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CPFloat: A C library for
simulating low-precision arithmetic∗

Massimiliano Fasi† Mantas Mikaitis‡

Abstract

One can simulate low-precision floating-point arithmetic via software by executing each arith-
metic operation in hardware and then rounding the result to the desired number of significant bits.
For IEEE-compliant formats, rounding requires only standard mathematical library functions, but
handling subnormals, underflow, and overflow demands special attention, and numerical errors
can cause mathematically correct formulae to behave incorrectly in finite arithmetic. Moreover,
the ensuing implementations are not necessarily efficient, as the library functions these techniques
build upon are typically designed to handle a broad range of cases and may not be optimized for
the specific needs of rounding algorithms. CPFloat is a C library for simulating low-precision
arithmetics. It offers efficient routines for rounding, performing mathematical computations, and
querying properties of the simulated low-precision format. The software exploits the bit-level
floating-point representation of the format in which the numbers are stored, and replaces costly
library calls with low-level bit manipulations and integer arithmetic. In numerical experiments,
the new techniques bring a considerable speedup (typically one order of magnitude or more) over
existing alternatives in C, C++, and MATLAB. To our knowledge, CPFloat is currently the most
efficient and complete library for experimenting with custom low-precision floating-point arith-
metic available in any language.

Key words. low-precision arithmetic, floating-point arithmetic, mixed precision, IEEE 754 stan-
dard, binary16, bfloat16, round-to-nearest, directed rounding, round-to-odd, stochastic rounding.

1 A plethora of floating-point formats and rounding modes

The 2019 revision of the IEEE 754 standard for floating-point arithmetic [29] specifies three basic
binary formats for computation: binary32, binary64, and binary128. Most 64-bit CPUs equipped with
a floating-point unit natively support binary32 and binary64 arithmetic, and 32-bit CPUs can simulate
binary64 arithmetic very efficiently by relying on highly optimized software libraries. The binary128
format, introduced in the 2008 revision [28] of the original IEEE 754 standard [27], has not gained
much popularity among hardware manufacturers, and over ten years after having been standardized
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it is supported only by two IBM processor families: the POWER9, which implements version 3.0 of
the Power Instruction Set Architecture [32], and the z/Architecture [35].

In fact, the low-precision requirements of artificial intelligence applications have steered the hard-
ware market in the opposite direction, and a number of fewer-than-32-bit formats have been proposed
in recent years. The first widely available 16-bit floating-point format was binary16. Despite having
been defined in the last two revisions of the IEEE 754 standard only as an interchange format, binary16
has been supported as an arithmetic format by all NVIDIA microarchitectures since Pascal [39] and
all AMD architectures since Vega [43]. Google has recently introduced the bfloat16 data type [30], a
16-bit format with approximately the same dynamic range as binary32. The latest Armv8 CPUs sup-
port a wide variety of floating-point formats, including binary32, binary64, bfloat16 [1, Sec. A1.4.5],
binary16, and an alternative custom half-precision format [1, Sec. A1.4.2]. The latter is a 16-bit format
that extends the dynamic range from [−65,504, +65,504] to [−131,008, +131,008] by reclaiming the
2,048 bit patterns (about 3%) that the binary16 format uses for infinities and NaNs (Not a Number).
The latest NVIDIA graphics card microarchitecture, NVIDIA Ampere, features a 19-bit floating-point
format, called TensorFloat-32, which combines the precision of binary16 with the exponent range of
binary32 [40]. We discuss the general framework to which all these floating-point formats belong in
Section 4.

Such a broad range of floating-point formats poses a major challenge to those developing mixed-
precision algorithms for scientific computing, as studying the numerical behavior of an algorithm in
different working precisions may require access to a number of high-end hardware platforms. To
alleviate this issue, several software packages for simulating low-precision floating-point arithmetics
have been proposed in recent years. We review the most popular options in Section 2.

Our contribution is two-fold. First, we discuss how the operations underlying the rounding of
a floating-point number 𝑥 to lower precision can be performed directly on the binary floating-point
representation of 𝑥. We present the new algorithms in Section 5, and in Section 6 we explain how
to implement them efficiently using bitwise operations and integer arithmetic. Second, we introduce
CPFloat, a header-only C library that implements our algorithms and can be used to simulate low-
precision binary floating-point arithmetic. The name of the library is a shorthand for Custom-Precision

Floats. Section 3 lists the functions available in the library and provides a minimal, self-contained code
snippet showing how CPFloat can be used as a full arithmetic library with custom precision floating-
point formats. Section 7 describes the implemention and testing.

The floating-point representation in the simulated (target) format exists only implicitly: in prac-
tice, all numbers are represented in a (storage) format that is natively supported by the compiler. The
storage formats currently available in CPFloat are binary32 and binary64.

CPFloat is not the first library for simulating low-precision arithmetic in C: the GNU MPFR li-
brary [19], for example, allows the programmer to work with arbitrarily few, as well as arbitrarily
many, bits of precision. Unlike MPFR, CPFloat is intended only as an simulator for low-precision
floating-point arithmetics. Internally, floating-point values are represented using binary32 or binary64
numbers, thus only formats with at most 53 bits of precision and an exponent range no broader than
that of binary64 can be simulated. This narrower aim provides scope for the wide range of optimiza-
tions we discuss, which in turn yield more efficient implementations.

We provide a MEX interface that allows user to call CPFloat directly from their MATLAB and
Octave code. We use this to compare the performance of the new library with that of the MAT-
LAB function chop [25] and of the routines in the FLOATP_Toolbox [36]. Our experimental results,
discussed in Section 8, show that the new codes bring a considerable speedup over these MATLAB
alternatives, as long as the matrices being rounded are large enough to offset the overhead of calling
C code from MATLAB.

The library can be used to prototype and test mixed-precision algorithms, as well as to simulate
custom-precision hardware devices. Recently, for example, we have used CPFloat to develop an algo-
rithm for computingmatrix–matrix products onNVIDIAGPUs equippedwith tensor cores [13]. These
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Table 1: Synoptic table of available software packages for simulating low-precision floating-point
arithmetic. The first three columns report the name of the package, the main programming lan-
guage in which the software is written, and what storage formats are supported. The following three
columns describe the parameters of the target formats: whether the number of bits of precision in the
significand is arbitrary (A) or limited to the number of bits in the significand of the storage format
(R); whether the exponent range can be arbitrary (A), must be a—possibly restricted—sub-range of the
exponent range of the storage format (S), or can be a sub-range only for built-in types (B); whether
the target format supports subnormal numbers (Y), does not support them (N), supports them only
for built-in types (B), supports them by default but allows the user to switch the functionality off (F),
or does not support them by default but allow the user to turn the functionality on (O). The following
column lists the floating-point formats that are built into the system, if any. The last seven columns
indicate what rounding modes the software supports: round-to-nearest with ties-to-even (RNE), ties-
to-zero (RNZ), or ties-to-away (RNA), round-toward-zero (RZ), round-to-+∞ and round-to-−∞ (RUD),
round-to-odd (RO), and the two variants of stochastic rounding discussed in Section 4 (SR). Fully sup-
ported rounding modes are denoted by ✓, while ! is used for rounding modes that can be simulated
at a higher computational cost. The abbreviations bf16, tf32, fp16, fp32, and fp64 denote the formats
bfloat16, TensorFloat-32, binary16, binary32, and binary64, respectively.

Package Primary Storage Target format

RN
E

RN
Z

RN
A

RZ RU
D

RO SRname language format 𝑝 𝑒 𝑠 built-in

GNU MPFR C custom A A O ✓ ! ✓ ✓
Sipe C multiple R S Y ✓ ✓
rpe Fortran fp64 R B B fp16 ✓
FloatX C++ fp32/fp64 R S Y ✓
INTLAB MATLAB fp64 R S Y ✓ ✓ ✓
chop MATLAB fp32/fp64 R S F fp16/bf16 ✓ ✓ ✓ ✓
FLOATP MATLAB fp64 R A N ✓ ✓ ✓ ✓
QPyTorch Python fp32 R S N ✓ ✓ ✓ ✓
CPFloat C fp32/fp64 R S F fp16/bf16/tf32 ✓ ✓ ✓ ✓ ✓ ✓ ✓

mixed-precision matrix multiply–accumulate units internally use different precisions and rounding
modes [14]. Using a software simulation, we could evaluate the numerical behavior of custom vari-
ations of the tensor cores, which we obtained by changing the rounding mode used in some key
operations.

2 Related work

A number of packages to simulate low-precision floating-point arithmetic via software are available.
These are summarised in Table 1, where we report the main programming language in which the
software is written and detail what storage formats, target formats, and roundingmodes are supported.

The most comprehensive software package for simulating arbitrary-precision floating-point arith-
metic is the GNU MPFR library [19], which extends the formats in the IEEE 754 standard to any pre-
cision and to an arbitrarily large exponent range. The library is written in C, but interfaces for most
programming languages are available. GNU MPFR is a de facto standard for working with arbitrary
precision, and is typically used to perform computations that require high accuracy, rather than to
simulate low-precision arithmetics.

Sipe is a header-only C mini-library designed to simulate low precision efficiently. This software
supports round-to-nearest with ties-to-even and round-to-zero, and numbers can be stored either as a
pair of signed integers representing the significand and the exponent of the floating-point value [33],
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or as a value in a native floating-point format. The latest version of the library [34] supports float,
double, long double, or __float128 (from the GCC libquadmath library).

Dawson and Düben [11] recently developed a Fortran library, called rpe, for simulating reduced-
precision floating-point arithmetics in large numerical simulations. In rpe, the reduced-precision
floating-point values are stored as binary64 numbers, a solution that provides a very efficient tech-
nique for simulating floating-point formats with the same exponent range as binary64 and no more
than 53 bits of precision.

FloatX [16] is a header-only C++ library for simulating low-precision arithmetic that supports
binary32 and binary64 as storage formats. This software is more flexible than rpe, in that it allows the
user to choose not only the number of significant digits, but also the number of bits used to represent
the exponent in the target format.

The only rounding mode currently implemented by both rpe and FloatX is round-to-nearest with
ties-to-even, which may be too restrictive when one wants to simulate hardware units where trunca-
tion or stochastic rounding are available.

The flround function in the INTLAB toolbox for MATLAB and Octave [46] allows the user to
round binary64 values to lower-precision formats. The routine implements the binary version of [47,
Alg. 3] and rounds a number 𝑥 by first computing 𝑥′ = 𝑥 + 𝐶, where 𝐶 is a suitably chosen constant,
and then returning 𝑦 = 𝑥′ − 𝐶. Addition and subtraction are performed in floating-point arithmetic
using the format in which 𝑥 is stored and are thus performed efficiently when the operations can be
performed in hardware. This strategy requires that the exponent range of 𝑥 be limited, in order to
avoid overflow in the computation of 𝐶: in binary64, for example, the maximum available exponent
is 1023, but the exponent of 𝑥 cannot exceed 970 when the flround functions is used. The toolbox
supports round-to-nearest with ties-to-even and the three directed rounding modes prescribed by the
IEEE 754 standard. Furthermore, the full arithmetic library fl is available on fl-type objects which
are rounded binary64 values to some lower custom precision representation.

Higham and Pranesh [25] have recently proposed chop, a MATLAB function for rounding arrays
of binary32 or binary64 numbers to lower precision. This solution is more efficient and flexible than
the fp16 and vfp16 MATLAB data types proposed by Moler [37], as the user can specify not only
the boundaries of the dynamic exponent range and the number of bits in the significand, but also the
rounding mode to be used and whether subnormals are supported. chop supports six rounding modes:
the four default rounding modes prescribed by the IEEE 754-2019 for single operations and two vari-
ants of stochastic rounding. This function can be used only from within the MATLAB programming
environment, and the underlying algorithms, which rely on mathematical operations involving the
exponent and significand of the represented floating-point numbers, are not necessarily suitable for
efficient implementations in a low-level language such as C. For example, chop uses the built-in MAT-
LAB functions abs, sign, ceil, floor, log2, and pow2, which may not be optimized for the narrow
range of inputs required in order disassemble and reassemble floating-point numbers.

FLOATP_Toolbox [36] is a MATLAB toolbox for simulating reduced-precision fixed-point and
floating-point arithmetics. This library uses binary64 as storage format, supports the same six round-
ing modes as chop [25], and implements a number of mathematical functions, such as log, exp, or
sin, for example. The functionalities of the FLOATP_Toolbox can be used in two ways: either by
calling the routines that work directly on the binary64 data structure, or by relying on the methods
of the floatp class, which override a number of built-in MATLAB functions. A similar library for
simulating posit arithmetic has been developed by the same author [24, 12].

The QPyTorch library is a low-precision arithmetic simulator, written in PyTorch, whose primary
goal is to facilitate the training of neural networks in low precision without the overhead of building
low-precision hardware [51]. The core design principles of this library are analogous to those of
chop, in that numbers are stored in binary32 before as well as after rounding. QPyTorch supports
custom floating-point formats that can fit into the binary32 format, arbitrary-precision fixed-point
formats no wider than 24 bits, and block floating-point formats [50]. Infinities, NaNs, and subnormals
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are not supported for efficiency’s sake and because, as the authors point out, these special values do
not appear when training neural networks and thus may not be supported by the underlying low-
precision hardware. The supported rounding modes are stochastic rounding and round-to-nearest
with ties-to-even.

VPREC-libm [4] is a related tool developed to evaluate the accuracy/performance trade-offs of nu-
merical code. The library instruments the code so that calls to mathematical functions are intercepted
at runtime and performed in simulated low precision. Each function is evaluated in binary128 arith-
metic by using the GCC libquadmath library and the result is then rounded to the target precision.

The algorithms presented here complement existing software by proposing efficient techniques
for implementing rounding using low-level bitwise instructions. Our library is intended as a software
package that enables the use of these rounding functionalities in low-level languages such as C and
C++, but high-level languages that allow the user to call C routines, either directly or indirectly, can
also benefit from it.

3 Features and examples of CPFloat

At the core of CPFloat are the efficient rounding routines described in Section 5. These convert a
number from one floating-point format (the storage format, which will be either binary32 or binary64)
to a second, custom format (the target format). The representation in the target format is implicit, as
the rounded numbers are still stored as either binary32 or binary64 values. Relying on these rounding
routines, CPFloat provides functions to simulate custom low-precision arithmetic when operating on
arrays of scalars. We now describe its user interface, using Listing 1 as reference. In the example, we
use double as storage format, thus we include the header file cpfloat_binary64.h; the header file
cpfloat_binary32.h should be included when using float arrays.

The target format is specified by a C structure of type optstruct. The structure should be initial-
ized by calling
optstruct *init_optstruct ()

as done on line 8. This function allocates the memory underlying the optstruct correctly, but the
target format that the structure represents is still undefined. The parameters of the target format
should be initialized explicitly as shown on lines 11–17.

In Listing 1, we do not showcase all the functionalities of CPFloat, and in particular we do not
inject soft errors in the low-precision results. The library supports two injection modes, which can
be selected by changing the value of the flip field of the optstruct structure. If flip is set to
CPFLOAT_FRAC_SOFTERR, then with probability p a single bit flip can strike the fraction of the low-
precision rounded number. This is the injection mode used in chop [25].

If flip is set to CPFLOAT_FP_SOFTERR, on the other hand, the single bit flip can strike any bit
of the low-precision floating-point representation. Soft errors are typically modelled in this way in
high-performance computing studies [2] as well as in numerical simulations [44, Sec. V]. For repro-
ducibility, errors are sometimes introduced by hands at specific points of the execution rather than at
random [48]; in CPFloat, this can be achieved by setting p to 1.0 and switching the value of the flip
field between CPFLOAT_FP_SOFTERR (soft errors on) and CPFLOAT_NO_SOFTERR (soft errors off).

The parameters in an optstruct structure can be validated with
int cpfloat_validate_optstruct(optstruct *fpopts)

if the storage format is binary64, or
int cpfloat_validate_optstructf(optstruct *fpopts)

if the storage format is binary32. The convention of appending an f to the function name when the
storage format is binary32 is common in C, and is used throughout the library whenever a binary64
and a binary32 variant are offered. The two functions return a positive integer if the fields of the input
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Listing 1: CPFloat example
1 #include <stdio.h>
2 #include "cpfloat_binary64.h"
3
4 #define N 3
5
6 int main () {
7 // Allocate the data structure for target formats and rounding parameters.
8 optstruct *fpopts = init_optstruct ();
9
10 // Set up the parameters for binary16 target format.
11 fpopts ->precision = 11; // Bits in the significand + 1.
12 fpopts ->emax = 15; // The maximum exponent value.
13 fpopts ->subnormal = CPFLOAT_SUBN_USE; // Support for subnormals is on.
14 fpopts ->round = CPFLOAT_RND_TP; // Round toward +infinity.
15 fpopts ->flip = CPFLOAT_NO_SOFTERR; // Bit flips are off.
16 fpopts ->p = 0; // Bit flip probability (not used).
17 fpopts ->explim = CPFLOAT_EXPRANGE_TARG; // Limited exponent in target format.
18
19 // Validate the parameters in fpopts.
20 int retval = cpfloat_validate_optstruct(fpopts);
21 printf("The validation function returned %d.\n", retval);
22
23 // Initialize C array with arbitrary elements.
24 double X[N] = { (double)5/3, M_PI , M_E };
25 double Y[N] = { 1.5, 1.5, 1.5 };
26 double Z[N];
27 printf("X in binary64 :\n %.15e %.15e %.15e\n", X[0], X[1], X[2]);
28
29 // Round the values of X to the binary16 format and store in Z.
30 cpfloat(Z, X, N, fpopts);
31 printf("X rounded to binary16 :\n %.15e %.15e %.15e\n", Z[0], Z[1], Z[2]);
32
33 // Round the sum of X and Y.
34 cpf_add(Z, X, Y, N, fpopts);
35 printf("Sum rounded to binary16 :\n %.15e %.15e %.15e\n", Z[0], Z[1], Z[2]);
36
37 // Round the product of X and Y.
38 cpf_mul(Z, X, Y, N, fpopts);
39 printf("Product rounded to binary16 :\n %.15e %.15e %.15e\n", Z[0], Z[1], Z[2]);
40
41 // Round the logarithm of X.
42 cpf_log(Z, X, N, fpopts);
43 printf("Log rounded to binary16 :\n %.15e %.15e %.15e\n", Z[0], Z[1], Z[2]);
44
45 // Round the 2-argument arctangent of X and Y.
46 cpf_atan2(Z, X, Y, N, fpopts);
47 printf("Angle rounded to binary16 :\n %.15e %.15e %.15e\n", Z[0], Z[1], Z[2]);
48
49 free_optstruct(fpopts);
50 }
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do not represent a valid floating-point format, zero if they do, and a positive integer if they represent
a valid format which may yield an unexpected behavior such as double rounding. Some of the fields
of an optstruct are pointers, and the function
void free_optstruct(optstruct *fpopts)

should be used as shown on line 49 to free the memory correctly.
The functions that make up the library can be divided into three groups: functions for round-

ing, functions for computing in low-precision arithmetic, and functions for probing the low-precision
floating-point format. We discuss these assuming arrays of binary64 values, for binary32 arrays it
suffices to change all double to float and add an f at the end of the function name.

A double array can be rounded to low precision using the functions
int cpfloat(double *X, const double *A, const size_t n, optstruct *fpopts)
int cpf_fpround(double *X, const double *A, const size_t n, optstruct *fpopts)

which convert the n elements in the array A to the format specified by the parameters in fpopts.
We note that cpfloat is just an alias for cpf_fpround which ensures backward compatibility with
previous versions of the library—the two functions rely on the same implementation. We also remark
that X and A may point to the same memory location, in which case the rounding is performed in
place.

The second group contains functions for simulating the four elementary arithmetic operations
and many mathematical functions in low precision. The computation is first performed in the storage
format, using the corresponding C operators or C mathematical library (math.h) functions, and the
result is then rounded to the specified low-precision format.

The third and last group comprises functions that work on the implicit target-format representa-
tion. These can be used to extract the exponent and fraction of the number rounded to low precision,
to compute the number that in the target format is closest to a given value in the storage format, and
to check whether a value in the storage format would become subnormal, normal, infinite, or NaN
once rounded to the target format.

We list all functions available in CPFloat in Table 2, and refer the reader to the package docu-
mentation for additional details. Most of the functions in the other two classes are inspired by the
corresponding functions in the C mathematical library.

Table 2: CPFloat functions if double is used as storage format. The names of the corresponding
functions for float are obtained by appending the suffix “f”: for example, the function cpfloat_mulf
can be used to multiply two float arrays elementwise. All functions require two extra arguments to
define the number of elements in the input vectors (numelem) and the floating-point representation
(fpopts). All mathematical functions return as result numbers in the target format.

Function Description

cpfloat_validate_optstruct Validate fields of optstruct struct variable.
cpfloat Round double array to target format (legacy function name).
cpf_fpround Round double array to target format.
cpf_add Sum in target format.
cpf_sub Difference in target format.
cpf_mul Product in target format.
cpf_div Ratio in target format.
cpf_cos Trigonometric cosine.
cpf_sin Trigonometric sine.
cpf_tan Trigonometric tangent.
cpf_acos Inverse trigonometric cosine.
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Table 2: (continued)

Function Description

cpf_asin Inverse trigonometric sine.
cpf_atan Inverse trigonometric tangent.
cpf_atan2 Two-argument arctangent.
cpf_cosh Hyperbolic cosine.
cpf_sinh Hyperbolic sine.
cpf_tanh Hyperbolic tangent.
cpf_acosh Inverse hyperbolic cosine.
cpf_asinh Inverse hyperbolic sine.
cpf_atanh Inverse hyperbolic tangent.
cpf_exp Exponential.
cpf_frexp Exponent and normalized fraction in target format.
cpf_ldexp Scale number by power of 2.
cpf_log Natural logarithm.
cpf_log10 Base-10 logarithm.
cpf_modf Integral and fractional part.
cpf_exp2 Base-2 exponential.
cpf_expm1 exp(𝑥) − 1.
cpf_ilogb Integral part of logarithm of absolute value.
cpf_log1p Natural logarithm of number shifted by one.
cpf_log2 Base-2 logarithm.
cpf_scalbn Scale number by power of FLT_RADIX.
cpf_scalbln Scale number by power of FLT_RADIX.
cpf_pow Real powers.
cpf_sqrt Square root.
cpf_cbrt Cube root.
cpf_hypot Hypotenuse of a right-angle triangle.
cpf_erf Error function.
cpf_erfc Complementary error function.
cpf_tgamma Gamma function.
cpf_lgamma Natural logarithm of absolute value of gamma function.
cpf_ceil Ceiling function.
cpf_floor Floor function.
cpf_trunc Integer truncation.
cpf_round Closest integer (round-to-nearest).
cpf_lround Closest integer (round-to-nearest).
cpf_llround Closest integer (round-to-nearest).
cpf_rint Closest integer with specified rounding mode.
cpf_lrint Closest integer with specified rounding mode.
cpf_llrint Closest integer with specified rounding mode.
cpf_nearbyint Closest integer with specified rounding mode.
cpf_remainder Remainder of floating point division.
cpf_remquo Remainder and quotient of rounded numbers.
cpf_copysign Compose number from magnitude and sign.
cpf_nextafter Next number in specified direction in target format.
cpf_nexttoward Next number in specified direction in target format.
cpf_fdim Positive difference.
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Table 2: (continued)

Function Description

cpf_fmax Element-wise maximum.
cpf_fmin Element-wise minimum.
cpf_fpclassify Categorize floating-point values.
cpf_isfinite Check whether value is finite in target format.
cpf_isinf Check whether value is infinite in target format.
cpf_isnan Check if value is not a number in target format.
cpf_isnormal Check whether value is normal in target format.
cpf_fabs Absolute value.
cpf_fma Fused multiply-add.

The example in Listing 1 is available in the CPFloat source code repository on GitHub.1 As we
explain in more details in Section 7, CPFloat can leverage OpenMP to run multiple threads in parallel,
but the runtime overhead causes the parallel version of the code to be slower than the sequential
one on arrays with very few elements. To alleviate this issue, we use a sequential version of the
code for small arrays and switch to the parallel variant only when the number of elements exceeds a
machine-dependent threshold which we determine with an auto-tuning procedure. For the C library,
the auto-tuning can be triggered with the command
$ make autotune

The example in Listing 1 can be compiled with
$ make example

which produces the binary bin/example. When executed, this program produces the following out-
put.
The validation function returned 0.
X in binary64:

1.666666666666667e+00 3.141592653589793e+00 2.718281828459045e+00
X rounded to binary16:

1.666992187500000e+00 3.142578125000000e+00 2.718750000000000e+00
Sum rounded to binary16:

3.167968750000000e+00 4.644531250000000e+00 4.218750000000000e+00
Product rounded to binary16:

2.500000000000000e+00 4.714843750000000e+00 4.078125000000000e+00
Log rounded to binary16:

5.112304687500000e-01 1.145507812500000e+00 1.000000000000000e+00
Angle rounded to binary16:

7.329101562500000e-01 4.455566406250000e-01 5.043945312500000e-01

4 Floating-point storage formats and rounding

A family of binary floating-point numbers F ⟨𝑝, 𝑒min, 𝑒max, 𝔰n⟩ is a finite set that includes a subset of
the real line and a handful of values with a special meaning. In our notation, the three integer pa-
rameters 𝑝, 𝑒min, and 𝑒max represent the number of binary digits of precision, the minimum exponent,
and the maximum exponent, respectively, and the Boolean flag 𝔰n indicates whether subnormals are
supported. A real number 𝑥 := (𝑠, 𝑚, 𝑒) in F ⟨𝑝, 𝑒min, 𝑒max, 𝔰n⟩ can be written as

𝑥 = (−1)𝑠 · 𝑚 · 2𝑒−𝑝+1, (4.1)
1https://github.com/north-numerical-computing/cpfloat
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where 𝑠 is the sign bit, set to 0 if 𝑥 is positive and to 1 otherwise, the integral siginificand𝑚 is a natural
number not greater than 2𝑝 − 1, and the exponent 𝑒 is an integer between 𝑒min and 𝑒max inclusive.

In order to ensure a unique representation for all numbers in F ⟨𝑝, 𝑒min, 𝑒max, 𝔰n⟩ \ {0}, it is cus-
tomary to normalize the system by assuming that if 𝑥 ≥ 2𝑒min then 2𝑝−1 ≤ 𝑚 ≤ 2𝑝 − 1, that is, the
number is represented using the smallest possible exponent and the largest possible significand. In
such systems, the number (𝑠, 𝑚, 𝑒) ∈ F ⟨𝑝, 𝑒min, 𝑒max, 𝔰n⟩ \ {0} is normal if 𝑚 ≥ 2𝑝−1, and subnor-
mal otherwise. The exponent of subnormals is always 𝑒min, and in a normalized system any number
𝑥 = (𝑠, 𝑚, 𝑒) ≠ 0 has a unique 𝑝-digit binary expansion (−1)𝑠 · 𝑚 · 2𝑒, where

𝑚 = 𝑚 · 21−𝑝 = 𝑑0 + 𝑑1
2 + · · · +

𝑑𝑝−1
2𝑝−1 = 𝑑0.𝑑1 . . . 𝑑𝑝−1, (4.2)

for some 𝑑0, 𝑑1, . . . , 𝑑𝑝−1 ∈ {0, 1}, is called the normal significand of 𝑥. One can verify that if 𝑥 is nor-
mal then 𝑑0 = 1 and 1 ≤ 𝑚 < 2, whereas if 𝑥 is subnormal then 𝑑0 = 0 and 0 < 𝑚 < 1. Conventionally,
the signed zero values +0 and −0 are considered neither normal nor subnormal. In a normalized sys-
tem, the smallest subnormal is 𝑥minsub := 2𝑒min−𝑝+1, whereas the smallest and largest positive normal
numbers are 𝑥min := 2𝑒min and 𝑥max := 2𝑒max (2 − 21−𝑝), respectively. Their negative counterparts can
be obtained by observing that a floating-point number system is symmetric with respect to 0. In our
notation, subnormals are kept if 𝔰n = true, and rounded to either the closest smallest floating-point
number or the zero of appropriate sign if 𝔰n = false.

The floating-point numbers in F ⟨𝑝, 𝑒min, 𝑒max, 𝔰n⟩ can be represented efficiently as binary strings.
The sign is stored in the leftmost bit of the representation, and the following 𝑏𝑒 bits are used to
store the exponent. Under the IEEE 754 assumption that 𝑒min = 1 − 𝑒max, the most efficient way of
representing the exponent is obtained by setting 𝑒max = 2𝑏𝑒−1−1 and using a representation biased by
𝑒max, so that 00 · · · 012 represents the smallest allowed exponent and 11 · · · 102 represents the largest.
The trailing 𝑝 − 1 bits are used to store the significand of 𝑥. It is not necessary to store the value of
𝑑0 explicitly, as the IEEE standard uses an encoding often referred to as “implicit bit”: 𝑑0 is assumed
to be 1 unless the binary encoding of the exponent is the all-zero string, in which case 𝑑0 = 0 and 𝑥

represents +0 or −0 if 𝑚 = 0, or a subnormal number otherwise. If the exponent field contains the
reserved all-one string, then the number represents +∞ or−∞ if the fraction field is set to 0, and aNaN
otherwise. Infinities are needed to express values whosemagnitude exceeds that of the largest positive
and negative numbers that can be represented in F ⟨𝑝, 𝑒min, 𝑒max, 𝔰n⟩, whereas NaNs represent the
result of invalid operations, such as taking the square root of a negative number, dividing a zero by a
zero, or multiplying an infinity by a zero. These are needed in order to ensure that the semantics of
all floating-point operations is well specified and that the resulting floating-point number system is
closed.

A rounding is an operator that maps a real number 𝑥 to one of the floating-point numbers closest
to 𝑥 in a given floating-point family. The original IEEE 754 standard [27, Sec. 4] defines four rounding
modes for binary formats: the default round-to-nearest with ties-to-even, and three directed rounding
modes, round-toward-+∞, round-toward-−∞, and round-toward-zero. The 2008 revision of the stan-
dard [28] introduces a fifth rounding mode, round-to-nearest with ties-to-away, but states that it is not
necessary for an implementation of a binary format to be IEEE compliant. Finally, the latest revision
of the standard [29] recommends the use of round-to-nearest with ties-to-zero for augmented opera-
tions [29, Sec. 9.5]. Here we also consider two less common rounding strategies, round-to-odd [3] and
stochastic rounding [9].

With round-to-odd, we have to set the least significant bit of the rounded number to 1 unless the
infinitely-precise number is exactly representable in the target format. This rounding has applications
in several domains. In computer arithmetic, for instance, it can be used to emulate a correctly rounded
fused multiply–add (FMA) operator when a hardware FMA unit is not available [3]. In general, round-
to-odd helps avoid issues associated with double rounding, and is used for this purpose in GCC,2 to

2https://gcc.gnu.org/bugzilla/show_bug.cgi?id=21718#c25
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name one example. The fact that it can be implemented at low cost in hardware has recently prompted
interest from the machine learning community [7].

Unlike all rounding modes discussed so far, stochastic rounding is non-deterministic, in the sense
that the direction in which to round is chosen randomly and repeating the rounding may yield differ-
ent results. The simplest choice is to round an infinitely-precise number that is not representable in
the target format to either of the two closest representable floating-point numbers with equal proba-
bility. A more interesting flavor is obtained by rounding a non-representable number 𝑥 to either of the
closest floating-point numbers with probability proportional to the distance between 𝑥 and the two
rounding candidates. This rounding mode dates back to the fifties [17, 18], and has recently gained
prominence owing to the surge of interest in low-precision floating-point formats. It is particularly
effective at alleviating swamping in long sums [8] and ordinary differential equation solvers [26, 15],
and at counteracting the loss of accuracy observed when the precision used to train neural networks
is reduced [23, 49]. Stochastic rounding is not widely available in general-purpose hardware, but
has started to appear in some specialized processors, such as the Intel Loihi neuromorphic chips [10]
and the Graphcore IPU, an accelerator for machine learning [22]. We refer the reader to the recent
survey [9] for more details on this rounding mode.

5 Efficient rounding to a lower-precision format

Now we discuss how to exploit the binary representation in the storage format to develop efficient
algorithms for rounding 𝑥 ∈ F (ℎ) to �̃� ∈ F (ℓ ) , where

F (ℎ) := F ⟨𝑝 (ℎ) , 𝑒 (ℎ)min, 𝑒
(ℎ)
max, 𝔰

(ℎ)
n ⟩, and F (ℓ ) := F ⟨𝑝, 𝑒 (ℓ )min, 𝑒

(ℓ )
max, 𝔰

(ℓ )
n ⟩, (5.1)

and the same superscript notation is used for 𝑥minsub, 𝑥min, and 𝑥max . We make two assumptions:

A1. that 𝑒 (ℓ )max ≤ 𝑒 (ℎ)max, which is a necessary—though not sufficient, as wewill discuss later—condition
for numbers in F (ℓ ) to be representable exactly in F (ℎ) ; and

A2. that 𝑝 ≤ 𝑝 (ℎ)/2 − 1, which guarantees that double rounding will be innocuous for the four
elementary arithmetic operations (+, −, ×, and ÷) and for the square root [45, 47].

We do not assume that the storage format supports subnormals, but we note that if that is not the case
then one must additionally require that 𝑒 (ℎ)min ≤ 𝑒 (ℓ )min− 𝑝 , in order to ensure that the smallest subnormal
number in F (ℓ ) is representable as a normal number in F ⟨𝑝 (ℎ) , 𝑒 (ℎ)min, 𝑒

(ℎ)
max, false⟩.

We now list the high-level functions we need to operate on floating-point numbers. In the de-
scription, 𝑥 denotes a floating-point number in F (ℎ) , 𝑛 denotes a positive integer, and 𝑖 is an integer
index between 0 and 𝑝 (ℎ) − 1 inclusive. Unless otherwise stated, these functions are not defined for
infinities and NaNs.

• abs(𝑥) returns the absolute value of 𝑥. For infinities, we use the definition abs(±∞) = +∞.
• digit(𝑥, 𝑖) returns the 𝑖th digit of the significand of 𝑥 from the left. The indexing starts from 0,
so that digit(𝑥, 𝑖) is 𝑑𝑖 in (4.2).

• exponent(𝑥) returns the exponent of 𝑥. This is the signed integer 𝑒 in (4.1) if 𝑥 is normal, and
an integer 𝛾 < 𝑒min otherwise.

• significand(𝑥) returns the integral significand of 𝑥, that is, the positive integer 𝑚 in (4.1).

• rand(𝑛) returns a string of 𝑛 randomly generated bits.

• sign(𝑥) returns −1 if the floating-point number 𝑥 is negative and +1 otherwise. This function
behaves as expected for (signed) zeros and infinities, i.e., sign(±0) = ±1 and sign(±∞) = ±1.
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Algorithm 5.1: Round a number from F (ℎ) to F (ℓ ) in (5.1).
1 function CPFloat(𝑥 ∈ F (ℎ) , F (ℓ ) , roundFun : F (ℎ) × N+ × F (ℎ) → F (ℎ) )
2 if 𝔰 (ℓ )n then
3 𝜁 ← 𝑥

(ℓ )
minsub

4 else
5 𝜁 ← 𝑥

(ℓ )
min

6 if abs(𝑥) < 𝑥
(ℓ )
min and 𝑒 (ℓ )min > 𝑒 (ℎ)min then

7 𝑡 ← 𝑝 − (𝑒 (ℓ )min − exponent(𝑥))
8 else
9 𝑡 ← 𝑝

10 �̃� ← roundFun(𝑥, 𝑡, 𝜁)

• tail(𝑥, 𝑖) returns the trailing 𝑝 (ℎ) − 𝑖 bits of the significand of 𝑥 as an unsigned integer. For
infinities, this function returns 0 by convention, thus tail(±∞, 𝑖) = 0 for any 𝑖.

• trunc(𝑥, 𝑖) returns the number 𝑥 with the last 𝑝 (ℎ) − 𝑖 bits of the significand set to zero. Trun-
cating an infinity leaves it unchanged, thus trunc(±∞, 𝑖) = ±∞ for any 𝑖.

• ulp(𝑥, 𝑖) returns the number 2exponent(𝑥 )−𝑖+1, that is, the gap between 𝑥 and its successor in a
floating-point number system with 𝑖 bits of precision. As noted by Muller [38], this function
corresponds to the unit in the last place as defined by Overton [42, p. 14] and Goldberg [20].

How to implement these efficiently will be discussed in detail in Section 6.
Our rounding strategy is summarized in Algorithm 5.1. The function CPFloat computes the rep-

resentation of the floating-point number 𝑥 ∈ F (ℎ) in a lower-precision format F (ℓ ) . In the pseu-
docode, N+ denotes the set of positive integers. The input parameter roundFun is a pointer to one
of the functions in Algorithm 5.2, 5.4, or 5.5. A call to roundFun(𝑥, 𝑡, 𝜁) returns the floating-point
number �̃� ∈ F (ℎ) , that is, 𝑥 rounded to F (ℓ ) . The function starts by setting the underflow threshold
𝜁 , which corresponds to the smallest subnormal number if 𝔰 (ℓ )n = true and to the smallest normal
number if 𝔰 (ℓ )n = false. This value will be used by roundFun to round numbers that are too small to
be represented. Then the algorithm computes the number 𝑡 of significant digits in the significand of
the binary representation of �̃�. If 𝑥 falls within the normal range of F (ℓ ) , then its significand has 𝑝
significant digits and the algorithm sets 𝑡 = 𝑝 . If, on the other hand, |𝑥 | is between 𝑥

(ℓ )
minsub and 𝑥

(ℓ )
min,

then the exponent of 𝑥 is smaller than 𝑒 (ℓ )min and the number 𝑡 of significant binary digits may have
to be reduced. If 𝑒 (ℓ )min = 𝑒 (ℎ)min, then 𝑥 is subnormal and has the same number of leading zeros in both
both storage and target format. Otherwise, the value of 𝑡 is given by the difference between 𝑝 and the
number of leading zeros in the representation of �̃�, including the zero to the left of the binary point.

In the coming sections we discuss how the function roundFun can be implemented for the six
rounding strategies we consider.

5.1 Round-to-nearest

Our algorithm for rounding a floating-point number in F (ℎ) to the closest floating-point number in
the lower-precision format F (ℓ ) is given in Algorithm 5.2. The pseudocode describes, in particu-
lar, a variant of round-to-nearest known as ties-to-even, whereby a number exactly in-between two
floating-point numbers is rounded to the rounding candidate with even significand, that is, a number
that has a 0 in the 𝑡 − 1 position to the right of the binary point. Two other variants, ties-to-zero and
ties-to-away, will be briefly examined at the end of this section.

12



Initially, the function checks if the number to be rounded is too small to be represented in F (ℓ ) .
If subnormals are supported then the smallest representable number 𝑥 (ℓ )minsub has an odd fraction, and
a tie value 𝑥 ∈ F (ℎ) such that |𝑥 | = 𝜁/2 is rounded towards zero. If subnormals are not supported,
then 𝑥 is equidistant from two numbers with even significands, since the significand of the smallest
normal number 𝑥 (ℓ )min in F (ℓ ) is even. We still round 𝑥 to zero, as this behavior is consistent with that
of the GNU MPFR library.

Next, a number 𝑥 ∈ F (ℎ) that is too large to be rounded to zero but has absolute value below the
threshold 𝜁 is rounded to sign(𝑥) · 𝜁 . If |𝑥 | is larger than the threshold, the algorithm checks whether
𝑥 is within the dynamic range of F (ℓ ) : following the IEEE 754 standard [29, Sec. 4.3.1], 𝑥 will overflow
to infinity without changes in sign if |𝑥 | < 2𝑒 (ℓ)max (2 − 2−𝑝 ).

If 𝑥 is within the range of numbers representable in F (ℓ ) , then the algorithm truncates 𝑥 ∈ F (ℎ)
to 𝑡 significant digits to obtain �̃� ∈ F (ℓ ) , the largest number (in absolute value) that satisfies sign(�̃�) =
sign(𝑥) and |�̃� | ≤ |𝑥 |. In general, �̃� is one of the two floating-point numbers in F (ℓ ) closest to 𝑥, the
other candidate being �̃� + sign(𝑥) · ulp(�̃�, 𝑡). In order to choose a rounding direction, we examine the
value of the discarded bits. The unsigned integer 𝑑 := tail(𝑥, 𝑡) represents the trailing 𝑝 (ℎ) − 𝑡 digits
of the significand of 𝑥. Thus 0 ≤ 𝑑 ≤ 2𝑝 (ℎ)−𝑡 − 1, and if 𝑑 < 𝛾 := 2𝑝 (ℎ)−𝑡−1 then �̃� is the result to be
returned, whereas if 𝑑 > 𝛾 then it is necessary to add (or subtract, if �̃� is negative) ulp(�̃�, 𝑡) in order
to obtain the correctly rounded value. If 𝑑 = 𝛾, then we have a tie and we need to round to the nearest
even number. Therefore we add sign(𝑥) · ulp(�̃�, 𝑡) if the bit in position 𝑡 − 1 of the significand of �̃� is
a 1, and we leave �̃� unchanged otherwise.

The latest revision of the IEEE 754 standard mentions two other tie-breaking rules for round-
to-nearest: ties-to-zero, to be used for the recommended augmented operations, and ties-to-away,
which is required for decimal formats. These can be implemented by changing the conditions of the
if statements on lines 3 and 11 in Algorithm 5.2 to
3 if abs(𝑥) ≤ 𝜁/2 then
[. . . ]

11 if tail(𝑥, 𝑡) > 2𝑝 (ℎ)−𝑡−1 then
for ties-to-zero, and to
3 if abs(𝑥) < 𝜁/2 then
[. . . ]

11 if tail(𝑥, 𝑡) ≥ 2𝑝 (ℎ)−𝑡−1 then
for ties-to-away.

Note that this implementation preserves the sign of zero, maps infinities to infinities, and does not
change the encoding of quiet and signalingNaN values. The same observation is true for the rounding
functions in Algorithm 5.3, 5.4, and 5.5.

5.2 Round-to-odd

The function roundToOdd in Algorithm 5.3 implements round-to-odd according to the definition
in [3, Sec. 3.1], as this rounding mode is not part of the IEEE standard. Informally speaking, if 𝑥 is
exactly representable in F (ℓ ) , then the function returns it unchanged, otherwise it returns the number
closest to 𝑥 with an odd significand, that is, a significandwith a trailing 1. In the spirit of the algorithms
discussed so far, one could obtain �̃� by truncating |𝑥 | to the first 𝑡 significant digits, checking the parity
of the significand of �̃�, and adding ulp(�̃�, 𝑡) to the result if �̃� is even. However, in this case we know
that the result of the truncation requires a correction only if the least significant digit of �̃� is a 0, in
which case adding ulp(�̃�, 𝑡) amounts to setting that bit to 1. Therefore, we check the bits obliterated
by the truncation, and if tail(𝑥, 𝑡) ≠ 0 then we conclude that 𝑥 is not exactly representable in F (ℓ )
and that the significand of the rounded �̃� must be odd. We can ensure this by setting the digit in
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Algorithm 5.2: Function for round-to-nearest with ties-to-even.
1 function roundToNearest(𝑥 ∈ F (ℎ) , 𝑡 ∈ N+, 𝜁 ∈ F (ℎ) )
2 if abs(𝑥) ≤ 𝜁 then ⊲ Underflow.
3 if abs(𝑥) ≤ 𝜁/2 then
4 �̃� ← sign(𝑥) · 0
5 else
6 �̃� ← sign(𝑥) · 𝜁
7 else if abs(𝑥) ≥ 2𝑒 (ℓ)max (2 − 2−𝑝 ) then ⊲ Overflow.
8 �̃� ← sign(𝑥) · +∞
9 else ⊲ In range.
10 �̃� ← trunc(𝑥, 𝑡)
11 if tail(𝑥, 𝑝) > 2𝑝 (ℎ)−𝑡−1 or (tail(𝑥, 𝑝) = 2𝑝 (ℎ)−𝑡−1 and digit(𝑥, 𝑡 − 1) = 1) then
12 �̃� ← �̃� + sign(𝑥) · ulp(�̃�, 𝑡)
13 return �̃�

Algorithm 5.3: Function for round-to-odd.
1 function roundToOdd(𝑥 ∈ F (ℎ) , 𝑡 ∈ N+, 𝜁 ∈ F (ℎ) )
2 if abs(𝑥) < 𝜁 and 𝑥 ≠ 0 then ⊲ Underflow.
3 �̃� ← sign(𝑥) · 𝜁
4 else if abs(𝑥) > 𝑥

(ℓ )
max and abs(𝑥) ≠ +∞ then ⊲ Overflow.

5 �̃� ← sign(𝑥) · 𝑥 (ℓ )max
6 else ⊲ In range.
7 �̃� ← trunc(𝑥, 𝑡)
8 if tail(𝑥, 𝑝) ≠ 0 then
9 digit(�̃�, 𝑡 − 1) ← 1

10 return �̃�

position 𝑡 − 1 of the significand of �̃� to 1. In practice, this operation will have an effect only if that
digit is not already set to 1, and in particular will have no effect when 𝑡 = 1, as the leading digit of the
significand is not stored explicitly. The core idea of this algorithm is the same as that of the second of
the two methods for round-to-odd discussed in [3, Sec. 3.4].

The algorithmmust round �̃� to the closest odd number in F (ℓ ) if it falls within the underflow or the
overflow range. Since 0 is even, rounding to 0 is not an option when this rounding mode is used, and
numbers too small to be represented must be rounded to the smallest floating-point number with an
odd significand of corresponding sign. When subnormals are supported, the smallest representable
number 𝑥 (ℓ )minsub is odd, thus numbers smaller than 𝑥

(ℓ )
minsub in absolute value are simply rounded to

sign(𝑥)·𝑥 (ℓ )minsub. If subnormals are not supported, on the other hand, the smallest representable number
𝑥
(ℓ )
min is even, and we are faced with a choice. We could round �̃� such that |�̃� | < 𝑥

(ℓ )
min to sign(𝑥) ·

(
𝑥
(ℓ )
min +

ulp(𝑥 (ℓ )min, 𝑡)
)
, which is the closest number with odd significand. This choice, however, feels unnatural:

the operator thus defined would not be rounding to either of the floating-point numbers closest to
�̃�. In our pseudocode, we prefer to round �̃� to the rounding candidate largest in magnitude, that is,
sign(𝑥) · 𝑥 (ℓ )min.

The definition given by Boldo and Melquiond cannot be applied directly to values in the over-
flow range, as in principle the significand of ±∞ is neither odd nor even. Since −𝑥 (ℓ )max and 𝑥

(ℓ )
max are
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necessarily odd, we prefer to round values outside the finite range of F (ℓ ) to the closest finite num-
ber. Being exactly representable, infinities themselves represent an exception to this rule, and the
algorithm leaves them unchanged.

5.3 Directed rounding

The functions in Algorithm 5.4 show how to implement the three directed rounding modes prescribed
by the IEEE 754 standard. The idea underlying the three functions is similar to that discussed for the
function roundToNearest in Algorithm 5.2, the main differences being 1) the use of the sign, which
is relevant when the rounding direction is not symmetric with respect to 0, and 2) the conditions under
which a unit in the last place has to be added.

We start by discussing the function roundTowardPlusInfinity. First, we check whether 𝑥 is
within the range of numbers that are representable in F (ℓ ) . Numbers that are too small to be rep-
resented are rounded up to 0 if negative and to 𝜁 if positive. Finite positive numbers larger than the
largest representable number 𝑥 (ℓ )max overflow to +∞, whereas negative numbers smaller than the small-
est representable number −𝑥 (ℓ )max are rounded up to −𝑥 (ℓ )max , with the only exception of −∞, which is
handled below using the fact that trunc(−∞, 𝑡) = −∞ and tail(−∞, 𝑡) = 0.

Next, the function computes �̃�, that is, the number 𝑥 with significand truncated to 𝑡 significant
digits, and checks whether �̃� is smaller than the smallest number representable in F (ℓ ) . The rounding
can be easily performed by noting that the truncation �̃� is the correct result if 𝑥 is negative or exactly
representable in F (ℓ ) . Otherwise, �̃� is incremented by ulp(�̃�, 𝑡).

The function roundTowardMinusInfinity is identical, modulo some sign adjustments to take
the opposite rounding direction into account. The algorithm starts by checking that 𝑥 is within the
range of numbers representable in F (ℓ ) . Numbers between−𝜁 and 0 are rounded down to−𝜁 , whereas
those between 0 and 𝜁 underflow and are flushed to 0. Numbers that are smaller than the smallest
number representable inF (ℓ ) overflow to−∞, whereas finite numbers greater than the largest number
representable in F (ℓ ) are rounded to 𝑥 (ℓ )max , the only exception in this case being +∞. In order to round
a number that falls within the range of F (ℓ ) , we first compute �̃� by truncating the significand of 𝑥 to
𝑡 significant digits, and then subtract ulp(�̃�, 𝑡) from �̃� if 𝑥 is negative and not exactly representable
with a 𝑡-digit significand.

The function roundTowardZero is simpler than the other two considered in this section, as
truncation is sufficient to correctly round the significand of 𝑥 to 𝑡 significant digits. Underflow and
overflow are also easier to handle: finite numbers that are smaller than the smallest representable
number in absolute value are flushed to 0, whereas numbers too large to be represented are rounded
to the closest representable finite number.

5.4 Stochastic rounding

The functions in Algorithm 5.5 describe how to implement the two variants of stochastic rounding
we are concerned with.

The function roundStochastic implements the strategy that rounds 𝑥 ∈ F (ℎ) to one of the
two closest floating-point numbers with probability proportional to the distance. First, the algorithm
considers numbers in the underflow range, whose rounding candidates are 0 and the threshold value 𝜁 ,
which equals 𝑥minsub if subnormals are supported and 𝑥min if they are not. The distance between |𝑥 |
and 0 depends not only on the significand but also on the magnitude of 𝑥, thus the algorithm starts
by computing the two values 𝑒𝑥 and 𝑚𝑥 , which represent the exponent and the integral significand of
𝑥, respectively. Being the exponent of a floating-point number in F (ℎ) , 𝑒𝑥 can be much smaller than
𝑒 (ℓ )min, in which case it may be necessary to rescale 𝑚𝑥 in order to align its exponent to 𝑒 (ℓ )min. This is
achieved by multiplying 𝑚𝑥 by 2𝑒𝑥+1−𝑒 (ℓ)min . In the pseudocode we take the floor of the result in order
to keep it integer, although this is not strictly necessary: we prefer to work with integer arithmetic
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Algorithm 5.4: Functions for directed rounding modes.
1 function roundTowardPlusInfinity(𝑥 ∈ F (ℎ) , 𝑡 ∈ N+, 𝜁 ∈ F (ℎ) )
2 if 𝑥 > 0 and 𝑥 < 𝜁 then ⊲ Underflow.
3 �̃� ← 𝜁

4 else if 𝑥 ≤ 0 and 𝑥 > −𝜁 then
5 �̃� ← sign(𝑥) · 0
6 else if 𝑥 > 𝑥

(ℓ )
max then ⊲ Overflow.

7 �̃� ← +∞
8 else if 𝑥 < −𝑥 (ℓ )max and 𝑥 ≠ −∞ then
9 �̃� ← −𝑥 (ℓ )max

10 else ⊲ In range.
11 �̃� ← trunc(𝑥, 𝑡)
12 if tail(𝑥, 𝑝) ≠ 0 and 𝑥 > 0 then
13 �̃� ← �̃� + ulp(�̃�, 𝑡)
14 return �̃�

15 function roundTowardMinusInfinity(𝑥 ∈ F (ℎ) , 𝑡 ∈ N+, 𝜁 ∈ F (ℎ) )
16 if 𝑥 < 0 and 𝑥 > −𝜁 then ⊲ Underflow.
17 �̃� ← −𝜁
18 else if 𝑥 ≥ 0 and 𝑥 < 𝜁 then
19 �̃� ← sign(𝑥) · 0
20 else if �̃� > 𝑥

(ℓ )
max and �̃� ≠ +∞ then ⊲ Overflow.

21 �̃� ← 𝑥
(ℓ )
max

22 else if �̃� < −𝑥 (ℓ )max then
23 �̃� ← −∞
24 else ⊲ In range.
25 �̃� ← trunc(𝑥, 𝑡)
26 if tail(𝑥, 𝑝) ≠ 0 and 𝑥 < 0 then
27 �̃� ← �̃� − ulp(�̃�, 𝑡)
28 return �̃�

29 function roundTowardZero(𝑥 ∈ F (ℎ) , 𝑡 ∈ N+, 𝜁 ∈ F (ℎ) )
30 if abs(𝑥) < 𝜁 then ⊲ Underflow.
31 �̃� ← sign(𝑥) · 0
32 else if abs(𝑥) ≥ 𝑥

(ℓ )
max and abs(𝑥) ≠ +∞ then ⊲ Overflow.

33 �̃� ← sign(𝑥) · 𝑥 (ℓ )max
34 else ⊲ In range.
35 �̃� ← trunc(𝑥, 𝑡)
36 return �̃�
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Algorithm 5.5: Functions for stochastic rounding.
1 function roundStochastic(𝑥 ∈ F (ℎ) , 𝑡 ∈ N+, 𝜁 ∈ F (ℎ) )
2 if abs(𝑥) < 𝜁 then ⊲ Underflow.
3 𝑒min ← exponent(𝜁)
4 𝑒𝑥 ← exponent(𝑥)
5 𝑚𝑥 ← significand(𝑥)
6 𝑡 ← ⌊𝑚𝑥 · 2𝑒𝑥+1−𝑒min⌋
7 if 𝑡 > rand(𝑝 (ℎ) ) then
8 �̃� ← sign(𝑥) · 𝜁
9 else
10 �̃� ← sign(𝑥) · 0
11 else ⊲ In range or overflow.
12 �̃� ← trunc(𝑥, 𝑡)
13 if tail(𝑥, 𝑡) > rand(𝑝 (ℎ) − 𝑝) then
14 �̃� ← �̃� + sign(𝑥) · ulp(�̃�, 𝑡)
15 if �̃� ≥ 2𝑒 (ℓ)max (2 − 2−𝑝 ) then ⊲ Overflow.
16 �̃� ← sign(𝑥) · +∞
17 return �̃�

18 function roundStochasticEqal(𝑥 ∈ F (ℎ) , 𝑡 ∈ N+, 𝜁 ∈ F (ℎ) )
19 if abs(𝑥) < 𝜁 and 𝑥 ≠ 0 then ⊲ Underflow.
20 �̃� ← sign(𝑥) · randSelect(0, 𝜁)
21 else if abs(𝑥) > 𝑥

(ℓ )
max and abs(𝑥) ≠ +∞ then ⊲ Overflow.

22 �̃� ← sign(𝑥) · randSelect(𝑥 (ℓ )max , +∞)
23 else ⊲ In range.
24 �̃� ← trunc(𝑥, 𝑡)
25 if tail(𝑥, 𝑡) ≠ 0 then
26 �̃� ← randSelect(�̃�, �̃� + sign(𝑥) · ulp(�̃�, 𝑡))
27 return �̃�

28 function randSelect(𝑥 ∈ F (ℎ) , 𝑦 ∈ F (ℎ) )
29 if rand(1) = 1 then
30 return 𝑥

31 else
32 return 𝑦
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here so that the integers generated by the random number generator can be used without any further
post-processing. This is desirable not only from a performance point of view, but also because drawing
floating-point numbers from the uniform distribution over an interval is not a trivial task, even when
a good integer pseudo-random number generator is available [21]. Finally, the algorithm generates
a 𝑝 (ℎ) -digit random integer 𝛾, which is used as a threshold to choose the rounding direction: if the
discarded bits, interpreted as an unsigned integer, are larger than 𝛾, then 𝑥 is rounded away from zero,
otherwise it is rounded towards zero.

The procedure for numbers in the representable range is easier. In this case it suffices to com-
pute �̃�, the value of 𝑥 truncated to 𝑡 significant bits, and then generate a random integer 𝑟 between
0 and 2𝑝 (ℎ)−𝑡 . Since tail(𝑥, 𝑡) represents the distance between 𝑥 and �̃�, we increment the absolute
value of �̃� by ulp(�̃�, 𝑡) if tail(𝑥, 𝑡) > 𝑟 , and leave it unchanged otherwise. For overflow, we use the
threshold value that the IEEE 754 standard recommends for round-to-nearest, and round numbers
whose absolute value after rounding is larger than the threshold 2𝑒 (ℓ)max (2− 2−𝑝 ) to infinity, leaving the
sign unchanged.

The function roundStochasticEqal deals with the simpler strategy that rounds 𝑥 up or down
with equal probability. Depending on the interval in which 𝑥 falls, the function selects the two closest
representable numbers in F (ℓ ) and calls the function randSelect to select one of them with equal
probability. In the pseudocode, we use a single bit generated randomly to discriminate between the
two rounding directions.

6 Efficient implementation for IEEE-like representation formats

The subroutines used in Section 5 can be implemented efficiently if we assume that the numbers
are represented using the floating-point format described in Section 4. First, we need to define the
semantics of the operators for bit manipulation that we will rely on. These are available in most
programming languages, although the notation varies greatly from language to language. For clarity,
we use a prefix notation for all the operators.

Let a and b be strings of 𝑛 bits. The bits are indexed from left to right, so that a0 and a𝑛−1 denote
the leftmost and the rightmost bit of a, respectively. For 𝑖 ∈ N, we define the following operators.

• Conjunction: c = and(a, b) is an 𝑛-bit string such that c𝑘 = 1 if a𝑘 and b𝑘 are both set to 1, and
c𝑘 = 0 otherwise.

• Disjunction: c = or(a, b) is an 𝑛-bit string such that c𝑘 = 1 if at least one of a𝑘 and b𝑘 is set to
1, and c𝑘 = 0 otherwise.

• Negation: c = not(a) is an 𝑛-bit string such that c𝑘 = 1 if a𝑘 = 0, and c𝑘 = 0 otherwise.

• Logical shift left: c = lsl(a, 𝑖) is an 𝑛-bit string such that c𝑘 = 0 if 𝑘 > (𝑛 − 1) − 𝑖, and c𝑘 = a𝑘+𝑖
otherwise.

• Logical shift right: c = lsr(a, 𝑖) is an 𝑛-bit string such that c𝑘 = 0 if 𝑘 < 𝑖, and c𝑘 = a𝑘−𝑖
otherwise.

Most of the operations used in Section 5 require extracting a certain subset of the bits in the binary
representation of the floating-point number 𝑥 ∈ F ⟨𝑝, 𝑒min, 𝑒max, 𝔰n⟩ while zeroing out the remaining
ones. This can be achieved by taking the bitwise conjunction between the binary string that represents
𝑥 and a bitmask, that is, a string as long as the binary representation of 𝑥 that has ones in the positions
corresponding to the bits to be extracted and zeros everywhere else. More generally, the functions in
Section 5 can be implemented using the operators above as follows. In the descriptions, x denotes the
binary floating-point representation of 𝑥, 𝑛 denotes a positive integer, and 𝑖 denotes an integer index
between 0 and 𝑝 − 1.
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• abs(𝑥) can be implemented as and(x,mabs), where mabs is constituted by a single leading 0
followed by ones.

• digit(𝑥, 𝑖) can be implemented as and(x,mdigit), where mdigit has a 1 in the position corre-
sponding to the digit to be extracted and 0 everywhere else. We note that checking whether
this digit is 0 or 1 does not require any additional operations in programming languages such
as C where 0 is interpreted as false and any other integer is interpreted as true.

• exponent(𝑥) can be implemented as a sequence of logic and arithmetic operations. The raw
bits of the exponents can be extracted with c := and(x,mexp), wheremexp has 1 in the positions
corresponding to the exponent bits of the binary representation of 𝑥. This can be converted
into the unsigned integer lsr(c, 𝑝 − 1), and the signed exponent can be obtained by subtracting
the bias of the storage floating-point format. If 𝑥 is subnormal in F ⟨𝑝, 𝑒min, 𝑒max, 𝔰n⟩, then the
value computed in this way is −𝑒max = 𝑒min − 1, and the correct value to return in this case is
𝑒min + 𝜆, where 𝜆 is the number of trailing zeros in the significand of 𝑥, including the implicit
bit.

• significand(𝑥) can be implemented leveraging the function exponent. The digits to the right
of the radix point can be obtained as c := and(x,mfrac)wheremfrac is the bitmask that has the 𝑝−
1 trailing bits set to 1 and the remaining bits set to 0. If 𝑥min ≤ |𝑥 | ≤ 𝑥max , then exponent(𝑥) >
𝑒min and the implicit bit must be set to 1. This can be achieved by using or(c, lsl(1, 𝑝 − 1)), for
instance.

• rand(𝑛) can be implemented by concatenating numbers produced by a pseudo-random num-
ber generator. Two 𝑚-bit strings a and b can be joined together by or(lsl(a, 𝑚), b), and the
unnecessary bits can be set to zero using a suitable bitmask.

• sign(𝑥) is relatively expensive to implement by means of bit manipulation. However, note that
we only need to compute the product sign(𝑥) · 𝑦 where 𝑦 is a positive floating-point number.
This operation can be implemented as or(and(x,msign), y), where msign is the bitmask with a
leading 1 followed by zeros and the string y denotes the floating-point representation of 𝑦.

• tail(𝑥, 𝑖) can be implemented as and(x,mtail), where the trailing 𝑝 − 𝑖 bits of mtail are set to 1
and the remaining bits are set to 0. This way, bits 𝑖 to 𝑝 − 1 of the significand of x are preserved
while the rest of the bits, including those representing the sign and exponent, are set to zero.

• trunc(𝑥, 𝑖) can be implemented as and(x,m′), wherem′ = not(mtail). This way, bits 𝑖 to 𝑝− 1
of the significand of x are set to zero while the rest of the bits of x, including the exponent and
sign bits, are preserved.

• ulp(𝑥, 𝑝) is a rather expensive function to implement, because it requires extracting the ex-
ponent from the binary representation of 𝑥 and then performing arithmetic operations on it.
Increasing or decreasing 𝑥 by ulp(𝑥, 𝑝), on the contrary, can be achieved efficiently using only
one bit shift and one integer arithmetic operation. In particular, it suffices to add to the binary
representation of 𝑥, seen as an unsigned integer, a number that has 0 everywhere but in the 𝑝th
digit, that is, the digit in position 𝑝 − 1 of the significand. We note that this technique could fail
if 𝑥 = ±∞, since adding ulp(𝑥, 𝑝) in this fashion would turn infinities into NaNs. It is easy to
check that this is not a problem in our setting, as we only add or subtract ulp(𝑥, 𝑝) when 𝑥 is
finite and nonzero.

It is possible to implement some of the rounding routines even more efficiently by extending to
other rounding modes the technique for round-to-nearest with ties-to-even developed on [31, p. 2–
17], which manipulates the binary representation of the floating-point number by using only integer
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arithmetic. As a demonstration, here we show the concrete values of the bitmasks, expressed in hex-
adecimal notation, that one would use to round a binary32 number 𝑦 to binary16. These methods
generalize easily to other combinations of storage and target formats, and we describe this in general
for the conversion of a floating-point number 𝑥 ∈ F ⟨𝑝 (ℎ) , 𝑒 (ℎ)min, 𝑒

(ℎ)
max, 𝔰

(ℎ)
n ⟩ to F ⟨𝑝, 𝑒 (ℓ )min, 𝑒

(ℓ )
max, 𝔰

(ℓ )
n ⟩.

We denote the 32-bit string containing the floating-point representation of 𝑦 by y, and use the
uppercase Latin letters 𝑋 and 𝑌 to denote the unsigned integers that can be obtained by interpreting
x and y as unsigned integers in radix 2. All the usual underflow and overflow checks are not included
here—the aim is to demonstrate the core ideas for performing each type of rounding efficiently. We
recall that the sign of a floating-point number can be determined by checking the leftmost bit, and
that 𝑥 (resp. 𝑦) is negative if x0 (resp. y0) is set and positive otherwise. The rounding modes amenable
to this approach can be implemented as follows.

• Round-to-nearest with ties-to-even: isolate the bit in position 𝑝 − 1 of the significand of 𝑥, and
then compute trunc(𝑋 + lsr(mtail, 1) +digit(𝑥, 𝑝 −1), 𝑝). When rounding a binary32 number
to binary16, the formula becomes trunc(𝑌 + 0x7FFF + y15, 16).

• Round-to-nearest with ties-to-away: return trunc(𝑋 + lsl(0x1, 𝑝 (ℎ) − 𝑝 − 1), 𝑝), which in our
example becomes trunc(𝑌 + 0x8000, 16).

• Round-to-nearest with ties-to-zero: return trunc(𝑋 + lsr(mtail, 1), 𝑝), which in our example
becomes trunc(𝑌 + 0x7FFF, 16).

• Round-toward-+∞: return trunc(𝑋, 𝑝) if x0 is set and trunc(𝑋 +mtail, 𝑝) otherwise. For our
example, return trunc(𝑌, 16), if y0 is set and trunc(𝑌 + 0xFFFF, 16) if not.

• Round-toward-−∞: return trunc(𝑋, 𝑝) if x0 is not set and trunc(𝑋 +mtail, 𝑝) otherwise. For
our example, return trunc(𝑌, 16) if y0 is not set and trunc(𝑌 + 0xFFFF, 16) otherwise.

• Round-toward-zero: return trunc(𝑋, 𝑝). For our example, return trunc(𝑌, 16).
• Stochastic rounding with proportional probabilities: return trunc(𝑋 + rand(𝑝 (ℎ) − 𝑡), 𝑝). For
our example, return trunc(𝑌 + rand(13), 13).

7 Implementation and validation of the code

Our C implementation of the algorithms discussed in Section 5 and Section 6 is available on GitHub.
The code is provided as a header-only library to allow the user to take advantage of the inlining feature
of the C language for maximum efficiency. This also enhances the portability of the code, as packaging
of the binaries and installation of the library are not required. The main drawback of this approach is
a longer compilation time, which we alleviate by dividing the library into two separate units, one for
each supported storage format.

In order to achieve better performance on large data, our functions work directly on C arrays. All
the algorithms discussed in Section 5 are embarrassingly parallel, and each element of an array can
be rounded independently from all the others. Therefore, our code can leverage the OpenMP library,
if available on the system in use.

In general, OpenMP brings significant gains in terms of performance, but greatly increases the
execution time for arrays with a limited number of elements. This well-known phenomenon is caused
by the additional overhead of synchronization and loop scheduling [5]. While negligible for large
arrays, these can be significant when only a small amount of work is allocated to each OpenMP thread.
The impact of this overhead is hard to quantify in general, as it depends on the hardware platform as
well as the number of OpenMP threads and the compiler used [6]. Our library contains both a parallel
and a sequential version of each function, but we were unable to provide a single threshold that would
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allow the code to switch automatically from one variant to the other for optimal performance. Thus
we devised a simple auto-tuning strategy that tries to determine the optimal threshold for the system
in use by timing the rounding function on several arrays of different lengths and performing a binary
search.

For generating the pseudo-random numbers required for stochastic rounding, we rely on algo-
rithms from the family of permuted congruential generators developed by O’Neill [41], who provides
a pure C implementation available on GitHub.3 In our code we use the functions pcg32_random_r
and pcg64_random_r to generate 32-bit and 64-bit random numbers, respectively; we initialize the
random number generators with pcg32_srandom_r and pcg64_srandom_r, and advance them with
pcg32_advance_r and pcg64_advance_r, respectively. As initial state, we use the current time as re-
turned by time(NULL). Use of the—considerably slower—default C pseudo-random number generator
is also supported.

In order to validate our code experimentally, we wrote a suite of extensive unit tests. We describe
in detail how we tested the rounding routines—all other functions in the library are tested by relying
on them. We considered two storage formats, binary32 and binary64, which are available in C via the
native data types float and double, respectively, and two target formats, binary16 and bfloat16. For
each combination of storage and target formats, we performed three types of tests.

First we checked that all the numbers that can be represented exactly in the target format, includ-
ing subnormals and special values such as infinities and NaNs, are not altered by any of the rounding
routines. As the target formats we consider do not have an unduly large cardinality, we can test that
this property is true for all representable numbers.

To check the correctness of the code when rounding is necessary, exhaustive testing is not an
option, as the storage formats contain too many distinct values. In this case, we opted for test-
ing only a set of representative values. For deterministic rounding, the correctness of the function
can be assessed by checking that the output of the rounding routine matches the value predicted
by the definition. For each pair of numbers 𝑥1, 𝑥2 ∈ F (ℓ ) such that 𝑥1 and 𝑥2 are consecutive in
F (ℓ ) and 𝑥1 < 𝑥2, we considered five values in F (ℎ) : nextafter(𝑥1, +∞), nextafter(𝑥𝑚,−∞), 𝑥𝑚,
nextafter(𝑥𝑚, +∞), and nextafter(𝑥2,−∞). Here nextafter(𝑥, 𝑦) denotes the next number in F (ℎ) after
𝑥 in the direction of 𝑦, and 𝑥𝑚 denotes the mid point between 𝑥1 and 𝑥2. We used the same tech-
nique for numbers in the underflow range, whereas for testing the correctness of overflow we used
the values nextafter(±𝑥 (ℓ )max ,±∞), nextafter(±𝑥

(ℓ )
bnd,∓∞), ±𝑥

(ℓ )
bnd, nextafter(±𝑥

(ℓ )
bnd,±∞), where 𝑥

(ℓ )
bnd :=

2𝑒 (ℓ)max (2 − 2−𝑝 ) is the IEEE 754 threshold for overflow in round-to-nearest.
This technique would not work for stochastic rounding, as each value that is not representable in

F (ℓ ) can be rounded to two different values. We produced a test set by taking, for each pair of numbers
𝑥1, 𝑥2 ∈ F (ℓ ) such that 𝑥1 and 𝑥2 are consecutive in F (ℓ ) and 𝑥1 < 𝑥2, the numbers (3𝑥1 + 𝑥2)/4,
(𝑥1 + 𝑥2)/2, and (𝑥1 + 3𝑥2)/4. We rounded each number 1,000 times and confirmed that the rounding
routines always return either 𝑥1 or 𝑥2, and that the empirical probability distribution matches the
expected one. We validated the correctness of the implementation for values in the underflow range
by using the same technique, whereas for inputs in the overflow range we repeated the test on the
three values: (3𝑥 (ℓ )max + 𝑥

(ℓ )
bnd)/4, (𝑥

(ℓ )
max + 𝑥

(ℓ )
bnd)/2, and (𝑥

(ℓ )
max + 3𝑥

(ℓ )
bnd)/4.

The Makefile target
$ make ctest

runs the test suite for the C implementations.
We designed a MEX interface for MATLAB and Octave which is in charge of parsing and checking

the input, allocating the output, and calling our library to perform the rounding. In order to show that
the interface is fully compatible with chop, we designed a set of tests by modifying the default test
suite for chop.4 These test can be run with

3https://github.com/imneme/pcg-c
4https://github.com/higham/chop/blob/master/test_chop.m
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$ make mtest

in MATLAB, and with
$ make otest

in Octave.

8 Performance evaluation

The experiments were run on a machine equipped with a 12-core Intel Xeon CPU E5-2690 v3 running
at 2.60GHz. Exclusive node accesswas used to avoid timing artifacts and ensure that all 24 CPU threads
were available for parallel runs. The C code was compiled with version 9.3.0 of the GNU Compiler
Collection (GCC) with the optimization flag -O3 and the architecture option -march=native. The
MATLAB experiments were run using the 64-bit GNU/Linux version of MATLAB 9.10 (R2021a). For
our parallel implementations, we used version 4.5 of the OpenMP library. Source code and scripts to
reproduce the experiments discussed in this section are available on GitHub.5

We compare the three versions of our codes.

• cpfloat_seq denotes the sequential C codes in our library. Rounding is performed using the
algorithms in Section 6.

• cpfloat denotes the C codes in our library that leverage OpenMP and employ the auto-tuning
technique discussed in Section 7 to switch between sequential and parallel implementations.
Rounding is performed using the algorithms in Section 6.

• cpfloat_ml denotes our MEX interface to cpfloat compiled in MATLAB. For large matrices,
this function relies on the parallel version of our C codes.

In the plots, we use the shorthand notation ⟨ 𝑓𝑠 | 𝑓𝑡⟩ to denote the conversion of numbers in the storage
format 𝑓𝑠 to the target format 𝑓𝑡 . As the numerical validation of the code has already been discussed
in Section 7, here we focus on timings. We time the C or C++ code by comparing the value returned
by the function clock_gettime with CLOCK_MONOTONIC before and after the execution, and take the
median of 1,000 repetitions in order to reduce the influence of possible outliers. For theMATLAB code,
we rely on the function timeit, which runs a portion of code several times and returns the median
of the measurements.

8.1 Performance of the C interface

In this section we compare the performance of CPFloat, GNU MPFR, and FloatX by considering the
following implementations.

• chop_mpfr denotes the codes that rely on the GNU MPFR library.6 As storage format, we use
the GNU MPFR custom data type mpfr_t. For rounding, our implementation sets the precision
and exponent range of MPFR to the precision and exponent range of the target format and then
converts the binary64 input using the function mpfr_set_d. Arithmetic operations use mpfr_t
arrays for both input and output.

• floatx denotes the codes that use the floatx class from the FloatX library.7 Arrays of binary64
numbers are converted to a lower-precision target format by invoking the constructor of the
floatx class. This code requires that the parameters of the target format be specified at compile

5https://github.com/north-numerical-computing/cpfloat_experiments
6https://www.mpfr.org/
7https://github.com/oprecomp/FloatX
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Figure 1: Top: execution time, in seconds, of chop_mpfr, floatxr, floatx, and cpfloat_seq to con-
vert matrices of order 𝑛 from binary64 to binary16 (left and middle) and to compute the sum of two
matrices of size 𝑛 in binary16 (right) using round-to-nearest with even-on-ties. Bottom: Correspond-
ing slowdown plots, where cpfloat_seq is taken as baseline. The timings include the allocation of
the output vector only in the left-most panel.

time, as the floatx class uses C++ templates that are instantiated only for the low-precision
formats declared in the source code. For arithmetic operations, we use arrays of floatx objects
as input and output.

• floatxr denotes the codes that rely on the floatxr class in the FloatX library. Conversion is
performed using the class constructor. This function is more flexible than floatx in that the
number of bits of precision and the maximum exponent allowed for the target format can be
specified at runtime. As with the other implementations, for arithmetic operations we assume
that input and output are arrays of floatxr objects.

Figure 1 compares the time required by chop_mpfr, floatxr, floatx, and cpfloat_seq to per-
form two operations: converting a square matrix from the storage format to the target format and
computing the sum of two matrices in the target format. For format conversion, we report timings
both including (left) and excluding (middle) the time needed to allocate the output vector. For the sum
we report only the time needed to execute the operation (right), assuming that the memory to store
the result has already been allocated.

As storage and target formats, we use binary64 and binary16, respectively. We repeated the exper-
iment simulating bfloat16 and TensorFloat-32 arithmetic—we do not reproduce these results here as
they are indistinguishable from those for binary16. We use only round-to-nearest with ties-to-even, as
the FloatX library currently does not support any other rounding modes. We observe, however, that
chop_mpfr also supports directed rounding as prescribed by the IEEE 754 floating-point standard.
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Figure 2: Ratio of the execution times of chop to that of cpfloat_ml on 𝑛 × 𝑛 matrices of normal
floating-point numbers stored in binary64 (bottom row).

The plots in the top row report the median timing of 100 runs for each algorithm. The plots in
the bottom row present the same data as slowdown with respect to the timings of cpfloat_seq.
Unsurprisingly, the execution time of the four algorithms grows quadratically with the order of the
matrix to be converted and thus linearly with the number of entries in the matrix. For matrices of
small size, the performance of floatx and cpfloat_seq are essentially indistinguishable, and for
floatxr there is only a difference when the time to allocate the memory is considered. For matrices
of size with 100 or more elements (𝑛 > 10), cpfloat_seq is the fastest of the four implementations we
consider. In this regime, floatx is typically two to three times slower than cpfloat_seq, whereas for
the two other algorithms the performance varies depending on the operation being considered. The
slowdown factor of floatxr can get well over ten for conversion if the time needed to allocate the
output is factored in, but it goes below five when allocations are not considered. The performance of
chop_mpfr, on the other hand, seems to dependmostly onwhat operation is performed: the slowdown
factor is mostly over 20 for data conversion but is generally below 10 for sums.

We remark that chop_mpfr, floatxr, and cpfloat_seq aremore flexible than floatx, as the latter
requires the parameters of the target format be known at compile time, in order for the compiler to
instantiate the templates appropriately.

8.2 Performance of the MATLAB interface

In this section we compare the performance of cpfloat_ml with that of existing MATLAB alterna-
tives.

First, we consider the MATLAB function chop, which is available on GitHub.8 Figure 2 reports
the speedup of cpfloat_ml over chop. In each plot we consider the conversion of square matrices of
size 𝑛 between 1 and 10,000 using the six rounding modes implemented in chop. As target formats,
we consider binary16 (left column), bfloat16 (middle column), and TensorFloat-32 (right columns). As
storage format, we consider both binary32 (top row) and binary64 (bottom row).

The input data is obtained by manipulating the entries of an 𝑛 × 𝑛 matrix 𝑋 of pseudo-random
numbers uniformly distributed in (0, 1). To generate a matrix of normal numbers, we add to each
entry of 𝑋 the constant value 𝑥 (ℓ )min, which guarantees that 𝑥𝑖 𝑗 is distributed uniformly in the interval(
𝑥
(ℓ )
min, 1 + 𝑥

(ℓ )
min

)
for 𝑖, 𝑗 = 1, . . . , 𝑛. To generate a matrix with subnormal entries we scale the entries

8https://github.com/higham/chop
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Figure 3: Ratio of the execution times of flround from INTLAB V12 to that of cpfloat_ml on 𝑛 × 𝑛
matrices of normal floating-point numbers stored in binary64.

of 𝑋 by 𝑥
(ℓ )
min − 𝑥

(ℓ )
minsub, and then add 𝑥

(ℓ )
minsub to the result, which guarantees that all the entries of 𝑋

belong to the interval (𝑥 (ℓ )minsub, 𝑥
(ℓ )
min), and are thus subnormal in the target precision.

In all cases, the speedup is greater than one and increases with the size of the input matrix. In
other words, cpfloat_ml is always faster than chop, and particularly so for larger matrices. The two
rounding modes for which the new algorithms bring the most significant gains are the two flavors
of stochastic rounding. This is expected: generating pseudo-random numbers accounts for a large
fraction of the execution time for these rounding modes, and by using a more efficient pseudo-random
number generator the new algorithms have a great advantage over chop. The remaining four rounding
modes show a very similar speedup, although the curves for round-to-nearest are generally slightly
favorable.

We repeated the experiment using as storage format binary32 rather than binary64, and using
matrices with entries that were subnormal, rather than normal, in the target format. The results of
these experiments are not included here as they were not noticeably different from those reported in
Figure 2.

We compared the performance of cpfloat_ml and of the MATLAB function f_d_dec2floatp
from the FLOATP_Toolbox9 in a similar way. This library is less efficient than chop at the task we
examine: it is typically over 100 times slower than cpfloat_ml at simulating binary16 and bfloat16
arithmetic, and always over 1,000 slower at simulating TensorFloat-32 arithmetic.

Finally, we have also run a similar comparison with INTLAB’s flround function, part of the fl
custom precision arithmetic library [47] of INTLAB,10 for which the results are shown in Figure 3.
This rounding function supports only binary64 as a storage format and does not support rounding to
odd or stochastic rounding modes. These experiments show that cpfloat_ml is faster than INTLAB’s
flround by up to 9×.

8.3 Overhead of the MATLAB interface

As a final test, we consider the overhead introduced by MATLAB when calling the underlying C
implementation of the rounding algorithms. In Figure 4 we compare the execution time required to
convert a matrix to binary16 with a direct call to the C code (left column) or with a call to the MEX
interface in MATLAB (middle column). As the performance of the two algorithms is very similar and

9https://gerard-meurant.pagesperso-orange.fr/floatp.zip
10https://www.tuhh.de/ti3/rump/intlab/
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Figure 4: Execution time, in seconds, of cpfloat (first column) and cpfloat_ml (second column) on
matrices of increasing order 𝑛 and target format binary16. The third column represents the ratio of
the execution time in the first column to that in the second.

the data in the two series is hard to compare directly, we provide the speedup in the third column.
As done in previous experiments, we repeat the experiment for both binary32 (top row) and binary64
(bottom row). We remark that the C functions were tuned by using the make autotune command,
whereas for the MEX interface we used cpfloat_autotune, a MATLAB function included in the
software package.

The raw timings show that in our implementations stochastic rounding is the slowest rounding
mode. The performance of the other rounding modes is so similar that the lines are hard to distinguish
for both the C and the MEX interface. The data in the right-most column shows that for both storage
formats we consider, the overhead of the MEX interface is significant for small matrices, but becomes
negligible for matrices of order 3,000 or more.

Our results seem to suggest that MATLAB code that requires the functionalities of cpfloat_ml
should be translated into C in order to obtain the maximum efficiency. We would like to stress, how-
ever, that this translation might bring only a minor performance gain, and in fact not be worth the
effort, unless the cpfloat function is used extensively on matrices of small size. In fact, the overhead
of the MEX interface is modest in absolute terms, and is noticeable only in cases when the overall
execution time of both cpfloat and cpfloat_ml is below 5 milliseconds. This suggests that, in most
cases, switching to a pure C implementation would bring only a marginal benefit, if any.
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9 Summary and future work

Motivated by the growing number of tools and libraries for simulating low-precision arithmetic,
mainly driven by the explosion of floating-point formats made available in today’s hardware, we con-
sidered the problem of rounding floating-point numbers to low precision in software. We developed
low-level algorithms for a number of rounding modes, explained how to implement them efficiently
using bit manipulation, and how to validate their behavior experimentally by means of exhaustive
testing. We developed CPFloat, an efficient C library that implements all the algorithms discussed
here from within MATLAB and Octave by means of a MEX interface we provide. When used in C,
CPFloat can act as a full custom-precision floating-point arithmetic library as we have provided li-
brary calls for elementary arithmetic operations andmathematical functions such as the ones available
for binary32 and binary64 in math.h. Our experimental results show that the new implementations
outperform existing alternatives in C, C++, and MATLAB.

Traditionally, floating-point arithmetic has been the most widely adopted technique for working
with non-integer numbers in high-performance scientific computing, but alternative methods have
recently begun to gain popularity. In particular, we believe that the techniques we developed here
could be adapted to posit arithmetic [24, 12], a generalization of the IEEE 754 floating-point number
format, and to fixed-point arithmetic, a de facto standard technique for working with reals on systems
that are not equipped with a floating-point unit. This will be the subject of future work.
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