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Abstract. The indefinite least squares (ILS) problem involves minimizing a certain type of
indefinite quadratic form. We develop perturbation theory for the problem and identify a condition
number. We describe and analyze a method for solving the ILS problem based on hyperbolic QR fac-
torization. This method has a lower operation count than one recently proposed by Chandrasekaran,
Gu, and Sayed that employs both QR and Cholesky factorizations. We give a rounding error analysis
of the new method and use the perturbation theory to show that under a reasonable assumption
the method is forward stable. Our analysis is quite general and sheds some light on the stability
properties of hyperbolic transformations. In our numerical experiments the new method is just as
accurate as the method of Chandrasekaran, Gu, and Sayed.
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1. Introduction. The indefinite least squares problem (ILS) takes the form

ILS : min
x

(b−Ax)TJ(b−Ax),(1.1)

where A ∈ R
m×n, m ≥ n, and b ∈ R

m are given and J is the signature matrix

J =

[
Ip 0
0 −Iq

]
, p+ q = m.(1.2)

For p = 0 or q = 0 we have the standard least squares (LS) problem and the quadratic
form is definite, while for pq > 0 the problem is to minimize a genuinely indefinite
quadratic form. Chandrasekaran, Gu, and Sayed [3] discuss the application of the
ILS problem to the solution of total least squares problems [18] and to the area of
optimization known as H∞ smoothing [8], [14].
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The normal equations for (1.1), which are first order conditions for optimality,
are

ATJ(b−Ax) = 0.(1.3)

Since the Hessian matrix of the quadratic to be minimized in (1.1) is 2ATJA, it follows
that the ILS problem has a unique solution if and only if

ATJA is positive definite.(1.4)

We will assume throughout this paper that (1.4) holds. Note that (1.4) implies p ≥ n
and that A(1: p, 1:n) (and hence A) has full rank. For a genuinely indefinite LS
problem we therefore need m > n.

We note in passing that (1.3) gives x = M−1ATJb, where M = ATJA, and the
matrix X = M−1ATJ is a pseudoinverse of A but not the Moore–Penrose pseudoin-
verse (XA = I, but AX is not symmetric).

One way of solving the ILS problem is to form the normal equations and solve
them with the aid of a Cholesky factorization. Since this method has poor numerical
stability properties for the standard LS problem it is clearly not a good choice for the
ILS problem, except perhaps when ATJA is well conditioned.

Chandrasekaran, Gu, and Sayed [3] propose a method for solving the ILS problem
based on a QR factorization of A,

A = QR =

[ n

p Q1

q Q2

]
R, R ∈ R

n×n.

This factorization yields

ATJA = RT (QT
1 Q1 −QT

2 Q2)R,

which, in view of (1.4), implies that R is nonsingular and QT
1 Q1 − QT

2 Q2 is positive
definite. Hence the normal equations (1.3) can be rewritten as

(QT
1 Q1 −QT

2 Q2)Rx = QTJb.(1.5)

Using the Cholesky factorization

QT
1 Q1 −QT

2 Q2 = UTU,

(1.5) becomes

UTURx = QTJb.

This system can be solved for x by one forward and two backward substitutions. We
will refer to this method as the “QR-Cholesky” method. It is shown in [3] that this
method produces a computed solution x̂ that solves the problem

min
x

(
b+∆b− (A+∆A)x)TJ(b+∆b− (A+∆A)x

)
,

where

‖∆A‖F ≤ cm,nu‖A‖F , ‖∆b‖2 ≤ cm,nu‖b‖2,
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with cm,n a constant depending on the problem dimensions and u the unit roundoff;
in other words, the QR-Cholesky method is backward stable.

In this work we investigate the solution of the ILS problem via hyperbolic QR fac-
torization. This approach has a lower operation count than the QR-Cholesky method
but, in view of the use of hyperbolic transformations, its stability is questionable.
We give rounding error analysis and perturbation analysis that combine to show that
the method is forward stable under a reasonable assumption and hence of practical
interest.

We begin, in the next section, with the perturbation analysis. The hyperbolic
QR factorization method is described in section 3, its error analysis is given in sec-
tion 4, and numerical experiments are presented in section 5. It is an important
fact that obtaining useful error bounds for the application of a product of hyperbolic
transformations to a vector is much more difficult than when the transformations
are orthogonal. In section 4.1 we show how such products can be analyzed under a
natural assumption on the form of the hyperbolic transformations.

2. Perturbation theory. In this section we derive normwise and component-
wise perturbation bounds for the solution x and a residual r of the ILS problem. Our
approach is based on that used by Cox and Higham [4] to obtain perturbation bounds
for the equality constrained LS problem. We let x̃ be the solution of the perturbed
ILS problem

min
x

(
b+∆b− (A+∆A)x)TJ(b+∆b− (A+∆A)x

)
(2.1)

and define

r̃ = b+∆b− (A+∆A)x̃, r = b−Ax

to be the residuals of the perturbed and unperturbed problems, respectively. We
assume that A + ∆A satisfies the uniqueness condition (1.4), which will always be
the case for ∆A sufficiently small in norm. The perturbations to the data will be
measured by the smallest ε for which

‖∆A‖F ≤ ε‖A‖F , ‖∆b‖2 ≤ ε‖b‖2,(2.2)

where A and b are a matrix and vector of tolerances.
The normal equations (1.3) can be rewritten as the augmented system (with

r = b−Ax) [
I A

ATJ 0

] [
r
x

]
=

[
b
0

]
.

It is convenient to define s = Jr and rewrite the system with a symmetric coefficient
matrix: [

J A
AT 0

] [
s
x

]
=

[
b
0

]
.(2.3)

The perturbed augmented system corresponding to (2.3) is[
J A+∆A

(A+∆A)T 0

] [
s̃
x̃

]
=

[
b+∆b

0

]
.(2.4)
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Writing

s̃ = s+∆s, x̃ = x+∆x

and subtracting (2.3) from (2.4), we obtain[
J A
AT 0

] [
∆s
∆x

]
=

[
∆b−∆Ax̃
−∆AT s̃

]
.(2.5)

It is straightforward to verify that the inverse of the matrix on the left-hand side
of (2.5) is [

J − JAM−1ATJ JAM−1

M−1ATJ −M−1

]
, where M = ATJA.

Premultiplying by the inverse and expanding the right-hand side, we obtain

∆s = (J − JAM−1ATJ)(∆b−∆Ax̃)− (JAM−1)∆AT s̃,(2.6a)

∆x =M−1ATJ(∆b−∆Ax̃) +M−1∆AT s̃.(2.6b)

If we put J = I, then we recover perturbation expressions for the standard LS problem.
Since the perturbations ∆s and ∆x are of order ε, we can substitute s = Jr

and x for their perturbed counterparts to obtain first order expressions. Then, taking
norms, we deduce

‖∆r‖2 ≤ ε
[
‖I − JAM−1AT ‖2(‖b‖2 + ‖A‖F ‖x‖2) + ‖AM−1‖2‖A‖F ‖r‖2

]
+O(ε2),

‖∆x‖2 ≤ ε
[
‖M−1AT ‖2(‖b‖2 + ‖A‖F ‖x‖2) + ‖M−1‖2‖A‖F ‖r‖2

]
+O(ε2).(2.7)

Hence, provided x �= 0,

‖∆x‖2

‖x‖2
≤ ε

[
‖M−1AT ‖2‖A‖F

( ‖b‖2

‖A‖F ‖x‖2
+ 1

)

+ ‖M−1‖2‖A‖2
F

‖A‖F
‖A‖F

‖r‖2

‖A‖F ‖x‖2

]
+O(ε2).(2.8)

This bound shows that the sensitivity of the ILS problem is bounded in terms of
‖M−1AT ‖2‖A‖F when the residual is zero or small and ‖M−1‖2‖A‖2

F otherwise;
note that for A = A the former quantity is no larger than the latter and is potentially
much smaller.

Now we examine whether (2.8) is attainable for some ∆A and ∆b. The three
terms in brackets in (2.7) are

E1 = ‖M−1AT ‖2‖b‖2, E2 = ‖M−1AT ‖2‖A‖F ‖x‖2, E3 = ‖M−1‖2‖A‖F ‖r‖2,

and they result from the perturbations ∆b, ∆A, and ∆AT , respectively. It follows
that the bound (2.7) can fail to be achieved for some∆b and ∆A only if E1 < E2 ≈ E3

and there is substantial cancellation in the expression −M−1ATJ∆Ax+M−1∆ATJr
for all ∆A. We can show in various special cases that these circumstances cannot
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arise (for example, when r is small, or when |rTJr| ≈ ‖r‖2
2), but we have been unable

to establish attainability of the bound (2.8) in general.

A natural definition of the condition number of the ILS problem is

κILS(A, b) = lim
ε→0

sup

{‖x− x̃‖2

‖x‖2
: (2.2)–(2.4) hold

}
.(2.9)

Without a guarantee of sharpness, the bound (2.8) does not provide an estimate
of κILS(A, b) to within a readily identifiable constant factor. Therefore we take a
different approach in which we combine the two ∆A terms in (2.6b) before taking
norms. To do this, we use the vec operator, which stacks the columns of a matrix
into one long column vector, together with the Kronecker product A ⊗ B = (aijB),
which for A ∈ R

m×n and B ∈ R
p×q is the block matrix (aijB) ∈ R

mp×nq (see [9], [11,
Chap. 4]). Applying the vec operator to (2.6b) and using the relation vec(AXB) =
(BT ⊗A)vec(X), we obtain

∆x =M−1ATJ∆b− (xT ⊗M−1ATJ)vec(∆A) + (rTJ ⊗M−1)vec(∆AT ) +O(ε2).

Using the relation vec(∆AT ) = Πvec(∆A), whereΠ is the vec-permutation matrix [9],
gives

∆x =M−1ATJ∆b− [
(xT ⊗M−1ATJ)− (rTJ ⊗M−1)Π

]
vec(∆A) +O(ε2).

Now we take 2-norms. Using (2.2) and the fact that ‖vec(∆A)‖2 = ‖∆A‖F , we deduce
that

‖∆x‖2

‖x‖2
≤ ψε+O(ε2),(2.10)

where

ψ =
(‖M−1AT ‖2‖b‖2 + ‖(xT ⊗M−1ATJ)− (rTJ ⊗M−1)Π‖2‖A‖F

)
/‖x‖2,

and we have

κILS(A, b) ≤ ψ ≤ 2κILS(A, b).

In extensive numerical comparisons between the first order terms of the bounds
(2.8) and (2.10), including with direct search optimization, we have found these terms
always to be within a small factor of each other. We believe that (2.8) is nearly
attainable and, because this bound is much easier to work with than (2.10), we will
use it when we investigate the stability of hyperbolic QR factorization for solving the
ILS problem.

To end this section, we note that we can also use (2.6) to obtain componentwise
perturbation bounds for the ILS problem. For the solution, we obtain

|∆x| ≤ ε|M−1AT |(b + A|x|) + |M−1|AT |r|+O(ε2),

where inequalities and the absolute value are interpreted componentwise and ε has
been redefined as the smallest value for which |∆A| ≤ εA, |∆b| ≤ εb, where A and b
are now assumed to have nonnegative entries.
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3. Hyperbolic QR factorization method. We define a matrix Q ∈ R
m×m to

be J-orthogonal if

QTJQ = J,

or, equivalently, QJQT = J , where J is defined in (1.2). Suppose we can find a
J-orthogonal matrix Q such that

QTA = QT

[ n

p A1

q A2

]
=

[ n

n R
m−n 0

]
,(3.1)

where R ∈ R
n×n is upper triangular. We refer to this factorization as a hyperbolic

QR factorization. Then

QT (b−Ax) =

[
d1

d2

]
−
[
R
0

]
x =

[
d1 −Rx
d2

]
,

[
n d1

m−n d2

]
= QT b,

and so

(b−Ax)TJ(b−Ax) = (b−Ax)TQJQT (b−Ax)

=

[
d1 −Rx
d2

]T
J

[
d1 −Rx
d2

]
= ‖d1 −Rx‖2

2 + dT2 J(n+ 1:m,n+ 1:m)d2,(3.2)

recalling that (1.4) implies p ≥ n in (1.2). Hence the ILS solution is obtained by solv-
ing Rx = d1. This method is an analogue of Golub’s method for the LS problem [7].

The matrix Q can be constructed as a product of hyperbolic rotations and or-
thogonal matrices. A 2× 2 hyperbolic rotation has the form

H =

[
c −s
−s c

]
, c2 − s2 = 1,

and it is so named because |c| = cosh θ and s = sinh θ for some θ. It is easy to check
that H is J-orthogonal for J = diag(1,−1). We will choose H to effect the zeroing
operation [

c −s
−s c

] [
x1

x2

]
=

[
r
0

]
,

which requires that cx2 = sx1. The latter equation has a real solution only when
|x1| > |x2|, in which case

c =
x1√
x2

1 − x2
2

, s =
x2√
x2

1 − x2
2

.(3.3)

In practice a rescaling of these formulas is desirable to reduce the risk of overflow.
function [c, s] = Hrotate(x1, x2)
% Compute c and s defining hyperbolic rotation H such that
% Hx has zero second element.
if |x1| > |x2|
t = x2/x1, c = 1/

√
1− t2, s = ct

else
No real rotation exists—abort.

end
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Unlike for orthogonal rotations, how hyperbolic rotations are applied to a vector
is crucial to the stability of the computation [1], [15]. Consider the computation of
y = Hx:

y1 = cx1 − sx2,(3.4)

y2 = −sx1 + cx2.

The first equation gives

x1 =
y1
c
+
s

c
x2,(3.5)

which allows the second to be rewritten as

y2 = −s
c
y1 +

(
−s

2

c
+ c

)
x2

= −s
c
y1 +

x2

c
.(3.6)

We will apply hyperbolic rotations using (3.4) and (3.6). As noted by Park and Eldén
[13], this way of forming the product y = Hx corresponds to use of the rescaled LU
factorization

H =

[
c −s
−s c

]
=

[
1 0

−s/c 1/c

] [
c −s
0 1

]
.

That this way of forming y is advantageous for stability was proved in [1] in the
context of downdating a Cholesky factorization. We express the formation as follows:

function B = Happly(c, s, B)
% Apply hyperbolic rotation defined by c and s to 2× n matrix B.
for j = 1:n

B(1, j) = cB(1, j)− sB(2, j)
B(2, j) = −(s/c)B(1, j) +B(2, j)/c

end
For later use we note that (3.5) and (3.6) can be expressed together in the form[

x1

y2

]
= G

[
y1
x2

]
,(3.7)

where

G =

[
1/c s/c
−s/c 1/c

]
≡

[
c̃ s̃
−s̃ c̃

]
, c̃ 2 + s̃ 2 = 1.

The matrix G is a Givens rotation. Hence function Happly can be interpreted as
forming the first row of the product HB by a hyperbolic rotation and the second row
by a Givens rotation.

Our algorithm for computing the triangular factor R in (3.1) begins by computing
the QR factorization

A1 = Q1R1, Q1 ∈ R
p×p, R1 ∈ R

p×n,

where Q1 is orthogonal. Defining Q̃ = diag(QT
1 , Iq) we have

A(1) = Q̃A =

[
R1

A2

]
,
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and Q̃ is trivially J-orthogonal. We now zero A2 with the aid of hyperbolic rotations.
This can be done entirely with hyperbolic rotations or with a mix of hyperbolic and
orthogonal rotations. Since hyperbolic rotations do not preserve the norms of vectors
to which they are applied, we will use the minimum number, n, of them.

From a 2× 2 hyperbolic rotation we build an m×m rotation in the (i, j) plane,
Hi,j , defined to be the identity matrix modified according to hii = hjj = c and
hij = hji = −s. Note that, provided the indices satisfy i ≤ p and j > p, Hij is J-
orthogonal. The parameters c and s are chosen to zero the jth element of the vector
to which Hij is applied.

Consider the first column of A(1). We first zero the elements in positions (p+2, 1),
(p+3, 1), . . . , (m, 1) using a Householder transformation, P1, acting on rows p+1:m.
Then we eliminate the (p + 1, 1) element, which is the sole remaining subdiagonal
element in column 1, by a hyperbolic rotation H1,p+1. It is clear that these operations
do not disturb the existing zeros in positions (2: p, 1) of A(1). At this point we have
formed

A(2) := H1,p+1P1A
(1) =: Q(1)A,(3.8)

where A(2)(2:m, 1) = 0. The matrix Q(1) is a product of J-orthogonal matrices and so
is J-orthogonal. Elements below the diagonal in the remaining columns are eliminated
in an analogous way, with the hyperbolic rotation used for the jth column being in the
(j, p + 1) plane. The complete algorithm for solving the ILS problem is summarized
as follows.

Algorithm 1. This algorithm solves the ILS problem (1.1) using Householder
QR factorization and hyperbolic rotations.

Compute the Householder QR factorization A(1: p, : ) = Q1R1

(Q1 ∈ R
p×p, R1 ∈ R

p×n), overwriting A(1: p, : ) with R and
b(1:n) with Q(1:n, : )T b(1:n).

for j = 1:min(m− 1, n)
Construct a Householder transformation Hj such that

Hj A(p+ 1:m, j) = σje1.
A(p+ 1:m, j:n) = Hj A(p+ 1:m, j:n)
b(p+ 1:m) = Hj b(p+ 1:m)
% Eliminate sole remaining subdiagonal element in column j by a
% hyperbolic rotation.
[c, s] = Hrotate(A(j, j), A(p+ 1, j))
A([j p+ 1], j:n) = Happly(c, s, A([j p+ 1], j:n))
b([j p+ 1]) = Happly(c, s, b([j p+ 1]))

end
R = A(1:n, : )
Solve Rx = b(1:n) by substitution.

The operation count of Algorithm 1 is the same as that for solution of the stan-
dard LS problem by Householder QR factorization (essentially because the hyperbolic
rotations contribute only to the lower order terms in the operation count). Table 3.1
compares the cost of Algorithm 1 with the cost of forming and solving the normal
equations (1.3) and the cost of the QR-Cholesky method. Algorithm 1 requires fewer
operations than the QR-Cholesky method by a factor 2.5–3.

It remains to show that the desired hyperbolic rotations exist. Suppose the algo-

rithm has succeeded in eliminating the first k − 1 columns of A2, yielding A
(k)
2 , and
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Table 3.1
Operation counts for methods for solving the ILS problem.

Normal equations Hyperbolic QR QR-Cholesky

n2(m+ n/3) 2n2(m− n/3) n2(5m− n)
m ≈ n 4n3/3 4n3/3 4n3

m� n mn2 2mn2 5mn2

define C ∈ R
n×q and R

(k)
1 ∈ R

n×n by

R
(k)
1

T
C ≡ A

(k)
1

T
[
C
0

]
= A

(k)
2

T
.(3.9)

Since [
A

(k)
1

A
(k)
2

]
= Q(k−1)

[
A1

A2

]
for a J-orthogonal matrix Q(k−1) and (1.4) holds, the matrix

A
(k)
1

T
A

(k)
1 −A

(k)
2

T
A

(k)
2 = R

(k)
1

T
(I − CCT )R

(k)
1

is positive definite. Since R
(k)
1 is upper triangular and nonsingular, it follows that

I−CCT is positive definite and hence that |cij | < 1 for all i and j. Now A
(k)
1 is upper

triangular and A
(k)
2 (1: q, 1: k − 1) = 0, so, using (3.9),

1 > |cki| =
∣∣∣∣∣a

(k)
p+i,k

a
(k)
k,k

∣∣∣∣∣ , i = 1: q,

which ensures the existence of the hyperbolic rotation required on the (k+1)st stage.

4. Rounding error analysis. We now give a rounding error analysis of Algo-
rithm 1. First, we note that from (3.1) we have RTR = AT

1 A1 −AT
2 A2. Hence if A1 is

upper trapezoidal, then the hyperbolic QR factor R is the result of (block) downdat-
ing a Cholesky factorization. Various algorithms, both hyperbolic and nonhyperbolic,
are known for downdating Cholesky factorizations, and error analysis is available;
see, for example, [1], [2], [5], [6], [15], [17]. While we could invoke some of the earlier
results in the part of the analysis that does not involve the right-hand side, b, we have
chosen to give an independent development, aiming to make clear how the various
errors combine and provide building blocks that should be of use in future analyses.
In particular, we emphasize the high-level features of the analysis and thereby provide
new insight into what is required of a sequence of hyperbolic transformations in order
for satisfactory error bounds to be obtainable.

We use the standard model of floating point arithmetic [10, sect. 2.2]:

fl(x op y) = (x op y)(1 + δ)±1, |δ| ≤ u, op = +,−, ∗, /,

where u is the unit roundoff. Our bounds are expressed in terms of the constants

γk =
ku

1− ku
, γ̃k =

cku

1− cku
,(4.1)
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where c denotes a small integer constant whose exact value is unimportant. We also
employ the relative error counter, 〈k〉:

〈k〉 =
k∏

i=1

(1 + δi)
ρi , ρi = ±1, |δi| ≤ u.(4.2)

We use the fact that |〈k〉 − 1| ≤ γk = ku/(1− ku) [10, Lem. 3.1].
Given an error bound for a single orthogonal transformation it is relatively easy

to obtain a useful error bound for a product of several orthogonal transformations, as
first shown by Wilkinson in the 1960s. The situation is quite different for a product of
hyperbolic transformations, y = Hp . . . H2H1x, say. It is possible to mimic the analy-
sis for orthogonal transformations and write, for example, ŷ = (Hp +∆Hp) . . . (H2 +
∆H2)(H1+∆H1)x, with each ∆Hj bounded relative to Hj . However, this expression
does not lead to a satisfactory forward or backward error bound, because the Hj are
unbounded in norm. A better approach is to exploit the following equivalence between
orthogonal and hyperbolic transformations.

Let

A =

[ n

p A1

q A2

]
=

[ p q

p Q11 Q12

q Q21 Q22

] n[
B1

B2

]
p

q
= QB,(4.3)

where Q is J-orthogonal, for J in (1.2). Then QT
11Q11 = I +QT

21Q21, and hence Q11

is nonsingular. It is not hard to show that[
B1

A2

]
= exc(Q)

[
A1

B2

]
,(4.4)

where the matrix

exc(Q) =

[
Q−1

11 −Q−1
11 Q12

Q21Q
−1
11 Q22 −Q21Q

−1
11 Q12

]
is orthogonal. Moreover, if P is an orthogonal matrix partitioned in the same way
as Q and its (1, 1) block is nonsingular, then exc(P ) is J-orthogonal. In fact, the
exchange operator is involutary: exc(exc(P )) = P . Note that (3.7) is a special case
of (4.4). For proofs of these properties, see [12, Lem. 1], [17, sect. 2].

The advantage of (4.4) is that because the transformation matrix is orthogonal
error terms can be moved around in the equation without changing their norm. The
disadvantage is that it is hard to analyze more than one transformation. For example,
let C = PA, where P is J-orthogonal. Then C = PQB and corresponding to (4.4)
we have [

A1

C2

]
= exc(PQ)

[
C1

A2

]
.(4.5)

Despite the elegance of this relation, exc(PQ) is a complicated function of P and Q.
In practice the equations A = QB and C = PA must be modified to include rounding
error terms, and these terms appear to preclude a suitably perturbed version of (4.5)
with satisfactory bounds on the perturbations.

The gist of this analysis is that it is unclear how to obtain useful error bounds
for the product of two or more arbitrary hyperbolic transformations. Fortunately, the
transformations in Algorithm 1 are far from arbitrary, and in the next two sections
we show that by exploiting their structure we can make useful progress.
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4.1. Combining two hyperbolic transformations. We now analyze a prod-
uct of two hyperbolic transformations that satisfy one key assumption: that the two
transformations are “nonoverlapping” in components 1: p. Nonoverlapping means that
for i = 1: p at least one of the two transformations agrees with the identity matrix
in row i and column i. Without loss of generality, we consider a transformation
H1(2, 3) agreeing with the identity matrix in rows and columns 1: t and a transforma-
tion H2(1, 3) agreeing with the identity matrix in rows and columns t + 1: p, where
1 ≤ t < p. Let

H1(2, 3)

RS
X

 t

p−t

q

=:

 RS1

X1

 t

p−t

q

, H2(1, 3)

 R
S1

X1

 =:

R1

S1

X2

 ,
or, overall,

H2(1, 3)H1(2, 3)

 RS
X

 =

R1

S1

X2

 .
We know from (4.3) and (4.4) that these two operations can be rewritten in terms
of orthogonal transformations Gi as follows, where we now express the relations in
terms of the affected components only:

G1

[
S1

X

]
=

[
S
X1

]
,(4.6a)

G2

[
R1

X1

]
=

[
R
X2

]
.(4.6b)

These two relations can be rewritten asR1

S1

X

 =

[
I 0
0 GT

1

]R1

S
X1

 =

[
I 0
0 GT

1

]
G̃T

2

 R
S
X2

 ≡ G

 R
S
X2

 ,(4.7)

where G̃2([1: t, p+1:m], [1: t, p+1:m]) = G2 and elsewhere G̃2 agrees with the identity
matrix, and G is orthogonal. This relation shows that exc(H2(1, 3)H1(2, 3)) = G is
of a relatively simple form given the no-overlap assumption.

Now we incorporate errors into the analysis. Consider the perturbed versions
of (4.6),

G1

[
S1 + E1

X + E2

]
=

[
S
X1

]
,(4.8a)

G2

[
R1 + F1

X1 + F2

]
=

[
R
X2

]
,(4.8b)

where

max
i=1,2

‖Ei‖2 ≤ µmax(‖S1‖2, ‖X‖2), max
i=1,2

‖Fi‖2 ≤ µmax(‖R1‖2, ‖X1‖2).(4.9)

We will show below that perturbations of this form model rounding errors in Algo-
rithm 1.
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We now obtain an analogue of (4.7) for the perturbed quantities. We haveR1 + F1

S1 + E1

X + E2

 =

[
I 0
0 GT

1

]R1 + F1

S
X1


=

[
I 0
0 GT

1

]G̃T
2

 R
S
X2

−
 0

0
F2

 .

This may be rewritten as R1

S1

X

+∆ = G

 R
S
X2

 ,(4.10)

where, using ‖X1‖2 ≤ 2max(‖S1‖2, ‖X‖2) +O(µ),

∆ =

∆1

∆2

∆3

 , max
i

‖∆i‖2 ≤ 3µmax(‖R1‖2, ‖X‖2, ‖S1‖2) +O(µ2).

The key fact is that the error bound for the two transformations combined is com-
mensurate with that for the individual transformations. Because G is orthogonal the
relation (4.10) can, if desired, be rewritten so that the 3×1 block matrix on the right
is perturbed instead of the one on the left, as in the assumptions (4.8a) and (4.8b).

4.2. One rotation. Now we analyze the application of a hyperbolic rotation.
We make the simplifying assumption that c and s in (3.3) are computed exactly.

The computed quantities from (3.4) and (3.6) satisfy

ŷ1〈1〉 = cx1〈1〉 − sx2〈1〉,
that is,

x1 =
ŷ1
c
〈2〉+ s

c
x2〈2〉,

and

ŷ2 = −s
c
ŷ1〈3〉+ x2

c
〈2〉.

Hence the analogue of (3.7) for the computed quantities is[
x1

ŷ2

]
=

[
g11〈2〉 g12〈2〉
g21〈3〉 g22〈2〉

] [
ŷ1
x2

]
= (G+∆G)

[
ŷ1
x2

]
, |∆G| ≤ γ3|G|,

where G is orthogonal. This result can be rewritten as[
x1

ŷ2

]
= G

[
ŷ1 + e1
x2 + e2

]
,

where [
e1
e2

]
= GT∆G

[
ŷ1
x2

]
,

so that

max(|e1|, |e2|) ≤ γ3(1 + 2|c̃ ||s̃|)max(|ŷ1|, |x2|) ≤ γ6 max(|ŷ1|, |x2|).
This is a mixed backward–forward error result, since one element of each of the input
and output vectors is perturbed. Importantly, this result is of the form (4.8).
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4.3. Hyperbolic QR factorization. As before, we partition

A =

[ n

p A1

q A2

]
.

The first stage of Algorithm 1 computes the Householder QR factorizationA1 = Q1R̃1,
where R̃1 ∈ R

n×n is upper trapezoidal. We know from standard error analysis that the
computed R̃1 is the exact factor of A1+∆1, with ‖∆1‖F ≤ γ̃pn‖A1‖F [10, Thm. 19.4].
To simplify the notation, we will assume for the moment that A1 is already in upper
trapezoidal form and will introduce the error ∆1 at the end.

Consider the jth column of A,

A(:, j) =

[ n

p a
(1)
j

q a
(2)
j

]
.

It undergoes n Householder transformations in the last q components, intertwined
with n hyperbolic rotations in the planes (1, p+1), . . . , (n, p+1); the jth pair of these
transformations introduce the required zeros in this column. The final n− j pairs of
transformations leave the column unchanged.

Consider a Householder transformation and the subsequent hyperbolic rotation.
The Householder transformation agrees with the identity in rows and columns 1: p and
its application is described by a standard backward stability result [10, Lem. 19.2]. It
satisfies (4.8a) and (4.9) with E1 = 0 and µ = γ̃q. The hyperbolic rotation satisfies
the bound of section 4.2 and is nonoverlapping with the Householder transformation.
Therefore the analysis of section 4.1 can be applied to these two transformations.
Importantly, all the subsequent pairs of Householder and hyperbolic rotations are
mutually nonoverlapping and so the result of section 4.1 can be applied inductively.

The overall finding relating the jth columns of A and the final upper trapezoidal
factor R1 is that

[
p r̂j

q a
(2)
j

]
+ hj = G

[
a
(1)
j

0

]
p

q
, ‖hj‖2 ≤ γ̃qj max(‖r̂j‖2, ‖a(2)

j ‖2)

for some exactly orthogonal G that is independent of j. Importantly, hj(n + 1: p) =
0, because after the initial Householder QR factorization rows n + 1: p of A rest
untouched. Putting these equations together for j = 1:n and incorporating the error
from the initial QR factorization of A1 gives[

R̂1 +∆3

A2 +∆2

]
= G

[
A1 +∆1

0

]
,(4.11)

where ∆3(n+ 1: p, :) = 0 and

‖∆1‖F ≤ γ̃pn‖A1‖F ,(4.12a)

‖∆i‖F ≤ γ̃qnmax(‖R̂1‖F , ‖A2‖F ) ≤ γ̃qn‖A1‖F , i = 2: 3.(4.12b)

Certainly, maxi ‖∆i‖F ≤ γ̃mn‖A‖F .
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Note that in view of the equivalence (4.3) and (4.4), as long as G has a nonsingular
(1, 1) block this result is equivalent to[

A1 +∆1

A2 +∆2

]
= Q

[
R̂1 +∆3

0

]
(4.13)

for a J-orthogonal Q. Both (4.11) and (4.13) are mixed backward–forward error
results, because both the original data A and the trapezoidal factor R1 are perturbed.
We can obtain a genuine backward error result with the aid of the following lemma
(for a proof, see [16, pp. 302–304]).

Lemma 4.1. Let m = p+ q and n ≥ p. Given a full rank matrix A ∈ R
p×n and

E ∈ R
q×n there exists an orthogonal Q ∈ R

m×m such that

Q

[
A
E

]
=

[
A+ F

0

]
,(4.14)

where, for small ‖E‖2,

‖F‖2 ≤ ‖E‖2
2

2σmin(A)
+O(‖E‖4

2).

Rewriting (4.11) as[
R̂1

A2 +∆2

]
= G

[
A1 +∆1 + ∆̃1

∆̃2

]
, ∆̃ = −GT

[
∆3

0

]
and applying Lemma 4.1 to the right-hand side leads to the conclusion that[

R̂1

A2 +∆2

]
= G̃

[
A1 +∆1

0

]
,

where G̃ is orthogonal and

‖∆2‖F ≤ γ̃mn‖A‖F ,
‖∆1‖F ≤ γ̃2

mn‖A1‖2
F

2σmin(A1 +∆1 + ∆̃1)
+O(u4)

≤
√
n

2

(
κ2(A1)γ̃mn

)
γ̃mn‖A‖F +O(u3).

We conclude that backward stability of the factorization is guaranteed if κ2(A1)u is
of order 1. Thus the factorization is only conditionally backward stable, although the
condition is quite weak. To relate the condition of A1 to the sensitivity of the ILS
problem, we note that

κ2(A1) ≤
(‖M−1‖2‖A‖2

2

)1/2
,

where M = ATJA = AT
1 A1 − AT

2 A2, from which it follows that if the perturbation
bound (2.8) is small and the residual is not small, then A1 must be well conditioned.
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4.4. Solving the ILS problem. In solving the ILS problem we also transform
the right-hand side b = [bT1 bT2 ]

T to d = [dT1 dT2 ]
T . The above analysis gives

[
p d̂1 + δ3
q b2 + δ2

]
= G

[
b1 + δ1
d̂2

]
p

q
,(4.15)

where δ3(n+ 1: p) = 0 and

‖δ1‖2 ≤ γ̃p‖b1‖2, ‖δi‖2 ≤ γ̃q max(‖d̂1(1:n)‖2, ‖b2‖2), i = 2: 3.

The ensuing analysis is simpler if d̂1 is not perturbed, so we rewrite this relation as[
d̂1

b2 + δ2

]
= G

[
b1 + δ1
d̂2 + δ3

]
,(4.16)

where δ2 = δ2 and

max
i=1:3

‖δi‖2 ≤ γ̃mmax(‖d̂1(1:n)‖2, ‖b‖2).(4.17)

In Algorithm 1 the final step is to solve the triangular system Rx = d1, where
R = R1(1:n, :). The computed solution x̂ satisfies (R̂+∆R)x̂ = d̂1(1:n), |∆R| ≤ γn|R̂|
[10, Thm. 8.5]; that is, the rounding errors in the substitution correspond to a further

small perturbation of R̂.
We now consider the forward error of the computed solution x̂. First, let z1 be

the solution of the perturbed ILS problem with data

A+∆A :=

[
A1 +∆1

A2 +∆2

]
, b+∆b :=

[
b1 + δ1
b2 + δ2

]
,

for which we know from (4.11) that the exact upper triangular R-factor is R̂ + ∆̃3,

where ∆̃3 = ∆3(1:n, :). Then, in view of (4.16),

(R̂+ ∆̃3)z1 = d̂1(1:n).

Write

x− x̂ = (x− z1) + (z1 − x̂).

Using the bounds on ∆A and ∆b in (4.12) and (4.17), we have, from (2.8),

‖x− z1‖2

‖x‖2
≤ γ̃mn

[
‖M−1AT ‖2‖A‖F

(
max(1, θ)‖b‖2

‖A‖F ‖x‖2
+ 1

)

+ ‖M−1‖2‖A‖2
F

‖r‖2

‖A‖F ‖x‖2

]
+O(u2),(4.18)

where

θ =
‖d1(1:n)‖2

‖b‖2
.(4.19)

The quantity θ measures the growth in the leading n components of the right-hand
side as a result of the transformations that reduce A to triangular form. We now show
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that even though θ can be large, it is innocuous. Suppose that θ � 1. Note first that,
since ‖d1‖2

2 + ‖b2‖2
2 = ‖b1‖2

2 + ‖d2‖2
2, we have ‖d2‖2 ≈ ‖d1‖2 � ‖b1‖2. Note also that

b1(n+1: p) is not subjected to hyperbolic rotations and hence ‖d1(n+1: p)‖2 ≤ ‖b‖2.
Hence, from (3.2),

‖r‖2
2 ≥ |(b−Ax)TJ(b−Ax)| = | ‖d(n+ 1: p)‖2

2 − ‖d2‖2
2 | ≈ ‖d2‖2

2 ≈ ‖d1‖2
2.

Therefore θ � ‖r‖2/‖b‖2 and it follows that the first term in (4.18) is no larger than
the second, showing that a large θ does not worsen the bound. Therefore (4.18) is
essentially the same as (2.8) with ε = γ̃mn.

From standard perturbation theory for square linear systems, the term ‖z1− x̂‖2/
‖x‖2 is bounded by

φ = κ2(R)

(
γn + γ̃qn

max(‖R‖F , ‖A2‖F )
‖R‖2

)
= ‖R−1‖2

(
γn‖R‖2 + γ̃qnmax(‖R‖F , ‖A2‖F )

)
≤ γ̃qn‖R−1‖2‖A‖F .(4.20)

Now from the exact arithmetic analogue of (4.11) we have[
R
A2

]
= G

[
A1

0

]
,

where G is orthogonal. Postmultiplying by R−1R−T and transposing gives

[R−1 R−1R−TAT
2 ] = [R−1R−TAT

1 0 ]GT .

Recalling that M = ATJA = RTR, it follows that

‖R−1‖2 ≤ ‖ [R−1R−TAT
1 0 ] ‖2

≤ ‖R−1R−T [AT
1 AT

2 ] ‖2

= ‖M−1AT ‖2.

Hence

φ ≤ γ̃qn‖M−1AT ‖2‖A‖F ,

which is smaller than the first term in (4.18). Our overall conclusion is that ‖x− x̂‖2/
‖x‖2 has an upper bound no larger than (2.8) with ε = γ̃mn.

Recall that a method for solving the ILS problem is forward stable if it produces
a computed solution with forward error similar to that for a backward stable method.
If we make the reasonable assumption that the perturbation bound (2.8) is approx-
imately attainable, then our rounding error analysis has shown that the hyperbolic
QR factorization method for solving the ILS problem is forward stable.

It is unclear whether the hyperbolic QR factorization method is mixed backward–
forward stable, or even backward stable. It is an open problem to determine a com-
putable formula for the backward error of an arbitrary approximate solution to the ILS
problem, and without such a formula it is difficult to test numerically for backward
instability.
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Table 5.1
Errors ‖x − x̂‖2/‖x‖2 for the three methods. In every case θ ≤ 0.78, ‖r‖2/(‖A‖2‖x‖2) ≈ u,

‖Q‖2 = 1.73, ‖QTA− [RT 0]T ‖2/‖A‖2 ≈ u, and ‖QT JQ− J‖2 ≤ 10u.

κ Hyperbolic QR- Normal ψu
QR Cholesky equations

102 4.9e-15 4.0e-15 2.0e-13 2.1e-14
106 3.0e-11 1.7e-11 2.6e-5 1.9e-10
1010 9.7e-8 1.5e-7 2.4e0 1.3e-6
1012 4.8e-4 9.8e-3 6.4e0 1.4e-2

Table 5.2
Errors ‖x − x̂‖2/‖x‖2 for the three methods. In every case ‖r‖2/(‖A‖2‖x‖2) ≈ 10−1 and

‖QT JQ− J‖2 ≈ the error for hyperbolic QR.

µ Hyperbolic QR- Normal ψu θ ‖Q‖2 ‖QTA−[RT 0]T ‖2
‖A‖2

QR Cholesky equations

10 4.4e-13 1.9e-13 1.6e-12 2.0e-12 3.1e1 4.3e1 1.7e-14
102 1.6e-12 3.1e-12 1.5e-12 1.1e-11 1.1e2 1.5e2 2.8e-13
103 1.0e-10 5.4e-11 9.7e-11 7.8e-10 8.8e2 1.2e3 5.6e-12
104 2.2e-5 6.7e-5 5.0e-5 3.0e-4 5.6e5 8.0e5 3.2e-9
105 1.3e-1 5.4e-2 3.3e-2 3.1e-1 1.8e7 2.6e7 2.7e-7

5. Numerical experiments. We have carried out MATLAB experiments to
compare the forward errors ‖x − x̂‖2/‖x‖2 from Algorithm 1, the normal equations
method (which forms and solves (1.3)), and the QR-Cholesky method. We approx-
imated the exact solution by forming and solving the normal equations in 100-digit
arithmetic using MATLAB’s Symbolic Math Toolbox. We report results withm = 16,
n = 8, and p = 10.

We formed the first class of test problems as

A =

[
p Q1DU
q

1
2 Q2DU

]
,(5.1)

where U , Q1, and Q2 are random orthogonal matrices and D is diagonal with diagonal
elements distributed exponentially from κ−1 to 1. We have ATJA = (3/4)UTD2U , so
A satisfies (1.4). The solution x is chosen from the random N(0, 1) distribution and
b := Ax. Table 5.1 shows some results. In the table ψu is the first order term in (2.10)
with ε = u, A = A, and b = b; thus ψu is a first order bound for the forward error
for a backward stable method. Recall that θ is defined in (4.19). For the statistics
shown in the caption we explicitly formed Q by accumulating all the orthogonal and
hyperbolic transformations.

In the second set of tests we generated A as in (5.1) and then premultiplied it by a
random J-orthogonal matrix that is the product of 5 random hyperbolic rotations of
norm approximately µ; this gives a Q factor of norm depending on µ in the hyperbolic
QR factorization. Then we defined b as the right singular vector corresponding to the
largest singular value of QT , which tends to make θ in (4.19) large. Results are shown
in Table 5.2.

In all the tests the relative difference between ψu and the first order term from
(2.8) was at most 0.1.

Three main conclusions can be drawn from the results shown. First, as expected,
the normal equations method is not forward stable. Second, Algorithm 1 behaves in
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a forward stable way in these tests and is just as accurate as the backward stable QR-
Cholesky method, even when θ and ‖Q‖2 are large. The latter behavior adequately
summarizes more extensive experiments that we have carried out. Third, the last
column of Table 5.2 is consistent with the fact that we have proved our algorithm for
computing the hyperbolic QR factorization to be mixed backward–forward stable and
only conditionally backward stable.
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