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KRULL–GABRIEL DIMENSION OF 1-DOMESTIC STRING
ALGEBRAS

MIKE PREST AND GENA PUNINSKI

Abstract. We classify indecomposable pure injective modules over a wide

class of 1-domestic string algebras and calculate the Krull–Gabriel dimension

of these algebras.

1. Introduction

Finite dimensional string algebras over a field k form a particular class of path
algebras of quivers with relations, and they are known for their rich representation
theory. For instance every string algebra A is tame, i.e. finite dimensional indecom-
posable representations of A can be classified (see [2]). This result has interesting
applications: the reader may consult [19, p. 653] to find many examples.

As over any finite dimensional algebra, the indecomposable finite dimensional
modules over a string algebra A are organized into the Auslander–Reiten quiver, i.e.
into a locally finite directed graph whose arrows are given by irreducible morphisms.

In [16] Ringel used some infinite dimensional indecomposable pure injective mod-
ules over a string algebra A to glue together Auslander–Reiten components of A. If
A is a domestic string algebra, this leads to a nice geometric picture of the category
of finite dimensional indecomposable A-modules.

In this context for a module M to be pure injective means that M is a direct
summand of a direct product of finite dimensional A-modules. Obvious examples
are the finite dimensional A-modules themselves: every such module is pure injec-
tive. Let us for simplicity assume that k is algebraically closed. Then for every
band C in the quiver of A and every 0 6= λ ∈ k there is a λ-‘Prüfer’ module and a
λ-‘adic’ module, which is pure injective and indecomposable. In addition there is
a unique ‘generic’ indecomposable pure injective module corresponding to C. We
will call these modules infinite dimensional band modules.

Less obvious examples were constructed by Ringel [16]. Precisely if v is either a
one-sided infinite string or a two-sided infinite (non-periodic) string over a domestic
string algebra A then there exists an indecomposable pure injective module M(v)
which is either the direct sum, direct product or a ‘mixed’ module.
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Conjecture 1.1. (Ringel — see [16, p. 48, p. 51]) Let M be an infinite dimensional
indecomposable pure injective module over a domestic string algebra. Then either
M is a band module, or M is of the form M(v) for a one-sided string or a two-sided
(non-periodic) string v.

In [10] we proved that Ringel’s conjecture is true for one-directed indecomposable
pure injective modules over any domestic string algebra A. In this paper we verify
Ringel’s conjecture for 1-domestic string algebras of what we call type Ã, i.e. for
string algebras that have essentially one band and this band does not contain any
repetition of vertices. Note that in general every domestic string algebra is n-
domestic for some n.

To every domestic string algebra Schröer [17] has associated a finite directed
graph without oriented cycles, the bridge quiver of A. It was conjectured by him
that the Krull–Gabriel dimension of A, KG(A), is determined by its bridge quiver.

Conjecture 1.2. (Schröer — see [17, p. 84]) Let A be a domestic string algebra.
Then the Krull–Gabriel dimension of A is equal to n + 2 where n is the maximal
length of a path in the bridge quiver of A.

It has been known since Geigle [4] that the Krull–Gabriel dimension of a hered-
itary tame finite dimensional algebra is equal to 2. For instance this is the case for
every (string) path algebra of an extended Dynkin diagram Ãk.

The inequality KG(A) ≥ n+ 2 for a domestic string algebra A follows from [17].
Also (see [19] and [1]) for every n ≥ 2 there is a domestic string algebra A such
that KG(A) = n.

In this paper we prove that for a 1-domestic string algebra A of type Ã either
n = 0 and then KG(A) = 2, or n = 1 and then KG(A) = 3.

All these results are derived as consequences of a general approach originating in
the model theory of modules. Rougly speaking this method allows one to classify
indecomposable pure injective modules over a ring R, and to calculate their Cantor–
Bendixson rank in the Ziegler spectrum, provided we have a sufficient supply of
distributive intervals in the lattice of finitely generated subfunctors of Hom(R,−).

Of course the existence of such a family of functors and the precise construction
of them depends heavily on the description of indecomposable finitely presented R-
modules and morphisms between them. In the case of string algebras this approach
is aided by Crawley-Boevey’s description [3] of morphisms between indecomposable
string modules.

Instead of calculating the Krull–Gabriel dimension directly, we make the Cantor–
Bendixson analysis of the Ziegler spectrum over a 1-domestic string algebra A to
find its Cantor–Bendixson rank. After that a standard trick is used to show that
it is equal to the Krull–Gabriel dimension of A.
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2. String algebras

A module M will usually mean a left module over a finite dimensional algebra
A. Thus if α, β ∈ A and m ∈M then (αβ)m = α(βm). Also M can be considered
as a right module over its endomorphism ring S = End(M).

String algebras form a particular class of path algebras of finite quivers with
relations over a field k. The precise definitions may be found in [2] or [18]. For
instance

R1

◦

α

��

β




◦

γ

cc

is a string algebra, where the zero relations, γα = 0 and βγ = 0, are indicated by
short curves. In particular R1 is an 8-dimensional k-vector space. Precisely, there
are two primitive idempotents e1 and e2 corresponding to the vertices (i.e. two
paths of length zero); three paths of length one: α, β, γ; two paths of length two:
αγ, γβ; and one path of length three: αγβ.

A string over a string algebra A is a sequence C = c1 . . . ck of arrows or inverse
arrows reduced with respect to cancellation and such that neither a relation nor the
inverse of a relation occurs in C. For instance αβ−1αγ is a string over R1 which is
interpreted as ‘go along γ, then along α, lift through β, and go along α again’.

A key property of string algebras is that they are tame, i.e. admit a classification
of the indecomposable finite dimensional modules. These modules are separated
into two classes: string and band modules.

For every string C over a string algebra A there exists a string module M(C).
For instance for the string C = αβ−1αγ the corresponding string module M(C)
has the following diagram:

◦
γ

����
��

�

z4

◦
α
����

��
�

β ��7
77

77
z1

◦
α
����

��
� z3

◦
z0

◦
z2

In particular M(C) is a 5-dimensional k-vector space.
By [2] any string module M(C) is indecomposable and M(C) ∼= M(D) iff either

C = D or C = D−1.
A band over a string algebra A is a string C = c1 . . . ck such that the following

holds:
1) every power Cm is defined;
2) C is not a power of a proper substring;
3) c1 is a direct arrow and ck is an inverse arrow.
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Thus every band C over A is of the form α . . . β−1. Note that then C−1 =
β . . . α−1 is also a band and C 6= C−1. For instance over R1 the bands are C = αβ−1

and C−1 = βα−1.
Let C = c1 . . . ck be a band. For every 0 6= λ ∈ k and every n > 0 we define

a band module M = M(C, λ, n) as follows. A k-basis for M is given by elements
zi
1, . . . , z

i
k, 1 ≤ i ≤ n and all actions are defined similarly to those for string modules

(cj acts between zi
j and zi

j+1) with the unique exception of j = k. Here (ck = β−1

acts between zi
k and zi

1) we set βz1
k = λz1

1 and βzi
k = λzi

1 + zi−1
1 , 1 < i ≤ n.

For instance for the band C = αβ−1 over R1 the corresponding band module
M(C, λ, 2) can be represented in the following way:

◦
z2
1

◦αff

||zz
zz

zz
zz

zz
zz

zz

β = λ

xx z2
2

◦
z1
1

◦
α

ff β = λxx

z1
2

In view of [2] band modules M(C, λ,m) and M(D,µ, n) are isomorphic iff λ = µ,
m = n, and C is obtained from D by a cyclic permutation and possibly taking the
inverse.

We say that a string algebra A is 1-domestic if there is a unique (up to cyclic
permutation and inversion) band over A. For instance R1 is 1-domestic.

Let R2 be the following string algebra [15, p. 49]:

R2

◦
α1 //

α2

����
��
��
��
��

◦

α0

��2
22

22
22

22
2

◦
α

aaDDDDD
α′

==zzzzz
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◦
β
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��4
44

44
44

44
◦
β′

@@
@@
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@

c
◦
c

◦
γ′

oo
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γ

>>~~~~~~~~~~~~
◦

α4

oo
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EE










There is essentially one band over R2: C = α4 . . . α
−1
3 = α0 . . . α

−1
5 (we indentify

bands that are obtained by a cyclic permutation), therefore C−1 = α3 . . . α
−1
4 =

α5 . . . α
−1
0 . Thus R2 is 1-domestic.

Usually for a 1-domestic string algebra A we will fix a representative of the unique
(up to cyclic permutation and inversion) band C. Then C and C−1 represent the
bands over A up to cyclic permutation.
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3. Bridge quiver

A one-sided word v over a string algebra A is a word of the form c0c1 . . . or
of the form . . . c−1c0 where each ci is an arrow or an inverse arrow. We say that
a one-sided word v is a one-sided string if every finite subword of v is a string.
Similarly we can define a two-sided string v = . . . c−1c0c1 . . . .

A one-sided string v is said to be almost periodic if v = CD∞ for finite strings
C and D, or v = ∞C ′D′ for finite strings C ′, D′. Similarly we say that a two-
sided string v is biperiodic if v = ∞CDE∞ for finite strings C,D and E. Saying
‘biperiodic’ we usually exclude the case when v is periodic, i.e. when v can be
represented in the form ∞C∞ for a finite string C.

Fact 3.1. [15, Prop. 2] Let A be a domestic string algebra. Then every one-sided
string over A is almost periodic, and every two-sided string over A is biperiodic or
periodic.

Note that if C = α . . . β−1 is a band over any string algebra then α and β are
arrows ending in the same vertex. Since α 6= β (otherwise C2 is not defined), α
and β determine each other uniquely. Let B(α) denote the set of all bands over A
with first letter α.

Fact 3.2. [19, L. 4.1] Let C = α . . . β−1 be a band over a domestic string algebra
A. Then B(α) consists of the one element C.

Lemma 3.3. Let C = α . . . β−1, be a band over a domestic string algebra A. Then
C does not contain a proper substring which is a band.

Proof. Otherwise C = EDF for a proper band D = µ . . . δ−1. By Fact 3.2 we may
assume that µ 6= α and δ 6= β. Also the length of D, |D|, is less than the length of
C.

We have C2 = EDFEDF . Since the string DFED begins with µ and ends
with δ−1, by Fact 3.2 we obtain that DFED = Dk for some k. Then clearly
D = Uβ−1αV for some strings U, V . Thus D2 = Uβ−1αV Uβ−1αV , therefore
(by Fact 3.2 again) αV Uβ−1 = Cl for some l. Then |C| ≤ |αV Uβ−1| = |D|, a
contradiction. �

In general the structure of a band C over even a 1-domestic string algebra may
be quite complicated. Nevertheless there are some restrictions.

Lemma 3.4. Let C = α . . . β−1 be a band over a domestic string algebra A. Then
no arrow γ occurs in C twice as a direct arrow, and no arrow γ occurs in C twice
as an inverse arrow.

Proof. Otherwise by symmetry we may assume that γ occurs in C twice as a direct
arrow. If γ = α, i.e. C = αEαBβ−1, then αBβ−1 is a band which is shorter than
C, a contradiction.
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Thus C = EγBγD for some arrow γ 6= α, where E begins with α and D ends
with β−1. Consider the word C ′ = EγD. Since C ′ begins with α and ends with
β−1 it cannot be a string (otherwise C ′ is a band shorter than C). Thus C ′ should
contain a zero relation E′γD′, i.e. E = . . . E′, D = D′ . . . and E′, D′ consist of
direct arrows.

Since C is a string, it does not contain E′γD′ as a subword, therefore EγBγ 6=
. . . E′γ, and Eγ = . . . E′γ. Since E′γ consists of direct arrows, Eγ = . . . λµE′′ and
EγBγ = . . . δ−1µE′′ for some (maybe empty) string E′′. Thus δ and µ are arrows
ending in the same vertex, and in EγBγ we obtain a configuration . . .µ . . . δ−1 . . . .
Thus C properly contains a band µ . . . δ−1.

It remains to apply Lemma 3.3. �

Note that the following string algebra

◦
β

��@
@@

@@
@ ◦

τ

��

◦

δ��~~
~~

~~
◦αoo

ε
??~~~~~~

◦

γ

OO

◦
ν

__@@@@@@

has a unique band C = αντεα−1δ−1γ−1β−1 which contains a configuration α . . . α−1 . . . .

Lemma 3.5. (see [19, L. 4.1]) Let C = α . . . β−1 be a band over a domestic string
algebra A. Then α−1β is not a substring of C.

Proof. Otherwise C can be written as αBα−1βDβ−1 for finite strings B, D, in
particular B is not empty. But then C ′ = αB−1α−1βDβ−1 is a string. Since
B 6= B−1, therefore C ′ 6= C−1 is a band, a contradiction to Fact 3.2. �

Lemma 3.6. Let C = α . . . β−1 be a band over a domestic string algebra A. Then
any distinct occurrences of C in any string over A have empty intersection. Also
any occurrences of C and C−1 in any string over A do not intersect each other.

Proof. C cannot overlap C in a non-trivial way by Lemma 3.4.
Suppose that C overlaps C−1 in a string v over A. Since C−1 = β . . . α−1, the

configuration CC−1 and C−1C in v is not possible. By symmetry it suffices to
consider the following configuration:

◦ ◦
C

◦
C−1

◦

i.e. v contains αEβFβ−1Gα−1, where C = αEβFβ−1 and C−1 = βFβ−1Gα−1.
But then clearly F = F−1, which gives a contradiction. �

Corollary 3.7. Let C = α . . . β−1 be a band over a domestic string algebra A such
that any relation on A has length 2. Then the total number of occurrences of any
arrow γ (direct plus inverse) in C is at most one.
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Proof. Otherwise by Lemma 3.4 and symmetry we may assume that C = BγDγ−1E,
in particular D is nonempty. Let C ′ = BγD−1γ−1E. Since all relations have
length 2, C ′ is a string. But clearly D 6= D−1, therefore C 6= C ′, a contradiction
to Fact 3.2. �

Over an arbitrary string algebra the classification of two-sided strings is hardly
available. But for 1-domestic case we have the following description.

Lemma 3.8. (see [16, p. 58]) Let A be a 1-domestic string algebra with a band
C = α . . . β−1. Then

1) every two-sided non-periodic string v over A can be written in the form v =
∞B−1DB∞, where B = C or C−1 and the length of D is uniformly bounded.
Moreover this representation of v is unique, if D is of minimal length.

2) Every one-sided string w over A can be written in the form w = EB−nFB∞

or w = ∞B−1GBmH, where B = C or C−1 and the lengths of E,F,G,H are
uniformly bounded. This representation is also unique, if E,F,G,H are of minimal
lengths.

Proof. Let v be a two-sided string over A.
First there exists an m such that every string of length m over A contains a

sink, i.e. a substring of the form γ−1δ. Let us cut v into pieces of length m. Also
there exist only finitely many, say n, possibilities for sinks. Since A is 1-domestic,
by Fact 3.2 a configuration γ−1δ . . . γ−1δ in v implies that the dotted part must be
filled in by a power of a (unique) band D = δ . . . γ−1 (and D is a cyclic permutation
of either C or C−1).

Since at least one sink will appear eventually on the left, the left hand part of
v is of the form ∞E, and the right hand part of v is of the form F∞, where E,F
are bands. If E = F (up to cyclic permutation) then (by Fact 3.2) v is periodic.
Otherwise we may assume that E = C−1, F = C and v = ∞C−1GC∞, where the
length of G is minimal possible.

We prove that the length of G bounded above by m(2n + 1). Indeed otherwise
there are three appearances in G of the same sink, therefore a square of a band
H2 occurs in G. Since H is a cyclic permutation of either C or C−1, one of these
bands occurs in G. By Fact 3.2 this contradicts the minimality of G.

Now the uniqueness follows by Lemma 3.6.
If w is a one-sided string, the proof is similar. �

Corollary 3.9. Let A be a 1-domestic string algebra. Then there exist only finitely
many two-sided strings over A.

Proof. This follows from Lemma 3.8. �

Let A be a domestic string algebra. In [19] Schröer defined the bridge quiver
of A to be a finite oriented graph on the set of bands of A. If A is 1-domestic,
this graph can be introduced very easily. Let C and C−1 be representatives (up to
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cyclic permutation) of the bands over A. Let v be a two-sided string over A written
as v = ∞B−1DB∞, where B = C or B = C−1, and D contains neither C nor C−1

as a substring. Then we include in the bridge quiver the arrow B−1 → B with the
label D.

For instance

w = ∞(β−1α)γ(βα−1)∞

is a two-sided string over R1 which is essentially unique: every (finite or infinite)
string over R1 is a substring of either w or w−1. From w we obtain an arrow

WVUTPQRSαβ−1
αγ // WVUTPQRSβα−1

and inverting this

WVUTPQRSαβ−1
γ−1α−1

// WVUTPQRSβα−1

Thus the bridge quiver of R1 is C
2 // C−1 (two arrows between C and C−1).

Also up to inversion there are only three two-sided strings over R2:

z(a) = ∞(α−1
1 α−1

0 α5α
−1
4 α3α2)αα′−1(α1α

−1
2 α−1

3 α4α
−1
5 α0)∞,

z(b) = ∞(α2α
−1
1 α−1

0 α5α
−1
4 α3)β−1β′−1(α−1

5 α0α1α
−1
2 α−1

3 α4)∞,

and

z(c) = ∞(α3α2α
−1
1 α−1

0 α5α
−1
4 )γ−1γ′(α0α1α

−1
2 α−1

3 α4α
−1
5 )∞ .

From z(a) we obtain the arrow

α3 . . . α
−1
4

//
α3α2αα′−1α1α−1

2 α−1
3
α4 . . . α

−1
3

and z(b) leads to the arrow

α3 . . . α
−1
4

//
α3β−1β′−1α−1

5
α0 . . . α

−1
5

Finally z(c) gives the arrow

α3 . . . α
−1
4

γ−1γ′ // α0 . . . α
−1
5

Inverting these we obtain that the bridge quiver of R2 is C−1
6 // C .

Lemma 3.10. Let A be a 1-domestic string algebra with the band C. Then the
bridge quiver of A is either B−1 → B, or a disjoint union of C and C−1, where
B = C or B = C−1.
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Proof. By symmetry it suffices to prove that the case C−1 → C → C−1 is not
possible. Otherwise there are two-sided strings ∞(C−1)EC∞ and ∞CF (C−1)∞.
But then v = ∞(C−1)ECF (C−1)∞ is also a string. By Lemma 3.8 we may write v
as ∞(B−1)GB∞, where B = C or B = C−1. But by Lemma 3.6 C and C−1 cannot
overlap each other, a contradiction. �

For instance if A is a hereditary tame finite dimensional algebra of type Ãn,
then the bridge quiver of A is the disjoint union of C and C−1. Note also that the
bridge quiver of a 1-domestic string algebra A is nontrivial (i.e. contains an arrow)
iff there is a two-sided nonperiodic string over A.

4. Distributive intervals

Basic notions from the model theory of modules can be found in [6]. Also see
[10] for a summary.

Saying that (ϕ/ψ) is a pair of pp-formulae we usually assume that ψ < ϕ.
The notation (ϕ/ψ) will be also used for the interval [ψ;ϕ] in the lattice of all pp-
formulae over A. A pair (ϕ/ψ) opens a module M if ϕ(M)/ψ(M) is nonzero. These
subgroups and their factors are right S-submodules of M where S = End(M).

The Ziegler spectrum over A, ZgA, is a topological space whose points are (iso-
morphism types of) indecomposable pure injective A-modules. The topology on
ZgA is given by basic opens sets (ϕ/ψ) = {M ∈ ZgA | (ϕ/ψ) opens M}, and this is
the third meaning of (ϕ/ψ). This space is (quasi) compact, and by [6, Prop. 13.1]
the isolated points of ZgA are exactly the indecomposable finite dimensional A-
modules.

For every pp-type p there exists a ‘minimal’ pure injective module N(p) and an
element m ∈ N(p) such that the pp-type of m in N(p), ppN(p)(m), is equal to p. A
pp-type p is indecomposable if the module N(p) is indecomposable.

For an indecomposable pp-type p we write p ∈ (ϕ/ψ) if ϕ ∈ p and ψ ∈ p−. Then
p defines a cut on the interval (ϕ/ψ) in the obvious way: we take θ ∈ (ϕ/ψ) in the
‘upper part’ of the cut if θ ∈ p+ and take θ in the ‘lower part’ of the cut if θ ∈ p−:

◦ L I
>

/
�

�
�

ur

ru
�

�
�
/

>
I L

ϕ

p+ . poo

..

◦
ψ

p−

Fact 4.1. (see [6, L. 9.2]) Let (ϕ/ψ) be a pair of pp-formula and let p, q ∈ (ϕ/ψ) be
indecomposable pp-types which define the same cut on (ϕ/ψ). Then N(p) ∼= N(q).

Thus, the module N(p) is uniquely determined by any nontrivial cut of p.
The global shape of an indecomposable pp-type is given by Ziegler’s criterion.
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Fact 4.2. [6, Thm. 4.29] A pp-type p is indecomposable iff for every ψ1, ψ2 ∈ p−

there exist ϕ ∈ p+ such that (ψ1 ∧ ϕ) + (ψ2 ∧ ϕ) ∈ p−.

Nevertheless it is not clear how to describe (in lattice theoretical terms) cuts on
an interval given by indecomposable pp-types.

We say that a pair (ϕ/ψ) is distributive if the interval (ϕ/ψ) is a distributive
lattice (i.e. the lattice of all pp-formulae between ϕ and ψ is distributive).

Our next aim is to prove that an indecomposable pp-type defines a filter-cofilter
partition on every distributive interval. It is not clear how to prove it directly, since
some ‘external’ formulae may intrude when we try to apply Ziegler’s criterion.

So we should make a digression first.
A module M is distributive if the lattice of submodules of M is distributive. For

instance every uniserial module is distributive. On the other hand M ⊕M is never
distributive for a nonzero M (consider the diagonal embedding). Recall first the
well known characterization of distributivity [20, Prop. 1.17]. A right module M
over a ring S is distributive iff for every m,n ∈ M there are f, g, h ∈ S such that
mf = ng and n(1− f) = mh.

Lemma 4.3. Let (ϕ/ψ) be a pair of pp-formulae. For every module M we con-
sider the following property (∗): ϕ(M)/ψ(M) is a distributive S-module where
S = End(M). Then (∗) is preserved under forming arbitrary direct sums and
products of modules, and under taking direct summands.

Proof. This is a slight modification of [20, 8.6]. Let Mi, i ∈ I, Si = End(Mi) be
such that (∗) holds for every Mi and let M =

∏
i∈I Mi, S = End(M). Take any

m = (mi), n = (ni) ∈ ϕ(M), therefore mi, ni ∈ ϕ(Mi) for every i. By assumption,
for every i there are fi, gi, hi ∈ Si such that mifi = nigi + ki and ni(1 − fi) =
mihi + li, ki, li ∈ ψ(Mi). Then f = (fi), g = (gi), h = (hi) are endomorphisms of
M , and mf = ng + k, n(1 − f) = mh + l, where k = (ki), l = (li) are clearly in
ψ(M).

The proof when M is the direct sum of the Mi is the same.
Suppose that M is a direct summand of a module N with (∗), S = End(N), and

let e be the canonical projection onto M , in particular End(M) = eSe. Take any
m,n ∈ ϕ(M), therefore me = m and ne = n. By assumption, since m,n ∈ ϕ(N),
there are f, g, h ∈ S such that mf = ng + k and n(1 − f) = mh + l, k, l ∈ ψ(N).
Multiplying this by e on the right we obtain mefe = nege + ke, ne(e − efe) =
mehe+ le where efe, ege, ehe are endomorphisms of M and ke, le ∈ ψ(M). �

Proposition 4.4. Let (ϕ/ψ) be a pair of pp-formulae over A. Then the following
assertions are equivalent:

1) (ϕ/ψ) is distributive;
2) ϕ(M)/ψ(M) is a distributive S-module for every pure injective module M

where S = End(M);
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3) ϕ(M)/ψ(M) is a uniserial S-module for every indecomposable pure injective
module M where S = End(M);

4) ϕ(M)/ψ(M) is a distributive S-module for every finite dimensional module
M where S = End(M);

5) ϕ(M)/ψ(M) is a uniserial S-module for every indecomposable finite dimen-
sional module M where S = End(M).

Proof. 1) ⇒ 4). By [20, Prop. 1.17] it suffices to check distributivity for cyclic
S-submodules of ϕ(M)/ψ(M). Thus it is enough to check distributivity for S-
submodules of M of the form mS + ψ(M), m ∈ ϕ(M). By [6, Prop. 8.4] mS =
θ(M) for some θ (generating the pp-type of m in M , in particular θ → ϕ). Thus
mS + ψ(M) = (θ + ψ)(M) and this formula is clearly between ψ and ϕ.

4) ⇒ 5). By [20, Thm. 1.21] every distributive module over a local ring is
uniserial. By similar arguments 2) implies 3).

5) ⇒ 4) by Lemma 4.3.
Similarly 4) ⇒ 2) follows, since every pure injective module is a direct summand

of a direct product of indecomposable finite dimensional modules (because A is
finite dimensional).

2) ⇒ 1). The lattice of all pp-formulae over A is the lattice of pp-subgroups of
a ‘large’ pure injective module M . Since ϕ(M)/ψ(M) is a distributive S-module,
the result follows.

Also it is clear that 3) ⇒ 5). �

Note that this result is true, except for 5), over an arbitary ring R if we replace
‘finite dimensional module’ in 4) by ‘finitely presented module’. 5) can be included
if every finitely presented module over R is a direct sum of modules with local
endomorphism rings.

Now we return to our earlier considerations.

Lemma 4.5. Let (ϕ/ψ) be a distributive pair of pp-formulae and let p ∈ (ϕ/ψ) be
an indecomposable pp-type. Then p defines a filter-cofilter partition on the interval
(ϕ/ψ), and the module N(p) is uniquely determined by this cut. Moreover for every
filter-cofilter partition of (ϕ/ψ) there exists an indecomposable pp-type which defines
this cut.

Proof. Let M = N(p) (an indecomposable pure injective module) and let m ∈ M

realize p. It suffices to prove that the lower part of the cut, p−, is closed with respect
to sums. Let ϕ1, ϕ2 ∈ p− with ϕ ≤ ϕ1, ϕ2 ≤ ψ, therefore m /∈ ϕ1(M), ϕ2(M). By
Proposition 4.4 the S-modules ϕ1(M), ϕ2(M) are comparable, therefore we may
assume that ϕ1(M) ⊆ ϕ2(M). Then from m /∈ (ϕ1 + ϕ2)(M) = ϕ2(M) it follows
that ϕ1 + ϕ2 ∈ p−.
N(p) is uniquely determined by the cut, by Fact 4.1.
So it remains to prove that every filter-cofilter partition of the interval (ϕ/ψ)

is defined by some indecomposable pp-type. Let us put the upper part of this
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partition into p+ and the lower part of this partition into p−. Clearly the set of
formulae p+ ∪ ¬p− is consistent. Now we extend this pp-type to a maximal pp-
type q including p+ and omitting p−. From [6, Thm. 4.33] it follows that q is
indecomposable, and clearly q defines the required cut. �

Thus we may roughly classify indecomposable pure injective modules living on
a distributive interval (ϕ/ψ) by their cuts (caution: different cuts may lead to the
same module).

Proposition 4.6. Let (ϕ/ψ) be a distributive interval in the lattice of all pp-
formulae over A. Then there exists a natural surjection from the set of filter-cofilter
partitions of this interval to the set of isomorphism types of indecomposable pure
injective modules opening (ϕ/ψ).

Proof. This follows from Lemma 4.5. �

If the more precise structure of the interval (ϕ/ψ) is known, a more satisfactory
analysis is possible.

Let L and L′ be chains with largest and smallest elements. By L ⊗ L′ we will
denote the modular lattice freely generated by L and L′ with additional relations
0 = 0′ and 1 = 1′ (i.e. the smallest elements of L and L′ are identified and the
same is done with the largest elements). It is well known (see [5]) that this lattice
is distributive (and a quite satisfactory description of its elements is possible — see
[12] for an explanation).

We say that the interval (ϕ/ψ) in the lattice of all pp-formulae over A is generated
by the chains L1 and L2 if 1) L1 and L2 consist of formulae between ψ and ϕ; 2)
01 = 02 = ψ, 11 = 12 = ϕ, and 3) every formula between ψ and ϕ is in the lattice
generated by L1 ∪ L2.

Similarly an interval (ϕ/ψ) is freely generated by the chains L1 and L2 if in
addition 4) the natural epimorphism L1 ⊗ L2 → (ϕ/ψ) is an isomorphism.

Suppose that the interval (ϕ/ψ) is generated by chains L1, L2 and let p ∈ (ϕ/ψ)
be an indecomposable pp-type. Define p1 to be the cut on L1 determined by p, i.e.
ϕ′ ∈ L1 is in the upper part of p1, p+

1 , if ϕ′ ∈ p, and ϕ′′ ∈ L1 is in the lower part
of p1, p−1 , if ϕ′′ ∈ p−. Similarly p defines a cut p2 on L2.

Lemma 4.7. Let an interval (ϕ/ψ) be generated by chains L1, L2 and let p ∈ (ϕ/ψ)
be an indecomposable pp-type. Then the cut of p is uniquely determined by its cuts
on L1 and L2, i.e. by p1 and p2.

Proof. By assumption every pp-formula θ between ψ and ϕ is equivalent to a for-
mula

∑
i ϕi∧ψi where ϕi ∈ L1 and ψi ∈ L2. By Lemma 4.5, p defines a filter-cofilter

partition on (ϕ/ψ). Therefore θ ∈ p iff ϕi ∧ ψi ∈ p for some i, i.e. if ϕi ∈ p+
1 and

ψi ∈ p+
2 . �

So an indecomposable pp-type p living on a distributive interval generated by
chains L1, L2 may be drawn as follows (a marked point means that ϕ′ ∧ ψ′ ∈ p)

12



. _______ .

◦ •

◦

OO

//
L1ϕ′

L2

ψ′

1

p+

◦

�
�
�
�
�

In view of Lemma 4.7 we will write p = (p1, p2) for an indecomposable pp-type
p, i.e. p may be considered as a pair of cuts. Not every pair of cuts leads to an
indecomposable pp-type. We say that a pair of cuts (p1, p2) is admissible if there
is an indecomposable pp-type p that defines this pair.

Lemma 4.8. A pair of cuts (p1, p2) is admissible iff ϕ′∧ψ′ does not imply ϕ′′+ψ′′

for every ϕ′, ϕ′′ ∈ L1, ψ′, ψ′′ ∈ L2 such that ϕ′ ∈ p1, ϕ′′ ∈ p−1 , ψ′ ∈ p2, ψ′′ ∈ p−2 .

Proof. Assume that there exists an indecomposable pp-type p defining the pair
(p1, p2) such that ϕ′∧ψ′ → ϕ′′+ψ′′. Then ϕ′ ∈ p1, ψ′ ∈ p2 implies that ϕ′∧ψ′ ∈ p,
therefore ϕ′′ + ψ′′ ∈ p. By Lemma 4.5 it follows that either ϕ′′ ∈ p or ψ′′ ∈ p. But
ϕ′′ ∈ p implies ϕ′′ ∈ p1, a contradiction. Similarly ψ′′ ∈ p yields ψ′′ ∈ p2, a
contradiction again.

For the converse put into p+ all pp-formulae ϕ′ ∧ ψ′ where ϕ′ ∈ p1, ψ′ ∈ p2,
and put into p− all pp-formulae ϕ′′ + ψ′′ where ϕ′′ ∈ p−1 and ψ′′ ∈ p−2 . Clearly p+

is closed with respect to finite conjunctions and p− is closed with respect to finite
sums. Therefore by the assumption p+ ∪ ¬ p− is a consistent set of pp-formulae.
Extend this set to a maximal pp-type q containing p+ and omitting p−.

Then q is indecomposable and clearly q1 = p1, q2 = p2. �

Therefore we obtain the following:

Lemma 4.9. Let an interval (ϕ/ψ) be generated by chains L1 and L2. Then there
is one-to-one correspondence between cuts on (ϕ/ψ) given by indecomposable pp-
types and admissible pairs of cuts (p1, p2) on L1 and L2. If (ϕ/ψ) is freely generated
by L1 and L2 then every pair of cuts is admissible.

Proof. By Lemma 4.8 every indecomposable pp-type p ∈ (ϕ/ψ) defines an admis-
sible pair of cuts (p1, p2). Also by Lemma 4.7 the cut of p is uniquely determined
by this pair.

Let (ϕ/ψ) be freely generated by L1, L2. Then by Lemma 4.8 and the description
of elements of the lattice freely generated by L1 and L2, every pair of cuts (p1, p2)
is admissible. �

Thus indecomposable pure injective modules living in an open set (ϕ/ψ) gener-
ated by chains L1, L2 are classified by admissible pairs of cuts (p1, p2) on L1 and
L2.
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Proposition 4.10. Let an interval (ϕ/ψ) be generated by chains L1 and L2. Then
there exists a natural surjection from the set of admissible pairs of cuts (p1, p2) on
L1 and L2 to the set of isomorphism types of indecomposable pure injective modules
opening (ϕ/ψ).

Proof. This follows from Lemma 4.9 and Proposition 4.6. �

5. Cantor–Bendixson analysis

Let L be a modular lattice with smallest element 0 and largest element 1. Re-
call that the m-dimension of L, mdim(L), is defined by iterated factorization by
the equivalence relation which collapses intervals of finite length. For instance
mdim(L) = 0 iff L is finite and mdim(ω + 1) = 1. Also the m-dimension of L is
undefined iff L contains the order type of the rationals Q as a subchain.

Sometimes it is possible to calculate the m-dimension of a lattice directly.
Let ordinals λ and µ be given in their Cantor normal form: λ = ωα1n1 + · · · +

ωαknk, µ = ωα1m1 + · · · + ωαkmk, α1 > · · · > αk. Then λ ⊕ µ will denote the
ordinal ωα1(n1 +m1) + · · ·+ ωαk(nk +mk). For instance 1⊕ ω = ω ⊕ 1 = ω + 1.

Fact 5.1. [13, Prop. 4.2] Let L, L′ be chains such that mdim(L) = λ, mdim(L′) =
λ′. Then mdim(L⊗ L′) = λ⊕ λ′.

Now we describe the Cantor–Bendixson, CB, analysis on the interval generated
by two chains. Let an interval (ϕ/ψ) be generated by chains L1, L2, and let
p ∈ (ϕ/ψ) be an indecomposable pp-type. From Lemma 4.9 it follows that the cut
of p, therefore the module N(p), is completely determined by the corresponding pair
(p1, p2) of its cuts on the chains L1 and L2. As in [10] let us define mdim1(p) as
the infimum of m-dimensions of chains (ϕ′/ψ′), ϕ′, ψ′ ∈ L1 such that p ∈ (ϕ′/ψ′).
Similarly define mdim2(p).

Also let the m-dimension of p, mdim(p), be the infimum of m-dimensions of
intervals (ϕ1/ψ1) such that ψ ≤ ψ1 < ϕ1 ≤ ϕ and p ∈ (ϕ1/ψ1).

Lemma 5.2. Let an interval (ϕ/ψ) in the lattice of all pp-formulae over A be
generated by chains L1 and L2, and let p ∈ (ϕ/ψ) be an indecomposable pp-type.
Then CB(p) = mdim(p) ≤ mdim1(p) ⊕ mdim2(p). Moreover if (ϕ/ψ) is freely
generated by L1 and L2 then CB(p) = mdim1(p)⊕mdim2(p).

Proof. From [13, Thm. 3.1] it follows that the isolation property holds for (ϕ/ψ):
for any theory T of A-modules every isolated point in T ∩ (ϕ/ψ) is isolated by a
minimal pair. Then similarly to [6, Prop. 10.19] we obtain that mdim(p) = CB(p)
for every indecomposable pp-type p ∈ (ϕ/ψ).

First assume that (ϕ/ψ) is freely generated by L1 and L2. Let M = N(p) (thus
M is an indecomposable pure injective module) and let m realize p in M .

Since (ϕ/ψ) is an open set in the Ziegler spectrum of A, the Cantor–Bendixson
analysis can be carried out inside (ϕ/ψ).
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Clearly a basis of open sets (in ZgA) for M can be chosen to be of the following
form: (ϕ′∧ψ′/ϕ′′+ψ′′), where ϕ′, ϕ′′ ∈ L1, ψ′, ψ′′ ∈ L2 and ϕ′, ψ′ ∈ p, ϕ′′, ψ′′ ∈ p−.

___ .

◦ //

OO

◦ ◦
ϕ′ ϕ′′

◦
◦

ψ′
ψ′′

p+
�

�

By a fairly standard procedure (see [14] for a similar analysis over a serial ring)
one shows that the CB-rank of M is equal to mdim1(p)⊕mdim2(p). For instance
M is isolated iff p defines principal cuts (i.e. if the positive part of p1 is generated
by one pp-formula and the negative part of p1 is generated by one pp-formula;
and similarly for p2). Also M is of CB-rank 1 if either p1 is principal and p2 has
m-dimension 1 (0 + 1 = 1) or p1 has m-dimension 1 and p2 is principal (1 + 0 = 1).

If (ϕ/ψ) is not freely generated by L1 and L2, the same analysis gives the upper
bound for the CB-rank of every pp-type p ∈ (ϕ/ψ): CB(p) ≤ mdim(p1)⊕mdim(p2).

�

6. Indecomposable pure injective modules

Recall that every indecomposable finite dimensional A-module is pure injective,
therefore it is a point in ZgA.

Let A be a 1-domestic string algebra with a (unique) band C = α . . . β−1. We say
that A is of type Ã, if no vertex (except at the ends) occurs twice in C. Therefore the
subquiver corresponding to C is the quiver of a tame hereditary finite dimensional
algebra of type Ã.

Note that in many examples (see Corollary 3.7) C does not contain a repetition
of an arrow. But even in this case the structure of C may be complicated. A typical
algebra with a repetition of a vertex is

R3 ◦α == βaa

with the relation α2 = β2 = βα = 0. Clearly C = αβ−1 is a unique band over A.
Also every string over R3 is (up to inversion) a substring of

∞(β−1α)(βα−1)∞,

therefore R3 is 1-domestic. R3 is not of type Ã, since the band αβ−1 has just one
vertex.

Let A be a 1-domestic string algebra of type Ã with band C. Let B be the
corresponding tame hereditary algebra of type Ã. Then there is a natural represen-
tation embedding f from the category of B-modules into the category of A-modules
‘living’ on C.

Lemma 6.1. Let A be a 1-domestic string algebra of type Ã with band C =
α . . . β−1. Then f induces a homeomorphism from ZgB onto a closed subset A
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of ZgA. Also A consists of the indecomposable pure injective modules M such that
eiM = 0 for every vertex i not in C.

Proof. By [8, Thm. 7] f induces a homeomorphism onto a closed subset. The
second part is clear. �

Note that for the algebra R3 the string module M(αβ−1αβα−1) is not in the
image of the corresponding representation embedding from the Kronecker algebra
A2 to A-modules living on C.

All indecomposable pure injective modules over the algebra B (of type Ã) are
described in [7], as is the topology on ZgB . Let us assume that k is algebraically
closed. Then for every 0 6= λ ∈ k there is a Prüfer module Pλ and an adic module
Aλ. Besides there is a unique generic B-module Q.

To make this list complete we should include finite dimensional B-modules and
the direct sum or direct product modules of the form M(v) for (periodic) one-
sided strings v. A similar description applies to the indecomposable pure injective
modules from A.

Let M = M(CD) be a string module and let z be an element of the canonical
basis of M between C and D. As in [10] we may introduce the pp-formula (C.)
describing the structure of M to the left from z, and the pp-formula (.D) describing
the structure of M to the right from z. Then (C.D) will denote the conjunction of
these pp-formulae. From [10, Rem. 4.1] it follows that (M, z) is a free realization
of (C.D).

The definition of the right order < on the set of finite strings may be found in [2].
For instance if D,D′ are finite strings comparable within this order then D < D′

iff (.D′) < (.D) as pp-formulae. Inverting this order we obtain the left order <′.
Note that this order evidently can be extended to an order on the set of one-sided

strings. Then every one-sided string v = v1 . . . defines a cut on the set of finite
strings with first letter v1.

In the following we will use freely the description of morphisms between indecom-
posable finite dimensional string modules from [3]. Precisely, every such morphism
is a linear combination of graph maps, i.e. maps obtained by forming standard
factors and then by standard embeddings of strings.

For instance

◦
γ

����
��

� ◦
γ

����
��

�

◦

β ��7
77

77 ◦
α
����

��
� ◦ ◦

α
����

��
�

◦ ◦

is a full list of non-simple proper factors of the string αβ−1αγ over R1.
We say that an arrow γ is non-C, if γ occurs in C as neither a direct arrow nor

as an inverse arrow.
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Lemma 6.2. Let v = C−1BDC be a string over a 1-domestic string algebra A with
band C = α . . . β−1, where B 6= C−1 . . . , D 6= . . . C, and BD contains a non-C
arrow. Let ϕ be the pp-formula (C−1B.DC), and let the pp-formulae ϕi, i = 1, . . . k
be obtained from ϕ by forming all proper factors of v. Then every pp-formula in the
interval (ϕ/

∑
i ϕi) is equivalent to a sum of formulae of the form (EC−1B.DCF )

for finite strings E, F . In particular this interval is freely generated by two chains.

Proof. Using [10, Rem. 4.1] and the description of morphisms between string mod-
ules it is easy to prove that this interval is non-trivial.

Every pp-formula in this interval can be obtained in the following way: take
a pp-formula ψ below ϕ and add

∑
i ϕi. Now to ψ corresponds a morphism f

from the string module M = M(v) to a finite dimensional module N in which ψ is
realized. Let z ∈M be an element of the canonical basis of M just to the left of D.

Since sums of pp-formulae are covered by our description, we may assume that
N is indecomposable. If N is a band module then, since BD contains a non-C
arrow, v is factored properly via f . Then v is trivialized after summing with

∑
i ϕi.

Thus we may assume that N is an indecomposable string module, therefore f is
a linear combination of graph maps f =

∑
i λifi. If v is factored properly via fi,

then fi can be deleted from this sum (without changing the resulting pp-formula
after summing with

∑
i ϕi). Thus we may assume that each fi does not factor v

properly.
If there is only one fi (with λi 6= 0) then N = M(EC−1BDCF ), zi = f(z) is just

to the left of D, therefore our formula is equivalent to the formula (EC−1B.DCF ).
Otherwise there are two different standard embeddings (maybe in different di-

rections) of v into the string w defining N . By symmetry we may assume that B
contains a non-C arrow.

First let us consider the possibility when both copies of v are embedded in the
same direction, say from left to right. So we have the following configuration in w:

β
}}{{{

v v

β
!!C

CC

◦ ◦ ◦ ◦

(where the intersection may be empty). By Fact 3.2 the part between C−1 and
C−1 in the beginning of two copies of v is filled by C−1. Since B 6= C−1 . . . , B is
contained in C−1, a contradiction (since B has a non-C arrow).

Thus we may assume that two copies of v are embedded in w in different di-
rections, say as v and v−1 (from left to the right). The configuration v−1 . . . v in
w leads to C−1 . . . C . . . C−1 which contradicts Corollary 3.10. Similarly the case
v . . . v−1 is also impossible.

So v and v−1 overlaps each other and by symmetry it suffices to consider the
following configuration:
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◦ ◦
v−1

◦
v

◦

But then we clearly obtain a configuration γγ−1 or γ−1γ in the common part of
v−1 and v, a contradiction.

Thus every formula between ϕ and
∑

i ϕi is equivalent to a sum of formulae
(EC−1B.DCF ). Then L1 = {(EC−1B.) | EC−1B is a string} is clearly a chain
as is L2 = {(.DCF ) | DCF is a string}, and these chains generate the interval
(ϕ/

∑
ϕi).

Since arbitrary concatenation of strings in L1 and L2 is possible, these chains
generate the corresponding interval freely. �

The following theorem verifies Ringel’s conjecture for 1-domestic string algebras
of type Ã.

Theorem 6.3. Let M be an infinite dimensional indecomposable pure injective
module over a 1-domestic string algebra A of type Ã. Then either M is an (infinite
dimensional) band module, or M is isomorphic to a module M(v), where v is either
a one-sided string or a two-sided (non-periodic) string.

Proof. If eiM = 0 for every vertex i /∈ C, then M is an indecomposable pure
injective module over a tame hereditary finite dimensional algebra B of type Ã,
therefore the result follows from [7, Cor. 2.10].

Thus since M is indecomposable we may assume that there exists a non-C arrow
γ such that γM 6= 0. Take 0 6= m ∈ γM and let I be the set of finite strings γE
such that m ∈ γEM . This set is linearly ordered with respect to <, so we can
define a one-sided (infinite) string γv to be the supremum of strings in I. Since M
is pure injective m ∈ γvM (with the obvious meaning, i.e. m ∈ γv′M for every
finite substring v′ of v).

We may assume that v is infinite. Indeed otherwise M is a one-directed pure
injective module in the terminology of [10], therefore the description of M follows
from [10, Thm. 5.4].

Similarly we may assume that either m ∈ δM for an arrow δ 6= γ, or δm 6= 0 for
some arrow δ such that δγ 6= 0. Let J be the set of strings Dδ−1 (Dδ) such that
m is divided by this string ‘on the left’. As above if a one-sided string w is the
supremum of J , then m is divided by w on the left, and we may assume that w is
infinite. Thus wv is a two-sided string.

By Lemma 3.8 we may write wv in the form ∞C−1BDC∞, where D begins with
γ and B ends with δ or δ−1.

Suppose that we have performed this construction for every nonzero m ∈ γM .
Compare those strings ∞E−1BDE∞ appearing (D begins with γ and E = C or
E = C−1) with respect to the product order (<′, <). Since by Corollary 3.9 there
are only finitely many two-sided strings over A, we may assume that the string
defined by m is maximal with respect to this order.

18



Then clearlyM is in the interval (ϕ/
∑

i ϕi), where ϕ and ϕi are as in Lemma 6.2,
which is freely generated by the chains L1 and L2. By Lemma 4.9, the cut on this
interval defined by the pp-type p = ppM (m) is uniquely determined by cuts on L1

and L2, i.e. by the strings w and v. Let N = M(wv) be the (direct sum, direct
product or mixed) module from Ringel’s list corresponding to wv. Let n be between
w and v in N , and let q = ppN (n).

Since (see [10, L. 4.2]) q is homogeneous, it is easy to check that q ∈ (ϕ/
∑
ϕi).

Also q defines the same (as p) cut on L1 and L2. Then M ∼= N by Proposition 4.10.
�

7. Krull–Gabriel dimension

For the precise definition of Krull–Gabriel dimension of a finite dimensional
algebra A, KG(A), see [18].

We will use the following equivalent to this notion.

Fact 7.1. [9, Prop. 2.3] The Krull–Gabriel dimension of a finite dimensional alge-
bra A is equal to the m-dimension of the lattice of all pp-formulae over A.

Unfortunately for a string algebra A, the lattice of all pp-formulae over A has a
very complex structure, so we believe that it may be very difficult to calculate its
m-dimension by ‘bare hands’. Therefore the following trick is very useful. Suppose
that we have described (in some terms) indecomposable pure injective modules over
A. After that it is usually not difficult to check the so-called isolation property over
A: every isolated point in any theory of A-modules is isolated by a minimal pair.
Then [6, Prop. 10.19] implies that the m-dimension of the lattice of all pp-formulae
over A is the same as the Cantor–Bendixson rank of ZgA, CB(ZgA). And the last
invariant can be calculated locally.

We are going to follow this route.

Fact 7.2. [10, Cor. 7.4] Let A be a domestic string algebra and let n be the maximal
length of a path in the bridge quiver of A. Then CB(ZgA) ≥ n+ 2.

Lemma 7.3. Let A be a 1-domestic string algebra of type Ã with band C = α . . . β−1

whose bridge quiver is the disjoint union of C and C−1 (that is, every two-sided
string over A is periodic). Then CB(ZgA) = 2.

Proof. The lower bound follows from Fact 7.2.
Let M be an infinite dimensional indecomposable pure injective A-module such

that γM 6= 0 for some non-C arrow γ. By Theorem 6.3 M is isomorphic to a
module M(v), where v is a one-sided string, in particular M is one-directed in the
terminology of [10].

Then by [10, Thm. 7.3] we obtain that CB(M) ≤ 1, therefore CB(M) = 1
since M is infinite dimensional. Thus all these points are removed from the Ziegler
spectrum at level 1.
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Let N = M(C, λ, 1) be a finite dimensional band module corresponding to C.
Let m be the element of the canonical basis of N between β−1 and α, and let ϕ
generate the pp-type of m in N . We prove that the pair (ϕ/x = 0) isolates the
Prüfer module Pλ in ZgA at level 1. Since N is a submodule of Pλ, this pair opens
on Pλ.

Let B be the tame hereditary finite dimensional algebra corresponding to A.
From the corresponding result for B we know that this pair separates Pλ from all
other Prüfer points and all adic points in A.

So it suffices to show that this separates Pλ from all points M = M(v), where
v is a one-sided (non-periodic) string. Otherwise there is a morphism f from N to
M such that f(m) 6= 0. By symmetry we may assume that v = DC∞ where D
does not contain C as a substring. By Lemma 3.6 and Fact 3.2 D does not contain
α as a direct arrow.

Clearly M(D) is a submodule of M . Then, combining f with the projection
M → M/M(D), we obtain a homomorphism f̄ from N to the (degenerated) adic
or Prüfer module M(w). From the corresponding result for B-modules, f̄ will be
zero.

Thus the image of f is contained in M(D). Since f(m) 6= 0, therefore D contains
either a substring β−1α or a substring α−1β, and the first case is impossible by the
above remark. In the second case we obtain a two-sided string ∞C−1β . . . C∞ over
A, which contradicts the assumption.

Thus every Prüfer point Pλ is isolated at level 1. By elementary duality (see [9])
the same is true for every adic point Aλ.

After removing all these points at level 1, by Theorem 6.3 at level 2 there remains
only the generic point Q. Thus CB(ZgA) = 2. �

Proposition 7.4. Let A be a 1-domestic string algebra of type Ã with band C =
α . . . β−1 such that the bridge quiver of A contains an arrow C−1 → C. Then
CB(ZgA) = 3.

Proof. By Fact 7.2 we obtain CB(ZgA) ≥ 3.
By similar arguments (see [10]) every one-directed point in ZgA has CB-rank not

more then 2, for instance M(C−∞) has CB-rank 2 by calculations in [10, Thm. 7.3].
Moreover all non-periodic one-directed points have CB-rank 1.

Let M = M(∞C−1DC∞), where D contains a non-C arrow γ and D is minimal
with this property. Let m be an element in the canonical basis of M such that
m ∈ γM and p = ppM (m).

Choose a distributive interval opening M as in the proof of Theorem 6.3. By
Lemma 5.2 the CB-rank of M is equal to the sum of the m-dimensions of the cuts
p1 and p2 defined by p on chains generating this interval. But it is easy to calculate
(see [10, Thm. 7.3]) that the m-dimension of both cuts is 1, therefore CB(M) = 2.
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We prove that every Prüfer point Pλ, 0 6= λ ∈ k, has CB-rank not more than
2. From the above remarks it follows that it suffices to separate Pλ from one-sided
periodic points and from two-sided points M(v).

Choose the band module N and the pair (ϕ/x = 0) as in the proof of Lemma 7.3.
As there this pair separates Pλ from every one-sided periodic point. So it suffices
to check that this pair separates Pλ from any two-sided point M = M(v), where
v = ∞C−1DC∞, D 6= C−1 . . . , D 6= . . . C and D contains a non-C arrow γ.

Indeed otherwise there exists a morphism f from N to M such that f(m) 6= 0.
Clearly M(D) is a submodule of M , and the factor M/M(D) is the direct sum of
two modulesM(vi) with almost periodic strings vi. Then as the proof of Lemma 7.3,
the image of f is contained in M(D).

Thus either β−1α or α−1β is a substring of D. In the first case we have a
configuration α . . . C∞ in v, therefore D = D′C, a contradiction. Similarly if α−1β

is a substring of D we obtain a contradiction by considering C−1 in the left hand
part of v.

Thus the CB-rank of every Prüfer point Pλ is ≤ 2. By elementary duality the
same is true for every λ-adic point.

After removing all these points on level 2 we are left with just the one, generic,
point Q, which therefore has CB-rank ≤ 3. �

Before calculating the Krull–Gabriel dimension let us recall the following fact.

Fact 7.5. [9, Thm. 2.4] If KG(A) < ∞ (i.e. if the lattice of all pp-formulae over
A has m-dimension), then CB(ZgA) = KG(A).

Let T be any theory of A-modules and let ZgT be the closed subset of the Ziegler
spectrum corresponding to T . Then, similarly to the Cantor–Bendixson analysis,
we may organize the ‘minimal’ analysis of ZgT by iterated removal of points isolated
by minimal pairs. We obtain a corresponding minimal rank, minrk(T ), on points
of ZgT .

Lemma 7.6. If minrk(T ) < ∞, then T has m-dimension. Therefore CB(ZgT ) =
KG(T ).

Proof. Similar to [6, Prop. 10.19] at every step of the minimal analysis we factorize
the lattice of pp-formulae of T by a the congruence generated by (certain) intervals
of finite length.

Thus this analysis runs no faster than the m-dimension analysis on the lattice
of pp-formulae of T . It follows that mdim(T ) ≤ minrk(T ), therefore KG(T ) =
mdim(T ) = CB(ZgT ) by Fact 7.5. �

Theorem 7.7. Let A be a 1-domestic string algebra of type Ã with band C.
1) If the bridge quiver of A does not contain an arrow C−1 → C then KG(A) = 2.
2) If the bridge quiver of A contains an arrow C−1 → C (that is, if there is a

two-sided nonperiodic string over A) then KG(A) = 3.
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Proof. Let T be the theory of all A-modules. In both cases we prove that minrk(T )
is finite. Then the result will follow by Lemma 7.6, Lemma 7.3 and Proposition 7.4.

Note that every one-directed or two-directed module M(v) opens on a distribu-
tive interval. Therefore (see proof of Lemma 5.2) if it isolated on some level, it is
isolated by a minimal pair.

At the zero level all finite dimensional points are isolated by a minimal pair, so
we can remove them. At level 1 we may remove at least all one-directed points of
CB-rank 1.

Similarly at level 2 we may remove all points of the form M(v). The remaining
part is a closed subset of A ∼= Zg(B), therefore a minimal analysis can be finished
in at most two steps. �

Corollary 7.8. Let A be a 1-domestic string algebra of type Ã. Then there exists
no superdecomposable pure injective module over A.

Proof. By Theorem 7.7 the m-dimension of the lattice of all pp-formulae over A is
finite. �
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[10] M. Prest, G. Puninski, One-dircted indecomposable pure injective modules over string alge-

bras, Colloq. Math., 101 (2004), 89–112.
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