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INFORMATION GEOMETRY
FOR CONTROL OF SOME STOCHASTIC PROCESSES

C.T.J. Dodson UDC

Abstract. A basic requirement in control systems is a metric that measures discrepancies between
actual and desired states. For statistically influenced systems information geometric methods provide
natural Riemannian metrics on smooth spaces of states; such manifolds arise in minimum-phase linear
systems and multi-input systems with known stochastic noise. Commonly recurring practical situations
are ‘nearly’ Poisson or ‘nearly’ Uniform with a complementarity in the geometry of these two; another
involves multivariate Gaussians and their mixtures. Similarly we encounter ‘nearly’ independent Pois-
son, and ‘nearly’ independent Gaussian processes. For such cases we have information geometric results
and examples. Some of these methods are applicable to control systems for statistically influenced pro-
cesses, such as monitoring essential features in continuous production of threads, films, foils and fibre
networks, and batch processing of stochastic textures.

Key words and phrases: information metric, statistical state space, geometry of near-random, near-
uniform, multivariate Gaussians, mixture distributions.
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1. Introduction

The geometrization of models of real phenomena have long been known to give valuable insights
because of the established value of analytic geometric features, such as a natural metric, parallelism,
perpendicularity, curvature and geodesic curves that are invariant under the choice of coordinate rep-
resentation. For Information geometry this corresponds to the invariance of measure functions of
probability density functions under changes of parameters. For example, the family of gamma distri-
butions and the family of log-gamma distributions yield Riemannian 2-manifolds that are isometric
isomorphs. The natural information metric provides distances between states and along state trajecto-
ries. Using information theory with its underpinning information geometry brings important concepts
mirroring physical theory of statistical mechanics: eg. entropy (ie the ‘mean log probability den-
sity’) and its relation to maximum likelihood methods for model optimization. Information geometric
methods provide natural neighbourhoods that respect the intrinsic geometry of the space of states,
for visualization and monitoring of algorithms, and dynamics of stochastic behaviour trajectories.

Amari [1] Chapter 10, discusses linear systems and complex random variables where the phase
is uniformly distributed and represented via a family of probability density functions that are of
exponential type. Such families admit information geometric representation. Choi and Mullhaupt [5]
showed that the information geometry of a signal filter corresponds to a Kähler manifold and such a
manifold arises as a minimum-phase linear system. Zhenning Zhang et al [22] showed that a multi-
input system with known stochastic noise and a single output has conditional output probability
density shape determined by the control input vector. This control input vector and the output
feedback provide a coordinate system for a statistical manifold. They developed a steepest descent
algorithm for the control input vector to make the conditional output probability density function
as close as possible to the given probability density function, and illustrated with a 2-input 1-output
worked example.

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie
Obzory, Vol. 137, Mathematical Physics, 2017.
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1. Near-random and near-uniform processes [4, 8]. Gamma probability density functions for
random variable x ∈ [0,∞) are given by:

G = {f(x; ν, κ) = νκ
xκ−1

Γ(κ)
e−xν | ν, κ ∈ R+} ≡ R+ × R+ (1)

with mean µ = κ
ν , standard deviation σ =

√
κ
ν so σ

µ = 1√
κ

. Gamma distributions are of exponential

type [4], since log f = κ log ν− log Γ(κ)+log (xκ−1e−xν) and
∫
f = 1, so the gamma potential function

is

ϕ(ν, κ) = log Γ(κ)− κ log ν. (2)

with (ν, κ) as natural parameters. This potential function provides an embedding of the gamma
manifold G in R3 [10]:

e : G → R3 : (ν, κ) 7→ (ν, κ, ϕ(ν, κ)) . (3)

The case κ = 1 corresponds to the 1-dimensional space of exponential distributions, which characterises
Poisson random processes and equation(2) reduces to ϕ(ν, 1) = − log ν. Figure 2 shows part of the
embedding equation (3) and a tubular neighbourhood of the curve of all exponential distributions.

The smooth Riemannian manifold G (here a curved surface) of probability gamma density functions
§1 has the Fisher-Rao metric tensor equation [2, 4]

[gij ] (ν, κ) =

[ κ
ν2

− 1
ν

− 1
ν

d2

dκ2
log(Γ(κ))

]
(4)

and arc length function ds2 =
κ

ν2
dν2 − 2

ν
dνdκ+

(
d2

dκ2
log(Γ(κ))

)
dκ2. (5)

so a curve in the space G of gamma distributions

c : [0, 1]→ G : t 7→ (c1(t), c2(t)) (6)

has tangent vector (ċ1(t), ċ2(t)) where the dot signifies differentiation by t and its information length
up to t = T is

`(T ) =

T∫
0

√∑
i,j

ċi(t)ċj(t) gij(c1(t), c2(t)) dt (7)

Via the change of random variables

R+ → [0, 1] : x 7→ a = e−x, (8)

we obtain the family of log-gamma probability density functions:

L = {P (a, ν, κ) =
aν−1νκ(log 1

a)κ−1

Γ(κ)
| ν, κ ∈ R+} (9)

for random variable a ∈ [0, 1] and parameters ν, κ > 0. The limiting case κ = ν → 1 is the uniform
distribution, so they give neighbourhoods of uniformity. The limiting case κ = ν → ∞ is the delta
function. Moreover, they contain good approximations to truncated univariate Gaussians, which can
yield realistic models for real processes with bounded random variable.

The information geometry of these two families of distributions is well-understood; so in each case
we have a 2-dimensional Riemannian manifold of states for processes, with the Fisher-Rao information
metric equation (4). Indeed, the two manifolds G,L are mutual isometric isomorphs, since the metric
is invariant under reparametrization via the logarithmic transformation equation (8) [4].
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Fig. 1. Plots of the gamma probability density function equation (1) for
κ = 1, 2, 5, and ν = 1. The case κ = 1 is the exponential function, which
corresponds to a Poisson random process, in the depicted case with unit mean.

2. Relevant results [4, 8].

• Every neighbourhood of a uniform process contains a neighbourhood of processes subordinate
to log-gamma probability density functions.
• Every neighbourhood of an independent pair of identical Poisson processes contains a neigh-

bourhood of bivariate processes subordinate to Freund bivariate exponential probability density
functions.
• The 5-manifold of bivariate Gaussians admits a 2D subspace in which is a neighbourhood of

independence for bivariate Gaussian processes.
• Via the Central Limit Theorem, by continuity, the tubular neighbourhoods of the curve of zero

covariance for bivariate Gaussian processes contains all limiting bivariate processes sufficiently
close to the independence case for all processes with marginals that converge in probability
density function to Gaussians.

Theorem 1 [14, 8]
For independent positive random variables with a common probability density function f, having in-
dependence of the sample mean and the sample coefficient of variation is equivalent to f being the
gamma distribution.
This characterization, which implies that the sample standard deviation is proportional to the mean,
σ ∝ µ, is one of the main reasons for the large number of applications of gamma distributions, because
many near-random natural processes have observed standard deviation approximately proportional
to the mean, as we illustrate in [4]. Examples include the distribution of spacings between con-
secutive occurrencies of each of the 20 amino acids in protein chains of genomes, which exhibit a
1-dimensional stochastic texture Figure 2 and [4, 8]. Continuously produced 1-dimensional materials
include threads [7] and wires, controllable for diameter and linear density variability via radiography,
approximately following log-gamma distributions. Paper and board made from water suspensions
of cellulose fibres, and air-laid glass and carbon fibre networks are continuously manufactured 2-
dimensional stochastic textures [7, 17]. Such fibrous networks tend to have log-gamma distributed
local areal density [4] and gamma distributed pore structures [11, 17].
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Human DNA CCDS101

Human DNS CCDS2

Fig. 2. Human DNA amino acid sequence: a 20-colour-coded 1-dimensional
stochastic texture; and a corresponding sequence using 20 grey levels. All 20
amino acids in genome protein chains have near-random gamma-distributed
spacings but all have κ < 1, so they all tend to cluster to differing degrees.

Fig. 3. A tubular neighbourhood of the curve of all Poisson random
processes,κ = 1, in the 2-manifold G of gamma probability densities embedded in
R3 via potential function ϕ, equation (2), [4].
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Fig. 4. Plots of the log-gamma probability density function equation (9) on [0, 1]
with central mean for κ = 0.5, 1, 5, 10. The case κ = 1 is the uniform distribution.
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Fig. 5. An affine immersion in R3 of the 2-manifold L of log-gamma probability
densities on [0, 1], in which ν = κ = 1 is the uniform distribution. Black curves
represent log-gamma distributions with ν = 1 and κ = 1, respectively; the
spherical neighbourhood is centred on their intersection at the uniform
distribution [8].

Fig. 6. Examples of continuously manufactured 2-dimensional stochastic
structures [12] which typically have distributions of local areal density that are
approximated by log-gamma probability densities with κ > 1.

2. Freund 4-Manifold F and Neighbourhoods of Independence

The 4-manifold F of Freund bivariate mixture exponential density functions has positive parameters
αi, βi, i = 1, 2

F ≡ {f |f(x, y;α1, β1, α2, β2) =

{
α1β2e

−β2y−(α1+α2−β2)x for 0 ≤ x < y

α2β1e
−β1x−(α1+α2−β1)y for 0 ≤ y ≤ x

}
|αi, βi ∈ R+} (10)

Theorem 2 [4]
Every neighbourhood of an independent pair of identical Poisson processes contains a neighbourhood
of bivariate processes subordinate to Freund bivariate exponential probability density functions. A
Freund submanifold F2 is the representation of a bivariate process for which the marginals are identical
exponentials.

This provides neighbourhoods of that subspace W in F2 of the bivariate processes with zero covari-
ance: equivalently, neighbourhoods of independence for Poisson random (ie exponentially distributed)
processes. The submanifold F2 ⊂ F : α1 = α2, β1 = β2 forms an exponential family, with parameters
(α1, β1) and potential function ϕ = − log(α1 β1).

In F2, Cov(X,Y ) = 0 if and only if α1 = β1 and then

f(x, y;α1, α1) = α2
1 e

α1|y−x| = fX(x)fY (y)

so that here we do have independence of these exponentials if and only if the covariance is zero; this
is illustrated in Figure 3.
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Fig. 7. Neighbourhood of independent Poisson random processes embedded in a
Freund manifold [4].

3. Spaces of k-variate Gaussians

A k-variate Gaussian probability density function f is defined by its mean k-vector µ, and its k× k
symmetric covariance matrix Σ

f(x, µ,Σ) =
e−

1
2

(x−µ)T Σ−1(x−µ)√
(2π)k|Σ|

, x ∈ Rk (11)

We have used multivariate Gaussians for face recognition using the neighbourhoods of colour pixel
features at landmark points in face images [20], where we found that the spatial covariances among
pixel colours was important. Craciunesco and Murari et al [6, 16] used geodesic distance on Gaussian
manifolds to interpret time series in very large databases from Tokomak measurements in fusion
research. Verdoolaege, Shabbir et al [18, 21] used multivariate generalized Gaussians for colour texture
discrimination in the wavelet domain. In these studies the discrimination used approximations to the
information distance between pairs of multivariate Gaussian probability density functions.

The information distance between two k-variate Gaussians fA, fB is known analytically in two
particular cases:

1. Fixed covariance Σ: fA(µA,Σ), fB(µB,Σ)
The positive definite symmetric quadratic form Σ gives the distance between mean vectors:

Dµ(fA, fB) =

√
(µA − µB)T · Σ−1 · (µA − µB). (12)

2. Fixed mean µ: fA(µ,ΣA), fB(µ,ΣB)
Information distance between covariances:

DΣ(fA, fB) =

√√√√1

2

k∑
j=1

log2(λABj ) (13)
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{λABj } = Eig(ΣA−1/2 · ΣB · ΣA−1/2
)

There is no general analytic solution for the geodesic distance between two k-variate Gaussians, but
for many practical applications the absolute information distance may be inessential and comparative
values suffice. Then, for example,

D =
√
D2
µ +D2

Σ (14)

from equations (12) and (13) may be a sufficient approximation. Indeed, equation (13) gives the
geodesic distance between fA with ΣA = I and fB with µA = µB = 0 and the information metric is
invariant under affine transformations of the mean. Note also that whereas equation (13) is indepen-
dent of the mean vectors, equation (12) depends on both covariance and mean vectors and defines a
norm on mean vectors for each fA(µA,Σ) :

||µA|| =
√

(µA)T · (ΣA)−1 · (µA) (15)

which is evidently sensitive to the covariance.
In principle, equation (13) yields all of the geodesic distances since the information metric is invariant

under affine transformations of the mean [3] Appendix 1; see also the article of P.S. Eriksen [13]. The
equations for the geodesics were shown by Skovgaard [19] to be

µ̈ = Σ̇Σ−1µ̇

Σ̈ = Σ̇Σ−1Σ̇− µ̇µ̇T . (16)

Eriksen [13] observed that the familyN k of k-variate Gaussians is isometric to the spaceGA+(k)/SO(k)
where GA+(k) consists of positive affine transformations. Hence by a translation it is sufficient to
restrict the geodesic to one through Σ = I the identity, in the direction (−B, v). Then, through the
change of coordinates, ∆ = Σ−1, δ = Σ−1µ, equation (16) becomes

∆̇ = −B∆ + vδT with ∆(0) = I, δ(0) = 0,

δ̇ = −Bδ + (1 + δT∆−1δ)v. (17)

Then using

A =

 −B v 0
vT 0 −vT
0 −v B

 (18)

Eriksen proved that the geodesic solution curve is given by

Λ : R :→ N k : t 7→ eAt =

 ∆ δ Φ
δT 1 + δT∆−1δ γT

ΦT γ Γ

 (19)

where γ = ∆−1δ + ΦT∆−1δ, and δT∆−1δ = γTΓ−1γ. (20)

So (∆(−t), δ(−t)) = (Γ(t), δ(t)). (21)

Of course, the analytic difficulty is the requirement to find the length of the geodesic between two
points in N k to obtain a distance function, that being the infimum of arc length over all curves joining
the points; so numerical computation would be required for more precise information distances.

4. Spaces of arbitrary mixtures of multivariate Gaussians

We consider a mixture distribution consisting of a linear combination of k-variate Gaussians with
an increasing sequence of k = 2, 3, . . . , N variables:

f2 = (2, µ2,Σ2), f3 = (3, µ3,Σ3)..., fN = (N,µN ,ΣN ), with ∀k
∫
Rk

fk = 1. (22)
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where µk ∈ Rk is the k-vector of means and Σk ∈ R(k2+k)/2 is the positive definite symmetric (k × k)
covariance matrix with components (σij), i ≤ j = 1, 2, ..., k. The standard basis for the space of
k-variate covariance matrices Σ, is Eij = 1ii for i = j, Eij = 1ij + 1ji for i 6= j so

Σ =
k∑

i≤j=1

σijEij .

We presume that the parameters and relative weights wk of these component probability density
functions equation (22) have been obtained empirically, giving a mixture density:

f =

N∑
k=2

wkfk, with wk ≥ 0 and

N∑
k=2

wk = 1. (23)

We wish to estimate the information distance D(fA, fB) between two such mixture distributions
fA = (µA,ΣA, wA) and fB = (µB,ΣB, wB).

We do not have analytically the distance between two mixtures of k-variate Gaussians: fA(µA,ΣA, wA)
and fB(µB,ΣB, wB) so we must resort to approximations for incorporating the weightings of compo-
nents.

1. Mixtures projected onto the complex plane [9]. The idea here is simple: for each mixture
distribution fA given by a weighted sum (23) we obtain two numbers ||µA|| and ||ΣA|| being the
weighted sums of norms of means and covariances. The norm on mean vectors is given by Dµ and for
the covariance matrices we need a matrix norm, which here we choose as the Frobenius norm given
for an n× n matrix Mαβ by the square root of the sum of squares of its elements mαβ,

||Mαβ||2 =
n∑

α=1

n∑
β=1

(mαβ)2

Note that if Mαβ has eigenvalues {λα} and is represented on a basis of eigenvectors then

||Mαβ||2 =

n∑
α=1

(λα)2.

Given a mixture distribution fA consisting of M different multivariate Gaussians:
GA = {GAi (µAi ,Σ

A
i )}i=1,M with weights wA = {wAi }i=1,M we have

fA =
M∑
m=1

wAmG
A
m

||µA|| =

√√√√ M∑
m=1

wAm ((µAm)T .(ΣA
m)−1.µAm) (24)

||ΣA|| =

√√√√ M∑
m=1

wAm||ΣA
m||2. (25)

Now we can represent fA by the complex number φA = ||µA|| + i||ΣA||, and this 2-dimensional
representation may be useful in some contexts, for example when following or controlling the trajectory
of a process in (µ,Σ) space. Correspondingly, its difference from another such complex number φB

for fB gives us a distance measure in our reduced space of mixtures:

∆(fA, fB) = |φB − φA|. (26)
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In [9] we illustrated the effects of differing weighting sequences on given mixtures of k-variate Gaus-
sians.

5. Concluding Comments

1. Information geometry provides a Riemannian manifold structure on the smooth space of param-
eters of probability density functions.

2. We have illustrated aspects of several families of distributions, in particular the cases of the
gamma and multivariate Gaussian density functions.

3. The gamma family contains as a special case the exponential distribution arising from a Poisson
process, the log-gamma family contains as a special case the uniform distribution and both cases arise
commonly.

4. Some of these methods are applicable to control systems for statistically influenced processes,
such as monitoring essential features in continuous production of threads, films, foils and fibre networks
and batch processing of stochastic textures.
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