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TRIANGULATED CATEGORIES AND THE ZIEGLER SPECTRUM

GRIGORY GARKUSHA AND MIKE PREST

1. Introduction

The Ziegler spectrum of a ring is a topological space defined in terms of its category
of modules. The points are certain indecomposable modules and the topology, originally
defined in model-theoretic terms [Zie], can be defined in a number of alternative but equiv-
alent ways, see [He2, Kr1] for example. In particular it may be defined as a topology on the
set of indecomposable injective objects in an associated functor category. In [Kr4] Krause
used this approach in order to define the Ziegler spectrum for any compactly generated
triangulated category.

To any ring R there is associated the triangulated category, D(R), of unbounded com-
plexes of R-modules. One may ask what is the relation between the Ziegler spectrum of R
and that of D(R). We are able to give a complete answer when R is right hereditary 8.1
or von Neumann regular 8.5. For general rings we have that a pure-injective complex has
all cohomology modules pure-injective 7.1 and that the Ziegler spectrum of D(R) contains
countably many disjoint copies of the Ziegler spectrum of R, 7.3 but that in general there
are further points in the spectrum of D(R). As for modules there is a duality which induces
an isomorphism 7.5 between the topologies on the spectra of D(R) and D(Rop).

We also note 6.1 the relation between the Ziegler spectrum of a quasi-Frobenius ring and
that of its stable module category.

We define a notion of absolutely pure relative to a fixed generator in any monogenic
compactly generated triangulated category. For the case of D(R) with generator R, we
show that all cohomology modules of an absolutely pure complex are absolutely pure and,
in case R is coherent, we show that a complex is absolutely pure iff it is homologically
isomorphic to a coproduct of absolutely pure modules (regarded as complexes concentrated
in a single degree) 5.2.

We also show 4.4 that the topology of the Ziegler spectrum of a compactly generated
triangulated category may be defined in the style of [Zie], that is, using positive primitive
formulas. For that we first set up the canonical language of such a category. We show that
the category has elimination of quantifiers in this language 3.2.
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2. Compactly generated triangulated categories

We fix a triangulated category T with arbitrary direct sums. An object X of T is said to
be compact if for every family {Yi}i∈I of objects from T the canonical map⊕

i∈I

T(X,Yi) −→ T(X,
⊕
i∈I

Yi)

is an isomorphism. The suspension of any compact object is compact. The category T is
compactly generated if there exists a set C of compact objects of T such that T(C, Y ) = 0
(i.e. T(C, Y ) = 0 for all C ∈ C) implies Y = 0 for every object Y in T. We refer to such
a set C as a generating set if it is closed under suspension, for which we write C = ΣC.
The triangulated subcategory of T consisting of compact objects will be denoted by Tc. We
observe that Tc is the smallest triangulated subcategory in T containing any generating set.
Also T is closed under taking direct products.

The following examples of such categories are particularly important for applications:

(1) the derived category D(R) of unbounded complexes of modules for a ring R;
(2) the stable module category ModΛ of a QF-ring Λ;
(3) the stable homotopy category Ho(S) of CW-spectra.

One can specify in each case generating sets and the compact objects.

(1) The set R = {R[n]}n∈Z generates D(R), where R[n] denotes the complex concen-
trated in the −nth degree, and the perfect complexes (i.e. the complexes isomorphic
to bounded complexes of finitely generated projective modules) are the compact ob-
jects in D(R);

(2) If {S1, . . . , Sl} is the set of the simple Λ-modules, then the set

R = {ΩnS1}n∈Z

⋃
. . .

⋃
{ΩnSl}n∈Z

of suspensins of the simple modules generates ModΛ, and the finitely generated
modules are the compact objects in ModΛ;

(3) The set R = {Sn}n∈Z of suspensions of the sphere spectrum S0 generates Ho(S),
and the finite spectra are the compact objects in Ho(S) .

Following Hovey, Palmieri and Strickland [HPS], we call a triangulated category T mono-
genic if there is an object X in T such that the only localizing subcategory in T containing
X is T itself, where a localising subcategory of T is a triangulated subcategory which is
closed under arbitrary coproducts (and hence under direct summands). We shall refer to X
as a generator. All of the above triangulated categories are plainly monogenic.

If T is a compactly generated triangulated category then, following Krause [Kr3], a tri-

angle L α−→M
β−→ N −→ ΣL in T is pure-exact if for every compact C in Tc the induced

sequence 0 −→ T(C,L) −→ T(C,M) −→ T(C,N) −→ 0 is exact. We call the map α a
pure monomorphism. The object L of T is pure-injective if every pure-exact triangle
L −→M −→ N −→ ΣL is split.

Consider, for a compactly generated triangulated category T, the category ModTc of
additive contravariant functors from Tc to Ab. We have a natural functor H : T −→ Mod Tc

sending X to HX = T(−, X)|Tc . A Tc-module M (that is, an object of ModTc) is finitely
generated if there exists an exact sequence HX −→ M −→ 0 for some X in Tc, and M is
finitely presented if there exists an exact sequence HY −→ HX −→M −→ 0 with X and
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Y in Tc. We denote the full subcategory of finitely presented objects by modTc. Below we
list some basic facts about the category ModTc.

� Mod Tc is a locally coherent Grothendieck category, because any map Y −→ Z in
Tc has a weak kernel X −→ Y , i.e. the sequence HX −→ HY −→ HZ is exact.
Equivalently, the category modTc is abelian.

� A triangle L −→ M −→ N −→ ΣL is pure-exact iff the sequence 0 −→ HL −→
HM −→ HN −→ 0 is exact.

� The functor H restricts to an identification of the pure-injective objects of T with
the injective objects of ModTc [Kr3]. The (iso classes of) indecomposable injective
objects of Mod Tc form a set since every indecomposable injective Tc-module arises
as an injective hull of a finitely generated Tc-module. Therefore, the (iso classes of)
indecomposable pure-injective objects of T form a set which we denote by Zsp T.

We say that an object M of ModTc is absolutely pure if Ext1(F,M) = 0 for all
F ∈ modTc. For example, every functor HX with X an object of T is absolutely pure [Kr3,
1.6]. Clearly, every absolutely pure object M of ModTc is a cohomological functor on Tc.

The category of finitely presented Tc-modules, mod Tc, has enough injectives. Indeed,
every module HX with X compact is injective in modTc since it is absolutely pure.

Let F be an arbitrary object of modTc and let

HX
Hα−→ HY −→ F −→ 0

be a projective presentation of F with X and Y compact. Complete α to a triangle

X
α−→ Y −→ Z −→ ΣX.

Then,
0 −→ F −→ HZ −→ HΣX

is an injective presentation of F in modTc. Since Tc is closed under direct summands, the
functor H identifies compact objects with injectives in modTc.

The pure-injective objects in a triangulated category have a characterization similar to
that in [JeLe] of pure-injective modules.

Theorem 2.1 (Krause [Kr3]). An object L in T is pure-injective iff for every set I the sum-
mation map L(I) −→ L factors through the canonical map L(I) −→ LI from the coproduct
to the product.

Example. (1) Let ModΛ be the stable category of a QF-ring Λ. An object L in Mod Λ is
pure-injective iff it is a pure-injective Λ-module [Kr3, 1.16].

(2) Every endofinite object in T (in the sense of [Kr2, KR]) is pure-injective [KR]. For
example, every perfect complex P in D(Λ) over an artin algebra Λ is endofinite, because the
cohomology Hn(P ) is an endofinite module for each n ∈ Z.

Below we shall show that any complex L[n] concentrated in the −nth degree with L a
pure-injective R-module is a pure-injective object in the derived category D(R).

We call a map ϕ : X −→ X̂ a pure-injective hull of X if ϕ is a pure monomorphism,
X̂ is pure-injective and every endomorphism ψ of X̂ satisfying ψϕ = ϕ is an isomorphism.
Every object X in T admits a pure-injective hull ϕ : X −→ X̂ since ϕ : X −→ X̂ is a
pure-injective hull iff Hϕ : HX −→ H

bX is an injective hull in ModTc [Kr3, 1.12] and since
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Mod Tc has injective hulls. If ϕ′ : X −→ X̂ ′ is another injective hull, then there exists an
isomorphism ψ : X̂ −→ X̂ ′ such that ϕ′ = ψϕ [Kr3].

Lemma 2.2. A pure-injective object X of T is indecomposable iff the endomorphism ring
EndT X of X is local.

Proof. By [Kr3, 1.8] EndT X = EndMod Tc HX . Since HX is injective in Mod Tc the assertion
follows from the fact that an injective object in a functor category is indecomposable iff its
endomorphism ring is local. �

Theorem 2.3 (as Herzog [He2]). A pure-injective hull M̂ of a compact object M is inde-
composable iff the endomorphism ring EndT M of M is local. If, furthermore, N is another
compact object such that N̂ ' M̂ then N 'M .

Proof. We repeat Herzog’s arguments for the convenience of the reader. The modTc-
injective object HM has a local endomorphism ring Endmod Tc HM = EndT M and hence is
indecomposable. Because the category modTc has enough injectives, HM is, therefore, a
uniform modTc-object. Hence it is uniform in Mod Tc and so its injective hull E(HM ) = H

cM

is indecomposable.
On the other hand, if M̂ is indecomposable then the injective Tc-module H

cM
is inde-

composable. Hence HM ≤ H
cM

is a uniform modTc-injective. The proof of [St, V.5.1] then
shows that EndT M is a local ring.

If furthermore N is another compact object such that N̂ ' M̂ , then both HN and HM

are essential extensions of some finitely generated, hence finitely presented, subobject F .
Then HN ' Emod Tc(F ) ' HM . So N 'M , as claimed. �

Below we shall need the following lemma.

Lemma 2.4. Let X −→ Y −→ Z −→ X[1] be a pure-exact triangle of complexes in the
derived category D(R) of a ring R. Then the sequence of R-modules 0 −→ Hn(X) −→
Hn(Y ) −→ Hn(Z) −→ 0 is pure-exact for all n ∈ Z.

Proof. By assumption, the sequence

ε : 0 −→ HX −→ HY −→ HZ −→ 0

is exact in ModP, where P is the category of perfect (=compact) complexes in D(R).
By [Kr4, 2.8] ε = lim−→ εi is a direct limit of split exact sequences

εi : 0 −→ HXi
−→ HYi

−→ HZi
−→ 0

with Xi, Yi, Zi some complexes in D(R). Since Hn(X) = HX(R[−n]) for any complex X,
we see that the short exact sequence

Hn(ε) : 0 −→ Hn(X) −→ Hn(Y ) −→ Hn(Z) −→ 0

is the direct limit Hn(ε) = lim−→Hn(εi) of split exact sequences

Hn(εi) : 0 −→ Hn(Xi) −→ Hn(Yi) −→ Hn(Zi) −→ 0,

so is pure, as required. �
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The Ziegler spectrum of the category T has for its points those of the set Zsp T. The
Ziegler topology for ModR was originally defined in terms of pp formulas, equivalently in
terms of the pp-definable subgroups (=subgroups of finite definition) that such formulas
define. We will show that it may be defined in the same way for compactly generated
triangulated categories. If we are to make sense of pp formulas in this context we must set
up an appropriate language for T: this will be done below.

Let α : G −→ H be a morphism in Tc. Then for any M in T we have the induced map
T(α,M) : T(H,M) −→ T(G,M) given by composition with α. We write Mα for the image
of T(α,M) and refer to this as a subgroup of finite definition of M of sort G.

Define an order on such functors (M 7→ Mα) by setting β ≤ α, where α : G −→ H and
β : G −→ K are in Tc, if for every M in T we have Mβ ≤ Mα. Taking M = K we obtain
the following.

Lemma 2.5. Given α : G −→ H and β : G −→ K in Tc, we have β ≤ α iff there is
ν : H −→ K with β = να.

We will show that these subgroups of finite definition coincide with the pp-definable
subgroups in the natural language for T.

3. The language of a compactly generated triangulated category

Let T be a compactly generated triangulated category and let Tc be the subcategory of
compact objects. In this section we define a corresponding (multi-sorted) language for T.

For each object G in Tc we introduce a sort and we say, for X in T, that the elements
of X of sort G are the elements of T(G,X). We equip each sort with a symbol for addition
and a symbol for 0. Any given variable ranges over the elements of a single sort and we use
a subscript to denote that sort: thus vG, when interpreted in X, is a variable for elements
of T(G,X).

For each morphism α : G −→ H in Tc we introduce a function symbol which, when
interpreted, will be the map which we have seen just above, “composition with α”, from
sort H to sort G. We will use the same symbol for the function symbol as for the function
(as usual).

Denote the resulting language by LT. We will call this language the canonical language
of T.

Let Ax(T) be a set of axioms expressing the positive atomic diagram (the “addition and
multiplication tables”) of Tc, including the specification that all functions are additive. For
example if α : G −→ H and β : H −→ K are in Tc and if γ = βα then we put the
axiom ∀vK(vKγ = vKβα) into Ax(T). Then it is easy to see that the category of models
for Ax(T) (where the morphisms are the LT-structure-preserving maps) is the category of
right Tc-modules – that is, the category, Mod Tc, of functors. We regard the objects of T as
structures for this language via the functor H which takes X to T(−, X) (recall that H is
faithful on objects, though not on morphisms).

Thus we have a multi-sorted first order language and so all the usual definitions and
theorems of model theory apply. In particular we define pp formulas in the usual way (as
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formulas in the closure of the set of equations under conjunction and existential quantifica-
tion) and so obtain a notion of “pp-definable subgroup” (the set of solutions of a pp formula)
of an object of T.

Note that what we termed the subgroups of finite definition are exactly those which are
definable by a pp formula of the form “α | vG” that is, of the form “∃vH(vG = vHα)” where
α : G −→ H is in Tc.

Proposition 3.1. Every pp formula in the language of T is equivalent to one of the form
α | v.

Proof. First we show that every quantifier-free formula vGβ = 0 is equivalent to one of the
given form (since Tc is closed under finite direct sums we may always suppose that a formula
has at most a single free variable). We use the fact that Tc has pseudocokernels.

Suppose that β : K −→ G is in Tc. Complete β to a triangle in Tc

K
β−→ G

α−→ H −→ ΣK.

Then α : G −→ H is a pseudocokernel of β in Tc. The formula vGβ = 0 is equivalent to
α | vG. For if α | vG (read vG now as a typical element of sort T(G,−)), say vG = vHα,
then vGβ = vHαβ = 0 and, conversely, if vGβ = 0 then, by definition of pseudocokernel, we
have that vG factors through α, as required.

Now take a general pp formula with free variable vG: ∃vG′(vGβ + vG′β′ = 0). This
is equivalent to the formula ∃vG′(vG, vG′)(β, β′)T = 0 where (vG, vG′) is regarded as a
variable of type G ⊕ G′ and where (β, β′)T is the obvious map to G ⊕ G′. By the above
(vG, vG′)(β, β′)T = 0 is equivalent to a formula of the form α1 | (vG, vG′) for some morphism
α1 = (α, α′) : G⊕G′ −→ H in Tc. So our original formula is equivalent to ∃vG′∃vH(vHα1 =
(vG, vG′)) that is, to ∃vH∃vG′(vHα = vG ∧ vHα

′ = vG′) which, in turn, is equivalent to
∃vH(vHα = vG), as required. �

As a consequence of the preceding proposition we see that pp-definable subgroups coincide
with what we called subgroups of finite definition.

Since Tc has pseudokernels then, as in the first part of the proof above, every divisibility
formula α | v is equivalent to an annihilation formula (one of the form vβ = 0). Thus one
obtains elimination of quantifiers in the canonical language of T.

Proposition 3.2. Let T be a compactly generated triangulated category. Then T has elim-
ination of quantifiers in its canonical language.

We could now try to mimick the usual definition of the Ziegler topology on the set Zsp T

of indecomposable pure-injective objects in T by taking as basic open sets those of the form
(α/β) = {N ∈ Zsp T | Nα > Nβ} where α, β are morphisms in Tc with the same domain
and with α > β. It is not immediately clear, however, that we do get a basis for a topology:
given N ∈ (α/β) ∩ (α′/β′) is there (α′′/β′′) with N ∈ (α′′/β′′) ⊆ (α/β) ∩ (α′/β′)?

We will resolve this indirectly as follows. One can define the Ziegler topology by using
coherent functors on T, as has been done in [Kr4], and one can show that the above basis
property holds if we use coherent functors. Then we show that the topologies coincide. We
shall show, moreover, that every basic open set (α/β) coincides with an open set of the form
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(δ) = {N ∈ Zsp T | δ(N) 6= 0} where δ is a pp formula. Thus the Ziegler topology can be
defined by using single pp formulas rather than pairs of formulas.

4. Coherent functors

Let T be a compactly generated triangulated category. A functor C : T −→ Ab to the
category of abelian groups is said to be coherent if there exists an exact sequence

T(A,−) −→ T(B,−) −→ C −→ 0

where A and B are compact objects. This notion extends that of coherent functor on the
category of modules ModR [Au]. The collection of all coherent functors T −→ Ab we denote
by coh T. The category cohT is abelian if we take as maps the natural transformations.

We say that a full subcategory C of T is definable if C = {X ∈ T | Ci(X) = 0 for all i ∈
I} for some family (Ci)i∈I of coherent functors. A subset U in Zsp T is Ziegler-closed if
U = C ∩ Zsp T for some definable subcategory C of T.

Theorem 4.1 (Krause [Kr4]). There are bijections between

� the set of definable subcategories C of T,
� the set of Ziegler-closed subsets U of Zsp T,
� the set of Serre subcategories S of coh T.

These bijections are defined as follows:

C 7→
{

U = C ∩ Zsp T

S = {C ∈ coh T | C(X) = 0 for all X ∈ C}

U 7→
{

C = {X ∈ T | there are Yi ∈ U and a pure triangle X →
∏

i Yi → Z → ΣX}
S = {C ∈ coh T | C(X) = 0 for all X ∈ U}

S 7→
{

C = {X ∈ T | C(X) = 0 for all C ∈ S}
U = {X ∈ Zsp T | C(X) = 0 for all C ∈ S}

The collection of Ziegler-closed subsets of Zsp T satisfies the axioms for the closed sets of a
topology on Zsp T. This topological space is called the Ziegler spectrum of T.

Corollary 4.2. The collection of subsets of Zsp T

O(C) = {N ∈ Zsp T | C(N) 6= 0}

with C ∈ coh T is a basis of open subsets of the Ziegler spectrum.

Proof. Clearly these sets are open. Every open subset in Zsp T is of the form

O(S) = {N ∈ Zsp T | C(N) 6= 0 for some C ∈ S}

with S a Serre subcategory in cohT. Then O(S) =
⋃

C∈S O(C), as required. �

The correspondence of Theorem 4.1 is proved by using the category of finitely presented
objects, modTc, of the category ModTc and duality. Given a finitely presented object F in
Mod Tc we define a coherent functor DF : T −→ Ab by

DF (X) = Hom(F,HX).

The assignment F 7−→ DF puts the categories modTc and coh T in duality [Kr4, 7.2]. In
particular, the functor D sends Serre subcategories of modTc to those of cohT.
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Let SpMod Tc denote the set of (iso classes of) indecomposable injective objects in
Mod Tc. As we have said already the functor H : T −→ Mod Tc restricts to an identifi-
cation of the pure-injective objects in T with the injective objects in ModTc. In particular,
H identifies the set Zsp T with the set, SpMod Tc, of indecomposable injectives of ModTc.
The category ModTc is locally coherent. Therefore we can introduce the Ziegler topology
on Zsp T by applying the definition of the Ziegler topology for locally coherent categories
which is due to Herzog (see [He2, Kr1]). The closed subsets are defined as follows. Given a
Serre subcategory S in modTc a subset

(1) U(S) = {X ∈ Zsp T | Hom(S,HX) = 0}

is, by definition, a closed subset in Zsp T. The assignment S 7−→ U(S) induces a 1-1 cor-
respondence between the set of Serre subcategories of modTc and the set of closed subsets
of Zsp T (see [He2, Kr1]). Clearly, the set of closed subsets (1) coincides with the set of
Ziegler-closed subsets defined above in terms of coherent functors.

The following lemma gives a relationship between pp formulas and coherent functors.

Lemma 4.3. Suppose that ϕ is a pp formula. Then the assignment M 7−→ ϕ(M) defines
a coherent functor T −→ Ab, and any coherent functor arises in this way.

Proof. By Proposition 3.1 every pp formula in the language of T is equivalent to one of the
form α | vG with α : G −→ H a map in Tc. Complete α to a triangle

G
α−→ H −→ K −→ ΣG.

Then the functor M −→ ϕ(M) is the coherent functor M 7−→ Coker(T(K,M) → T(H,M)).
On the other hand, it is easy to see that every coherent functor arises as a functor

M 7−→ ϕ(M) with ϕ a pp formula. Indeed, given a coherent functor

T(K,−) −→ T(H,−) −→ F −→ 0

one can construct a triangle as above. Then the functor F is the coherent functor M −→
ϕ(M) with ϕ a pp-formula of the form α|vG. �

Theorem 4.4 (first statement as [Zie] for ModR). Let T be a compactly generated trian-
gulated category and suppose that N ∈ (α/β) ∩ (α′/β′) in Zsp T. Then there is a basic open
set (α′′/β′′) with N ∈ (α′′/β′′) ⊆ (α/β) ∩ (α′/β′). Moreover, for any subset (α/β) in Zsp T

there exists a pp formula δ such that (α/β) = (δ) = {N ∈ Zsp T | δ(N) 6= 0}.

Proof. By Lemma 4.3 we can choose coherent functors C and D such that O(C) = (α/β)
and O(D) = (α′/β′). By Corollary 4.2 there exists a basic open subset O(F ) in O(C)∩O(D)
containing N . Denote by δ a pp formula which corresponds to the coherent functor F . Then
N ∈ O(F ) = (δ), as required. �

Clearly, the Ziegler topology defined by pp formulas coincides with that defined by co-
herent functors. Below we shall freely use both definitions of the Ziegler topology on Zsp T.

We say that T is Krull-Schmidt if every compact object is a (finite) coproduct of objects
with local endomorphism ring. For example, the derived category D(Λ) of an artin algebra
Λ is Krull-Schmidt because every perfect complex is endofinite and therefore is a coproduct
of complexes with local endomorphism rings [Kr2, 1.2]. If T is Krull-Schmidt and M is
indecomposable compact, then its pure-injective hull M̂ is a point of Zsp T by Theorem 2.3.
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Proposition 4.5 (Herzog [He2]). Let T be Krull-Schmidt. The set of points having the
form M̂ with M a compact indecomposable is a dense subset of the Ziegler spectrum of T.

Proof. Let C ∈ modTc. There is a monomorphism in modTc of the form µ : C −→ HM

with M a compact object. By assumption HM '
∐n

i=1HMi
with every HMi

a uniform
object in ModTc. Then Hom(C,HMi) 6= 0 for some i ≤ n and therefore M̂i ∈ O(DC). �

5. Absolutely pure objects

In this section we introduce the class of absolutely pure objects in T. They share a
number of important properties with absolutely pure modules in ModR. We start with
some definitions.

Let R be a family of compact objects in T closed under suspension. A map X −→ Y in T

is said to be an R-monomorphism if the map T(C,X) −→ T(C, Y ) is a monomorphism for
all C in R. An object X in T is called R-injective if every R-monomorphism ϕ : X −→ Y

splits, i.e. there exists a map ψ : Y −→ X such that ψϕ = 1. For example, if R = Tc we
have the notions of pure monomorphism and pure-injective object. A triangle X −→ Y −→
Z −→ ΣX is called R-exact if the sequence 0 −→ T(C,X) −→ T(C, Y ) −→ T(C,Z) −→ 0
is an exact sequence for all C ∈ R. We say that X ∈ T is R-absolutely-pure if every R-
monomorphism X −→ Y is a pure monomorphism. That is, if whenever X −→ Y induces a
monomorphism T(C,X) −→ T(C, Y ) for all C ∈ R it does so for all C ∈ Tc. Clearly, a pure-
injective object is R-injective iff it is R-absolutely pure. We also note that any coproduct of
R-absolutely pure objects is R-absolutely pure.

Suppose R is a generating set. If there is no liklihood of confusion we refer to the
corresponding R-absolutely pure and R-injective objects as well as to R-monomorphisms
and R-exact triangles as absolutely pure and injective objects, and as monomorphisms and
exact triangles respectively, omitting the prefix R. We call a map ϕ : X −→ Y an injective
hull of X if ϕ is a monomorphism, Y is injective and every endomorphism ψ of Y satisfying
ψϕ = ϕ is an isomorphism. Every object X in T admits an injective hull ϕ : X −→ Y and
if ϕ′ : X −→ Y ′ is another injective hull, then there exists an isomorphism ψ : Y −→ Y ′

such that ϕ′ = ψϕ [GaPr]. Therefore, an object X is absolutely pure iff any monomorphism
ϕ : X −→ Y with Y injective is a pure monomorphism.

Below we shall work with monogenic triangulated categories. If X is a generator of T we
consider the generating set R = {ΣnX}n∈Z. Let S denote the Z-graded ring T(X,X)∗ =⊕

n∈Z T(ΣnX,X). We retain this notation throughout the section. If E is an injective
S-module, then the functor

HomS(T(X,−)∗, E) : T −→ Ab

takes triangles to exact sequences and it takes direct sums to products. Brown’s Repre-
sentability Theorem in triangulated categories [Ne2] implies that there exists a representing
object ΓE and a natural isomorphism

HomS(T(X,Y )∗, E) ' T(Y,ΓE)

for Y ∈ T. The assignment E −→ ΓE yields a fully faithful functor

Γ : InjS −→ T.

This Γ identifies injective S-modules InjS and (R-)injective objects Inj T in T (see [GaPr]).
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Example. (1) Let R = {R[n]}n∈Z be the generating set in D(R), where R[n] is the complex
concentrated in the −nth degree. Since

Hn(X) = D(R)(R[−n], X)

for any complex X, we see that X −→ Y is a (R-)monomorphism in D(R) iff the induced
map of cohomology groups Hn(X) −→ Hn(Y ) is a monomorphism for all n ∈ Z. A
complex X is injective iff it is a complex of the form

∐
n∈ZQ

n[−n] with the Qn injective
R-modules. An injective hull of a complex X is constructed as follows. We take injective
hulls Hn(X) −→ Qn of all cohomology groups of X. Then there exists a monomorphism
X −→

∐
n∈ZQ

n[−n] which is an injective hull as well (see [GaPr] for details).
(2) A map M −→ N in the stable category ModΛ of a QF-ring Λ is a monomorphism

(with respect to the generating set described before) iff the induced map

Êxtn
Λ(S,M) −→ Êxtn

Λ(S,N)

is a monomorphism for all simple modules S and n ∈ Z.
(3) Let X be a spectrum in Ho(S) and let πn(X) = Ho(S)(Sn, X) denote its stable

homotopy groups. A morphism of spectra X −→ Y is a monomorphism iff the induced map
πn(X) −→ πn(Y ) is a monomorphism for all n ∈ Z.

A result originally proved by Eklof and Sabbagh for module categories [ES] is the follow-
ing.

Theorem 5.1. Let T be a monogenic triangulated category with a generator X. Then the
class Abs T of absolutely pure objects of T is definable iff the ring S is right coherent.

Proof. The ring S is right coherent iff the set SpT of indecomposable injective objects in
T is a closed subset in Zsp T [GaPr]. Since every object X of T admits a monomorphism
X −→

∏
iEi with Ei ∈ SpT (see [GaPr]), our statement follows from Theorem 4.1. �

Below we describe absolutely pure complexes in the derived category D(R). The genera-
tor X we take to be R[0] as above. So S = T(X,X)∗ ' R. Let P be the category of perfect
complexes (=compact objects) in D(R) and let H : D(R) −→ Mod P be the functor sending
a complex X to the object D(R)(−, X)|P. We say that two complexes X and Y are homo-
logically isomorphic and write X 'hom Y if the functors HX and HY are isomorphic in
Mod P.

Theorem 5.2. All cohomology groups Hn(X), n ∈ Z, of an absolutely pure complex X ∈
D(R) are absolutely pure modules. If, moreover, R is a right coherent ring, then the following
are equivalent:

(1) X is absolutely pure;
(2) X 'hom

∐
n∈Z Y

n[−n] with the Y n absolutely pure modules.

The equivalent conditions (1)–(2) hold iff X is homologically isomorphic to the coproduct of
its cohomology groups

∐
n∈ZH

n(X)[−n] and each Hn(X) is an absolutely pure module.

Let X be an absolutely pure complex and let ϕ : X −→ Q =
∐

n∈ZQ
n[−n] be its injective

hull. Each Qn is an injective hull of the nth cohomology group Hn(X). Since ϕ is a pure
monomorphism, each Hn(X), n ∈ Z, is an absolutely pure submodule of Qn by Lemma 2.4,
and hence is itself absolutely pure.
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To prove the remainder of the theorem we need some preparation.
Recall that a Serre subcategory S of ModP is localizing if it is closed under taking

direct limits. Equivalently, the inclusion functor j : S −→ Mod P admits the right adjoint
t = tS : ModP −→ S which takes every object X ∈ Mod P to the maximal subobject
t(X) of X belonging to S. The functor t we call the torsion functor. An object C of
Mod P is said to be S-torsionfree if t(C) = 0. Given a localizing subcategory S of ModP

the quotient category, Mod P/S, is the full subcategory on those C ∈ Mod P such that
Hom(S, C) = Ext1(S, C) = 0. The objects from ModP/S we call S-closed objects. For
any C ∈ Mod P there exists a canonical exact sequence

(2) 0 −→ A′ −→ C
λC−→ CS −→ A′′ −→ 0

with A′ = t(C), A′′ ∈ S, and where CS ∈ Mod P/S is the maximal essential extension
of C̃ = C/t(C) such that CS/C̃ ∈ S. The object CS is unique up to isomorphism. and
the morphism λC : C −→ CS is called the S-hull of C. The S-hull has the property that
given any morphism α : C −→ W with W an S-closed object, there is a unique morphism
αS : CS −→W such that αSλC = α.

Thus the inclusion functor i : ModP/S −→ Mod P has the left adjoint localizing functor
(−)S : ModP −→ Mod P/S which takes each C ∈ Mod P to CS ∈ Mod P/S. There is an
isomorphism

Hom(X,Y ) ' Hom(XS, Y )

for all X ∈ Mod P and Y ∈ Mod P/S. The functor (−)S is exact. We say that S is of finite
type if the inclusion functor i : ModP/S −→ Mod P preserves direct limits.

Let ModR denote the category of contravariant functors defined on R = {R[n]}n∈Z. Then
Mod R is equivalent to the quotient category ModP/S with S the localizing subcategory
{F ∈ Mod P | F (R) = 0} [G].

Since

D(R)(R[n], R[m]) =
{
R, n = m
0, n 6= m

the functor

Mod R −→ (ModR)Z =
∏
Z

ModR

M 7−→ (Mn)n∈Z, Mn = M(R[n])

is an equivalence of categories. Below we shall consider this equivalence as an identification.
The image of a functor F under the localization functor (−)S : Mod P −→ Mod P/S

is isomorphic to the S-localization of the functor H
eF where F̃ is the complex with zero

differential (F (R[n]), 0). We also notice that for any complex , (Mn, 0), with zero differential
the following relations hold in D(R):

M =
∐
n∈Z

Mn[−n] =
∏
n∈Z

Mn[−n],

where Mn[−n] is the complex with Mn in the nth degree and zero in other degrees [GaPr].
It follows that an object of ModP is S-closed injective iff it is isomorphic to a functor of
the form HQ, where Q is a complex with zero differential (Qn, 0) whose components Qn are
injective R-modules. (Note that an object of (ModR)Z is injective iff each component if
injective.)
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Lemma 5.3. Let X be a complex and let f : HX −→ M be a morphism from HX to an
absolutely pure object M in Mod P. If f(R[n]) : H−n(X) −→ M(R[n]) is an isomorphism
of R-modules for all n ∈ Z, then f is an isomorphism.

Proof. Since both HX and M are cohomological functors on P, it follows by standard ar-
guments that f is still bijective evaluated on any perfect complex, since P is the thick
subcategory generated by R. This means that f is an isomorphism. �

Proof of Theorem 5.2. Suppose that R is right coherent. Then the localizing subcategory
S is of finite type [GaPr]. Let X be an absolutely pure complex and let ϕ : X −→ Q

be its injective hull. The object HQ is S-closed injective in ModP. Since ϕ is a pure
monomorphism, the object HX is a subobject of HQ, and hence is S-torsionfree. Moreover,
HX is absolutely pure in ModP. Since S is of finite type, it follows from [He2, 3.10] that
HX is an S-closed object. We claim that HX is isomorphic to the object H(Y n,0) with
Y n = Hn(X). We have already seen that each Y n is an absolutely pure module.

Indeed, the S-localization both of the object H(Y n,0) and of the object HX is (H(Y n,0))S.
Since HX is S-closed, it is isomorphic to (H(Y n,0))S. By (2) we obtain an exact sequence

0 −→ A′ −→ H(Y n,0)
λ−→ HX −→ A′′ −→ 0

with A′ and A′′ in S. The map λ(R[n]) is an isomorphism for all n ∈ Z. From Lemma 5.3
it follows that λ is an isomorphism in ModP. Thus X is homologically isomorphic to the
complex

∐
n∈Z Y

n[−n], and the implication (1) =⇒ (2) follows.
(2) =⇒ (1). A sequence

0 −→ L −→M −→ N −→ 0

of ModP is pure-exact if the sequence

0 −→ Hom(F,L) −→ Hom(F,M) −→ Hom(F,N) −→ 0

is exact for each finitely presented F ∈ modP. Equivalently, the latter is a direct limit of
split exact sequences.

Let I denote the composed functor ModR
∼−→ Mod P/S

i−→ Mod P. Since S is of finite
type, I preserves direct limits. Let

ε : 0 −→ X1 −→ X2 −→ X3 −→ 0

be a pure-exact sequence in ModR. This sequence is a direct limit ε = lim−→ εk of split exact
sequences

εk : 0 −→ Y k
1 −→ Y k

2 −→ Y k
3 −→ 0.

Hence I(ε) = lim−→ I(εk) is a direct limit of split exact sequences I(εk) and is therefore pure-
exact in ModP.

Let us consider an object M = (Mn)n∈Z of ModR with the Mn absolutely pure modules.
Then it is an absolutely pure object in ModR. Consider the pure-exact sequence in ModR

ε : 0 −→M −→ Q −→ Z −→ 0

with Q = (Qn)n∈Z being an injective hull of M and Z = (Zn = Qn/Mn)n∈Z. It follows
that the sequence

I(ε) : 0 −→ I(M) −→ I(Q) −→ I(Z) −→ 0
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is pure-exact in ModP. Since Q is an injective object, it follows that I(Q) = H(Qn,0). In
particular I(Q) is an absolutely pure object in Mod P. So I(M), being a pure subobject,
also is absolutely pure in ModP. As above we see that H(Mn,0) is isomorphic to I(M) =
(H(Mn,0))S. It follows that H(Mn,0) is a subobject of H(Qn,0) and therefore the complex
M = (Mn, 0) =

∐
n∈ZM

n[−n] is absolutely pure in D(R).
It remains to check that any complex X homologically isomorphic to an absolutely pure

complex Y is absolutely pure. Indeed, let ϕ : Y −→ Q be an injective hull of Y (it exists
by [GaPr]). Then ϕ is a pure monomorphism. The composed map

HX
∼−→ HY

Hϕ−→ HQ

is represented by a map ψ : X −→ Q [Kr3, 1.8]. This ψ is plainly a pure monomorphism.
Therefore X is absolutely pure. The proof is complete. �

Corollary 5.4. Let R be a right coherent ring. A complex X is absolutely pure iff all its
cohomology groups Hn(X), n ∈ Z, are absolutely pure R-modules.

Proof. By the preceding theorem all cohomology groups Hn(X), n ∈ Z, of an absolutely
pure complex X are absolutely pure modules.

For the converse note that the proof of the implication (2) =⇒ (1) of the preceding
theorem shows that the S-localization of the object HX is isomorphic to H(Y n,0) where
Y n = Hn(X). Then the S-hull λ : HX −→ H(Y n,0) is an isomorphism by Lemma 5.3. Thus
X is homologically equivalent to the absolutely pure complex

∐
n∈Z Y

n. Theorem 5.2 then
yields the claim. �

6. The Ziegler spectrum of QF-rings and the stable module category

In the remaining sections we shall study the relationship between the Ziegler spectrum
ZspR of a ring and Ziegler spectra of related triangulated categories. We start with some
definitions.

The Ziegler spectrum ZspR of a ring R is defined as follows. Let CR = (Rmod,Ab)
denote the locally coherent category of additive covariant functors defined on the category,
Rmod, of finitely presented left R-modules with values in the category, Ab, of abelian
groups. The functor

?⊗R − : ModR −→ CR, Q 7−→ Q⊗R −,

identifies the pure-injectives in ModR with the injectives in CR. The collection of subsets

Ω(X) = {Q ∈ ZspR | (X,Q⊗R −) 6= 0},

where X ∈ fpCR is a finitely presented object in CR, forms a basis of open subsets for the
Ziegler topology on ZspR (see [Zie, He2, Kr1]). This topological space we call the Ziegler
spectrum of the ring R.

This topological space can also be defined by using coherent functors. A functor C :
ModR −→ Ab is coherent if there exists an exact sequence

(MR,−) −→ (NR,−) −→ C −→ 0

with M and N finitely presented. The collection of subsets

O(C) = {Q ∈ ZspR | C(Q) 6= 0}
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with C a coherent functor forms a basis of open subsets for a topology on ZspR and this
topological space coincides with the Ziegler spectrum defined above. An open subset O in
ZspR is quasi-compact iff it is one of the basic open subsets O(C) with C a coherent functor.

Let Λ be a QF-ring. The relationship between the Ziegler spectra Zsp Λ and Zsp Mod Λ
is easily established. For the most part we follow the paper of Benson and Krause [BK].

The Ziegler spectrum Zsp Λ is the disjoint union O
⋃

ZspΛ of the (finite) subset of inde-
composable projectives (=injectives) O and the subset ZspΛ of nonprojective elements of
Zsp Λ. Since every indecomposable projective has finite endolength each point P ∈ O is
closed. Such a point, being finitely presented and the injective hull of a simple module, is
also open (e.g. [PrPu, 3.7]). Therefore both O and ZspΛ are clopen in ZspΛ.

The Ziegler spectrum Zsp Mod Λ may be identified with ZspΛ because by [Kr3] it consists
of nonprojective pure-injective indecomposable Λ-modules. Let us show that the Ziegler
topology on Zsp Mod Λ coincides with the subspace topology induced from ZspΛ.

Given a coherent functor C : ModΛ −→ Ab, it follows that O(C) \O is a quasi-compact
subset of Zsp Λ since O(C) is quasi-compact and O is finite clopen in Zsp Λ. So there exists
a coherent functor D such that O(D) = O(C) \ O. By construction, D vanishes on every
projective module. One can show that D has a presentation of the form

(3) HomΛ(Y,−) −→ HomΛ(X,−) −→ D −→ 0

with X and Y finitely generated. So D is a coherent functor on Mod Λ and we see that
O(D) = O(C) ∩ Zsp Mod Λ.

On the other hand, each coherent functor (3) gives a coherent functor C = D◦π vanishing
on projectives where π : ModΛ −→ Mod Λ is the natural functor. Then O(D) = O(C) ∩
Zsp Mod Λ.

Thus the following statement is true.

Proposition 6.1. The Ziegler spectrum Zsp Λ of a QF-ring Λ is homeomorphic to the
disjoint union

Zsp Λ ' O
⊔

Zsp Mod Λ

of the finite clopen subset O consisting of indecomposable projectives and the Ziegler spec-
trum, Zsp Mod Λ, of the stable category Mod Λ.

7. The Ziegler spectra ZspR and ZspD(R)

In this section we study the relationship between the Ziegler spectra ZspR and ZspD(R).
Let In : ModR −→ D(R) be the functor that takes a module M to the complex M [−n]

concentrated in the nth degree. The functor In gives an equivalence between ModR and
the full subcategory of D(R) consisting of those complexes X such that Hi(X) = 0 for all
i 6= n. On the other hand, let Hn : D(R) −→ ModR denote the functor sending a complex
X to its nth cohomology group Hn(X).

Proposition 7.1. Let X be a pure-injective complex in D(R). Then each cohomology
group Hn(X) is a pure-injective module. On the other hand, every complex Q[−n] with Q
a pure-injective module is pure-injective in D(R).

Proof. A module M is pure-injective iff for every set I the summation map M (I) −→M fac-
tors through the canonical map M (I) −→M I . Since the cohomology functor Hn preserves
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both products and coproducts, it sends pure-injective complexes to pure-injective modules
by Theorem 2.1.

On the other hand, the functor In commutes with products and coproducts, as one easily
sees. By Theorem 2.1 we deduce that In transfers pure-injective modules to pure-injective
complexes. �

A compactly triangulated category T is pure-semisimple if every object of T is pure-
injective.

Corollary 7.2. If the derived category D(R) of ModR is pure-semisimple then R is a right
pure-semisimple ring.

Remark. The converse is not true. For example, let Λ be a representation finite and
of infinite global dimension artin algebra. Then the derived category D(Λ) is not pure-
semisimple [Bel1, 12.16].

As a consequence of Proposition 7.1 we get that In maps the set ZspR of indecomposable
pure-injective modules to indecomposable pure-injective complexes of ZspD(R). We also
denote this map by In. Its image {Q[−n] | Q ∈ ZspR} will be denoted by ZspnR. We may
view this map In as an identification.

Theorem 7.3. The following statements are true for a ring R.

(1) Each ZspnR, n ∈ Z, is a closed subset in ZspD(R);
(2) If R is right coherent and every finitely presented module is of finite projective di-

mension, then In induces a homeomorphism between ZspR and each of its images,
ZspnR, in ZspD(R);

(3) The disjoint union
⋃

n∈Z ZspnR is a closed subset in ZspD(R). Its open complement
X consists of the indecomposable pure-injective complexes having at least two non-
zero cohomology groups. Thus the following relation between the Ziegler spectra
ZspR and ZspD(R) holds:

ZspD(R) = X ∪
⋃

n∈Z

ZspnR.

Proof. (1). For each i ∈ Z, we consider the closed set

[vi = vi] = (vi = vi)c = {X ∈ ZspD(R) | Hi(X) = 0},

where vi denotes a variable of sort R[−i]. The intersection U =
⋂

i 6=n[vi = vi] is a closed
subset in ZspD(R). Clearly, a complex X is in U iff X ' Hn(X)[−n]. By the preceding
proposition we see that U = {Q[−n] | Q ∈ ZspR}. Hence ZspnR is a closed subset in
ZspD(R).

(2). Suppose now that the ring R is right coherent and that every finitely presented
module is of finite projective dimension. Then every complex M [−n] with M a finitely
presented module is a perfect complex in D(R). We must show that the Zigler topology
on ZspnR = {Q[−n] | Q ∈ ZspR} coincides with the subspace topology induced from
ZspD(R).

Let C : ModR −→ Ab be a coherent functor and let Ω(C) = {Q ∈ ZspR | C(Q) 6= 0}
be a basic open subset in ZspR. There exists an exact sequence

(MR,−)
(α,−)−→ (LR,−) −→ C −→ 0
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with M and L finitely presented and α : L −→ M a morphism. We consider the perfect
complexes M [−n] and L[−n] and the coherent functor F : D(R) −→ Ab defined by the
following exact sequence where α∗ is induced by α:

(M [−n],−) α∗

−→ (L[−n],−) −→ F −→ 0.

Then O(F ) = {X ∈ ZspD(R) | F (X) 6= 0} is a basic open subset in ZspD(R) and Ω(C) =
O(F ) ∩ ZspnR.

Conversely, suppose that F : D(R) −→ Ab is a coherent functor. We claim that the
restriction, F̃ = F |Mod R, of F to ModR is a coherent functor ModR −→ Ab (here ModR
is viewed as the full subcategory of complexes M [−n] concentrated in the nth degree). To
show this we use the fact that a functor from ModR to Ab is coherent iff it commutes
with products and direct limits. Obviously, F̃ commutes with products. Let y : ModR −→
Mod P, where P is the category of perfect (=compact) complexes in D(R), be the functor
that sends a module M to the functor D(R)(−,M [−n])|P. The functor y factors through In.
By [CKN, 1.3] y commutes with direct limits. Let {Mi}i∈I be a direct system of modules
with limit M . The complex M [−n] is the homology colimit, in the sense of [Kr4], of the
complexes Mi[−n]. By [Kr4, 5.1] F respects homology colimits. It then follows that F̃
preserves direct limits. So F̃ is a coherent functor and hence O(F ) ∩ ZspnR = Ω(F̃ ).

(3). Given m,n ∈ Z let Omn denote the open subset (vm = vm)∩(vn = vn). By definition,
a complex X belongs to Omn iff the cohomology groups Hm(X) and Hn(X) are non-zero.
It is clear that

X = ZspD(R) \
⋃

n∈Z

ZspnR =
⋃

m6=n

Omn,

as required. �

Remark. The disjoint union
⋃

n∈Z ZspnR is a proper subset of ZspD(R) in general. The
following example shows this.

Consider the finite-dimensional algebra R, over an algebraically closed field k, which is
the path algebra of the quiver A10

1 α1−→ 2 α2−→ 3 −→ · · · −→ 9 α9−→ 10

with the relation α8α7 · · ·α1 = 0. The algebra R is a quotient of k[A10] and thus is of finite
representation type.

Let S be the path algebra of the quiver

2 → · · · → 8 → 9 → 10
↓
1

So S is of infinite representation type. Then the derived categories D(R) and D(S) are
triangle equivalent [CKN]. This equivalence induces a homeomorphism of Ziegler spec-
tra, ZspD(R) ' ZspD(S). Since we have finitely many indecomposable pure-injective R-
modules, we see that

⋃
n∈Z ZspnR is a countable set. On the other hand, suppose that k is an

uncountable field. Then ZspS is uncountable and therefore ZspD(R) ' ZspD(S) ⊃ Zsp0 S

is uncountable as well.

By a theorem of Herzog [He1] there is an isomorphism between the topologies, that is the
algebras of open sets, of the Ziegler spectra ZspR and ZspRop. Similarly, we can construct
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an isomorphism between the algebras of open sets of the Ziegler spectra ZspD(R) and
ZspD(Rop). We do this in the following way.

Consider two compactly generated triangulated categories S and T. Suppose that there
is a duality D : Sc −→ Tc between the corresponding subcategories of compact objects Sc

and Tc. This induces an equivalence of categories

Θ : mod Sc ∼−→ Tc mod,

where Tc mod is the abelian subcategory of finitely presented objects of the category, (Tc,Ab),
of additive covariant functors on Tc.

Let ∆ denote the functor sending an object M of Tc mod to an object of modTc defined
by

∆(M)(X) = Hom(M,HX)

with X ∈ Tc and HX = T(X,−)|Tc . Then ∆ puts the categories Tc mod and modTc in
duality. Indeed, the categories of flat and absolutely pure Tc-modules coincide [Bel2, Kr3].
Therefore ∆ is a duality by [G, 8.14] (every small triangulated category is weakly quasi-
Frobenius in the sense of [G]). It follows that the composite functor Γ = ∆ ◦ Θ yields a
duality between the categories mod Sc and mod Tc.

Let L be a Serre subcategory in mod Sc. It is clear that the subcategory

ΓL = {Γ(M) |M ∈ mod Sc}

of mod Tc is also Serre and that the restriction to L of Γ gives a duality Γ : L −→ ΓL.
Moreover, the map O(L) −→ O(ΓL) induced on the open subsets of the Ziegler spectra
Zsp S and Zsp T is an inclusion-preserving bijection (cf. [He2, 3.8]). We summarize all of
this as follows.

Theorem 7.4 (cf. [He2]). Suppose that there is a duality between Sc and Tc. Then the
functor Γ defined above yields an inclusion-preserving bijective correspondence between the
Serre subcategories of mod Sc and those of modTc given by L −→ ΓL. The induced map
O(L) −→ O(ΓL) is an isomorphism between the topologies, that is, the respective algebras
of open sets, of the Ziegler spectra Zsp S and Zsp T.

We apply the preceding theorem to compare the Ziegler spectra ZspD(R) and ZspD(Rop).
For this, we consider the equivalence

(projR)op −→ projRop, P 7−→ DP = HomR(P,R),

which induces an equivalence

D : Hb(projR)op −→ Hb(projRop).

Here Hb(projR) stands for the homotopy category of bounded complexes of objects in
projR. The duality D induces a duality between the categories of perfect (=compact)
complexes P(R) and P(Rop) in D(R) and D(Rop) respectively, since Hb(projR) and P(R)
are naturally equivalent. By the above D induces a duality

Γ : mod P(R) −→ modP(Rop).

The preceding theorem implies the following.
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Corollary 7.5. Let R be a ring. There is an inclusion-preserving bijective correspondence
between the Serre subcategories of modP(R) and those of modP(Rop) given by L −→ ΓL.
The induced map O(L) −→ O(ΓL) is an isomorphism between the topologies, that is, the
respective algebras of open sets, of the Ziegler spectra ZspD(R) and ZspD(Rop).

8. ZspD(R) of hereditary and von Neumann regular rings

We finish the paper by describing the Ziegler spectra ZspD(R) for hereditary and von
Neumann regular rings.

By a result of Neeman [Ne1], any complex X in D(R) over a right hereditary ring R is
isomorphic to the coproduct of its cohomology groups

∐
n∈ZH

n(X)[−n].

Theorem 8.1. Let R be a right hereditary ring. A complex X is pure-injective in D(R) iff
it is a complex of the form

∐
n∈ZQ

n[−n] with the Qn pure-injective R-modules. Moreover,
the Ziegler spectrum of the derived category D(R) is homeomorphic to the disjoint union

ZspD(R) '
⊔

n∈Z

ZspR

of countably many copies of ZspR.

Proof. The first part of the theorem follows from Proposition 7.1 and the fact that a coprod-
uct of the form

∐
Mn[−n] is isomorphic to the product

∏
Mn[−n] (e.g. see [GaPr, 3.9]).

Since every indecomposable pure-injective complex is of the form Q[−n] for some Q ∈ ZspR,
each subset ZspnR is the basic open (vn = vn) in ZspD(R), where vn is a variable of sort
R[−n]. Every right hereditary ring is right coherent and every finitely presented module is
of projective dimension at most one. It remains to apply Theorem 7.3. �

The Ziegler spectrum ZspD(R) of a von Neumann regular ring is similarly characterized
(see below). First we need the following result.

Theorem 8.2. For a ring R the following are equivalent:

(1) R is von Neumann regular;
(2) every pure-injective complex is injective;
(3) every complex is absolutely pure;
(4) the functor Mod P −→ Mod R = (ModR)Z =

∏
Z ModR sending an object F of

Mod P to (F (R[n]))n∈Z is an equivalence of categories.

If the equivalent conditions (1)–(4) hold, then every complex X in D(R) is homologically
isomorphic to the coproduct of the cohomology groups

∐
n∈ZH

n(X)[−n]. Each of these is
an absolutely pure R-module.

Proof. (1) =⇒ (2). From [GaPr] it follows that a complex X is injective in D(R) iff all
its cohomology groups Hn(X) are injective modules. Then use Proposition 7.1 and the
fact that a ring is von Neumann regular iff every (indecomposable) pure-injective module is
injective.

(2) =⇒ (3). A complex X is absolutely pure iff there is an injective object Q and a pure
monomorphism X −→ Q. By assumption, a pure-injective hull of an arbitrary complex X
is injective.
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(3) =⇒ (1). Let M be an R-module; then the complex M [0] is absolutely pure. By
Theorem 5.2 M = H0(M [0]) is an absolutely pure module and therefore R is von Neumann
regular.

(2) ⇐⇒ (4). The category ModR is the quotient category of ModP with respect to
the localizing subcategory S = {F ∈ Mod P | F (R[n]) = 0 for all n ∈ Z }. The composed

functor ModP
(−)S−→ Mod P/S

∼−→ Mod R is an equivalence iff every injective object in Mod P

is S-closed. The injectives of ModP are of the form HX with X a pure injective complex
and the S-closed injectives are the objects of the form HQ with Q an injective complex, so
the equivalence is clear.

The fact that every complex X in D(R) is homologically isomorphic to the coproduct
of the cohomology groups

∐
n∈ZH

n(X)[−n] and that each of them is an absolutely pure
R-module follows from Theorem 5.2 (every von Neumann regular ring is coherent). �

Corollary 8.3. Let R be a von Neumann regular ring. A complex in D(R) is pure-injective
iff it is a complex of the form

∐
n∈ZQ

n[−n] with the Qn injective modules.

Proof. By [GaPr] injective complexes are the complexes of the form
∐

n∈ZQ
n[−n] with Qn

injective modules. The preceding theorem implies the claim. �

By [He2, 4.4] a ring R is von Neumann regular iff the functor M 7−→M ⊗R − from ModR
to CR is an equivalence. Let J be a two-sided ideal of a von Neumann regular ring R and
denote by SJ the Serre subcategory of modR ' fpCR which consists of finitely generated
summands of coproducts of finitely many copies of J , that is,

SJ = {P ∈ modR | P |J (n) for some n}.

Then SJ = S(R/J) = {P ∈ modR | HomR(P,R/J) = 0} [He2, 4.5]. Moreover, the maps

S 7−→ tS(R) and J 7−→ S(R/J)

give an inclusion-preserving bijective correspondence between the Serre subcategories S of
modR ' fpCR and the two-sided ideals J of R [He2, 4.6].

Thus the open subsets of the Ziegler spectrum of a von Neumann regular ring have the
form

O(J) = {E ∈ ZspR | HomR(J,E) 6= 0},

where J is a two-sided ideal.
Consider now the category ModR = (ModR)Z. Every Serre subcategory S of mod R may

be viewed as a Z-tuple (Sn)n∈Z of Serre subcategories of modR, one in each degree.

Theorem 8.4 (cf. [He2]). Let R be a von Neumann regular ring. There is an inclusion-
preserving bijective correspondence between the Serre subcategories S = (Sn)n∈Z of modP '
modR and the Z-tuples (Jn)n∈Z of two-sided ideals Jn of R given by the maps

(Sn)n∈Z 7−→ (tSn(R))n∈Z and (Jn)n∈Z 7−→ (S(R/Jn))n∈Z

which are mutually inverse.

We are now in a position to prove the following theorem.
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Theorem 8.5. Let R be a von Neumann regular ring. The Ziegler spectrum of the derived
category D(R) is homeomorphic to the disjoint union

ZspD(R) '
⊔

n∈Z

ZspR

of countably many copies of ZspR. Moreover, the open subsets of the Ziegler spectrum have
the form

(4) O((Jn)n∈Z) = {E ∈ ZspD(R) | D(R)(Jn[−n], E) 6= 0 for some n ∈ Z},

where (Jn)n∈Z is a Z-tuple of two-sided ideals of R.

Proof. By Corollary 8.3 every pure-injective complex is of the form
∐

n∈ZQ
n[−n] with the

Qn injective modules. Since any von Neumann regular ring is coherent and any finitely
presented module is projective, the proof of Theorem 8.1 applies to show that the Ziegler
spectrum of the derived category D(R) is homeomorphic to the disjoint union

ZspD(R) '
⊔

n∈Z

ZspR

of countably many copies of ZspR.
The open subsets of the Ziegler spectrum ZspR of R are of the form O(J) with J a

two-sided ideal of R (see above). It follows that the open subsets of ZspD(R) are of the
form (4). �
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