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PROBABILISTIC ROUNDING ERROR ANALYSIS OF
HOUSEHOLDER QR FACTORIZATION∗

MICHAEL P. CONNOLLY† AND NICHOLAS J. HIGHAM†

Abstract. When an m × n matrix is premultiplied by a product of n Householder matrices
the worst-case normwise rounding error bound is proportional to mnu, where u is the unit roundoff.
We prove that this bound can be replaced by one proportional to

√
mnu that holds with high

probability if the rounding errors are mean independent and of mean zero. The proof makes use of a
matrix concentration inequality. In particular, this result applies to Householder QR factorization.
The same square rooting of the error constant applies to two-sided transformations by Householder
matrices and hence to standard QR-type algorithms for computing eigenvalues and singular values.
It also applies to Givens QR factorization. These results complement recent probabilistic rounding
error analysis results for inner-product based algorithms and show that the square rooting effect
is widespread in numerical linear algebra. Our numerical experiments, which make use of a new
backward error formula for QR factorization, show that the probabilistic bounds give a much better
indicator of the actual backward errors and their rate of growth than the worst-case bounds.

Key words. floating-point arithmetic, backward error analysis, backward error, probabilistic
rounding error analysis, Givens QR factorization, Householder QR factorization, matrix concentra-
tion inequality

AMS subject classifications. 65G50, 65F05

1. Introduction. It is well known that backward error bounds from worst-case
rounding error analyses can greatly overestimate the backward error. Recently, it was
proved that for inner product-based algorithms with backward error bounds of the
form f(n)u, where n is the problem dimension and u is the unit roundoff, a bound
proportional to

√
f(n)u holds with high probability under suitable assumptions on

the rounding errors [15]. These results apply to matrix multiplication, Cholesky
factorization, LU factorization, and the solution of triangular systems, but not to
algorithms based on orthogonal transformations.

A QR factorization of A ∈ Rm×n (m ≥ n) is a factorization A = QR where
Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper trapezoidal. A Householder matrix
is a matrix of the form

P = I − 2

v∗v
vv∗, 0 ̸= v ∈ Rm.

The vector v can be chosen so that in the product y = Px all elements of y except the
first are zero. By applying a sequence of such Householder matrices to A we can reduce
it to upper trapezoidal form: Pn . . . P2P1A = R. We then have Q = (Pn . . . P2P1)

∗.
The standard rounding error analysis for Householder QR factorization is sum-

marized in the following result [12, Thm. 19.4]. We define

(1.1) γn =
nu

1− nu
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and use the 2-norm ∥x∥2 = (x∗x)1/2, the corresponding subordinate matrix norm,
and the Frobenius norm ∥A∥F = trace(A∗A)1/2.

Theorem 1.1. Let R̂ ∈ Rm×n be the computed upper trapezoidal QR factor of
A ∈ Rm×n (m ≥ n) obtained via the Householder QR algorithm. There exists an
orthogonal Q ∈ Rm×m such that

A+∆A = QR̂,

where

(1.2) ∥∆aj∥2 ≤ γcmn∥aj∥2, j = 1 :n,

with c a small integer constant.

The columnwise bounds (1.2) yield the normwise backward error bound

(1.3) ∥∆A∥F ≤ γcmn∥A∥F .

The purpose of this work is to show that the worst-case backward error bounds (1.2)
and (1.3) for Householder QR factorization can be replaced by probabilistic bounds
in which the dimension-dependent constants are proportional to the square roots of
the original constants under suitable assumptions on the rounding errors.

We use the standard model of floating-point arithmetic, which assumes that the
elementary operations are correctly rounded, so that

(1.4) f l(x op y) = (x op y)(1 + δ), |δ| ≤ u.

In a rounding error analysis products of 1 + δ terms arise, and their distance from 1
can be bounded using the following lemma [12, Lem 3.1].

Lemma 1.2. If |δi| ≤ u and ρi = ±1 for i = 1 :n, and nu < 1, then

(1.5)

n∏
i=1

(1 + δi)
ρi = 1 + θn, |θn| ≤ γn.

An analogous probabilistic result [7, Thm. 4.6] is given in terms of the constant

(1.6) γ̃n(λ) = exp

(
λ
√
nu+ nu2

1− u

)
− 1 = λ

√
nu+O(u2).

with λ > 0. We note that random variables δ1, δ2, . . . , δn are mean independent if
E(δk | δk−1, . . . , δ1) = E(δk) for k = 2 : n, where E denotes expectation.

Lemma 1.3. Let δ1, δ2, . . . , δn be mean independent random variables of mean zero
such that |δi| ≤ u for all i, and let ρi = ±1, i = 1 :n. Then for any constant λ > 0,

(1.7)

n∏
i=1

(1 + δi)
ρi = 1 + θn, |θn| ≤ γ̃n(λ),

holds with probability at least p(λ) = 1− 2 exp(−λ2/2).
Throughout this work we will use the following model of rounding errors, which

was also used in [7] and [16].
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Model 1.4 (probabilistic model of rounding errors). Let the computation of
interest generate rounding errors δ1, δ2, . . . (in that order) satisfying (1.4). The δk
are mean independent random variables of mean zero.

For the round to nearest rounding mode (the default in IEEE arithmetic) the
error bounds obtained under Model 1.4 often reflect the behavior of the actual errors
obtained, but in some circumstances the model is not valid because the rounding errors
are highly dependent or have nonzero mean, and the bound can then be violated [7,
sec. 7], [8, sec. 8], [15, sec. 4.2]. For stochastic rounding [7], [8], the rounding errors
always satisfy the model. For further discussion of the applicability of the model see
[7], [15].

In our probabilistic rounding error analysis it is more difficult than in worst-case
rounding error analysis to keep track of constants and to bound terms of all orders
in u. We will express our bounds in terms of c1, c2, . . . , which denote generic integer
constants of modest size, and we will state the bounds to first order in u. We will
nevertheless give explicit bounds for the probabilities with which the error bounds
hold, and these show that the analysis does not introduce exponential worsening of
probabilities. All our probabilistic results can informally be stated as saying that the
given backward error bound holds with λ a modest constant with high probability.

We begin in section 2 with a probabilistic analysis of the rounding errors in
constructing a Householder vector. In section 3 we state a matrix concentration
inequality that we use in section 4 in our probabilistic rounding error analysis of the
application of products of Householder matrices to a matrix and of Householder QR
factorization. We discuss the implications of the analysis in section 5, including for
two-sided transformations and for Givens QR factorization. In section 6 we give a new
backward error formula for QR factorization that we use in section 7, where we carry
out numerical experiments to compare the results of the analysis with the practical
behavior. Conclusions are given in section 8.

2. Construction of a Householder vector. We first give a probabilistic error
result for the construction of the Householder vectors needed in QR factorization. We
begin by considering the evaluation of the vector 2-norm. We denote by fl(expr) the
computed result of evaluating the expression expr .

Lemma 2.1. Under Model 1.4, the computed 2-norm of x ∈ Rn satisfies

(2.1) f l(∥x∥2) = ∥x∥2(1 + η), |η| ≤ c1γ̃n(λ),

with probability at least p1(λ, n) = 1− 2n exp(−λ2/2).

Proof. By standard inner-product analysis [7, Thm. 4.8], [15, Thm. 3.1],

(2.2) f l(x∗x) = x∗x(1 + θn), |θn| ≤ γ̃n(λ),

holds with probability at least p1(λ, n). Then fl(∥x∥2) = ∥x∥2
√
1 + θn(1 + δ), with

|δ| ≤ u. For
√
1 + θn = 1+α, we certainly have |α| ≤ |θn|. Then (1+α)(1+δ) = 1+β,

with |β| ≤ |θn|+ u+ |θn|u. Hence provided |θn| ≤ γ̃n(λ), we have |β| ≤ γ̃n(λ) + u+
γ̃n(λ)u ≤ c1γ̃n(λ). The bound holds with probability at least the probability of (2.2)
holding.

We now derive a probabilistic version of the worst-case error bound for construc-
tion of a Householder vector [12, Lem. 19.1].
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Lemma 2.2. Let x ∈ Rn. Consider the construction of β ∈ R and v ∈ Rn such
that Px = σe1, where P = I − βvv∗ is a Householder matrix and β = 2/(v∗v), by

v = x,

s = sign(x1)∥x∥2,
v1 = v1 + s,

β = 1/(sv1).

Under Model 1.4 the computed β̂ and v̂ satisfy v̂(2 : n) = v(2 : n) and

v̂1 = v1(1 + η), β̂ = β(1 + η),

where |η| ≤ c3γ̃n(λ) +O(u2) with probability at least p1(λ, n).

Proof. From Lemma 2.1 we have that ŝ = s(1 +∆s), with |∆s| ≤ c1γ̃n(λ) holds
with probability at least p1(λ, n). Define w = v1 + s, so that

ŵ = (v1 + ŝ)(1 + δ), |δ| ≤ u
= v1 + s+ δ(v1 + s) + s∆s(1 + δ) =: w +∆w1.

Because v1 and s have the same sign, |s| ≤ |v1 + s|, and so

|∆w1| =
∣∣∣∣(v1 + s)

(
δ +

s

v1 + s
∆s(1 + δ)

)∣∣∣∣
≤ |w| (u+ c1γ̃n(λ) + c1γ̃n(λ)u) ≤ c2γ̃n(λ)|w|.

So ŵ = w(1 + ∆w), where |∆w| ≤ c2γ̃n(λ) holds with probability at least p1(λ, n).
We then have, using (1.4) and (1.5),

β̂ = fl(1/(ŝŵ)) =
1 + θ2

s(1 +∆s)w(1 +∆w)
=

1

sw
(1 + ξ),

where |ξ| ≤ c3γ̃n(λ) +O(u2).

If we redefine the Householder matrix as P = I − vv∗ with ∥v∥2 =
√
2 then

Lemma 2.2 amounts to the result

(2.3) v̂ = v +∆v, |∆v| ≤ c4γ̃n(λ)|v|,

where the bound holds with probability at least p1(λ, n).

3. Matrix concentration inequalities. The proof of Lemma 1.3 in [7] makes
use of the scalar Azuma–Hoeffding inequality [17, Thm. 13.4]. Here, we will use a
matrix version of that result due to Tropp [18, Thm. 7.1]. Our notation is as follows:
we write (in this section only), X ≤ Y , where X and Y are symmetric, to mean that
Y −X is positive semidefinite; the expectation of a matrix is defined componentwise;
and we denote by λmax the largest eigenvalue of a symmetric matrix.

Theorem 3.1. Let X1, . . . , Xn be a sequence of random symmetric d×d matrices.
If E(Xk | Xk−1, . . . , X1) = 0 and X2

k ≤ A2
k almost surely for all k, where A1, . . . , An

is a fixed sequence of symmetric d× d matrices, then for all t ≥ 0,

(3.1) P

(
λmax

( n∑
k=1

Xk

)
≥ t

)
≤ d exp

(
−t2/(8σ2)

)
,
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where

(3.2) σ2 =

∥∥∥∥ n∑
k=1

A2
k

∥∥∥∥
2

.

We need a version of Theorem 3.1 for nonsymmetric matrices. Define

(3.3) ϕ(B) =

[
0 B
B∗ 0

]
to be the symmetric dilation of the rectangular matrix B. It is well known that

(3.4) λmax(ϕ(B)) = ∥B∥2.

The required result can be obtained by applying the theorem to the symmetric dilation
of the sequence X1, . . . , Xn and using (3.4) [18, Rem. 7.3]. We also rescale by defining
λ = t/(2

√
2σ).

Theorem 3.2. Let X1, . . . , Xn be a sequence of random d1 × d2 matrices. If
E(Xk | Xk−1, . . . , X1) = 0 for all k, and XkX

∗
k ≤ AkA

∗
k and X∗

kXk ≤ A∗
kAk almost

surely for all k, where A1, . . . , An is a fixed sequence of d1 × d2 matrices, then for all
λ ≥ 0,

(3.5) P

(∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
2

≥ 2
√
2σλ

)
≤ (d1 + d2) exp(−λ2),

where

(3.6) σ2 = max

(∥∥∥∥ n∑
k=1

AkA
∗
k

∥∥∥∥
2

,

∥∥∥∥ n∑
k=1

A∗
kAk

∥∥∥∥
2

)
≤

n∑
k=1

∥Ak∥22.

This is the key result that we need in the next section.

4. Application of a sequence of Householder matrices. Our probabilistic
rounding error analysis for Householder QR factorization follows a similar strategy as
for the worst-case analysis in [12, sec. 19.3]: we analyze the application of a sequence of
general Householder matrices to a vector, then the application of the same sequence to
a matrix, and finally specialize to the Householder matrices used in QR factorization.

For a single application of an m × m Householder matrix our backward error
analysis gives an error constant proportional to m1/2. A straightforward inductive
argument for the application of n Householder matrices would lead to a backward
error bound with a constant proportional to nm1/2, which is unsatisfactory as it is
linear in n, as for the worst-case analysis. Our key observation is that by applying
the matrix concentration inequality in Theorem 3.2 we can obtain a bound with a
constant of order n1/2m1/2.

Lemma 4.1. Consider the (given) Householder matrices

Pi = I − viv∗i ∈ Rm×m, v∗i vi = 2, i = 1 : r,

and the product

ar+1 = Pr . . . P2P1a, a = a1 ∈ Rm,
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computed as aj+1 = Pjaj = aj − (v∗j aj)vj, j = 1 : r. Under Model 1.4, the computed
âr+1 satisfies

(4.1) âr+1 = (Pr +∆Pr) . . . (P1 +∆P1)a,

where

(4.2) ∥∆Pj∥2 ≤ c5γ̃m(λ)

holds for all j with probability at least p2(λ,m, r) = 1− 2rm exp(−λ2/2).
Proof. Define the scalars sj = v∗j aj . From standard rounding error analysis [12,

sec. 3.1], [15, Proof of Thm. 3.1], the computed sj satisfy ŝj = v∗jDj âj , where

Dj = diag
(
d
(j)
k

)
, d

(j)
k =

m∏
i=1

(
1 + δ

(j)
k,i

)
,
∣∣δ(j)k,i

∣∣ ≤ u, i, k = 1 : m.

Then we form

âj+1 = fl(âj − ŝjvj) =
(
I + Λ

(j)
1

)(
âj −

(
I + Λ

(j)
2

)
ŝjvj

)
,

where
Λ
(j)
k = diag

(
ϵ
(j)
k,i

)
,
∣∣ϵ(j)k,i

∣∣ ≤ u, k = 1, 2.

Hence

âj+1 =
(
I + Λ

(j)
1

)(
âj −

(
I + Λ

(j)
2

)
v∗jDj âj · vj

)
=
(
I + Λ

(j)
1

)(
I −

(
I + Λ

(j)
2

)
vjv

∗
jDj

)
âj

=
[
I −

(
I + Λ

(j)
2

)(
vjv

∗
j + vjv

∗
j (Dj − I)

)
+ Λ

(j)
1

(
I −

(
I + Λ

(j)
2

)
vjv

∗
jDj

)]
âj

= (Pj +∆Pj)âj ,(4.3)

where

(4.4) ∆Pj = −Λ(j)
2 vjv

∗
j −

(
I + Λ

(j)
2

)
vjv

∗
j (Dj − I)︸ ︷︷ ︸

(∗)

+Λ
(j)
1

(
I −

(
I + Λ

(j)
2

)
vjv

∗
jDj

)
,

and so

∥∆Pj∥2 ≤ 2u+ 2(1 + u)∥Dj − I∥2 + u
(
1 + 2(1 + u)∥Dj∥2

)
= 3u+ 2(1 + u)∥Dj − I∥2 + 2u(1 + u)∥Dj∥2.

From Lemma 1.3 we have that for any constant λ > 0 and any particular j,

(4.5) d
(j)
k = 1 + ψ

(k)
j , |ψ(k)

j | ≤ γ̃m(λ),

holds for any particular k and j with probability at least p(λ) = 1 − 2 exp(−λ2/2),
or equivalently it fails to hold with probability at most 1 − p(λ). By the inclu-
sion–exclusion principle [21, p. 39] (4.5) fails to hold for at least one of the pairs (j, k)
with probability at most rm(1− p(λ)), which means that it holds for all j and k with
probability at least p2(λ,m, r) = 1− rm(1− p(λ)) = 1− 2rm exp(−λ2/2).

Hence ∥I −Dj∥2 ≤ γ̃m(λ) holds for all j with probability at least p2(λ,m, r) and
hence

∥∆Pj∥2 ≤ 3u+ 2(1 + u)γ̃m(λ) + 2u(1 + u)(1 + γ̃m(λ)) ≤ c5γ̃m(λ)

holds for all j with probability at least p2(λ,m, r).
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Lemma 4.2. With the same notation as in Lemma 4.1, assume that the bound
(4.2) holds almost surely for all j. Then the computed âr+1 satisfies

(4.6) âr+1 = Q∗(a+∆a), ∥∆a∥2 ≤ c6λ
√
r γ̃m(λ)∥a∥2 +O(u2)

with probability at least p3(λ,m) = 1− 2m exp(−λ2).
Proof. We can rewrite (4.1) as

âr+1 = ar+1 +

 r∑
j=1

Pr . . . Pj+1∆PjPj−1 . . . P1 +O(u2)

 a

= ar+1 +Q∗

 r∑
j=1

Fj +O(u2)

 a,(4.7)

where

(4.8) Fj = P1 . . . Pj∆PjPj−1 . . . P1.

Our aim is to show that E(Fj | Fj−1, . . . , F1) = 0, so that we can apply Theorem 3.2
with Xk = Fk. When we substitute the expressions for Fj and then ∆Pj into this
expression and use the linearity of the expectation we obtain a sum of expectations,
each of which we need to show is zero. We will just consider two of the terms, which
come from (∗) in (4.4), as the other terms are treated similarly.

The matrixDj contains the rounding errors from the computation of v∗j aj , whereas
all the other terms in Fj contain rounding errors from earlier computations.

For the first part of the term (∗) in (4.4) we have

E(P1 . . . Pjvjv
∗
j (I −Dj)Pj−1 . . . P1 | Fj−1, . . . , F1)(4.9)

= P1 . . . Pjvjv
∗
jE(I −Dj | Fj−1, . . . , F1)Pj−1 . . . P1,

since the vj and Pj are constant. We need the general form of the law of total
expectation (LTE), E(X | Y) = E(E(X | Z) | Y) where “Y ⊆ Z” [2, Thm. 34.4]. We
define the sequence

(4.10) Zs =
{
δ
(ℓ)
k,i : i, k = 1 : m, ℓ = 1 : s

}
, Fj−1, . . . , F1.

By the LTE

E(Dj | Fj−1, . . . , F1) = E
(
E(Dj | Zj−1) | Fj−1, . . . , F1

)
= I,

by [7, Lem. 6.4], in view of Model 1.4. Hence the expectation (4.9) is zero.
For the second part of the term (∗) in (4.4) we have

E(P1 . . . PjΛ
(k)
2 vjv

∗
j (I −Dj)Pj−1 . . . P1 | Fj−1, . . . , F1)

= P1 . . . PjE
(
Λ
(j)
2 vjv

∗
j (I −Dj) | Fj−1, . . . , F1

)
Pj−1 . . . P1.

By the LTE,

E
(
Λ
(j)
2 vjv

∗
j (I −Dj) | Fj−1, . . . , F1

)
= E

(
E
(
Λ
(j)
2 vjv

∗
j (I −Dj) | Zj

)
| Fj−1, . . . , F1

)
= E

(
E
(
Λ
(j)
2 | Zj

)
vjv

∗
j (I −Dj) | Fj−1, . . . , F1

)
= 0,
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since E
(
Λ
(j)
2 | Zj

)
= 0 by Model 1.4.

By (4.2), (4.8), and the assumption of the lemma,

∥Fj∥22 = ∥∆Pj∥22 ≤ c25γ̃m(λ)2, j = 1 : r,

almost surely. Hence we can take Xj = Fj , Aj = c5γ̃m(λ)Id1,d2
, and σ2 = rc25γ̃m(λ)2

in Theorem 3.2 and set E =
∑r

j=1 Fj , to obtain

(4.11) P
(
∥E∥2 ≥ 2

√
2c5λ

√
r γ̃m(λ)

)
≤ 2m exp(−λ2),

or equivalently

(4.12) ∥E∥2 ≤ c6λ
√
r γ̃m(λ),

holding with probability at least 1− 2m exp(−λ2).
From (4.7) we have

âr+1 = Q∗a+Q∗Ea+O(u2) = Q∗(a+∆a)

with ∆a = Ea+O(u2), and so

(4.13) ∥∆a∥2 ≤ ∥Ea∥2 +O(u2) ≤ c6λ
√
r γ̃m(λ)∥a∥2 +O(u2).

Now we consider the backward error in applying a sequence of Householder ma-
trices to a matrix.

Lemma 4.3. Consider the sequence of transformations

Ak+1 = PkAk, k = 1 : r.

where A1 = A ∈ Rm×n, each Pk ∈ Rm×m is a Householder matrix. Under Model 1.4
and the assumption of Lemma 4.2, the computed matrix Âr+1 satisfies

Âr+1 = Q∗(A+∆A),

where Q∗ = PrPr−1 . . . P1 and where

(4.14) ∥∆aj∥2 ≤ c6λ
√
rγ̃m(λ)∥aj∥2 +O(u2), j = 1 : n,

holds with probability at least p4(λ,m, n) = 1− 2mn exp(−λ2).
Proof. Lemma 4.2 shows that for each j the bound (4.6) holds with a = aj

with probability at least p3(λ,m). The probability that it holds for all columns
is given by 1 minus the probability that it fails for at least one, which is at least
1− n(1− p3(λ,m)) = 1− 2mn exp(−λ2).

The probabilistic result for Householder QR factorization, analogous to the worst-
case rounding error result Theorem 1.1, now follows.

Theorem 4.4. Let R̂ ∈ Rm×n be the computed upper trapezoidal QR factor of
A ∈ Rm×n obtained via the Householder QR algorithm. Under Model 1.4 and the
assumption of Lemma 4.2, there exists an orthogonal Q ∈ Rm×m such that

(4.15) A+∆A = QR̂,

where

(4.16) ∥∆aj∥2 ≤ c6λ
√
nγ̃m(λ)∥aj∥2 +O(u2), j = 1 : n,

holds with probability at least p4(λ,m, n) = 1− 2mn exp(−λ2).
8



Table 5.1
Value of p5(λ,m, n) for various choices of λ and m, with m = n.

m

λ 102 104 106 108

6.0 9.9970e−01 −2.0460e+00 −3.0459e+04 −3.0460e+08
7.0 1.0000e+00 9.9542e−01 −4.4795e+01 −4.5795e+05
8.0 1.0000e+00 1.0000e+00 9.7467e−01 −2.5228e+02
9.0 1.0000e+00 1.0000e+00 9.9999e−01 9.4846e−01

10.0 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
11.0 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
12.0 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

Proof. The theorem follows from Lemma 4.3 as long as we note two subtleties.
First, the Householder matrices in the lemma are completely general, yet for QR
factorization they are chosen to introduce zeros into vectors and we explicitly set
those elements to zero rather than compute them. This essentially forces rows of ∆Pi

in (4.4) to be zero, so ∥∆Pi∥2 is no larger than the analysis assumes.
The second subtlety is that for Householder QR factorization the Householder

vector vj in Lemma 4.1 depends on previous computed quantities and is computed
itself, so is subject to rounding error. The fact that vj is no longer a constant as
regards the conditional probabilities can be dealt with by adding “vj , vj−1, . . . , v1”

to Zs in (4.10). The key point is that Dj , Λ
(j)
1 , and Λ

(j)
2 depend on rounding errors

that occur later than those on which vj depends. The error in vj introduces an O(u2)
perturbation in (4.4), so it does not affect the bound (4.16).

Ideally, we would remove the assumption in Lemmas 4.2 and 4.3 and Theorem 4.4
that the bound (4.2) holds almost surely for all j. We have effectively replaced a
probability of 1−2rm exp(−λ2/2) with a probability of 1. To remove this assumption
we need a version of Theorem 3.2 that allows XkX

∗
k ≤ AkA

∗
k, and X

∗
kXk ≤ A∗

kAk to
hold with a certain probability less than 1 rather than almost surely. Such a result
is not, to our knowledge, available in the literature on concentration inequalities, and
deriving one requires further research that is beyond the scope of this paper.

The columnwise bound (4.16) implies a normwise one:

(4.17) ∥∆A∥F ≤ c6λ
√
nγ̃m(λ)∥A∥F +O(u2).

The equivalent bound for the worst-case analysis is (1.3).
The conclusion from our analysis is that the constant mnu in the worst-case

bound reduces to
√
mnu in the probabilistic bound.

5. Discussion. We now discuss several aspects and implications of the error
analysis.

5.1. Choice of λ. We begin with a brief discussion of the probabilities as-
sociated with the bounds in Lemma 4.1 and Theorem 4.4. As noted in previous
work [7], [15], [16], these probabilities are typically pessimistic and setting λ = 1
almost always provides bounds that hold in practice. Table 5.1 shows values of
p5(λ,m, n) = 1 − 2mn

(
exp(−λ2) + exp(−λ2/2)

)
, which is a lower bound on the

probabilities in Lemma 4.1 and Theorem 4.4. For certain values the probabilities are
negative. However, for λ = 12 and all the problem sizes shown in Table 5.1, p5 is
extremely close to 1—in fact, within 10−7 of it.
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5.2. Aggregated Householder transformations. In practice, Householder
transformations are usually aggregated in order to express the computation primarily
in terms of matrix multiplication. A common form of aggregation is the WY rep-
resentation [3], [12, sec. 19.5]. We represent the product Qr = PrPr−1 . . . P1 of b
Householder matrices Pi = I − viv∗i as

Qr = I +WbY
∗
b , Wb, Yb ∈ Rm×b.

This is done through the recurrence

W1 = −v1, Y1 = v1, Wi =
[
Wi−1 −vi

]
, Yi =

[
Yi−1 Q∗

i−1vi
]
.

We partition A as
A =

[
A1 B

]
, A1 ∈ Rm×r

and transform A1 to upper trapezoidal form by forming Pr . . . P1A1, accumulating the
product Pr . . . P1 = I+WrY

∗
r . The matrix B is then updated via B ← B+Wr(Y

∗
r B),

and we repeat this process on the remaining rows of B.
We do not perform a full analysis of the aggregated algorithm. We simply note

that the two core operations of the aggregated Householder QR factorization are the
application of a sequence of Householder matrices, in forming Pr . . . P1A1, and matrix
multiplication in forming B ← B +Wr(Y

∗
r B). Both of these operations have been

shown to have probabilistic bounds whose constants are the square roots of those
in the worst-case bounds, so we can expect the same to be true for the aggregated
algorithm.

5.3. Mixed-precision QR factorization. Yang, Fox, and Sanders [22, Thm. 4.1]
consider a mixed precision Householder QR factorization algorithm in which the work-
ing precision is ulow and the inner products are computed at precision uhigh. They ob-
tain a normwise backward error bound of order n(ulow+muhigh). Our analysis is read-
ily adapted for this algorithm by replacing γ̃m = γ̃m(u) in (4.2) by γ̃m(uhigh)+O(ulow),
and the resulting probabilistic error bound is of order n1/2(ulow +m1/2uhigh).

5.4. Two-sided transformations. Householder matrices and Householder QR
factorization are tools in many algorithms, including the reduction of matrices to
tridiagonal or Hessenberg form for the QR algorithm for eigenvalues and to bidiagonal
form for the QR algorithm for singular values [11]. Can we use our results to obtain
probabilistic backward error bounds with reduced constants for these reductions? For
the reduction of A ∈ Rn×n to Hessenberg form H we have

H = Pn−2 . . . P1AP
∗
1 . . . P

∗
n−2.

The reduction is carried out in the order Pn−2(. . . (P1AP
∗
1 ) . . . )P

∗
n−2, because Pj+1

depends on Pj . . . P1AP
∗
1 . . . P

∗
j . However, for the purposes of the analysis we can

consider applying all the transformations on the left before applying those on the
right, since the order should not affect the error bound:

(5.1) H = (Pn−2 . . . P1A)P
∗
1 . . . P

∗
n−2 ≡ (PA)P ∗.

Two applications of Lemma 4.3 give

Ĥ =
(
P (A+∆A1) +∆A2

)
P ∗

= P (A+∆A)P ∗, ∆A = ∆A1 + P ∗∆A2.
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The probabilistic bounds on ∥∆A1∥F and ∥∆A2∥F from the lemma are proportional
to nu and hence so is the bound for ∥∆A∥F . Lemma 4.3 does not incorporate the
errors in forming the Householder vectors vj , but as in the proof of Theorem 4.4
doing so only affects the second order term. The usual worst-case bound obtained by
Wilkinson is proportional to n2u [20, pp. 160–161] (we have accounted for the fact
that Wilkinson assumes that inner products are accumulated at twice the working
precision).

For the multishift Hessenberg QR iteration the bulge chasing is implemented using
Householder matrices [5], [6], so Lemma 4.3 can be applied again for sufficiently large
bulges, and for small bulges one can apply the worst-case bounds.

5.5. Other forms of QR factorization. The modified Gram–Schmidt algo-
rithm applied to A ∈ Rm×n with m ≥ n is known to be equivalent both mathe-
matically and numerically to Householder QR factorization applied to the augmented
matrix

[
0
A

]
[4], [12, sec. 19.8]. Hence we can apply Theorem 4.4, and since the

augmented matrix is (m + n) × n the constant obtained will be proportional to√
(m+ n)nu ≈

√
mnu since m ≥ n. (As explained in the above references, some ad-

ditional work is needed to obtain a backward error result for modified Gram–Schmidt
and the constant will be increased.)

In [1], a randomized process for computing the QR factorization of A ∈ Rm×n

is presented. It uses a randomized Gram-Schmidt process, with the approach based
on the dimension reduction technique of random sketching. The authors assume that
the rounding errors are independent, zero-mean random variables. They also exploit
mixed-precision arithmetic with two precisions ufine < ucrs. The analogous result to
Theorem 4.4 is [1, Thm. 3.2] ∥A− Q̂R̂∥F ≤ cucrsn3/2∥A∥F .

Finally, we consider Givens QR factorization. Givens transformations operate on
vectors of length 2, so there is no benefit to a probabilistic approach in analyzing the
application of a single rotation. The backward error analysis [12, sec. 19.6] shows that
each individual rotation introduces a backward error bounded by a small constant and
that the m+ n− 2 products of disjoint rotations needed for a QR factorization lead
to a result of the same form as Theorem 1.1 but with

∥∆aj∥2 ≤ γc(m+n−2)∥aj∥2, j = 1 :n.

A probabilistic analysis analogous to that in the proof of Lemma 4.1, using the matrix
concentration inequality, leads to a result of the same form as Theorem 4.4 but with
probabilistic bound

∥∆aj∥2 ≤ c7
√
m+ n∥aj∥2 +O(u2), j = 1 :n.

6. Backward error for QR factorization. In our numerical experiments in
the next section we need to compare the probabilistic backward error bounds with the
actual backward errors. How to compute the backward error matrix ∆A = A − QR̂
for a given R̂, though, is not clear, since the orthogonal matrix Q in Theorems 1.1
and 4.4 is unknown. We will focus on the backward error measure

µ(R̂) = min

{( n∑
j=1

∥dj∆aj∥22
)1/2

: A+∆A = QR̂, Q ∈ Rm×m, Q∗Q = Im

}
(6.1)

= min
(
∥(A−QR̂)D∥F : Q ∈ Rm×m, Q∗Q = Im, D = diag(dj)

)
For D = diag(∥aj∥−1

2 ) we have a columnwise backward error and for D = ∥A∥−1
F I the

normwise backward error.
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The next result shows how to compute µ(R̂). Recall that the polar decomposition
of A ∈ Rn×n is a factorization A = UH, where U is orthogonal and H is symmetric
positive semidefinite.

Theorem 6.1. Let A,B ∈ Rm×n and let D = diag(di) ∈ Rn×n be nonsingular.
Then min{ ∥(A−QB)D∥F : Q ∈ Rm×m, Q∗Q = Im } is obtained for Q = U∗, where
U is the orthogonal polar factor of the matrix BD2A∗.

Proof. For F,G ∈ Rm×n, the orthogonal Procrustes problem has the form min
{
∥F−

GW∥F :W ∈ Rn×n, W ∗W = In
}
and any orthogonal polar factor of G∗F is a solu-

tion [13, Thm. 8.6]. Writing ∥(A−QB)D∥F = ∥AD−QBD∥F = ∥DA∗−DB∗Q∗∥F
therefore gives the result on taking F = DA∗ and G = DB∗.

By Theorem 6.1, µ(R̂) = ∥(A−QR̂)D∥F , where Q∗ is an orthogonal polar factor

of R̂D2A∗. If R̂D2A∗ = UΣV ∗ is a singular value decomposition then we can take
Q∗ = UV ∗.

We note that one can express µ(R̂)2 = ∥AD∥2F + ∥R̂D∥2F − 2
∑n

i=1 σi(R̂D
2A∗),

where σi denotes the ith largest singular value. However, this formula suffers from
severe cancellation, and rounding errors can cause it to evaluate as negative, so it is
better to use the expression ∥(A−QR̂)D∥F . In fact, even the latter expression does
not necessarily give a result of the correct order of magnitude, so it is best to compute
the backward error at twice the working precision. Hence in our experiments we take
single precision as the working precision and compute the backward error in double
precision.

7. Numerical experiments. For all our all numerical experiments we set the
parameter λ = 1 and set all constants ci in the error bounds (worst-case or proba-
bilistic) to be 1. We use MATLAB R2021b and take IEEE single precision as the
working precision. Backward errors (6.1) are computed as described in section 6, in
double precision.

We use round to nearest in all the experiments. We have tried stochastic rounding,
which ensures that the assumptions of Model 1.4 are satisfied [7], and found that the
numerical results reported are virtually identical to those for round to nearest in these
experiments.

In sections 7.1, 7.3, and 7.4 we use random m × n matrices with entries drawn
uniformly from the interval [0, 1] and we sample 10 different matrices for each pair of
dimensions.

7.1. Householder QR factorization for random matrices. In this experi-
ment we test the backward error bound in Theorem 4.4. In order to study how the
error grows with n and m independently, we first fix a value of n and vary m and
then fix m and vary n. For each pair of dimensions we plot the maximum and mean
normwise backward errors for Householder QR factorization along with associated
worst-case and probabilistic bounds obtained from (1.3) and (4.17). The results are
given in Figures 7.1 and 7.2. We see that the probabilistic bound

√
mnu proves a

much better indicator than the worst-case bound mnu of the size of the error and its
rate of growth.

7.2. Householder QR factorization for SuiteSparse matrices. We also
consider Householder QR factorization of some real life matrices from the SuiteSparse
Matrix Collection [9], [10]. We select all matrices from the collection with 10 ≤ m,n ≤
2×103 and m ≥ n. This results in 842 matrices. We plot the same error quantities as
for the random matrices. Some of the matrices in the collection have zero columns, so
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m
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B'err (max)
B'err (mean)

Fig. 7.1. Normwise backward errors and bounds for Householder QR factorization for n = 10
and various m, for m× n matrices with elements sampled uniformly from [0, 1].
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B'err (max)
B'err (mean)

Fig. 7.2. Normwise backward errors and bounds for Householder QR factorization for m = 104

and various n, for m× n matrices with elements sampled uniformly from [0, 1].

we filter these out. There are a few cases where the reported error exceeds even the
deterministic bound, which we suspect is an underflow issue; a similar observation is
made in [15, sec. 4.5]. We also filter out these cases from the reported results, which
results in 774 matrices. We show the observed backward errors in Figure 7.3. Again,
the probabilistic bound is satisfied and proves closer to the observed error than the
worst-case bound by several orders of magnitude.

7.3. Givens rotations. Givens QR factorization is typically used for structured
matrices, such as tridiagonal or upper Hessenberg matrices, but here we wish to see
how the backward error of the factorization behaves for dense matrices. For random
n × n matrices we plot in Figure 7.4 the maximum and mean normwise backward
errors, the worst-case error bound 2nu, and the probabilistic error bound

√
2nu. The

backward error grows at a rate very similar to that of the probabilistic bound.
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Fig. 7.3. Normwise backward errors and bounds for 774 m× n matrices from the SuiteSparse
collection.
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Fig. 7.4. Normwise backward error and backward error bound for Givens QR factorization for
n× n matrices with elements sampled uniformly from [0, 1].

7.4. Reduction to Hessenberg form. Finally, we consider Householder reduc-
tion matrix to Hessenberg form: A = QHQ∗. Figure 7.5 shows normwise backward
errors, computed as ∥A−Q̂HQ̂∗∥F /∥A∥F , where Q̂ is the computed product of House-
holder matrices (we do not have an explicit backward error formula such as that in
Theorem 6.1 in this two-sided case), and the worst-case and probabilistic bounds, n2u
and nu respectively. We see that the backward error satisfies the probabilistic bound,
and again the probabilistic bound is a better indicator than the worst-case bound of
the rate of growth of the backward error with n.

8. Conclusions. In a classic 1961 paper, Wilkinson [19, p. 318] carries out
rounding error analyses of LU factorization, Givens QR factorization, and House-
holder QR factorization. He notes that “The bounds we have obtained are in all cases
strict upper bounds. In general, the statistical distribution of the rounding errors
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Fig. 7.5. Normwise backward errors and bounds for reduction to Hessenberg form for n × n
matrices with elements sampled uniformly from [0, 1].

will reduce considerably the function of n occurring in the relative errors. We might
expect in each case that this function should be replaced by something which is no
bigger than its square root and is usually appreciably smaller.” Recent probabilistic
rounding error analysis has provided a rigorous foundation for Wilkinson’s statement
for LU factorization and other inner product-based computations. Our work does
the same for Householder QR factorization-based methods, as well as for Givens QR
factorization.

A significant feature of the probabilistic backward error bounds is that they bound
the likely rate of growth of the backward error as the problem dimensions increase.
The rate of growth, along with blocking, exploiting architectural features of the hard-
ware, and using other techniques to improve the accuracy of the computations, is what
determines our ability to solve problems at extreme scale and possibly low precision
in a numerically stable way [14].
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