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Abstract

We present a geometrical version of Herbert’s Theorem determining
the homology classes represented by the multiple point manifolds of a
self-tranverse immersion. Herbert’s Theorem and generalizations can
readily be read off from this result. The simple geometrical proof is
based on ideas in Herbert’s paper. We also describe the relationship
between this theorem and the homotopy theory of Thom spaces.

1 Introduction

Suppose that f : M # N is a self-transverse immersion of M , a smooth com-
pact closed (n − k)-dimensional manifold, into N , a smooth n-dimensional
manifold without boundary. For integers r ≥ 1 we may define r-fold self-
intersection sets of f in N and in M :

Ir(f) = { y ∈ N | |f−1(y)| ≥ r } ⊆ N

Ĩr(f) = f−1(Ir(f)) ⊆ M.

It follows from the self-tranversality of f that these each of these sets is the
image of an immersion.

We recall the details in order to establish notation. Let

∆r(f) =
{ (x1, x2, . . . , xr) ∈ M r | f(x1) = f(x2) = . . . = f(xr), i 6= j ⇒ xi 6= xj }.
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By the self-transversality of f this is a submanifold of the cartesian product
M r of codimension (r− 1)n, i.e. of dimension r(n− k)− (r− 1)n = n− rk.
The symmetric group Σr acts freely on ∆r(f) by permuting the coordinates.
Factoring out by this action (and by the action of the subgroup Σr−1 acting
on the last (r − 1) coordinates) gives two compact (n− kr)-manifolds:

∆r(f) = ∆r(f)/Σr, ∆̃r(f) = ∆r(f)/Σr−1.

These are the multiple point manifolds of f in N and in M , respectively.
We may define immersions

θr(f) : ∆r(f) # N

θ̃r(f) : ∆̃r(f) # M,

by θr(f)[x1, x2, . . . , xr] = f(x1) and θ̃r(f)(x1, [x2, . . . , xr]) = x1, respec-
tively. By definition, the image of θr(f) is Ir(f) and the image of θ̃r(f) is
Ĩr(f). Furthermore there is a commutative diagram

∆r(f) N

∆̃r(f) M

-

-

? ?
θr(f)

θ̃r(f)

π f

where π is the r-sheeted covering given by π(x1, [x2 . . . , xr]) = [x1, . . . , xr].
Ralph Herbert in his thesis ([3]) obtained a formula relating the homol-

ogy classes in M and N represented by these immersions: the images of the
fundamental classes of the multiple point manifolds in M and in N . This
formula describes how the classes in M are determined by those in N to-
gether with the Euler class of the normal bundle of f . An alternative proof
was provided by Felice Ronga ([6]) based on some ideas of Daniel Quillen’s.
However, we wished to understand the geometrical ideas behind Herbert’s
proof and to relate these to the first author’s work on multiple points of
immersions and the homotopy of Thom complexes (see for example [1]).
Herbert’s proof appears long and complicated but the basic ideas are quite
simple.

2 Bordism groups of immersions

We write Immn−k(N) = Immk(N) for the bordism group of immersions
of compact closed (n − k)-manifolds in N , a manifold without boundary.

2



The group structure is induced by the union of immersions. This is both a
covariant functor on the category of smooth manifolds and immersions and
also a contravariant functor which is the reason for the dual notation.

For an immersion g : N1 # N2 the homomorphism Immn−k(N1) →
Immn−k(N2) is induced by composition with g. On the other hand, the
homomorphism g∗ : Immk(N2) → Immk(N1) is given by the pullback con-
struction on a representing immersion which is transverse to g. When g is an
embedding the pullback construction is just restriction to the submanifold
mapping to g(N1).

There is a natural product

Immk1(N)× Immk2(N) → Immk1+k2(N),

also given by a pullback construction, under which Imm∗(N) = ⊕kImmk(N)
has the structure of a graded ring so that Imm∗ is a contravariant functor
to the category of graded rings.

These definitions can be extended to manifolds N with boundary. In
this case Immk(N) denotes the bordism group of immersions f : M # N
of compact (n − k)-manifolds M in N such that f(∂M) ⊆ ∂N and M is
transverse to ∂N . The definition of a bordism between such immersions
involves the idea of a manifold with corners as described for example in
[5]. The functor Immn−k extends to the category of smooth manifolds with
boundary and immersions as above. However, the functor Immk extends
also to immersions which do not respect the boundaries (such as the tubular
neighbourhood of an immersion which we shall use).

For smooth manifolds N without boundary the dual covariant and con-
travariant view of this functor corresponds to Poincaré duality. To state
this precisely observe that an immersed (n− k)-manifold in N is a singular
manifold and so represents an element of the bordism group MOn−k(N).
This induces a homomorphism Immn−k(N) → MOn−k(N). On the other
hand, by the Pontrjagin-Thom-Wells Theorem ([7]),

Immk(N) ∼= [ΣKN+,ΣKMO(k)]

for sufficiently large K, where N+ denotes the one-point compactification
of N , MO(k) is the Thom space of the universal k-dimensional bundle,
γk : EO(k) → BO(k), and ΣK denotes the K-fold suspension functor. Now
the maps in the MO-spectrum induce a homomorphism

[ΣKN+, ΣKMO(k)] → [ΣKN+,MO(k + K)]

and [ΣKN+,MO(k + K)] is isomorphic to MOk(N) since K is large.
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Now the following commutative diagram gives the relationship with
Poincaré duality.

[ΣKN+, MO(k + K)] MOk(N)

[ΣKN+, ΣKMO(k)]

Immk(N)

Immn−k(N) MOn−k(N)

-

-

? ?

?

?

∼=

∼=

=

∼= Poincaré
duality

Poincaré duality is used in the statement of Herbert’s Theorem. This
diagram may be used to deduce Herbert’s Theorem from Theorem 2 stated
in the next section.

3 The formula

3.1 The double point case

We first give the formula for double point manifolds from which we shall
deduce the general case.

Proposition 1. Given a self-transverse immersion f : M # N of a smooth
compact closed (n − k)-dimensional manifold into a smooth n-dimensional
manifold without boundary, then

f∗[f ] = e + [θ̃2(f)] ∈ Immk(M)

where e is the Euler class e = i∗[i] where i : M → E(νf ) is the zero section
of the normal bundle of f .

Herbert observes (in the introduction to [3]) that the idea of this result
goes back to Whitney ([8]). The proposition states that the intersection of
M with a deformation of M in N is given by the intersection of M with a
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deformation of M in E(νf ) (the ‘near intersections’) plus the double point
set of f in M (the ‘distant intersections’). To achieve this result we factorize
f through a tubular neighbourhood of f .

Let F : E(νf ) # N be an immersed tubular neighbourhood of f which
is injective on each fibre of νf , where E(νf ) is the total space of the closed
unit ball normal bundle of f . Then

f∗[f ] = (F ◦ i)∗[f ] = i∗F ∗[f ].

Since F is automatically transverse to f , the class F ∗[f ] ∈ Immk(E(νf )) is
represented by the pullback F ∗f , an immersion g : L # E(νf ) of an (n−k)-
dimensional manifold which is given by

L = { (x, v) ∈ M × E(νf ) | f(x) = F (v) }
and

g(x, v) = v.

Notice that L = L1 t L2 where L1 = M = i(M) ⊆ M × E(νf ) and
L2 = { (x, v) ∈ M × Fx′(νf ) | x 6= x′ and f(x) = F (v) } where Fx(νf )
denotes the fibre over x. Then i∗[g|L1] = i∗[i] = e and a calculation shows
that the pullback of g|L2 is θ̃2(f) as required to prove the proposition.

To illustrate the proof consider the special case of the figure eight im-
mersion f : S1 # R2 of the circle S1 ⊆ C into the plane with a single double
point 0 = f(1) = f(−1). For an appropriate choice of F , the image of
g|L2 is {±1} × [−1, 1] ⊂ S1 × [−1, 1] = E(νf ). So in this case the pullback
i∗(g|L2) is just a pair of points mapping to {±1} ⊆ S1 as we expect.

3.2 The general result

Our main result is as follows.

Theorem 2. Given a self-transverse immersion f : M # N of a smooth
compact closed (n − k)-dimensional manifold into a smooth n-dimensional
manifold without boundary, then

f∗[θr(f)] = e.[θ̃r(f)] + [θ̃r+1(f)] ∈ Immrk(M).

To prove this observe that we may define a natural mapping θr : Immk(N) →
Immrk(N) by

θr[f ] = [θr(f)].
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Lemma 3.

θr([f1] + [f2]) = θr[f1] +
r−1∑

i=1

θr−i[f1].θi[f2] + θr[f2].

This result is immediate from the definitions by choosing suitable repre-
sentatives f1 and f2.

Lemma 4. There is a natural diffeomorphism ∆r(θ̃2(f)) ∼= ∆̃r+1(f). Under
this identification θr(θ̃2(f)) = θ̃r+1(f).

This is also immediate from the definitions.

The theorem now follows immediately from Proposition 1 as follows.

f∗[θr(f)] = f∗θr[f ] by definition
= θrf

∗[f ] by naturality
= θr(e + [θ̃2(f)]) from Proposition 1

= θre +
r−1∑

i=1

θr−ie.θi[θ̃2(f)] + θr[θ̃2(f)] from Lemma 3

= e.θr−1[θ̃2(f)] + θr[θ̃2(f)]
since e is representatable by an embedding and θ1 is the identity

= e.[θ̃r(f)] + [θ̃r+1(f)] from Lemma 4

as required.
It is also possible to prove Theorem 2 directly by the same method as

Proposition 1.

3.3 Comments on the theorem

Herbert’s formula for non-oriented manifolds may be obtained from Theo-
rem 2 using the ring homomorphism

Imm∗(M) → MO∗(M) → H∗(M ;Z/2),

Poincaré duality and the diagram at the end of Section 2.

We can work with immersions which are oriented with respect to some
homology theory and then get more refined results which will be explored
elsewhere. In particular, in the case of immersions oriented with respect to
integral homology we may obtain Herbert’s result for this case.
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4 The homotopy theory of Thom spaces

By the Pontrjagin-Thom-Wells Theorem ([7]), Immk(N) ∼= [N+, QMO(k)].
Here Q is the functor Ω∞Σ∞ = lim ΩKΣK , where Ω denotes the based loop
space functor. Under this isomorphism, the homomorphism f∗ : Immk(N) →
Immk(M) is induced by the composition of a map representing the homo-
topy class with f+ : M+ → N+. It is natural to look for a formulation of
Theorem 2 in terms of the representing objects.

Under the Pontrjagin-Thom-Wells isomorphism, the mapping

θr : Immk(N) → Immrk(N)

is induced by a map

QMO(k) hr→ QDrMO(k)
Qζ→ QMO(rk)

(see for example [4]). Here DrMO(k) denotes the Thom space of

(γk)r ×Σr 1: EO(k)r ×Σr WΣr → BO(k)r ×Σr WΣr,

the universal (O(k) o Σr)-bundle (WΣr is a contractible space on which Σr

acts freely), hr denotes the stable James-Hopf map (see [2]) and ζ is the
induced map of Thom spaces induced by the classifying map of the bundle.
The normal bundles of the immersions θr(f) and θ̃r+1(f) each have a natural(
(γk)r ×Σr 1

)
-structure and the formula of Theorem 2 remains true in the

bordism group of immersions with such a structure on the normal bundles.
By an abuse of notation we denote the map N+ → QMO(k) correspond-

ing to an immersion f : M # N also by f .
With this notation, Theorem 2 corresponds to the following homotopy

commutative diagram.

(
MO(k) ∧QMO

(
(r − 1)k

))×QMO(rk) QMO(rk)

M+ N+
-

? ?

f+

QMO(rk)×QMO(rk)

@
@@R ¡

¡¡µ

(
MO(k) ∧QDr−1MO(k)

)×QDrMO(k) QDrMO(k)

? ?
(1 ∧Qζ)×Qζ Qζ

(
e ∧ hr−1 ◦ θ̃2(f)

)× hr ◦ θ̃2(f) hr ◦ f
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In the diagram the composition of the left hand vertical maps corre-
sponds to e.[θ̃r(f)] + [θ̃r+1(f)] (using Lemma 4) and the composition of the
right hand vertical maps corresponds to [θr(f)].

We may prove the commutativity of this diagram by mimicking the proof
of Theorem 2: first proving it in the case r = 2 and then deducing the general
case by using an analogue of Lemma 3 for the maps hr.
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