G× S1

is the (spatio-temporal) symmetry group of v(t). Therefore, when searching
for periodic solutions with spatio-temporal symmetries of equivariant dynam-
ical systems we look for isotropy subgroups Σ ⊂ G× S1.

We now describe the equivariant result of Montaldi, Roberts and Stew-
art [MRS88].

Suppose that the linearized equation v̇ = Lx0
v has eigenvalue iα and all

imaginary eigenvalues riα (r ∈ Q) have larger modulus. Let Vα be the set
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of all points that lie on 2π/α-periodic trajectories of the linearized equation.
Then Vriα ⊂ Vα and Vα is called the resonance subspace of α. Let Lα be the
restriction of Lx0

to Vα. Elphick et al. [ETBCI] show that if Lα is semisimple
then {exp(tLTα)|t ∈ R} is isomorphic to S1, giving rise to an action of G× S1

on Vα.

Theorem 2.1 (Equivariant Weinstein-Moser Theorem) Let Σ ⊂ G × S1.
Suppose that the restriction d2H(0) to Fix(Σ, Vα) is definite, then on each en-
ergy level near the origin there are at least 12 dimFix(Σ, Vα) periodic orbits,
with period close to 2π/α and symmetry at least Σ.

Theorem 2.1 gives sufficient conditions for the existence of families of peri-
odic solutions with spatio-temporal symmetries forH . Montaldi et al. [MRS90]
prove a stronger theorem about the existence or nonexistence of all periodic
solutions with spatio-temporal symmetries near a steady-state with imaginary
eigenvalues. Moreover, their result includes the case when the Hamiltonian
system also has time-reversal symmetries.

Let ρ : R2n → R2n be a time-reversing symmetry. Define

S̃
1
=

{

S1 if H is not time-reversible
S1 o Z

ρ
2 ' O(2) if H is time-reversible

The proof of existence of nonlinear normal modes uses a variational ap-
proach. Let u(s) ∈ C1(S1,R2n) be a loop in phase space of period 2π. For
each real number α 6= 0 we define a functional Sα : C1(S1,R2n)×R → R by

Sα(u) = S(u, α) =

∮

u∗β − α
∫ 2π

0

H(u(s))ds (2.1)

where u∗ denotes the pull-back of β to S1 and β is a primitive of the symplectic

form; ω = dβ. The functional Sα can be chosen to be Go S̃
1
-invariant.

Lemma 2.2 u ∈ C1(S1,R2n) is a critical point of Sα if and only if z(t) ≡
u(αt) is a periodic solution of period 2π/α of the Hamiltonian system defined
by H .

Theorem 2.3 For fixed α and for sufficiently small τ the critical points of
Sα(1+τ) in a neighbourhood U of 0 ∈ C1(S1,R2n) are in one-to-one cor-
respondence with the critical points of a smooth finite dimensional G o S1-
invariant mapping Fτ : Vα → R. Moreover this correspondence preserves
symmetry groups.
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An interesting observation concerns the class of classical mechanical sys-
tems where q is position and p is momentum and the Hamiltonian is Kq(p) +

V (q), where Kq(p)—the kinetic energy—is quadratic in p. The time-reversal
symmetry is ρ.(p, q) = (−p, q). If a periodic solution with spatio-temporal
symmetry group Σ contains a conjugate of Z

ρ
2 then it intersects Fix(Zρ2) =

{(0, q)} in two points. Since the velocity vanishes on Fix(Zρ2), in time-revers-
ible systems these periodic solutions are called brake orbits.

Theorem 2.3 states that the search for nonlinear normal modes reduces to
finding critical points of Fτ . To find the critical points it is necessary to have a
convenient expression for Fτ . Such an expressions is obtained by putting the
Hamiltonian function intoGoS̃-invariant Birkhoff normal form to sufficiently
high order where

S̃ =











{exp(tLTx0
) : t ∈ R} if H is not time-reversible

{exp(tLTx0
) : t ∈ R}o Z

ρ
2 if H is time-reversible.

A discussion of Birkhoff normal form can be found in Section 7 of Meyer’s
lectures in this volume; for a complete description see Elphick et al. [ETBCI]
or Golubitsky et al. [GSS88], or Cushman and Sanders [CS86] for a different
approach. The next result gives the expression for Fτ in terms of the Hamilto-
nian function in Birkhoff normal form.

Theorem 2.4 If H is in Birkhoff normal form to degree k then

1

2π
jkFτ (v) = (1 + τ)j

2H(v)− jkH(v)

for v ∈ Vα where jk is the k-jet.

However, we do not know a priori to what order the truncation of the Birkhoff
normal form that defines Fτ yields all possible nonlinear normal modes for the
full system. Montaldi et al. [MRS90] obtain further results using singularity
theory to answer the question of generic finite determinacy of the Fτ equation.
We do not discuss these results here and refer the reader to the paper.

Here we present briefly one example where the equivariant Weinstein-Moser
theorem gives only some nonlinear normal modes while the study of the Fτ
equation yields all solutions: the time-reversible 1:1 resonance with Z2 sym-
metry.

Example 2.5 Consider Hamiltonian systems H on C2 where κ is the symme-
try and ρ the time-reversible symmetry acting as

κ.(z1, z2) = (z2, z1) and ρ.(z1, z2) = (−z1,−z2).
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Z2(κ)×O(2)

Z2(κ)× Z2(ρ)

66nnnnnnnnnnnn

Z2(κπ)× Z2(ρ)

hhQQQQQQQQQQQQ

Z2(ρ)

OO 33ffffffffffffffffffffffffff
Z2(κρ)

OO
kkXXXXXXXXXXXXXXXXXXXXXXXXXX

1

hhQQQQQQQQQQQQQQQ

66mmmmmmmmmmmmmmm

Fig. 2.1. Isotropy lattice of the Z2(κ)×O(2) action on C2.

At a 1 : 1 resonance the linearization L0 = (dXH)0 has double eigenvalue ±i
with positive definite quadratic part H2. We shall see in Section 3 the 1 : 1
resonance in more details. Since L0 commutes with Z2(κ), L0 is semisimple
and generates the S1 action

θ.(z1, z2) = (e
iθz1, e

iθz2).

These actions combine to give the action of the group Z2(κ)×O(2).
The isotropy subgroups for the Z2(κ)×O(2) action are given in Figure 2.1.

It is easy to check that

Fix(Z2(κ)× Z2(ρ)) = {z1 = z2 ∈ iR}, and

Fix(Z2(κπ)× Z2(ρ)) = {z1 = −z2 ∈ iR}
therefore in the complexification these are two-dimensional. From the equiv-
ariant Weinstein-Moser theorem, since H2 is definite we know immediately
that there are nonlinear normal modes with symmetry corresponding to the
maximal isotropy subgroups Z2(κ) × Z2(ρ) and Z2(κπ) × Z2(ρ). Now,
Fix(Z2(κρ)) = {z1, z2 ∈ iR} and Fix(Z2(ρ)) = {z1 = −z2} are four-
dimensional, Theorem 2.1 guarantees the existence of two nonlinear normal
modes with isotropy containing Z2(κρ) and Z2(ρ). However, these may be
the solutions with maximal isotropy found above. Therefore, Theorem 2.1
cannot guarantee the existence of solutions with submaximal symmetry in this
case.

We look at the Fτ equation where the system is in Birkhoff normal form to
degree 4, H = H2 +H4 where

H2 = N, H4 = α1N
2 + α2P + β1Q

2 + β2NQ,

N = |z1|2 + |z2|2, P = |z1|2|z2|2 and Q = Re(z1z2). The critical points of
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Fτ are given by

φ1(z1, z2, τ) = i[(−τ + 2α1N + α2|z2|2 + β2Q)z1 +
(

1
2β2N + β1Q

)

z2

φ2(z1, z2, τ) = i[(−τ + 2α1N + α2|z1|2 + β2Q)z2 +
(

1
2β2N + β1Q

)

z1.
(2.2)

We solve for solutions in Fix(κρ). Set z1 = ix and z2 = iy then (2.2) becomes

(−τ + 2α1(x2 + y2) + α2y2 + β2xy)x+
(

1
2β2(x

2 + y2) + β1xy
)

y = 0

(−τ + 2α1(x2 + y2) + α2x2 + β2xy)y +
(

1
2β2(x

2 + y2) + β1xy
)

x = 0.

After simplification we see that nonlinear normal modes with x 6= 0 and y 6= 0
are solutions found by setting τ = 2α1(x2 + y2) + β2xy and solving

1

2
β2(x

2 + y2) + (α2 + β1)xy = 0. (2.3)

We can solve (2.3) if |β2| < |α2 + β1|. Thus, for an open set of values of
the coefficients (α1, α2, β1, β2) nonlinear normal modes with isotropy exactly
Z2(κρ) exist in Birkhoff normal form. The same is true for nonlinear normal
modes with isotropy exactly Z2(ρ). In [MRS90] it is shown that for an open
and dense set of values of the coefficients, the truncation of the Birkhoff normal
form to degree four H = H2 + H4, is sufficient to determine all nonlinear
normal modes in the full system.

Remark 2.6 Using these methods, one can show that in a 2 degree of freedom
system in 1 : 1 resonance, with no assumptions on the symmetry, generically
there are 2, 4 or 6 pairwise transverse nonlinear normal modes, depending on
the coefficients in H4. Each of the three possibilities is obtained for an open
set in the space of coefficients of H4.

An application of these ideas to a symmetry breaking problem can be found
in [Mo99], where a description is given of the nonlinear normal modes ob-
tained after adding a magnetic term to the spherical pendulum (which breaks
the reflexional symmetry).

3 Generic bifurcations near equilibria

The quadratic form d2H(x0) is degenerate if and only if Lx0
has a zero

eigenvalue. In this case, there exist arbitrarily small perturbations of H which
remove the zero eigenvalues of Lx0

. However, in families of Hamiltonian
matrices zero eigenvalues are inevitable; that is, they occur stably. In this
section, we look at such families of Hamiltonian systems.
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3.1 Generic movement of eigenvalues

In parametrized families of Hamiltonian matrices, it is typical for eigenvalues
to cross the imaginary axis at the origin or for some eigenvalues to enter in
resonance. In this section, we study the generic movement of eigenvalues for
one-parameter families of matrices in spG(2n). We look at the case of zero
eigenvalues and the case of 1 : 1 resonance. First, we need to introduce some
concepts from group representation theory.

Suppose that the compact group G acts linearly on the vector space V . A
subspaceW ⊂ V isG-invariant ifG(W ) =W . Moreover, ifW does not con-
tain any properG-invariant subspaces, thenW is an irreducible representation
of G.

Let V be an irreducible representation of G. If the only linear mappings
on V that commute with G are scalar multiples of the identity, then the rep-
resentation V is absolutely irreducible. More precisely, if V is an irreducible
representation and D is the space of linear mappings from V to itself com-
muting with G then D is a division algebra isomorphic to R, C or H, where
H is the group of quaternions. Thus, if D is isomorphic to C or H then V is
nonabsolutely irreducible.

If V is a symplectic representation, a subspace W ⊂ V is G-symplectic if
it is G-invariant and symplectic, and a symplectic representation is irreducible
if it contains no proper G-symplectic subspace. Irreducible symplectic rep-
resentations arise in several types depending on the underlying ordinary rep-
resentation (i.e. forgetting the symplectic structure): firstly if the underlying
representation is not irreducible, then V = V0 ⊕ V0 where V0 is an absolutely
irreducible subspace (which is Lagrangian and one can identify V = T ∗V0).
Secondly, if the underlying representation is irreducible, it must be either com-
plex or quaternionic, and for a given representation of complex type there are
two distinct symplectic representations, which are said to be dual. Any two
symplectic representations whose underlying representations are equivalent
quaternionic are equivalent as symplectic representations. See [MRS88] for
more details.

Zero eigenvalues

Proposition 3.1 Suppose that L ∈ spG(2n) has a nonzero kernel. Then E0,
the generalized eigenspace of 0, is a G-symplectic subspace of R2n.

The structure of the generalized eigenspace and corresponding movement
of eigenvalues is described in the next result.
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Fig. 3.1. The two scenarios for the generic movement of eigenvalues
in steady-state bifurcation: see Theorem 3.2.

Theorem 3.2 (Golubitsky and Stewart [GS86]) Let Lµ be a generic one-
parameter family in spG(2n) such that 0 is an eigenvalue of L0. Then either

(i) the action of G on E0 is nonabsolutely irreducible (in which case
L0|E0

= 0), and the eigenvalues of Lµ lie on the imaginary axis and
cross through 0 with nonzero speed (‘passing’ in Figure 3.1), or

(ii) E0 = V ⊕V , where V is absolutely irreducible (in which caseL0|E0
6=

0 butL20|E0
= 0) and the eigenvalues cross through 0 going from purely

imaginary to real or vice-versa (‘splitting’ in Figure 3.1).

1:1 resonance

Suppose now that L is part of a one-parameter family and has a pair of purely
imaginary eigenvalues ±iη. By rescaling we can always assume that η = 1.
The generalized eigenspace is denoted E±i; it is a G-symplectic subspace.
We consider two cases, either the eigenvalue i is G-simple (E±i is symplectic
irreducible) or it is of G-multiplicity 2 also called a 1 : 1 resonance. It is cus-
tomary in Hamiltonian systems to distinguish two classes of 1 : 1 resonance:
the 1 : 1 and the 1 : −1 resonances, depending on whether the Hamiltonian is
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definite or indefinite, respectively. The structure of the generalized eigenspace
in the 1 : ±1 resonance is given in the following theorem.

Theorem 3.3 (Dellnitz et al. [DMM92], van der Meer [vdM90])
Let Lµ be a generic one-parameter family in spG(2n) such that L0 has eigen-
values ±i with G-multiplicity 2. Then E±i = U1 ⊕ U2 where for j = 1, 2,
either

(i) Uj is nonabsolutely irreducible; or

(ii) Uj = V ⊕ V , with V absolutely irreducible.

Understanding how eigenvalues may move as a system passes through a
1 : ±1 resonance requires a combination of group-theoretic results along with
the analysis of the Hamiltonian quadratic form defined on the generalized
eigenspace E±i. Since E±i is a symplectic subspace of R2n, the restriction
of the symplectic form ω to E±i is nondegenerate and thus ωi = ω|E±i is a
symplectic form on E±i. The Hamiltonian Q(z) = ω(z, Lz) is therefore a
non-degenerate quadratic form on E±i.

Recall that there are precisely two isomorphism classes of irreducible sym-
plectic representations for a given complex underlying representation; these
representations are dual to each other [MRS88].

Theorem 3.4 (Dellnitz et al. [DMM92]) With the same hypotheses as in the
theorem above, and with Q the Hamiltonian quadratic form induced on E±i,
precisely one of the following occurs:

(i) U1 and U2 are not isomorphic and the eigenvalues pass independently
along the imaginary axis; Q may be indefinite or definite.

(ii) U1 = U2 = V ⊕ V , V real, or U1 = U2 = W , W quaternionic, the
eigenvalues split, and Q is indefinite.

(iii) U1 and U2 are complex of the same type, the eigenvalues pass and Q is
indefinite.

(iv) U1 and U2 are complex duals and the eigenvalues pass or split depend-
ing on whether Q is definite or indefinite.

The two splitting cases (ii) and (iv) of the theorem correspond to the Hamil-
tonian-Hopf bifurcation which is the Hamiltonian version of the Hopf bifurca-
tion theorem for dissipative systems, see Section 4 below.

In the nonsymmetric case G = 1, E±i = V ⊕ V ⊕ V ⊕ V where V is the
one-dimensional trivial representation. The one-parameter unfolding of the
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Fig. 3.2. Generic movement of eigenvalues in the 1 : −1 resonance:
the splitting case.

normal form for the 1 : −1 resonance is given by

M(µ) =









0 −1 ρ 0

1 0 0 ρ

µ 0 0 −1
0 µ 1 0









. (3.1)

where ρ = ±1. This normal form is used in the Hamiltonian-Hopf theorem
without symmetry, Section 4. Note that without symmetry the 1 : 1 resonance
is of codimension 3 (and codimension 2 in time-reversible systems) and so is
not usually considered.

Further information can be found in [MD93] and [Me93], where Melbourne
and Dellnitz extend to symmetric systems both Williamson’s results on normal
forms for linear Hamiltonian systems and Galin’s results on their versal defor-
mations. For example in [Me93] one finds that the normal form for case (ii)
of the theorem above is also given by (3.1), where each scalar is interpreted as
scalar multiplication in V .

3.2 Bifurcation of equilibria

In multiparameter families of Hamiltonian systems, the eigenvalues of the lin-
earization typically cross the imaginary axis leading to bifurcations of equilib-
ria or periodic solutions.

In this section, we look at bifurcations of equilibria. We begin with bifurca-
tions of equilibria in one-parameter families of one degree of freedom Hamil-
tonian systems. Then, we explain how this information is used in bifurcation
diagrams for multiparameter families of one-degree of freedom Hamiltonian
systems. We conclude with some comments on bifurcations in many-degrees
of freedom Hamiltonians. An important tool for the study of Hamiltonian
systems is the Splitting Lemma (or Morse Lemma with parameters) [BG92],
which separates out a nondegenerate part of the function from the remainder.



370 VI Symmetric Hamiltonian Bifurcations

µ < 0 µ = 0 µ > 0

Fig. 3.3. Saddle-centre bifurcation with G = 1.

Theorem 3.5 (Splitting Lemma) Let F : RN × Rl → R be a smooth func-
tion. Denote a point in RN × Rl by (x, λ) = (x1, . . . , xN , λ1, . . . , λl), and
suppose that dxF (0, 0) = 0 and that the Hessian matrix d2xF (0, 0) is non-
degenerate. Then in a neighbourhood of the origin, there is a change of coor-
dinates of the form Ψ(x, λ) = (ψ(x, λ), λ) with ψ(0, 0) = 0, such that

F ◦Ψ(x, λ) =
∑

j

εjx
2
j + h(λ),

where εj = ±1 and h is a smooth function with h(0) = F (0, 0).

In practice h(λ) can be found by solving the equation dxF (x, λ) = 0 for
x = c(λ) (by the implicit function theorem), and then h(λ) = F (c(λ), λ). (Of
course, the change of coordinates cannot in general be taken to be symplectic!)

3.2.1 One degree of freedom: one-parameter family

Let H : R2 × R → R be a smooth generic one degree of freedom Hamilto-
nian function depending on a single parameter µ; such a family will have just
codimension-1 bifurcations. As always in bifurcation theory, the meaning of
“codimension-1” depends on the context, for example on the symmetry. We
illustrate this with three simple examples: G = 1, G = Z2 and G = SO(2).
Let Lµ be the linearization of J∇H and suppose that L0 has a zero eigenvalue.
This corresponds to Theorem 3.2(ii). We discuss the bifurcation diagram for
several group actions.

G = 1: Saddle-centre bifurcation. The trivial group has only a one-
dimensional irreducible representation which is of course absolutely irreducible.
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µ < 0 µ = 0 µ > 0

Fig. 3.4. Supercritical Z2-pitchfork bifurcation.

Therefore, generically E0 = R× R and L0 is nilpotent. Suppose that

L0 =

[

0 1

0 0

]

, (3.2)

then H(p, q, 0) = q2 + H̃ where H̃ contains terms of degree three and up. By
the Splitting Lemma above,H(p, q, µ) is equivalent to f(p, µ)+q2. The map f
has a fold catastrophe at µ = 0, see Poston and Stewart [PS78]. The universal
unfolding is p3 + µp. The local dynamics for p3 + µp + q2 near (0, 0, 0) is
illustrated by Figure 3.3. This is called the saddle-centre bifurcation.

G = Z2: Pitchfork bifurcation. The group Z2 has one nontrivial irre-
ducible representation which is of dimension one. Therefore it is absolutely
irreducible and E0 = R ⊕ R where Z2 acts by −1 on each copy of R. Thus,
H is Z2-invariant: H(−p,−q, µ) = H(p, q, µ). Let L0 be given by (3.2) then
H(p, q, 0) = q2+H̃ where H̃ contains terms of degree higher than two. Using
the Splitting Lemma above, H is equivalent to f(p, µ) + q2 as in the G = 1

case. However, the universal unfolding must be Z2-invariant, thus the family
of maps is ±p4 + µp2 + q2. The family p4 + µp2 + q2 is a supercritical pitch-
fork bifurcation where a pair of stable centres for µ < 0 coalesce at µ = 0

into one centre at the origin, see Figure 3.2.2. The −p4 + µp2 + q2 case is a
subcritical pitchfork bifurcation, see Figure 3.5, where the bifurcating branch
of equilibria are unstable.

Generally, a bifurcation is subcritical if at the instant of bifurcation (here
µ = 0) the equilibrium is unstable, and supercritical if it is stable.

G = SO(2): The only nontrivial irreducible representation of SO(2) is
two-dimensional of complex type. The action on C is θ.z = emiθz for θ ∈
SO(2) and some m ∈ Z. By Theorem 3.2, E0 = C = R2, the eigenvalues are
purely imaginary and cross 0with nonzero speed. The general SO(2)-invariant
function of two variables isH(p, q) = f(p2+q2) for some smooth function f .
Since L0 is identically zero at µ = 0, then H(p, q) = µ(p2+ q2)+o(p2+ q2).
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µ > 0 µ = 0 µ < 0

Fig. 3.5. Subcritical Z2-pitchfork bifurcation.

In polar coordinates, r2 = p2 + q2, we obtain f(r) = µr2 + o(r2) and so
the unfolding of the generic singularity is given (up to sign) by µr2 + r4. For
µ < 0 the origin is surrounded by periodic solutions. At µ = 0 the bifurcation
occurs and an SO(2)-orbit of equilibria of amplitude

√
µ for µ > 0 is created.

3.2.2 One degree of freedom: two-parameter family

G = 1: the pitchfork revisited. In Z2-symmetric systems the pitchfork
bifurcation is of codimension 1, while if there is no symmetry present then it
is of codimension 2, as we see now. Consider a generic two-parameter family
H(p, q, µ1, µ2) of Hamiltonian functions. One can1 take H(p, q, 0, 0) = q2 +

H̃ where H̃ has terms of degree three and up. By the Splitting Lemma H is
equivalent to f(p, µ1, µ2) + q2. To be of codimension 2, we use f±(p, 0, 0) =
±p4, and then a two-parameter unfolding is f±(p, µ1, µ2) = ±p4+µ1p2+µ2p.
Notice that µ2 = 0 corresponds to the Z2-pitchforks considered above.

Since dH±(x) = (±4p3 + 2µ1p+ µ2, q), equilibria are solutions of q = 0
and f ′(p, µ1, µ2) = ±4p3 + 2µ1p+ µ2 = 0. The Hessian is

[

2 0

0 ±12p2 + 2µ1

]

.

The Hessian is degenerate at µ1 = ∓6p2. Replacing in f ′ we obtain µ2 =
±8p3, thus the cusp ∆ ≡ 8µ31 ± 27µ22 = 0 is the bifurcation set. Since f ′ is
a cubic polynomial it has at least one real root. The Hamiltonian system has a
saddle-centre on the cusp curve where the number of roots of f ′(p, µ1, µ2) = 0
(ie, of equilibria) jumps from 1 to 3 (or vice-versa).

Typical level contours of H+ are shown in Figure 3.6 as (µ1, µ2) crosses
the bifurcation set from the region with 3 equilibria to the region with 1. The
analogous figure for H− is left to the reader.

G = Ẑ2: the reversible umbilic. Up to now we have only considered bifur-
cations with symplectic symmetries. Hanßmann [H98] studies two-parameter

1 If H(p, q, 0, 0) has no quadratic terms then it is of codimension at least 3
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∆ < 0 ∆ = 0 ∆ > 0

Fig. 3.6. Level contours of H+(p, q, µ1, µ2) (supercritical pitchfork) for
different values of (µ1, µ2) as it crosses the bifurcation curve∆ = 0.

families of one degree of freedom Hamiltonian with the reversing symmetry
κ.(q, p) = (q,−p) (whence the hat in Ẑ2). In two-parameter families the zero
linearization occurs generically for reversible Hamiltonian systems. The least
degenerate singularities in this case are given byH±(q, p) = p2q∓ 1

3q
3. Hanß-

mann shows that the versal unfolding in this case is a restriction of the umbilic
catastrophe [PS78] given by

H±
µ (q, p) = p2q ∓ 1

3
q3 + µ1(p

2 ± q2) + µ2q

(where µ = (µ1, µ2)) and called the reversible umbilic. The upper sign corre-
sponds to the elliptic umbilic and the lower one to the hyperbolic umbilic. We
only consider the hyperbolic reversible umbilic in these notes.

The critical points of H−
µ are given by solutions of p2 + q2 − 2µ1q + µ2 =

p(q + µ1) = 0. The Hessian is given by
[

2(q − µ1) 2p

2p 2(q + µ1)

]

.

Solving for critical points with degenerate quadratic form yields the bifurcation
set given by the union of the parabolas {µ2 = µ21} and {µ2 = −3µ21}. On the
curve {µ2 = µ21} the system has a unique equilibrium at (q, p) = (µ1, 0) with
degenerate Hessian

[

0 0

0 1

]

.

Now (q, p) = (µ1, 0) ∈ Fix(κ) and the kernel of the Hessian lies in Fix(κ),
therefore the Z2-reversing symmetry is not broken and the parabola {µ2 = µ21}
is a saddle-centre bifurcation curve. For µ1 6= 0, the system goes from no
equilibria when µ2 > µ21 to a saddle and a centre for µ2 < µ21.

On the curve {µ2 = −3µ21}, the system has a unique equilibrium at (q, p) =
(−µ1, 0) ∈ Fix(κ)with the kernel of the Hessian transverse to Fix(κ). Hence,
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the bifurcation on the parabola {µ2 = −3µ21} breaks the Z2(κ)-symmetry and
so is a curve of Hamiltonian pitchfork bifurcation.

The reversing symmetry forces some interesting dynamics. Since the bifur-
cating equilibria are related by the κ symmetry they lie on the same energy
level. By reversibility, they must be connected by a heteroclinic connection.
See Hanßmann [H98] for details and the full bifurcation picture.

3.2.3 Many degrees of freedom Hamiltonian

For Hamiltonian systems with symmetry having more than one degree of free-
dom, one can use reduction methods to determine part or all of the dynamics
in the neighbourhood of an equilibrium point. A symmetry-based reduction
(sometimes called discrete reduction, although the group in question need not
be discrete) is given by the following result.

Proposition 3.6 Let H : V → R be a G-invariant Hamiltonian and let XH

be its associated Hamiltonian vector field. Let K be a compact subgroup of
G acting symplectically. Then, Fix(K) is symplectic and XH leaves it in-
variant; moreover XH |Fix(K) is a Hamiltonian vector field with Hamiltonian
H |Fix(K).

In particular, if dim Fix(K) = 2, then the restricted system is of one degree
of freedom and the dynamics/bifurcations are readily obtained as above. Note
that the compactness of K is essential; for example if K ' R acts on (R2, ω)
by t · (x, y) = (x+ ty, y) then Fix(K) = R (the x-axis).

Other reductions to one degree of freedom can be obtained for example by
centre-manifold reduction.

4 Hamiltonian-Hopf bifurcation

A Hamiltonian-Hopf bifurcation occurs when two nonzero imaginary eigen-
values of an elliptic equilibrium collide in a 1 : −1 resonance and move into
the left and right half-planes, see Figure 3.2. It is named in analogy with the
Hopf Bifurcation Theorem of dissipative systems where small amplitude pe-
riodic solutions bifurcate from an equilibrium that loses stability as a pair of
complex eigenvalues cross the imaginary axis.

The existence of periodic solutions in the Hamiltonian-Hopf bifurcation was
first established by Meyer and Schmidt [MS71], and then later by van der
Meer [vdM85] who was the first to study its equivariant version [vdM90]. Re-
cently, Chossat, Ortega and Ratiu [COR02] extended the Hamiltonian-Hopf
Theorem to include relative periodic orbits.
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We begin with the nonsymmetric case. For a generic one-parameter fam-
ily of Hamiltonians, the generalized eigenspace E±i at a 1 : −1 resonance
is of dimension four. We restrict our study of this bifurcation to the fam-
ily (R4, ω, 1, Hµ) with µ ∈ R (this reduction can be obtained by Lyapunov-
Schmidt reduction or restriction to the centre manifold). Since the eigenvalues
are far from 0, the equilibrium is non-degenerate and there is no bifurcation of
equilibria in this family; we can therefore assume the origin is an equilibrium
point for all µ. The following points are used implicitly in the statement of the
theorem.
• Let (x, y) ∈ R4 where x = (x1, x2) and y = (y1, y2), with symplectic

form ω = dx1 ∧ y1 + dx2 ∧ dy2, and the origin is an equilibrium point of
Hµ for all values of µ. Let H2,µ denote the quadratic part of Hµ, then the
linearization at µ = 0, see matrix (3.1), implies that

H2,µ(x, y) = S +N + µP.

where S = x1y2 − x2y1 (the semisimple part of H2,0), N = 1
2 (x

2
1 + x22)

(the nilpotent part) and P = 1
2 (y

2
1 + y22). For µ < 0 the linear system has

two distinct pairs of imaginary eigenvalues, so the nonlinear system has 2 non-
linear normal modes, while for µ > 0 the eigenvalues all have non-zero real
part, so there are no nonlinear normal modes; indeed no periodic orbits in a
neighbourhood of the origin. The problem is to describe this transition.
• The dynamics near equilibrium solutions is understood using Birkhoff nor-

mal form [CS86, ETBCI]. We denote by (R4, ω,S1, H̃µ) the Hamiltonian sys-
tem of the symplectic Birkhoff normal form H̃ of (R4, ω, 1, Hµ) up to some
finite order k.

H̃(x, y, µ) = H2(x, y, µ) + H̃4(S, P ) + · · ·+ H̃k(S, P ), (4.1)

where S = S(x, y) = x1y2 − x2y1 and P = P (x, y) = 1
2 (y

2
1 + y22), and H̃k

is homogeneous of degree k in x, y. We also write N = 1
2 (x

2
1 + y

2
1).

Theorem 4.1 (Hamiltonian-Hopf Bifurcation) Suppose that the family
(R4, ω, 1, Hµ) of Hamiltonian systems has, at µ = 0, imaginary eigenval-
ues in 1 : −1 resonance. If the coefficient, a of P 2 in H̃4 is nonzero then for
each k > 0 there is a neighbourhood of the origin in R4 × R in which the set
of short periodic solutions of the system (R4, ω, 1, Hµ) is Ck-diffeomorphic to
the set of short periodic solutions of the system (R4, ω,S1, S +Gν) with

Gν(x, y) = N + νP + aP 2. (4.2)

A point z lies on a short periodic solution of (R4, ω,S1, S+Gν) if and only
if it is a critical point of the “energy-momentum map” (S, S +Gν), and so of
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Fig. 4.1. Families of periodic orbits in the two scenarios of the
Hamiltonian-Hopf bifurcation. The small dot represents the origin.

the map (S,Gν). There are two possible scenarios for the structure of the set
of periodic orbits, according to the sign of a.

Theorem 4.1 (continued) Let a be the coefficient of P 2 in the normal form
(4.1) for Hµ.

(i) If a > 0, then for µ < 0 the 2 nonlinear normal modes are globally
connected in a single compact family; as µ→ 0− this family collapses
to the origin and disappears.

(ii) If a < 0, then for µ < 0 the two nonlinear normal modes are distinct
in a neighbourhood of the origin, intersecting only at the origin. As µ
passes through 0 they pull away from the origin as a single family.

The “pulling away from the origin” in case (ii) is similar to that of a 1-
sheeted hyperboloid pulling away from the origin as it deforms from a cone,
though the analogy cannot be taken very far.

The two cases (i) and (ii) are illustrated in Figures 4.1 (i) and (ii) respectively
and are sometimes referred to as the subcritical and supercritical Hamiltonian-
Hopf bifurcations. However, the reader should beware that the nomenclature is
not universally consistent. Iooss and Pérouème [IP93] refer to (i) as supercrit-
ical and (ii) as subcritical, while Hanßmann and van der Meer [HM02] have it
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the other way round. The lectures of Cushman in this book use Hanßmann and
van der Meer’s convention. The illustrations in Figure 4.1 show the images in
energy-momentum space of the families of periodic orbits.

Recall that for a non-resonant elliptic equilibrium, the nonlinear normal
modes are also elliptic sufficiently close to the equilibrium point. In the bi-
furcation of type (i) for fixed µ < 0, when the equilibrium is elliptic, if one
follows the compact family of periodic orbits emanating from the origin along
one nonlinear normal mode and returning along the other, there is a transition
from elliptic to hyperbolic periodic orbits, and then back to elliptic again; Iooss
and Pérouème [IP93] refer to the transition points as Eckhaus points, marked
E on Figure 4.1(i). There are therefore hyperbolic periodic orbits in any neigh-
bourhood of the origin (x, y, µ) = (0, 0, 0) in R4×R (and Iooss and Pérouème
also show that in the reversible setting there are orbits homoclinic to certain hy-
perbolic periodic orbits; presumably this would be true also in the Hamiltonian
setting, but to our knowledge this has not been checked). An example of both
supercritical and subcritical Hamiltonian-Hopf bifurcations are mentioned in
Cushman’s lectures (Section C.4). Finally, Sokol′skiı́ has shown [So74]1 that
at the bifurcation point µ = 0, the Hamiltonian-Hopf case (ii) scenario (a < 0)
has an unstable equilibrium, while in the other scenario the origin is formally
stable, meaning that the equilibrium is stable for the dynamics of the normal
form approximation at any order.

Symmetric Hamiltonian-Hopf

As in the equivariant Weinstein-Moser theorem (Theorem 2.1) periodic solu-
tions with spatio-temporal symmetries are found by considering the action of
G×S1, this time on the bifurcation eigenspaceE±i. The equivariant version of
Theorem 4.1 is obtained by finding four dimensional fixed point subspaces of
the action ofG×S1 and showing that the hypotheses of Theorem 4.1 are satis-
fied for the fixed point subspace. The S1 action is generated by the semisimple
part of H2,0 on E±i.

So, we consider a one-parameter family of Hamiltonian systems
(R2n, ω,G,Hµ) with nontrivial symmetry G, and we will suppose for sim-
plicity that E±i = R2n.

Lemma 4.2 Let Σ be an isotropy subgroup of G× S1, so that Fix(Σ) 6= {0}.
Then dim Fix(Σ) ≥ 4 and the restriction of XH2,0

to Fix(Σ) gives rise to a
1 : −1-resonance.

Lemma 4.2 guarantees that on each nonzero fixed point subspace of the

1 the lecturer would like to thank Ken Meyer for pointing this out to him
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action ofG×S1 the movement of eigenvalues on the subspace does correspond
to a Hamiltonian-Hopf bifurcation. The result is the following.

Theorem 4.3 (Hamiltonian-Hopf Theorem with symmetry [vdM90])
Let Σ be an isotropy subgroup of G × S1 with dim Fix(Σ) = 4. Let aΣ
be the coefficient of P 2 in the normal form of H0 on Fix(Σ). Then, provided
aΣ 6= 0, the same two scenarios occur as for the ordinary Hamiltonian-Hopf
bifurcation, according to the sign of aΣ. Moreover the resulting periodic orbits
all have spatio-temporal symmetry at least Σ.

An example of Hamiltonian-Hopf bifurcation with symmetry occurs in mod-
els of point vortices on the sphere, see Laurent-Polz [LP00].

Remark 4.4 In the Hamiltonian-Hopf bifurcation, for µ > 0 the eigenvalues
have non-zero real parts so there is a stable manifold and an unstable manifold
for the equilibrium point, while for µ < 0 the system is elliptic and there are no
such manifolds. In an interesting recent paper McSwiggen and Meyer [MM03]
have studied this transition and shown that there are again two scenarios that
mirror quite remarkably the two scenarios for the nonlinear normal modes.
One would expect to have similar behaviour in the symmetric case, but to our
knowledge this has not been checked.

Hamiltonian-Hopf and Relative Periodic Orbits

Here we describe very briefly a result of Chossat, Ortega and Ratiu [COR02]
which extends the results described above to finding relative periodic orbits.
A trajectory γ(t) of a dynamical system is periodic if γ(T ) = γ(0) for some
T > 0, and it is a relative periodic orbit (or RPO) if there is an element g ∈ G
and T > 0 such that γ(T ) = g · γ(0). As usual T is called the period, and g is
called the phase.

The authors investigate the situation in which a point x0 is a non-degenerate
equilibrium point of a G-invariant Hamiltonian system H0 with eigenvalues
±iν, for which the generalized eigenspace E±iν is such that it decomposes as
the sum of two symplectic irreducibles of complex dual type for the G × S1-
action, where the S1-action is that derived from the linearization on E±iν ;
write E±iν = U1 ⊕ U2. As described in Theorem 3.4(iv) this hypothesis is
generic for a 1-parameter family of G-invariant Hamiltonians. Furthermore
Hµ is assumed to be a generic G-invariant deformation of H0, which is an
assumption on the movement of the eigenvalues as they collide (Figure 3.2
(p. 369)).

Let S be the unit sphere of V ; it is G× S1 invariant and of odd-dimension.
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For ξ ∈ g let Gξ denote the isotropy subgroup of ξ under the adjoint action.
The main result of Chossat, Ortega and Ratiu is

Theorem 4.5 With the setup and genericity assumptions described above then
for each ξ ∈ g sufficiently small there is a smooth Gξ × S1-equivariant vector
field on the sphere S such that on each energy level near x0 and for each
relative equilibrium of the vector field, there is a value of µ ≈ 0 for which
there is a relative periodic point of Hµ with phase exp(Tξ) for some T ≈ 2π.

It is possible to use topological methods to estimate the minimal possible
numbers of relative equilibria ofGξ×S1 equivariant vector fields. In particular
it is always positive, since S1 acts freely on S, so theGξ×S1 equivariant vector
field on S descends to a Gξ-equivariant vector field on S/S1. This orbit space
S/S1 has non-zero Euler characteristic so every vector field there has a zero
(it is diffeomorphic to a complex projective space).

The proof is based on the reduction method of Vanderbauwhede and van der
Meer [VvdM]. The reader should beware that the paper [COR02] mis-states
the result by saying that each RPO exists for every value of µ rather than for
some value of µ. It would be interesting to understand better the behaviour of
the RPOs as µ is varied.

As we have seen, a considerable amount is known about the Hamiltonian-
Hopf bifurcation (the ”splitting” cases of Theorem 3.4). On the other hand,
very little is known about the passing cases, probably because it is of higher
codimension if there is no symmetry present: namely codimension 3, and codi-
mension 2 in reversible systems.
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PART II: LOCAL DYNAMICS NEAR RELATIVE EQUILIBRIA

5 Momentum map and reduction

5.1 Noether’s theorem

Emmy Noether’s theorem associates to any 1-parameter group of symmetries
a conserved quantity for the dynamics. For a “several-parameter” group, there
are correspondingly several conserved quantities, which together are called the
momentum map.

Given a symplectic action of a group G, a map J : P → g∗ is called a
momentum map if XJξ = ξP for each ξ ∈ g, where Jξ(x) = 〈J(x), ξ〉,
x ∈ P . The defining equation for the momentum map is

〈dJx(v), ξ〉 = ωx(v, ξP(x))

for all x ∈ P , v ∈ TxP and ξ ∈ g (the Lie algebra of G). The momentum map
is thus defined up to a constant, and Im(dJx) = g◦x ⊂ g∗ (where g◦x denotes
the annihilator of gx in g∗). It follows that the momentum map is a submersion
in a neighbourhood of any point where the action is locally free (i.e., where
gx = 0).

The momentum map always exists locally, but to ensure the global existence
of the momentum map one needs some hypothesis such as semisimplicity of
the group, or simple connectedness of the phase space (see [GS84]).

Theorem 5.1 (Noether) Let H be a G-invariant Hamiltonian on P with a
momentum map J. Then J is conserved on the trajectories of the Hamiltonian
vector field XH .

Proof. Differentiating the G-invariance condition, we get dH · ξP = 0. Since
dH · ξP = {H,Jξ} = −{Jξ, H} = −dJξ ·H , the functions Jξ are conserved
on the trajectories of XH for every ξ in g. ¥

5.2 Equivariance of the momentum map

Given a symplectic action of G on P and a momentum map J : P → g∗, one
can construct an action of G on g∗ such that the momentum map is equivariant
with respect to these actions. Usually, but not always, this turns out to be the
coadjoint action of G on g∗. The construction was found by Souriau [S70],
and proceeds as follows. Let θ be the cocycle

θ : G → g∗

g 7→ J(g · x)− Coadg J(x)
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This map is well-defined if θ(g) is independent of x, which it is provided P is
connected. We then define the modified coadjoint action by

Coadθg µ := Coadg µ+ θ(g)

A short calculation shows that it is indeed an action.

Theorem 5.2 (Souriau) Let the Lie group G act on the connected symplectic
manifold P in such a way that there exists a momentum map J : P → g∗.
Then J is equivariant with respect to the modified coadjoint action on g∗:

J(g · x) = Coadθg J(x)

Furthermore, if G is either semisimple or compact then the momentum map
can be chosen such that θ = 0.

For proofs see [S70], and [GS84] for semisimple groups, and [Mo97] for com-
pact groups.

Remark 5.3 The above arguments can be extended to semisymplectic actions
(see the introduction to these lectures). If χ : G→ Z2 is the temporal charac-
ter, then one defines the χ-twisted coadjoint action by

Coadχg µ = χ(g)Coadg µ, (5.1)

and similarly Coadχ,θg µ and everything then follows as before [MR00].

5.3 Reduction

By Noether’s theorem the dynamics preserve the level sets of the momentum
map J. It is then natural to study the dynamics on one level set at a time. How-
ever, these level sets are not in general symplectic manifolds and the induced
dynamics are therefore not Hamiltonian. But, if one passes to the orbit space1

of one of these level sets, then the resulting space is symplectic (provided the
action is free and proper).

Let µ ∈ g∗ and Gµ be the isotropy subgroup of the modified coadjoint
action:

Gµ = {g ∈ G | Coadθg µ = µ}.

For example, if G = SO(3) and µ 6= 0, Gµ is the set of rotations with axis
〈µ〉 and so is isomorphic to SO(2), while G0 = SO(3).

1 that is, identify points in the level sets which lie in the same group orbit



382 VI Symmetric Hamiltonian Bifurcations

By the equivariance of the momentum map,Gµ acts on the level set J−1(µ).
We can then define the (Meyer-Marsden-Weinstein) reduced space Pµ to be:

Pµ = J−1(µ)/Gµ.

Refer to Ratiu’s lectures for details (and see also [MR] and [OR]). SinceG acts
freely, Pµ is a smooth manifold. Moreover it is symplectic with symplectic
form ωµ given by ωµ(π(u), π(v)) = ω(u, v), where u, v ∈ TpP and π is the
projection TpP → Tp Pµ.

Given an invariant Hamiltonian H , its restriction to J−1(µ) is invariant un-
der Gµ, and so determines a well-defined function on Pµ, the reduced Hamil-
tonian denoted Hµ. The dynamics induced on the reduced space is determined
by a vector field Xµ which is defined by dHµ = ωµ(−, Xµ).

Recall that Pµ is diffeomorphic to J−1(Oµ)/G where Oµ is the coadjoint
orbit through µ. One defines the orbit momentum map J : P/G→ g∗/G by:

P J−−−−−→ g∗








y









y

P/G J−−−−−→ g∗/G

where the vertical arrows are the quotient maps. Then the reduced spaces are
the fibers of J .

Now, we introduce the notion of symplectic slice to provide a local model
for the reduced spaces. Recall that a slice to a group action at a point p ∈ P is
a submanifold S through p satisfying TpS ⊕ g · p = TpP . If Gp is compact, it
can be chosen to beGp-invariant and then S/Gp provides a local model for the
orbit space P/G. If G acts by isometries, one usually chooses TpS = N =

g.p⊥ (the normal space to the group orbit).

Definition 5.4 Suppose Gp is compact. Let N be a Gp-invariant subspace
satisfying TxP = N ⊕ g · p. We then define the symplectic slice to be

N1 := N ∩Ker(dJ(p)).

Again, if G acts by isometries, one usually chooses N = (g · p)⊥. Note that
(g · p)⊥ ∩ Ker(dJ(p)) = (gµ · p)⊥ ∩ Ker(dJ(p)), and so one can choose the
right hand space to be the symplectic slice.
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6 Relative equilibria

6.1 Definition and properties of relative equilibria

A point xe ∈ P is called a relative equilibrium if for all t there exists gt ∈ G
such that xe(t) = gt ·xe, where xe(t) is the dynamic orbit ofXH with xe(0) =
xe. In other words, the trajectory is contained in a single group orbit. There are
different ways to define relative equilibria as the following proposition shows.

Proposition 6.1 Let J be a momentum map for the G-action on P and let H
be a G-invariant Hamiltonian on P . Let xe ∈ P and µ = J(xe). The follow-
ing assertions are equivalent:
i) xe is a relative equilibrium
ii) the group orbit G · xe is invariant under the dynamics
iii) there is a ξ ∈ g such that xe(t) = exp(tξ) · xe
iv) there is a ξ ∈ g such that xe is a critical point of the augmented Hamilto-
nian:

Hξ(x) = H(x)− 〈J(x), ξ〉

v) xe is a critical point of the restriction of H to J−1(µ)

vi) the image xe ∈ Pµ of xe is a critical point of the reduced Hamiltonian Hµ.

Remarks 6.2 • The vector ξ appearing in (iii) is called a velocity of the rela-
tive equilibrium, it is the same as the vector appearing in (iv). Of course, for
all η ∈ gxe , ξ + η is also a velocity of xe. However, with N = NGµ

(Gxe),
the normalizer of Gxe in Gµe , and given a Gxe -invariant inner product on
nµ := Lie(N), one can define the angular velocity of xe to be the component
of ξ in g⊥xe , the orthogonal complement of gxe in nµ. With this setting, the
angular velocity is unique (see [Or98]).
• Note that (iii) implies that relative equilibria cannot meander around a group
orbit: they must move in a rigid fashion. For N -body problems in space, the
relevant group is SO(3) and relative equilibria are therefore motions where the
shape of the body doesn’t change, and these motions are always rigid rotations
about some axis.
• If J−1(µ) is singular, then it has a natural stratification (see [SL91]) and the
condition in assertions (iv) and (v) should be interpreted as being a stratified
critical point; that is all derivatives ofH along the stratum containing xe vanish
at xe.

Proof. The logic goes as follows:
i)⇒ ii)⇒ iv)⇒ iii)⇒ i) and iv)⇒ v)⇒ vi)⇒ i).
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First assume (i), let xe be a relative equilibrium and let x = k · xe, k ∈ G.
By G-equivariance of XH , x(t) = k · xe(t) and then x(t) = kgtk

−1x, x is a
relative equilibrium , which is (ii).

Next, assume (ii). From (ii), we have xe(t) ∈ G ·xe for all t. So XH(xe) =

Txe(G · xe) = g · xe and there is a ξ ∈ g such that XH(xe) = ξP(xe). By
definition of the momentum map, XJξ = ξP and then XH−Jξ(xe) = 0. Since
w(XH , ·) = dH , it turns that xe is a critical point of Hξ, which is (iv).

Assume (iv). Let ϕt and ψξt be the flows of H and Jξ respectively, so
ψξt (xe) = exp(tξ) ·xe. SinceH isG-invariant, ϕt and ψξt commute, it follows
that ϕt ◦ ψξ−t is the flow of H − Jξ. The critical point xe of Hξ is therefore
fixed by ϕt ◦ ψξ−t, and so ϕt(xe) = ψξt (xe) = exp(tξ) · xe which is (iii).

Clearly, (iii) implies (i).
Assume (iv). If J−1(µ) is a manifold, (v) follows from the Lagrange multi-

pliers theorem. If J−1(µ) is singular, then gxe 6= 0 since Im(dJ(x)) = g◦x ⊂
g∗. By the theorem of Sjamaar and Lerman [SL91], J−1(µ) is stratified by the
subsets P(K) = {x ∈ P | Gx is conjugate to K} where K is a subgroup of
G. Let PGx

be the set of points with isotropy precisely Gx, this is an open
symplectic submanifold of Fix(Gx,P) containing x. Let N(Gx) be the nor-
malizer of Gx in G and L = N(Gx)/Gx, L acts on PGx

. The subsystem
(PGx

, H̃, ω̃, L) is Hamiltonian. Let JL : PGx
→ Lie(L)∗ the corresponding

momentum map, JL is a submersion since L acts freely on PGx
, thus J−1L (µ)

is a manifold, and so we can apply the regular case. The result follows then
from the Principle of Symmetric Criticality (see Section 6.2 for a statement).

That (v) implies (vi) follows by passing to the quotient. Finally (vi) implies
that the equivalence class xe is a fixed equilibrium of the reduced dynamics.
Then xe(t) lies in G · xe for all t and this is (i). ¥

Proposition 6.3 Let xe be a relative equilibrium with angular velocity ξ and
µ = J(xe). Then

Coadθexp(tξ) µ = µ.

Proof. This is simply because J is equivariant, exp(tξ) generates the motion
and µ is conserved. ¥

For G = SO(3), this implies that ξ and the momentum vector are parallel
vectors, but for the Euclidean group the corresponding relationship is more
complicated.
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6.2 How does one locate relative equilibria?

From Proposition 6.1, relative equilibria are critical points of the Hamiltonian
restricted to the level sets of the momentum map, so results on critical point of
G-invariant functions are of particular interest. Mainly, these results are due to
Palais [P79] and Michel [Mi71].

Let G be a Lie group and H : P → R a G-invariant function. Assume that
G is either compact or acts isometrically on P Riemannian. The Principle of
Symmetric Criticality [P79] claims that if the directional derivatives dHx(u)

vanish for all directions u at x tangent to Fix(K,P), then directional deriva-
tives in directions transverse to Fix(K,P) also vanish. In particular, any iso-
lated point of Fix(K,P) is a critical point ofH . In our context of Hamiltonian
system with symmetry, one obtains the following theorem as a corollary of the
Principle of Symmetric Criticality. Recall that if G acts semisymplectically,
we denote by G+ the subgroup (of index 2) of elements acting symplectically.

Theorem 6.4 LetG act semisymplectically on P . Suppose x ∈ Fix(K,P) for
some subgroupK ofG, and µ = J(x). If x is an isolated point in Fix(K,P)∩
J−1(µ), then x is a relative equilibrium. If in addition K < G+, then x is a
fixed equilibrium.

Note that equilibria derived by this theorem do not depend on the form of
the Hamiltonian, they depend only on the action of the symmetry group on
the phase space. Note also that this result uses the fact that H is G-invariant,
and not that G acts symplectically. In the examples of Section 8, we use this
theorem with antisymplectic symmetries (g∗ω = −ω) as well as symplectic
ones.

This theorem provides relative equilibria with large isotropy subgroups, and
hence is not usually sufficient to determine bifurcating branches of relative
equilibria since symmetry-breaking occurs at a bifurcation.

One way to find these relative equilibria with less symmetry is to determine
critical points of the restriction of H|Fix(K,P) to J−1(µ) (using Lagrange mul-
tipliers for example). Indeed by the Principle of Symmetric Criticality, we
have determined critical points of the restriction of H to J−1(µ) which are
precisely relative equilibria.

As we shall see in Section 7, one can also determine relative equilibria in
a neighbourhood of a zero-momentum relative equilibrium by a bifurcation
argument.
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6.3 Stability

When one has found a relative equilibrium, a natural question arises: is it
stable? We first review different definitions of stability in Hamiltonian systems
of finite dimension.

Let x0 be a fixed equilibrium of an Hamiltonian dynamical system and L0
the matrix of the linearized system at x0. The equilibrium x0 is said to be
spectrally stable if the eigenvalues of L0 all lie on the imaginary axis. If in
addition L0 is semisimple, the equilibrium is said to be linearly stable. To
end, an equilibrium x0 is said to be Lyapunov stable if for any neighbourhood
U of x0, there is a neighbourhood V of x0, V ⊂ U such that any trajectory
which intersects V remains in U for all time. Note that Lyapunov stability is
interesting for nonlinear dynamics; for a linear system Lyapunov stability is
equivalent to linear stability.

These different concepts are related:
• Linear stability implies spectral stability, but the converse is not true as reso-
nance can generate instabilities.
• Lyapunov stability implies spectral stability. Note that spectral instability
implies Lyapunov instability, and this is therefore a way to prove Lyapunov
instability.

In order to prove Lyapunov stability, one has the Lagrange-Dirichlet crite-
rion: If the Hessian matrix d2H(x0) is positive- or negative-definite, then the
equilibrium x0 is Lyapunov stable. Indeed, a use of the Morse Lemma states
that the level sets of H near the equilibrium are topologically spheres, and by
conservation of energy, if a trajectory starts on one of these spheres, it remains
on it. (See the lectures of Meyer.)

For relative equilibria, the previous definitions of stability are not suitable
since relative equilibria which are not fixed equilibria are unstable in some
directions tangent to the group orbit. The appropriate concept of stability is
stability modulo a subgroup as follows. Let K be a subgroup of G; a relative
equilibrium xe is said to be stable moduloK, if for allK-invariant open neigh-
bourhoods V of K · xe there is an open neighbourhood U ⊆ V of xe such that
the trajectory through any point of U is entirely contained in V .

One would like an analogue of the Lagrange-Dirichlet criterion for the sta-
bility of relative equilibria. In the case of a free and proper action with µ

regular, this was obtained by the energy-momentum method of Arnold and
Marsden (see [Ma92] and reference therein). This result was extended by
Patrick [Pa92] to allow locally free actions µ not regular and more importantly
concluding not only G-stability but Gµ-stability. More recently, the freeness
assumption was dropped as the following theorem shows. The lack of freeness
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means that the velocity ξ of a relative equilibrium xe is no longer unique, but
only unique modulo gxe . Given a Gµ-invariant inner product on g the orthog-
onal angular velocity is the unique angular velocity ξ ∈ g⊥xe .

Theorem 6.5 (Lerman, Singer [LS98], Ortega, Ratiu [OR99])
Let G act properly on P , xe be a relative equilibrium with orthogonal angular
velocity ξ, and µ = J(xe). Suppose further that:

i) Gµ acts properly on P and g,
ii) the restriction of the Hessian d2Hξ(xe) to the symplectic slice N1 is

definite.
Then xe is Lyapunov stable modulo Gµ.

6.4 Persistence

Given a relative equilibrium, one asks if the relative equilibrium persists; that
is, if there are also nearby relative equilibria for nearby values of the momen-
tum map. First, we give two definitions:

Definition 6.6 A relative equilibrium xe is said to be non-degenerate if the re-
striction of the Hessian d2Hξ(xe) to the symplectic sliceN1 is a non-degenerate
quadratic form.

Definition 6.7 A point µ ∈ g∗ is a regular point of the (modified) coadjoint
action if in a neighbourhood of µ all the isotropy subgroups are conjugate.

For G = SO(3), all points of g∗ ' R3 are regular except the origin. The
following theorem due to Arnold [A78] was the first result on persistence. The
proof is an application of the implicit function theorem.

Theorem 6.8 (Arnold) Let xe be a non-degenerate relative equilibrium and
suppose that G acts freely in a neighbourhood of xe, and that µ = J(xe) is a
regular point of the (modified) coadjoint action. Then in a neighbourhood of
xe there exists a smooth family of relative equilibria parametrized by µ ∈ g∗.

Again, this result was extended by Patrick [Pa95] who showed one need not
assume that µ is regular, but only that Gµ ∩ Gξ is abelian (it always contains
a maximal torus of G) together with non-degeneracy of the reduced hamilto-
nian. He concludes that the set of relative equilibria forms a submanifold of
dimension dimG + rankG. This has been extended further by Lerman and
Singer [LS98].
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Theorem 6.9 (Lerman, Singer [LS98]) LetG act properly on P , xe be a rel-
ative equilibrium with angular velocity ξ, and µ = J(xe). Suppose further
that:

i) Gµ is a compact Abelian group,
ii) the restriction of the Hessian d2Hξ(xe) toKer dJ(µ) is of maximal rank.

Then there exists a symplectic manifoldM of relative equilibria passing through
xe of dimension dimG+dimGµ−2 dimGxe . Furthermore, if the restriction
of the Hessian d2Hξ(xe) to the symplectic slice N1 is definite, then a neigh-
bourhood of xe in M consists of relative equilibria which are Lyapunov stable
modulo subgroups conjugate to Gµ.

Note that if G is compact, then for a generic µ ∈ g∗, Gµ is a torus and so
hypothesis (i) of the theorem holds for generic µ.

These theorems do not provide information about the symmetry of the rel-
ative equilibria of the manifold. Such a result is given in the thesis of Ortega
[Or98]. Another extension of Arnold’s and Patrick’s theorems has been ob-
tained by Patrick and Roberts [PR00] which, again for free actions, describes
a stratification of the set of relative equilibria near a given one, depending on
Gµ and Gξ. A statement of their theorem would take us too far afield.

For the case of extrema of Hµ, one has the following persistence result
which does not rely on any regularity hypotheses; however it gives no infor-
mation about the structure of the set of relative equilibria.

Theorem 6.10 (Montaldi [Mo97], Montaldi, Tokieda [MT03]) Let G act
properly on P and xe ∈ J−1(µ) be a relative equilibrium, with Gµ compact.
Suppose [xe] ∈ Pµ is an extremum of the reduced HamiltonianHµ. Then there
is a G-invariant neighbourhood U of xe such that, for all µ′ ∈ J(U) there is a
relative equilibrium in U ∩ J−1(µ′).

7 Bifurcation from zero-momentum state

In this section we present some methods to analyse bifurcations from a relative
equilibrium with momentum zero. For details and complements, we refer to
papers of Montaldi [Mo97] and Montaldi-Roberts [MR99].

Let xe be a non-degenerate relative equilibrium with J(xe) = 0 and Gxe =

0 (i.e. locally a free action). Since the momentum is zero, the symplectic slice
can be identified with P0. From the Marle-Guillemin-Sternberg normal form
([GS84]), we have locally near xe:

P/G ' P0 × g
∗
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The orbit momentum map becomes:

J : P/G ' P0 × g∗ −→ g∗/G

(y, ν) 7−→ Oν
and (locally) Pµ ' P0 × Oµ since Pµ = J−1(Oµ). In many applications,
in this decomposition P0 corresponds to shape dynamics and g∗ to rigid body
dynamics. Of course, the two are highly coupled.

By hypothesis, xe is a non-degenerate critical point of the restriction of H :

P0 × g∗ → R to P0 × {0}. Thus by the implicit function theorem, for each ν,
the function H(·, ν) has a critical point y = y(ν). Then define h : g∗ → R by

h(ν) = H(y(ν), ν).

An easy exercise shows that the restriction of h to Oµ has a critical point at
ν if and only if the restriction of H to Pµ has a critical point at (y(ν), ν).
The problem is therefore reduced to one of finding critical points of a function
on coadjoint orbits. One can use Morse theory or Lyusternik-Schnirelman
techniques to estimate the number of critical points, and so the number of
bifurcating relative equilibria.

We assumed thatGxe is trivial. However, ifGxe is finite, the same argument
applies, but now the resulting function h : Oµ → R isGxe invariant. HereGxe

is acting (semi)symplectically by the modified coadjoint action. Moreover, if ν
is a critical point of h with isotropy K < Gxe , then the corresponding relative
equilibrium also has isotropy group K. Analogous to Theorem 6.4, we have
the following theorem.

Theorem 7.1 (Montaldi, Roberts [MR99]) Let xe be a non-degenerate rel-
ative equilibrium with J(xe) = 0, and K be a subgroup of Gxe . Suppose
further that Gxe is finite. Then an isolated point of Fix(K,Oµ) with µ close
to zero, corresponds to a relative equilibrium with isotropy containing K.

For an application of this theorem to point vortices on a sphere, see Section 8.3.
In [MR99], the stability of the bifurcating relative equilibria is also calculated
using these methods. In the case of a relative equilibrium with a non-zero mo-
mentum, one can also give a lower bound of the number of relative equilibria
on the nearby reduced spaces (see [Mo97]).

Remark 7.2 Since the function h is defined on g∗, its differential at any point
dh(ν) ∈ g. If ν is a critical point of the restriction of h to Oν , so ν is a
relative equilibrium, then dh(ν) is in fact the angular velocity of the relative
equilibrium in question, [Mo97].
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8 Examples

In this section, we apply the previous work to three symmetric Hamiltonian
systems:
•Molecules (as classical mechanical systems)
• Point vortices in the plane
• Point vortices on the sphere

where a point vortex is an infinitesimal region of vorticity in a 2-dimensional
fluid flow.

The study of molecules is of interest in molecular spectroscopy, while point
vortices are of interest in modelling concentrated region of vorticity such as
hurricanes. Note that the action of the symmetry group is free and proper in
these three examples (if one has more than 2 vortices on the sphere).

8.1 Molecules

We consider a molecule consisting of N atoms. We take advantage of the
Born-Oppenheimer approximation, which means essentially that we ignore the
movement of the electrons. We obtain a model for the nuclei alone, interacting
via a potential energy function which incorporates the effects of the electrons.
The configuration space is R3N and the phase space is P = T ∗R3N = R6N .
After fixing the centre of mass at the origin, the dimension of the phase space
becomes 6N − 6.

Let mi, qi and pi = miq̇i be respectively the mass, the position and the
momentum of the ith nucleus. The Hamiltonian of the system is given by:

H =
∑

i

1

2mi

|pi|2 + V (q1, . . . , qN )

where V is the potential energy due to the electronic bonding between the
nuclei. In the absence of external force, V is O(3)-invariant, and so is the
Hamiltonian. Moreover, if some nuclei are identical, then a subgroup Σ of the
permutation group SN acts on the set of the nuclei, and Σ leaves H invariant.
As with any classical Hamiltonian system of the form “kinetic + potential”,
the system is time reversible: H is invariant under the involution τ : (p, q) 7→
(−p, q). Finally, the Hamiltonian is Ĝ-invariant where Ĝ = O(3) × Σ × Zτ2 .
Here we use Ĝ for a semisymplectic group action, whose symplectic part isG;
the temporal character is just the projection χ : O(3)× Σ× Zτ2 → Zτ2 .

The SO(3)-symmetry leads to the following momentum map (see Ratiu’s
lectures for how to compute a momentum map when P is a cotangent bundle):

J =
∑

i

qi × pi



VI. 8 Examples 391

where we identified so(3)∗ with R3 (this is of course the usual angular momen-
tum for a collection of particles in R3). The momentum map is equivariant with
the SO(3)-coadjoint action (Theorem 5.2), but it is also Ĝ-equivariant with the
following action on so(3)∗ ' R3:

(A, σ, τk) · µ = (−1)k det(A)Aµ

where (A, σ, τk) ∈ Ĝ = O(3) × Σ × Zτ2 , see equation (5.1). The action of
O(3)×Σ is not free, however the action of SO(3) is free away from collinear
configurations. We obtain the following theorem using Section 7. Let the axis
of reflection be the line through the origin perpendicular to the plane fixed by
the reflection.

Theorem 8.1 ([MR99]) Consider a molecule with a non-degenerate equilib-
rium with symmetry group Γ < O(3)×Σ. There exists µ0 > 0 such that for all
µ ∈ R3 with |µ| < µ0 there are at least 6 relative equilibria with momentum
µ. Moreover, for each axis l of rotation or reflection in Γ, there are two relative
equilibria rotating around the axis l with angular momentum µ, one rotating
in each direction.

The minimum of 6 relative equilibria is a consequence only of time reversal
symmetry, and thee relative equilibria are similar to the six occurring for the
rigid body.

For example, the methane molecule CH4 has a tetrahedral symmetry, it has
7 axes of rotation and 6 axes of reflection. By the theorem, there are 26 families
of relative equilibria bifurcating from the tetrahedral equilibrium. This result
depends only on the tetrahedral symmetry, so it is also true for a molecule such
as P4 (white phosphorous).

However, the stability analysis depends on the molecule in question, this is
carried out in [MR99]. For a complete investigation of the very interesting
molecule H+3 , see [KRT99].

8.2 Point vortices in the plane

The literature on planar point vortices is large ([Ar82, Ar83a, Ar83b, AV98,
Sa92]), usually treated as a problem in fluid mechanics. Here we present the
problem in terms of geometric mechanics.

We consider N point vortices in a planar flow of an ideal fluid. The equa-
tions governing the motion of the N point vortices are:

żj =
1

2πi

∑

k,k 6=j

κk
1

zj − zk
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Fig. 8.1. The tetrahedral symmetry of the CH4 molecule.

where zj is a complex number representing the position of the j-vortex (we
identified the plane with C), and κj is the vorticity of the j-vortex. The Hamil-
tonian for this system is

H = − 1

4π

∑

i<j

κiκj ln |zi − zj |2

and the symmetry group is SE(2) (which is not compact). After identifying
SE(2) with C o S1 and so se(2)∗ with C × R, the momentum map of the
system is

J(z1, . . . , zN ) =



i
∑

j

κjzj , − 12
∑

j κj |zj |2


 .

This momentum map is interesting because it fails to be equivariant with the
coadjoint action on se(2)∗, and we must use the modified coadjoint action to
make it equivariant (see Theorem 5.2):

CoadΛ(u,A)(ν, ψ) =
(

Aν, ψ + =(Aνu)
)

+ Λ
(

iu, 12 |u|2
)

where (u,A) ∈ CoS1, (ν, ψ) ∈ C×R, Λ =
∑

j κj , and=(z) is the imaginary
part of z. The term Λ(iu, |u|2/2) is Souriau’s cocycle.

If Λ = 0, then the coadjoint orbits are of two types: either points on the
ψ-axis or cylinders around that axis; if, on the other hand, Λ 6= 0, the orbits
are all paraboloids, with axis equal to the ψ-axis.

2 vortices All configurations are relative equilibria. Indeed, it follows from
the equations of motion that if Λ = κ1 + κ2 6= 0, then the two vortices rotate
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about the fixed point 1Λ (κ1z1 + κ2z2), while if Λ = 0 they translate together
towards infinity in the direction orthogonal to the segment joining them.

These results can also be derived using the previous sections. Indeed, the
reduced spaces are just single points, and so correspond to relative equilibria
by Proposition 6.1. Moreover if Λ 6= 0, then for all µ, Gµ ' SO(2) and
the relative equilibria are Lyapunov stable modulo Gµ by Theorem 6.9 (the
symplectic slice is trivial).

3 vortices A complete analysis of the motion of three planar vortices was
given by Synge [Sy49]. Here we present a modern approach of the problem
but restrict attention to non-collinear configurations for brevity and simplicity.
Points of the orbit space P/G = C3/SE(2) correspond to shapes of oriented
triangles. Since we are away from collinear configurations, the orientation
determines two isomorphic connected components, so we may ignore the ori-
entation. A point in the orbit space is therefore determined by the three lengths
l12, l13, l23 where lij = |zi − zj |. Denote r1 = l223, r2 = ..., then the Hamilto-
nian on P/G and the orbit momentum map (Section 5.3) are respectively:

4πH(r1, r2, r3) = −κ1κ2 ln(r3)− κ2κ3 ln(r1)− κ1κ3 ln(r2)
J (r1, r2, r3) = p ◦ J = −κ1κ2r3 − κ2κ3r1 − κ1κ3r2

where the projection p : g∗ ' C × R → g∗/G ' R is given by p(ν, ψ) =
|ν|2 − 2Λψ. Recall that the reduced spaces are the fibers of J . The relative
equilibria are determined by the critical points of the restriction of H to the
reduced spaces, and are therefore critical points of H − ηJ for some η (η is a
Lagrange multiplier). A short computation shows that relative equilibria are all
equilateral triangle, of side r say, with η = 1/(4πr). Then we rely the angular
velocity ξ with η:

0 = d(H − ηJ )(xe) = d(H − ξJ)(xe).

Since J = p ◦ J, it follows that ξ = η dp(µ) with µ = J(xe) = (ν, ψ), so

ξ = η(ν,−Λ).

Thus if Λ = 0, then the motion is rectilinear with constant velocity ξ = 2ην =
i
∑

j κjzj/(2πr
2).

To determine the stability of these relative equilibria, we use the reduced
energy-momentum method ([SLM91]); that is, we examine definiteness of the
restriction of d2(H−ηJ )(xe) to TxePµ. In fact, this is the energy-momentum
method for the reduced Hamiltonian system (Pµ, ωµ, Hµ). The tangent space
TxePµ is spanned by the two vectors (κ1,−κ2, 0) and (κ1, 0,−κ3), so after
some calculus:
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d2(H − ηJ )(xe)|TxePµ
=
κ1κ2κ3
4πr2

(

κ1 + κ2 κ1
κ1 κ1 + κ3

)

This quadratic form is definite if and only if σ2(κ) > 0 where σ2(κ) =
κ1κ2 + κ1κ3 + κ2κ3. It follows that the equilateral triangles are Lyapunov
stable modulo G if and only if σ2(κ) > 0.

The 4-vortex problem has been recently studied by Patrick [Pa00] in the
case of zero-momentum configurations. Arrangements involving an arbitrary
number of vortices (n-gon/kn-gon) have been considered by Lewis and Ratiu
[LR96]. We suggest to check the stability of the relative equilibria of a simu-
lation available on the web1. To end, the dynamics of perturbed relative equi-
libria is studied in [Pa99] both on the sphere and on the plane.

8.3 Point vortices on the sphere

We consider here N point vortices in a spherical layer flow of an ideal fluid.
The configuration space is

P = {(x1, ..., xN ) ∈ S2 × · · · × S2 | xi 6= xj if i 6= j};

we do not permit collisions. Let θi be the co-latitude, φi be the longitude, and
κi be the vorticity of the i-vortex. The equations governing the motion of the
N point vortices on the sphere were obtained by Bogomolov [B77]:

θ̇i = −
N
∑

j=1,j 6=i

κj
sin θj sin(φi − φj)

l2ij
, i = 1...N

sin θi φ̇i =
∑

j,j 6=i

κj
sin θi cos θj − sin θj cos θi cos(φi − φj)

l2ij
, i = 1...N

where l2ij = 2(1 − cos θi cos θj − sin θi sin θj cos(φi − φj)) is the square of
the Euclidian distance ‖xi − xj‖. The system is Hamiltonian with

H =
∑

i<j

κiκj ln l
2
ij , ω =

N
⊕

j=1

κjωj ,

where ωj is the standard area form on the sphere. The dynamical system has
full rotational symmetryG = SO(3), and hence has a 3-component conserved

1 http://www.mindspring.com/˜brian tvedt/java.html
and http://www.ma.umist.ac.uk/jm/vortex.html
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quantity (see Theorem 5.1). We identify so(3) with R3 in the usual way, the
momentum map is then given by:

J(x) =

N
∑

j=1

κj xj .

In what follows, we describe some relative equilibria.

2 vortices If the momentum µ of the configuration is non-zero, the two vortices
rotate around µ at the same angular velocity, so this is a relative equilibrium.
The only possible case for µ = 0 is if κ1 = κ2 and x1 = −x2 which is a fixed
equilibrium.

3 vortices The relative equilibria formed of 3 point vortices are completely
described in the paper of Kidambi and Newton [KN98], analogous to that of
Synge for the planar vortex model. There are two classes of relative equilib-
ria, those lying on a great circle, and those which are equilateral triangle. All
equilateral triangle configurations are relative equilibria. The stability of these
relative equilibria is computed in [PM98]. One can also use the method de-
scribed for planar equilateral triangles in the previous section. In this way, one
finds that equilateral triangles which do not lie on a great circle are Lyapunov
stable modulo SO(2) if and only if

σ2(κ) := κ1κ2 + κ1κ3 + κ2κ3 > 0.

Note that the stability condition is the same as in the planar case (great cir-
cle configurations correspond to collinear configurations, the algebraic volume
vanishes there).

Right-angled isosceles triangle lying on a great circle are also relative equi-
libria, they are Lyapunov stable modulo SO(2) provided

κ22 + κ
2
3 > 2σ2(κ)

where x1 is at the right-angle [PM98].
As in the planar 2-vortex system, one can derive a stability result by a dimen-

sion count. Let xe be a zero-momentum configuration, that is µ = J(xe) = 0.
Thus xe lies on a great circle, SO(3)µ = SO(3) is compact and dimP0 = 0.
The reduced space P0 consists of single points, so xe is a relative equilibrium
and is Lyapunov stable modulo SO(3).

Numerical simulations can be found in [MPS99], and collapse is studied in
[KN98],[KN99]. To end, the effect of solid boundaries (such as continents) is
taken into account in [KN00].

4 vortices A regular tetrahedron formed of four vortices of arbitrary strength



396 VI Symmetric Hamiltonian Bifurcations

is always a relative equilibrium [PM98]; the stability of these configurations
has not been determined. It is easy to show from the equations of motion that
a square lying on a great circle is always a relative equilibrium. Contrary to
the 3-vortex case, squares not lying on a great circle are not relative equilibria
unless the four vorticities are identical.

PSfrag replacements

C3v(R, p) C4v(R)

C2v(R, 2p)

C2v(R,R
′) C2v(2R)

Fig. 8.2. Relative equilibria for 4 identical vortices on the sphere.

N identical vortices In the case of N identical vortices, permutation symme-
tries arise: the Hamiltonian is O(3)×SN -invariant, whereas the vector field is
only SO(3) × SN -equivariant. The classification of symmetric relative equi-
libria is carried out in [LMR00]. For example, a regular ring (that is a regular
polygon at a fixed latitude) with possibly some vortices at the poles and regu-
lar polyhedra, are all relative equilibria. As an exercise, apply Theorem 6.4 to
carry out these results.

The linear stability of a regular ring of N identical vortices was studied by
Dritschel and Polvani [PD93]. Recently, the results were extended in terms of
Lyapunov stability in [LMR04], where other configurations of rings and polar
vortices are also considered. The result for the single ring is as follows:
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Proposition 8.2 A regular ring of N identical vortices is Lyapunov stable if
and only if one of the following assertions is satisfied:
• N = 2 or N = 3

• N = 4 and cos2(θ) > 1/3
• N = 5 and cos2(θ) > 1/2
• N = 6 and cos2(θ) > 4/5
where θ is the colatitude of the ring.

Note that the rings are “more” stable near the poles than near the equator;
while as the number of vortices is increased so the region for which the relative
equilibrium is stable diminishes.

2N vortices with opposite vorticities Here we consider N vortices with vor-
ticity +1 and N vortices with vorticity −1. The Hamiltonian in this case is
O(3) × SN × SN o Z2[τ ]-invariant, where τ is a permutation of order two
which exchanges the (+1)-vortices with the (−1)-vortices. The vector field
is SO(3) × SN × SN -equivariant. As before, the relative equilibria are de-
termined using Section 6.2 and stability is computed using Section 6.3, the
results can be found in [LP00]. For example, a regular ring formed of the (+1)-
vortices together with a similar regular ring at the opposite latitude formed of
the (−1)-vortices is a relative equilibrium if the offset between the two rings is
an integer multiple of π/N .

Bifurcations Changes of stability often involve bifurcations of relative equi-
libria. Consider the case of a regular ring formed of 4 identical vortices (C4v(R)

in Figure 8.2). By the above proposition, this relative equilibrium is Lyapunov
stable if and only if cos2(θ) > 1/3 where θ is the colatitude of the ring. In
fact, an eigenvalue vanishes when cos2(θ) = 1/3, so a bifurcation occurs. As
cos2(θ) decreases through 1/3, there appears a new family of relative equilib-
ria consisting of two rings of two vortices each, the offset between the two rings
being equal to π/2 (denoted C2v(R,R

′) in Figure 8.2). These bifurcating rel-
ative equilibria are Lyapunov stable: we are in the presence of a supercritical
pitchfork bifurcation (see Section 3.2). Others bifurcations such as subcrit-
ical pitchfork bifurcation or Hamiltonian-Hopf bifurcation, are described in
[LP00].

Bifurcations from zero-momentum state Here we apply Section 7 to our prob-
lem. At a zero-momentum configuration, bifurcations occur because the re-
duced spaces for µ = 0 and µ 6= 0 have different geometry. Consider the ar-
rangement xe consisting of a regular ring of N identical vortices on the equa-
tor. This configuration is a relative equilibrium (in fact a fixed equilibrium)
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with momentum zero, and isotropy group isomorphic to DNh ' DN × Z2

(we use the Schönflies-Eyring notation for subgroups of O(3)). Nearby re-
duced spaces are then locally of the form Pµ ' P0 × Oµ where Oµ is the
coadjoint orbit through µ, which is a sphere in the present case. It follows
from Section 7 that the relative equilibria on Pµ near xe are critical points of
a DNh invariant function h : Oµ → R. The set Fix(CNv,Oµ) just consists of
the North and South poles, and CNv is a maximal isotropy subgroup for µ 6= 0,
so by Theorem 7.1 there exist near xe relative equilibria with isotropy CNv .
These are rotating rings of N vortices at a fixed latitude. The subgroup C2v

with axis of rotations lying in the equatorial plane, is also a maximal isotropy
subgroup for µ 6= 0. The same argument holds and provides relative equilibria
consisting of m 2-rings with one pole if N = 2m + 1, and (m − 1) 2-rings
with two poles if N = 2m.
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in the 3D Hénon-Heiles family. J. Dynam. Differential Equations 14 (2002), 675–
695.

[IP93] G. Iooss and M.-C. Proume, Perturbed homoclinic solutions in reversible 1 : 1
resonance vector fields. J. Differential Equations 102 (1993), 62–88.

[KN98] R. Kidambi and P. Newton, Motion of three point vortices on a sphere. Phys-
ica D 116 (1998), 143–175.

[KN99] R. Kidambi and P. Newton, Collapse of three vortices on a sphere. Il Nuovo
Cimento C 22 (1999), 779–791.

[KN00] R. Kidambi and P. Newton, Point vortex motion on a sphere with solid bound-
aries, Phys. fluids 12 (2000), 581–588.

[KRT99] I. Kozin, M. Roberts and J. Tennyson, Symmetry and structure of rotating
H+

3 . J. Chem. Phys. 111 (1999), 140–150.
[LP00] F. Laurent-Polz, Point vortices on the sphere: a case with opposite vorticities.

Nonlinearity 15 (2002), 143–171.
[LMR04] F. Laurent-Polz, J. Montaldi, M. Roberts, Stability of point vortices on the

sphere. Preprint (2004). (ArXiv: math.DS/0402430.)
[LR96] D. Lewis and T. Ratiu, Rotating n-gon/kn-gon vortex configurations. J. Non-

linear Sci. 6 (1996), 385–414.
[LS98] E. Lerman and S. Singer, Relative equilibria at singular points of the momen-

tum map. Nonlinearity 11 (1998), 1637–1649.
[LMR00] C. Lim, J. Montaldi, M. Roberts, Relative equilibria of point vortices on

the sphere. Physica D 148 (2001) 97–135.
[L] A. Lyapunov. Problème générale de la stabilité du mouvement, Ann. Math. Studies
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