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Stochastic rounding randomly maps a real number x
to one of the two nearest values in a finite precision
number system. The probability of choosing either of
these two numbers is 1 minus their relative distance
to x. This rounding mode was first proposed for
use in computer arithmetic in the 1950s and it is
currently experiencing a resurgence of interest. If
used to compute the inner product of two vectors
of length n in floating-point arithmetic, it yields an
error bound with constant

√
nu with high probability,

where u is the unit roundoff. This is not necessarily
the case for round to nearest, for which the worst-
case error bound has constant nu. A particular
attraction of stochastic rounding is that, unlike round
to nearest, it is immune to the phenomenon of
stagnation, whereby a sequence of tiny updates to a
relatively large quantity is lost. We survey stochastic
rounding by discussing its mathematical properties
and probabilistic error analysis, its implementation,
and its use in applications, with a focus on machine
learning and the numerical solution of differential
equations.

1. Introduction
Rounding is the act of mapping a given number to one
having a certain number of digits in a given base. For
illustration, consider the task of rounding, in base 10,
a 2-significant-digit number to 1 significant digit. If we
round to the closest 1-digit number, for example, then 1.4
rounds to 1 and 1.7 rounds to 2. We denote the rounding
operator by f l, thus we write f l(1.4) = 1 and f l(1.7) = 2.

mailto:mantas.mikaitis@manchester.ac.uk
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2This rounding rule, called round to nearest (RN), is deterministic: the value of f l(x) depends only
on x, and repeating the rounding yields the same result.

Suppose we want to compute 1 + 0.1 in 1-digit base-10 arithmetic. With round to nearest we
obtain f l(1 + 0.1) = 1. Another option is to round to either of the two nearest 1-digit numbers
with a probability that depends on the distances to those numbers. If in our example we define
f l(1 + 0.1) as 1 with probability 0.9 and as 2 with probability 0.1, then the expected result is
0.9× 1 + 0.1× 2 = 1.1, which is the exact answer. This probabilistic rounding is called stochastic
rounding (SR), and this simple example demonstrates one way in which it can be useful in practice:
by occasionally rounding up the value of a sum, SR avoids the phenomenon of stagnation,
whereby a long sum of small quantities—0.1 in this example—is lost to rounding.

SR was first proposed over sixty years ago, but until recently had proved useful only in rather
specialised contexts. In the last five years or so, however, this rounding mode has enjoyed a
resurgence of interest, mainly because of the increasing availability of low-precision floating-point
arithmetic in hardware and the recognition that, compared with RN, SR can produce errors that
grow more slowly with the problem size. By its very nature, SR ensures that rounding errors are
random and so encourages cancellation of errors, and while this effect benefits all precisions, it
is particularly important at low precisions, where numbers have perhaps only 3 or 4 significant
decimal digits and error growth can quickly destroy all accuracy. The worst-case error bounds for
SR are a factor 2 larger than those for RN, however, and so SR does not benefit all computations.

The aim of this work is to survey SR, describing
• its basic properties (Section 2),
• its history (Section 3),
• floating-point arithmetics to which it might be applied (Section 4),
• how SR compares with RN as regards its basic properties, including ways in which SR is

less satisfactory than RN (Section 5),
• its probabilistic rounding error analysis (Section 6),
• how it can be implemented (Section 7), and
• how and why it is being used in applications (Section 8).

2. What is stochastic rounding?
Let F denote a finite subset of R. We denote by f l any rounding operator that maps numbers in R
to either of the two nearest numbers in F . For x∈R, define the two rounding candidates

bxc=max{ y ∈ F : y≤ x }, dxe=min{ y ∈ F : y≥ x },

so that bxc ≤ x≤ dxe, with equality throughout if x∈ F . Note that when x /∈ F , the two numbers
bxc and dxe are adjacent in F .

For x∈R \ F , SR is defined by

f l(x) =

{
dxewith probability q(x),

bxcwith probability 1− q(x),
(2.1)

where q(x)∈ [0, 1]. The simplest choice is q(x) = 0.5, in which case we round up or down with
equal probability, independently of x. As is customary in the literature [1], [2], we call this less
commonly used form of SR mode 2 SR. Another choice is to set in (2.1)

q(x) =
x− bxc
dxe − bxc , (2.2)

which means that we round x to the next larger or smaller number y ∈ F with probability 1 minus
the distance between x and y divided by dxe − bxc. See Figure 2.1 for an illustration. The choice
(2.2) yields mode 1 SR, which is the most interesting stochastic rounding mode from a numerical
point of view. Unless otherwise stated, in this article SR means mode 1 SR.
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Figure 2.1. Stochastic rounding rounds the real number x to the next smaller or the next larger value in F , which we

denote by bxc and dxe, respectively. In the example on the left, x is one quarter of the way between bxc and dxe,
thus RN will round x to bxc, while mode 1 SR will round it to dxe with probability q(x) = 0.25 and to bxc with probability

1− q(x) = 0.75. In the example on the right,w is three quarters of the way between bwc and dwe, thus RN will roundw

to dwe, while mode 1 SR will round it to dwe with probability q(w) = 0.75 and to bwc with probability 1− q(w) = 0.25.

For the rest of this paper, we take F to be a floating-point number system, unless otherwise
stated, as this is the case of greatest interest, but much of what we say is applicable to fixed-point
arithmetic.

3. Early history of stochastic rounding
To the best of our knowledge, the earliest proposal of SR was in a one-paragraph abstract of
a communication presented by Forsythe in 1949 at the fifty-second meeting of the American
Mathematical Society [3]. The abstract claims that SR can be used to reduce the accumulation
of round-off errors observed by Huskey [4] in solving a simple system of ordinary differential
equations (ODEs). The numerical integration that Forsythe and Huskey consider entails a sum
of real values which is further reduced to a sum of integers, most likely intended as fixed-
point representations of reals. The suggestion is to perform this rounding by random round-off,
a suggestive name for mode 1 SR. The abstract concludes by stating that numerical tests on some
unspecified IBM equipment confirm that SR can eliminate the “peculiarities” noticed by Huskey
on the ENIAC1.

The first hardware implementation of SR we are aware of was described by Barnes et al. [5] in
1951. The authors describe a digital computer with 8-digit decimal arithmetic and explain that
using SR rather than RN in multipliers and dividers simplified the implementation. As their
implementation rounds up or down with equal probability, this constitutes an early example of
mode 2 SR.

A note by Forsythe, originally written in 1950 and reprinted in 1959 [6] (see [6, footnote 1]),
provides more details about the proposal to round stochastically when solving ODEs. The
document suggests to implement mode 1 SR for decimal arithmetic as follows:

“On a decimal machine, instead of adding a 5 in the most significant position of the digits to be
dropped (ordinary rounding off), one adds a random decimal digit to each of the digital positions to
be dropped. As with ordinary rounding off, the addition carry-over determines whether the rounding
off is ‘up’ or ‘down’.”

It is not clear whether this excerpt refers to a hardware implementation or to a modification that
could be done in software on the computers of the time. This technique has been used in recent
hardware implementations for rounding binary numbers [7], [8].

In a 1966 paper, Hull and Swenson [9] test various probabilistic rounding error models by
comparing the results of stochastically rounded operations to the expected error predicted by
the models. According to the description provided at the beginning of the section “Simulation
of the Models” [9, p. 109], however, the implementation of SR that Hull and Swenson consider
1Electronic Numerical Integrator and Computer—the first programmable, general-purpose digital computer, made in 1945.



4Table 4.1. Parameters of various binary floating-point formats: number of digits of precision including the implicit bit (p),

smallest positive representable normal (fmin) and subnormal (smin) numbers, and largest positive number (fmax). The

“binaryxy ” formats are from the IEEE 754 standard.

bfloat16 binary16 binary32 binary64

p 8 11 24 53

fmin 2−126 2−14 2−126 2−1022

smin 2−133 2−24 2−149 2−1074

fmax 2127(2− 2−7) 215(2− 2−10) 2127(2− 2−23) 21023(2− 2−52)

differs from the one we examine. In order to round stochastically the result of an arithmetic
operation they first perform the operation in double precision arithmetic, then add a pseudo-
random number between −1/2 and 1/2 of the unit in the last place of the most significant half
of the double precision result. Subsequent calculations use the modified double precision value,
which presumably includes the original quantity in its least significant half and the added random
quantity. Despite the different spirit, we mention this contribution here as it is one of the earliest
manuscripts we are aware of that considers non-deterministic rounding modes

4. Floating-point arithmetics
Before describing the finer details of SR, we recall some necessary background on floating-point
arithmetic. We discuss the formats in the IEEE 754 standard for floating-point arithmetic and two
other formats of practical interest, bfloat16 and TensorFloat-32.

(a) IEEE 754 standard floating-point arithmetics
The IEEE standard 754 for floating-point arithmetic was first released in 1985 [10] and then
revised in 2008 [11] and 2019 [12]. The standard dictates the encoding rules for binary and
decimal floating-point data types, the precision and exponent range of some standard formats,
and the accuracy requirements of basic arithmetic operations. It also prescribes how to handle
exceptional cases and specifies a set of recommended mathematical functions that software
and hardware floating-point libraries should provide in order to ensure a consistent numerical
behaviour. Table 4.1 reports the parameters for four binary floating-point data types defined in the
latest revision of the standard. Most hardware implements the data types binary32 and binary64,
commonly known as single and double precision, respectively. Of the remaining formats, binary16
is defined only as a storage format, but it has been implemented as an arithmetic in hardware by
several manufacturers. One other IEEE format is binary128, which is not listed in the table. While
binary128 is mainly supported in software, it is also available in hardware on the IBM Power9 [13]
and z13 [14] processors.

We now briefly recall some key aspects of IEEE floating-point number systems and the
definitions and main properties of normalisation and subnormal numbers. We focus on binary
formats, since most commercially available hardware implements only binary arithmetic.
A binary floating-point number x has the form

(−1)s ×m× 2e−p+1,

where s is the sign bit, p is the precision, m∈ [0, 2p − 1] is the integer significand, and
e∈ [emin, emax], with emin = 1− emax, is the integer exponent. In order for x 6= 0 to have a
unique representation, the number system is normalised so that the most significant bit of m—
the implicit bit in IEEE 754 parlance—is always set to 1 if |x| ≥ 2emin . Therefore, all floating-point
numbers with m≥ 2p−1 are normalised. Numbers that have absolute value below that of the
smallest normalised number 2emin are said to be subnormal: they have exponent e= emin, integer



5significand m< 2p−1, and therefore precision lower than that of normalised values (between 1

and p− 1 bits). Subnormal numbers provide the means to represent values in the subnormal range
(−2emin , 2emin), and are necessary in order to ensure that a floating-point number system satisfies
Sterbenz’s lemma (described in Section 5) and has desirable properties such as gradual underflow.
Because of the variable precision, however, subnormal numbers require special treatment in both
software and hardware implementations of floating-point arithmetics. This is likely to cause
performance and chip area overhead, therefore it is not uncommon for hardware manufacturers
not to support subnormal numbers. Two important numbers related to the precision p are the
machine epsilon

εM = 21−p, (4.1)

which is the spacing of the floating-point numbers just to the right of 1, and the unit roundoff

u= 2−p =
1

2
εM , (4.2)

which is an upper bound on the relative error incurred when a real value is rounded to a precision-
p floating-point representation using RN. For further details we refer the reader to [15, Ch. 1]
and [16, Ch. 2].

The latest revision of the IEEE 754 standard defines six rounding modes, which are listed in
Table 4.2. Four rounding modes are required for a floating-point arithmetic to be compliant: round
to nearest with ties to even (RN), round toward positive (or toward +∞, or up, RU), round toward
negative (or toward −∞, or down, RD), and round toward zero (RZ). In the rest of the paper we
refer to these modes collectively as “standard rounding”.

The IEEE 754-2019 standard recommends extended or extendable precisions [12, Sec. 3.7] to
enhance the basic formats listed in Table 4.1. As an example, Intel provides an 80-bit extended
precision format that has a 15-bit exponent and a 64-bit significand—the bit to the left of the radix
point being stored explicitly in this case, as opposed to the IEEE754 formats, which rely on the
implicit bit convention and use the value of the exponent field to determine the leading bit of the
significand. Arithmetic operations can be performed in higher precision and the results need not
be rounded to binary64 until the final result of a computation leaves the higher-precision registers.
Note that the use of 80-bit arithmetic is susceptible to double rounding, whereby a value may
be rounded incorrectly to the final floating-point format when it is rounded to an intermediate
format (extended precision, in this case) first [17], [18]. Boldo and Melquiond have shown, using
the Coq proof assistant, that double-rounding issues can be avoided if the extended precision
format uses a deterministic rounding mode called round to odd [19], [20].

(b) Non-IEEE arithmetics
Among the non-IEEE floating-point formats implemented in recent hardware, we are particularly
interested in those based on binary32: bfloat16 and TensorFloat-32, which lower the precision p
from 23 to 8 and 11 bits, respectively. The main idea behind these formats is to reduce the memory
and hardware arithmetic costs without narrowing the dynamic range; this contrasts with the aim
behind the binary16 format, which allocates to the exponent field fewer bits than binary32 and
therefore has a more limited dynamic range.

Bfloat16, which was originally proposed by Google and formalised by Intel [21], is available
on the Armv8 architecture [22], on the NVIDIA Ampere chips [23], and on some Intel
microarchitectures [24].

TensorFloat-32 is a format used internally in the tensor cores (matrix multiply-accumulate
units) of the NVIDIA Ampere microarchitecture [23]. This 19-bit format is meant to be a low
precision replacement for binary32, but is not used for data storage and is not available in any
other arithmetic unit on these GPUs.



6Table 4.2. Rounding modes defined in the 2019 revision of the IEEE 754 standard [12].

Round mode Description

To nearest
with ties to even (RN)

Round to a nearest floating-point value and if the two nearest floating-
point values are equally close, round to the one with an even least
significant digit. This is a default rounding mode.

To nearest
with ties to away

Round to a nearest floating-point value and if the two nearest floating-
point values are equally close, round to the number with larger
magnitude. Only required for decimal floating-point data types.

To nearest
with ties to zero

Round to a nearest floating-point value and if the two nearest floating-
point values are equally close, round to the number with smaller
magnitude. Only required for augmented operations [12, Sec. 9.5].

Toward positive (RU) Round to a nearest floating-point value that is no less than the
argument.

Toward negative (RD) Round to a nearest floating-point value that is no larger than the
argument.

Toward zero (RZ) Round to a nearest floating-point value that is no larger in magnitude
than the argument.

5. Stochastic rounding versus round to nearest
In RN, which is the default rounding mode in most floating-point arithmetics, f l(x) is the number
in F nearest to x, with some tie-breaking strategy for handling the case where x is equidistant
from the next and previous floating-point numbers. While SR and RN share some important
properties, they also differ in some important respects. We first describe three properties that
SR and RN have in common. In fact, the first two properties hold for any rounding mode.

• If x∈ F then f l(x) = x, that is, rounding a floating-point number leaves it unchanged.
• If x and y are floating-point numbers with y/2≤ x≤ 2y then f l(x− y) = x− y (assuming

subnormal numbers are supported). This result, known as Sterbenz’s lemma [15,
Thm. 2.5], [25, Thm. 1.8.2], relies on the fact that x− y is exactly representable.

• In base-2 arithmetic, any floating-point numbers x and y such that x≤ y satisfy the
inequalities

x≤ f l(x+ y)

2
≤ y,

which do not hold for all bases [1, Sec. 3.1].
SR and RN differ in some key properties, however. For example, if x 6∈ F then in general

f l(|x|) 6= | f l(x)| and f l(−x) 6=− f l(x) for SR. Moreover, SR is not monotonic: x< y does not imply
that f l(x)≤ f l(y), as can be seen by considering any pair of reals x and y lying between two
adjacent floating-point numbers.

Several results that describe how simple identities for real numbers are (partially) preserved
for floating-point numbers under RN are well known. Generally similar, but weaker, results hold
for SR. For a binary format with RN, for example, we have that f l(

√
x2) = |x| if x is a floating-point

number [15, Prob. 2.20], barring underflow and overflow. For SR, however, if x is a floating-point
number in the interval (1, 2) then f l(

√
x2)∈ {|x| − εM , |x|, |x|+ εM}, where εM is the machine

epsilon defined in (4.1). A consequence of this fact is that the inequality f l(x/
√
x2 + y2)≤ 1,

which is always satisfied by RN [15, Prob. 2.21], is not necessarily true when SR is used.



7Kahan proved that if m and n are integers such that |m|< 2p−1 (where p is the precision) and
n= 2i + 2j for some i and j then f l(n× f l(m/n)) =m with RN [26, Thm. 7]. Thus for example,
f l(5× f l(m/5)) = fl(17× f l(m/7)) =m. Under SR, however, we can say only that f l(n× f l(m/n))

is either m, the next smaller floating-point number, or the next larger floating-point number.
Full details of the above results, as well as other properties that differ between SR and RN,

are given by Connolly, Higham, and Mary [1, Sec. 3]. Before replacing RN with SR it is vital to
consider whether a certain computation relies on properties of RN that go beyond the standard
model of floating-point arithmetic (6.2) below, and if so, whether these properties remain true
for SR. The solution of the quadratic equation ax2 + bx+ c= 0 is a striking example of the subtle
issues that may occur when switching from RN to SR: if evaluated using SR, the discriminant
b2 − 4ac can be negative even when b2 > 4ac. This is a consequence of the non-monotonicity
of SR, and it could lead one to incorrectly conclude that a quadratic equation has no real solutions
when in fact it has two (almost) identical real roots.

The results in this section suggest that SR is less attractive than RN. It is the rounding error
results described in the next section that account for the interest in SR.

6. Rounding error analysis with SR
If x∈R lies within the range of the floating-point number system F , it can be shown that for RN
one has

f l(x) = x(1 + δ), |δ|<u, (6.1)

where the unit roundoff u is defined in (4.2). Rounding error analysis is usually based on the
standard model of floating-point arithmetic [15, Eq. (2.4)], which assumes that the elementary
arithmetic operations are rounded to nearest (as is the case for IEEE standard arithmetic with the
default rounding mode), so that if no overflow or underflow occurs they satisfy

f l(x op y) = (x op y)(1 + δ), |δ| ≤ u, op∈ {+,−,×, /}. (6.2)

Analogous models can be devised for unitary operations, such as the square root, or ternary
operations, such as the fused multiply-add.

The model (6.2) is customarily used in rounding error analysis, and is based on the premise
that the result of a floating-point elementary arithmetic operation should be as accurate as the
correctly rounded infinitely precise result. Error analysis based on (6.2) is referred to as worst-
case analysis because it can only use |δ| ≤ u and cannot exploit possible cancellation of rounding
errors across multiple operations or instances where δ= 0.

For RN the bound in (6.1) can be tightened to |δ| ≤ u/(1 + u)<u [16, Thm. 2.3], [27, Eq. (18)].
The model (6.2) can be improved accordingly, but this has no impact on the analysis discussed
here.

When multiple floating-point operations are performed in a sequence, rounding errors
accumulate. For example, if s= x1y1 + x2y2 + x3y3 is computed in floating-point arithmetic, the
computed ŝ satisfies

ŝ=
((
x1y1(1 + δ1) + x2y2(1 + δ2)

)
(1 + δ3) + x3y3(1 + δ4)

)
(1 + δ5)

= x1y1(1 + δ1)(1 + δ3)(1 + δ5) + x2y2(1 + δ2)(1 + δ3)(1 + δ5) + x3y3(1 + δ4)(1 + δ5),

for some δ1, . . . , δ5 of magnitude at most u. It is clear from this example that rounding error
analysis for vector and matrix operations involves dealing with multiple terms of the form∏n
i=1(1 + δi). The following lemma [15, Lem. 3.1] bounds the distance between 1 and the product

of n terms of the form (1 + δi)
±1 by means of the quantity

γn =
nu

1− nu,

a ubiquitous constant in rounding error analysis.



8Lemma 6.1. If |δi| ≤ u and ρi =±1 for i= 1, . . . , n, and nu< 1, then

n∏
i=1

(1 + δi)
ρi = 1 + θn, |θn| ≤ γn. (6.3)

Under SR we define the elementary floating-point operations +,−,×, / to be the stochastically
rounded exact ones. Therefore for SR, (6.2) holds with u replaced by 2u:

f l(x op y) = (x op y)(1 + δ), |δ| ≤ 2u, op∈ {+,−,×, /}. (6.4)

Standard rounding error analysis based on the model (6.2) clearly remains valid for (6.4), with u
replaced by 2u. This means that one will necessarily obtain larger worst-case error bounds for SR
than for RN. However, SR injects randomness into the rounding errors and so we can intuitively
expect it to cause the final error in a computation to be smaller than in the worst case, and hence
possibly smaller than for RN in some circumstances. In the next subsection we explain why this
intuition is correct.

(a) Probabilistic error analysis
Modeling rounding errors as random variables to obtain probabilistic error bounds is an old idea
going back to von Neumann and Goldstine [28], Henrici [29], [30], [31], and Hull and Swenson [9],
among others. This line of thought has led to the following rule of thumb: a realistic bound
on the rounding error of a linear algebra algorithm can be obtained by replacing, in a worst-
case error bound, all constants that depend on the dimensions of matrices and vectors by their
square roots. The key idea is to exploit the statistical effects of these random variables in the
propagation of rounding errors; see, for example, [32, p. 318]. Higham and Mary [33] provided
the first rigorous proof of the validity of this criterion: they showed that for random independent
zero-mean rounding errors δi, the constant γn in (6.3), can be replaced by

γ̃n(λ) = exp

(
λ
√
nu+ nu2

1− u

)
− 1 = λ

√
nu+O(u2)

with a modest constant λ> 0 with high probability. Subsequently, Higham and Mary [34] and
Ipsen and Zhou [35] obtained a probabilistic error bound for inner products that only requires
mean independence of rounding errors, an assumption weaker than independence. Connolly,
Higham, and Mary [1] derived the following probabilistic version of Lemma 6.1 under these
assumptions [1, Thm. 4.6]. Here, E[X] denotes the expectation of the random variable X .

Theorem 6.2. Let δ1, δ2, . . . , δn be random variables of mean zero such that E(δi | δi−1, . . . , δ1) =
E(δi) = 0, for i= 2, . . . , n. If |δi| ≤ u and ρi =±1, for i= 1, . . . , n, then for any constant λ> 0,

n∏
i=1

(1 + δi)
ρi = 1 + θn, |θn| ≤ γ̃n(λ) (6.5)

holds with probability at least 1− 2 exp(−λ2/2).

For RN the assumptions in Theorem 6.2 on the zero mean and mean independence of rounding
errors are often satisfied in practice, but it is easy to construct examples where either of the
assumptions fails and the backward error almost attains the worst-case bound (6.3) (and thus
exceeds the probabilistic bound (6.5) by a factor

√
n ).

Importantly, however, SR always satisfies the conditions of Theorem 6.2, as shown by the
following result [1, Lem. 5.2].

Theorem 6.3. Let the computation of interest generate rounding errors δ1, δ2, . . . , in that order. If SR is
used then the δi are random variables of mean zero such that E

(
δi | δi−1, . . . , δ1

)
=E(δi) (= 0).



9It follows that the probabilistic bound (6.5) holds unconditionally for SR provided that is u
replaced by 2u in view of (6.4). Hence for SR, the rule of thumb that one can replace nu in a
worst-case error bound by

√
nu is a rule.

The probabilistic bound is most favorable when the worst-case bound is approximately
attained. One situation in which this happens is when many tiny increments are applied to a
relatively large quantity. If φ∈ F is updated by increments h1, h2, . . . , which have magnitude
smaller than half of the spacing of the floating-point numbers around φ, then using RN
gives φ= fl(φ+ h1) = fl(f l(φ+ h1) + h2) = . . . , and the information in the updates is lost. This
phenomenon, known as stagnation, commonly occurs in practical applications. It arises, for
example, in neural networks, when parameter updates become very small, or in numerical
methods for ODEs and partial differential equations (PDEs), when a very small time step is
chosen. SR avoids stagnation, as some of the updates produce rounding that changes the partial
sum. This can be seen from the following result [1, Thm. 6.2].

Theorem 6.4 (inner products). Let y= aT b, where a, b∈Rn, be evaluated in floating-point arithmetic.
Under SR, the computed ŷ satisfies E(ŷ) = y regardless of the order in which the sums of products are
evaluated.

Taking bi ≡ 1 in the theorem we see that the expected value of a sum is the true value under
SR. As a simple example, suppose we run the code

x= 1

for i= 1: 10 do
x= x+ εM/4

end

in floating-point arithmetic. Since the spacing of the floating-point numbers between 1 and 2 is
εM = 2u, with RN every addition rounds down and the computed x̂= 1. With SR, however, each
addition has a probability 1/4 of rounding up, giving an increment of εM . Hence the expected
result is 1 + 10 · (1/4) · εM , which is the exact result, albeit not a floating-point number in the
working precision.

We emphasize that the benefits of SR are not restricted to curing stagnation. This rounding
mode ensures zero-mean rounding errors, so can produce smaller errors than RN in situations
where RN systematically produces rounding errors of one sign (see [33, sec. 4.2.2] for an example).

7. Implementation
Here we discuss how to implement SR.

(a) SR expressed in terms of other rounding modes
We can express the SR operator in terms of other rounding operators by writing, for x /∈ F ,

f l(x) =

{
RA(x), with probability q(x),

RZ(x), with probability 1− q(x),
(7.1)

where RA denotes the operator that rounds away from zero and q(x)∈ [0, 1]. For mode 1 SR, we
can rewrite (2.2) as

q(x) =
x− RZ(x)

RA(x)− RZ(x)
. (7.2)

In order to implement (2.1) or (7.1) in practice, we need to define a discrete version of the SR
operator. Given a positive integer k, which controls the number of bits used to approximate the

2https://github.com/milankl/StochasticRounding.jl

https://github.com/milankl/StochasticRounding.jl


10Table 7.1. Summary of SR implementations. Here, p is the target precision of rounding; k is the precision of the random

number used for SR; the “Type” column has “I” for integer or fixed-point arithmetic and “F” for floating-point arithmetic;

the “Op.” column indicates the class of operations supported or “Any” if rounding of any operation is supported; the “H/S”

column has H if SR is in hardware and S if software; and in the “Applications” column ML and QC stand for machine

learning and quantum computing, respectively.

Reference Type p k Op. H/S Applications

Barnes et al. (1951) [5] I 8 1 ×, / H General
Gupta et al. (2015) [7] I 18 30 Dot prod. H ML
Davies et al. (2018) [36] – 7 – ×, + H ML
Higham & Pranesh (2019) [2] F ≤ 64 64 Any S General
Hopkins et al. (2020) [37] I 32 2–32 × S ODE solve
Mikaitis (2020) [8], [38] I, F ≤ 32 32 Any H General
Meurant (2020) [39] I, F ≤ 64 64 Any S General
Fasi & Mikaitis (2020) [40] F ≤ 64 64 Any S General
Croci & Giles (2020) [41] F ≤ 32 32–64 +, ×, / S General/PDEs
Fasi & Mikaitis (2021) [42] F p p +, ×, /,

√
S General

Paxton et al. (2021) [43] F ≤ 32 32–64 Any S General
Klöwer (2021)2 F ≤ 32 32–64 Any S General
Krishnakumar & Zeng (2021) [44] I n m= n × - QC

continuous definition (2.1), let P be a random precision-k floating-point number drawn from the
uniform distribution over the interval [0, 1).3 We have that, for x /∈ F ,

f l(x) =


RA(x), if P <

x− RZ(x)

RA(x)− RZ(x)
,

RZ(x), if P ≥ x− RZ(x)

RA(x)− RZ(x)
,

(7.3)

where SR, RA, RZ round to some precision p. It is worth noting that the choice of the optimal k for
implementing SR is one of the main open questions surrounding mode 1 SR. A lower value of k
makes a hardware implementation cheaper but is expected to reduce the accuracy benefit that SR
may potentially bring: setting k= 1, for example, gives mode 2 SR.

While (7.3) is an accessible definition of SR, most of the implementations discussed in this
section do not take the comparison-based approach that (7.3) would suggest. On the contrary, they
add bits from a random stream to the part of the number that will be truncated. The equivalence
between this is idea, which we will discuss in much greater detail in Sections 7(c) and 7(d), and
(7.3) is shown in [42, Sec. 4].

Table 7.1 compares the features of SR in a number of implementations available.

(b) Proposed IEEE 754 style properties of SR
The definition in the previous section does not cover edge cases such as overflow, underflow, and
rounding of infinities and NaNs (not-a-number). In the following we propose our definition of SR
for these edge cases by giving some properties of SR analogous to those of the rounding modes
defined in the IEEE 754 standard [12].

• If the exact number is in the range of the target format, SR should be performed as though
the number was originally held in p+ k bits and then rounded to p bits according to (2.1).
Here, the extra k bits refer to the precision of SR, as well as the number of random bits
required.

3We remark that floating-point numbers are not uniformly distributed in [0, 1], but here we need the precision-k random
floating-point number to be sampled from that interval uniformly in the sense of real numbers. This is not a consideration
required in the hardware algorithms in Section 7(c) since there SR is performed at the bit level, using uniformly distributed
integers. Usage of other random number distributions in SR has been explored by Xia et al. [45].



11• Overflows: if the exact number lies between the maximum representable number ±fmax
and the neighbouring value that is not representable in the target format and will be
treated as ±∞, SR is performed as though the value is representable, to preserve the
statistical information about the round-off bits.

• When the exact number is smaller than the smallest value representable in the target
format, SR should round stochastically to one of the two neighbouring floating-point
values in the target format, either zero or the smallest representable value, maintaining
the sign.

• When subnormals are disabled or not supported in the target format and the exact value
is in the range of underflow, SR should round either to zero or to the smallest normalised
value, again without changing the sign.

• ±∞ and ±0 should not be rounded (changed) by the SR operation. NaNs with payloads
that cannot be represented in the target format should not be stochastically rounded:
a NaN with an implementation-defined payload may be returned, as per IEEE 754 [12,
Sec. 6.2.3] (relevant in a mixed-precision setting, for example converting binary64 to
binary32).

• As in the standard rounding operations [12, Sec. 4.3], inexact, underflow, and overflow
exceptions should be signalled by the SR operation.

(c) Modifying basic floating-point algorithms to include SR
Now we discuss how to modify classical algorithms for addition and multiplication of floating-
point numbers [16, Ch. 7], [27, Sec. 4.2.1], [46, Ch. 8] in order to obtain algorithms that support
SR and can readily be implemented in software or hardware. Algorithms for other operations to
include SR such as fused multiply-add (FMA) or division can be similarly derived by modifying
the original algorithms for the IEEE 754 arithmetic operations [16], [46]. To the best of our
knowledge, these algorithms are new in that no general methods to round to precision p taking
normalisation into account had so far been proposed in the literature.

Addition. The sum r= ◦(x+ y), where ◦ ∈ {RN,RZ,RD,RU} and x and y are binary floating-
point numbers, can be computed as we now explain. Let x= (−1)sx ×mx × 2ex−p+1 and
y= (−1)sy ×my × 2ey−p+1 be two normalised precision-p floating-point numbers. We assume
that sx = sy = 0, which implies that x and y are positive, in order to avoid considering sign
interactions which may transform the addition into a subtraction. This restriction does not affect
our main observations pertaining to the implementation of SR. The role that the sign of the
operands plays in this algorithm is discussed, for instance, in [16, Sec. 7.3]. We make additional
observations about subtraction when necessary.

The sum r= ◦(x+ y) = (−1)sr ×mr × 2er−p+1 is computed as follows.
(i) If ey > ex, swap x and y to ensure that ex ≥ ey .

(ii) Alignment of the significands: compute my × 2−(ex−ey) by shifting my to the right by
ex − ey places. Set er = ex. It is not necessary to keep all the bits that are shifted out:
maintaining only two bits plus a third sticky bit suffices—see below.

(iii) Sum of the significands: computemt =mx +my × 2−(ex−ey). At this step,mt is an exact
sum of the significands.

(iv) Normalisation of the result: since 0≤mt < 2p+1, we may need to normalise the result by
shifting mt to the right by one place (if mt ≥ 2p) and increasing er by 1 (note that a shift
left may be needed with subtraction—see below).

(v) Rounding: the significand of the rounded sum, mr , is computed by rounding the
normalised exact sum mt to p significant bits according to ◦, and renormalising if
required. At this point r is the correctly rounded sum of x and y.

In order to perform the rounding at step (v) of the algorithm, it may seem necessary to preserve
all the bits that, being after the bit in the pth position, are dropped off during steps (ii) and (iv).
It can be shown, however, that for ◦ ∈ {RN,RZ,RD,RU} it suffices to keep only the first two
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Figure 7.1. Alignment of bits in algorithms for stochastic rounding based on sums. The random bits are added to the

significand mt followed by the truncation of it. The detail of generating and adding the k random bits is implementation

dependent—we may only add the k bits to the top k bits of the bottom part of the significand and then use a carry out bit

to control the rounding of mr after the truncation, or we may pack the k random bits into a word of equivalent width of

mt and add it to mt using integer arithmetic and the propagating carry will cause rounding in the top p bits.

discarded bits after the one in position p plus an extra specially computed bit. These are the guard
bit G, in position p+ 1, the round bit R, in position p+ 2, and the sticky bit T, in position p+ 3,
which is a logical OR of all the bits after the (p+ 2)nd. Together, these three bits are called in short
the GRT bits [46, Sec. 8.4.3]. In the algorithm above, they are formed in step (ii) and updated in
step (iv) if normalisation is required.

We now explain how the algorithm should be modified in order to include SR as an option in
step (v). Figure 7.1 demonstrates stochastic rounding of mt pictorially. We use the same notation
as in Section 7(a), and use k to denote the number of bits used for rounding, or equivalently
the number of bits in the random number used to perform the rounding. In step (ii), instead of
computing the GRT bits from the shifted out bits of my , we keep the k trailing bits beyond that in
position p. Depending on the implementation, it might be necessary to manipulate appropriately
those extra bits when subtraction is considered. An alignment of more than p+ k − 1 bits is
unnecessary, as in that case SR with k bits would not have any effect and the largest summand x
would be returned unchanged. If a shift is required in step (iv), the whole p+ k-bit significand has
to be shifted in order to keep the trailing k bits correct after the normalisation. In order to perform
step (v), it is necessary to generate k bits from a stream of uniformly distributed random bits. This
operation is expensive, but can be performed asynchronously at any point before reaching the
last step, as it does not require any information about x or y. Finally, the k bits from the random
stream are added to the k bits immediately following the first p bits of the normalised mt; if this
operation leads to a carry out, we increment the top p bits of mt by 1 and truncate the bits after
the first p bits to form the rounded significand mr . Implementing SR by adding random bits to
the fraction is almost universally used in the software and hardware implementations discussed
in Section 7(d) and Section 7(e) below.

We need to consider normalisation and whether the k bits required for rounding could be
altered by shifting. Shifting is necessary in three cases. First, when the addition of the significands
causes a carry out, mt is normalised by means of a one-place shift to the right, which does not
violate the bottom k bits. Secondly, when the difference of exponents ex − ey is larger than 1, the
smaller operand is aligned so that there are multiple zeros at the front and consequently only a
left shift by one position may be required on effective subtraction. For this reason, one extra bit is
needed to make sure that a 1 that drops off the p+ k bits is shifted in correctly by the left shift.
Thirdly, when the exponent difference is 1 cancellation may occur on effective subtraction and
multiple left shifts may be required to normalise the result. Since the alignment was performed
by shifting right by only one place, however, there is no risk of any bits being shifted beyond
the (p+ k)th position, and therefore no incorrect bits will be shifted in during the normalisation.
Therefore, only one extra bit is necessary, and the width of mt should be p+ k + 1 bits.



13If the sum of two floating-point numbers is subnormal, then it is exact and no rounding is
required [16, Thm. 4.2]. If one of the inputs is subnormal then the significand alignment step
requires minor modification as per [16, Sec. 7.3.3] while the rest of the algorithm for the floating-
point addition with SR remains the same.

Addition of floating-point numbers can result in the following exceptions: overflow,
underflow, inexact, and NaN [46, p. 425]. With SR these may be handled as discussed Section 7(b).

Multiplication. Given two normalised positive floating-point numbers x and y as in the
previous section, the product r= ◦(x× y) can be computed as follows.

(i) Product of the significands: compute the 2p-bit integer mt =mx ×my . The fact that
2p−1 ≤mx,my < 2p implies that 22p−2 ≤mt < 22p.

(ii) Sum of the exponents: compute er = ex + ey . At this point we have the exact product
mt × 2er−2p+2.

(iii) Normalisation of the result: if mt ≥ 22p−1 we need to normalise the result by shifting the
significand by one place to the right and increasing er by 1.

(iv) Rounding: the normalised exact productmt is rounded to p significant bits according to ◦,
giving mr . At this point mr is the rounded product of x and y.

As with addition, the G and T bits are required to perform the rounding in step (iv) (the R
bit is not required since left shifts cannot occur here). After the normalisation in step (iii), the
unrounded result will be in the top p bits, whereas the bottom p bits will be used for rounding. In
order to implement SR with k random bits (in this case k≤ p, asmt has at most 2p bits and there is
no need to consider larger values of k) we need to add a k-bit random number to the top k of the
bottom p bits of the internal significand mt: a carry will increment the pth bit of the top segment
of mt, causing the number to round up. The significand of the stochastically rounded result will
consist of the top p bits of mt.

For subnormal values, a few modifications have to be incorporated in the multiplication
algorithm. First of all, if both inputs are subnormal, then the product will be in the underflow
range and SR can be handled as in Section 7(b). If the inputs are normalised but yield a subnormal
result, it is necessary to shift mt right by more than one place in step (iii), depending on how
much the product’s exponent differs from that of subnormals in the target format. If only one of
the inputs is subnormal, then the product can be either normal or subnormal. Two approaches
are taken in this case: either the subnormal input is normalised before the multiplication, or the
product’s significand is normalised by a left shift. We do not go into details as this does not
change the SR algorithm (SR is performed in step (iv) after the product has been normalised or
denormalised as required), and refer the reader to [16, Sec. 7.4.2].

Multiplication of floating-point numbers can result in the following exceptions: overflow,
underflow, inexact, and NaN [46, p. 438]. With SR these may be handled as discussed in
Section 7(b).

(d) Simulation of SR in software
SR can be simulated in software in a straightforward fashion by relying on high precision floating-
point arithmetic. The computation is performed in higher precision and the high-precision result
is rounded using (7.1), where q(x) in (7.2) is based on the (higher-precision) approximation to
x rather than on its exact value. This approach is easy to implement as long as higher-than-
working-precision arithmetic is available, be it in hardware, for instance when emulating binary32
rounding using binary64 arithmetic, or in software, through arbitrary precision libraries such as
the GNU Multiprecision Library (GNU MPFR) [47].

In practice, once the high precision solution has been computed, the rounding step can be
performed in several ways. The MATLAB function chop4 [2] and the FLOATP_Toolbox5 for
MATLAB [39] leverage the MATLAB random number generator to draw a random number r
4https://github.com/higham/chop
5https://gerard-meurant.pagesperso-orange.fr/floatp.zip

https://github.com/higham/chop
https://gerard-meurant.pagesperso-orange.fr/floatp.zip
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y 0 10001100 0101001001 1111110011000 0x46293F98 10831.8984375

s e+ 127 m (without implicit bit)

q 0 00000000 0000000000 1101001010011 0x00001A53 –

n 0 10001100 0101001010 1100111101011 0x462959EB 10838.4794921875

f l(y) 0 10001100 0101001010 0000000000000 0x46294000 10832

Figure 7.2. Example: rounding a binary32 number y to a format with p= 11 significant digits (including the implicit bit)

using the SR algorithm implemented in QPyTorch. The number n is the integer sum of the two bit strings representing y

and m; f l(y) is obtained by zeroing out the trailing 24− p= 13 trailing bits of n. For floating-point numbers, the three

binary strings represent the sign (s), the unbiased exponent (e), and the integer significand without the implicit bit (m); the

last group is further divided into a group of p− 1 bits to keep and 24− p bits to zero out. We also report the hexadecimal

string representing the numbers, and for floating-point numbers the corresponding exact decimal representations.

from the uniform distribution over the open interval (0, 1) and choose the rounding direction
depending on whether r is larger or smaller than q(x). These software packages directly
implement SR through floating-point comparison operations as in (7.3).

Most software favors the use of integer random numbers, integer arithmetic, and bit
manipulation.

The implementation of SR in the QPyTorch6 package [48], for example, rounds stochastically a
binary32 number y to a floating-point format with precision p < 23 as follows. First, it generates a
32-bit integer q by zeroing out the leading (p− 1) + 9 bits of a 32-bit random integer. These zeros
are introduced in positions that correspond to the sign of y (1 bit), its exponent (the next 8 bits),
and the p most significant bits of its significand (the following p− 1 bits, in view of the implicit
bit conversion). Next, the algorithm computes n= ỹ + q, where ỹ is the binary representation of
y seen as an integer, uses a bitmask to zero out the 24− p trailing digits of n, as 24 is the number
of precision bits in a binary32 number, and finally returns the value thus obtained as a 32-bit
floating-point number. An example illustrating this rounding technique is provided in Figure 7.2.
The implementations in the CPFloat7 C library [40] use an analogous technique when rounding
binary32 as well as binary64 floating-point numbers to lower precision. The same approach is
followed by Verificarlo8 [49], an instrumentation tool which uses the GNU Compiler Collection
(GCC) quad format as extended precision for binary64, and binary64 as extended precision for
binary32.

The approach of simulating SR through extended precision is also used in the mcaquad

backend of the Valgrind tool Verrou9 [50], [51]. Verrou offers a second backend, called verrou,
which performs stochastic rounding without using higher precision. The algorithms in the
verrou backend use double-double arithmetic, and emulate high precision computations
implicitly by representing numbers with at least 106 bit of precision as the unevaluated sum
of two binary64 values. These techniques are based on reduction operations [12, Sec. 9.4], also
known as error-free transformations, and are used to approximate the distance between the exact
result of a computation and the two rounding candidates in binary64 arithmetic. These are then
used to approximate the rounding probabilities.

Fasi and Mikaitis [42] propose a similar but more general approach for implementing
in software stochastically rounded elementary arithmetic operations: addition/subtraction,
multiplication, division, and extraction of the square root. For each operation, they propose
two algorithms, one that uses only RN, and one that combines it with RZ, RU, and RD. These
algorithms compute first the result of the elementary arithmetic operation and then the error
induced by the rounding. The rounding direction is chosen by adding a pre-generated random

6https://github.com/Tiiiger/QPyTorch
7https://github.com/mfasi/cpfloat
8https://github.com/verificarlo/verificarlo
9https://github.com/edf-hpc/verrou

https://github.com/Tiiiger/QPyTorch
https://github.com/mfasi/cpfloat
https://github.com/verificarlo/verificarlo
https://github.com/edf-hpc/verrou


15number to the computed error, and then adding this quantity to the result of the operation—
Fasi and Mikaitis [42] show that this procedure is equivalent to the direct implementation of SR
via (7.3), which relies on a comparison-based approach. In numerical experiments, both types of
algorithms are faster than a C implementation that relies on the GNU MPFR library, and the RN-
only versions are faster on x86 architectures, where switching the rounding mode incurs a high
performance penalty [16, Sec. 12.3.2].

Klöwer’s Julia software package StochasticRounding.jl10 defines three new Julia floating-
point types that automatically include SR. These correspond to bfloat16, binary16, and binary32
(see Table 4.1), and use the Xoroshiro128Plus fast pseudo-random number generator (PRNG).11

Composability and type flexibility in Julia enable SR computations in single and half precision
in a large number of numerical software and mathematical libraries. Automatic application of
SR operations is extremely advantageous from a user standpoint, as it allows significant code
simplification. To implement (7.3), the implementation is also based on the approach of adding
random bits to the part of the floating-point number that will be truncated.

In terms of fixed-point arithmetic with SR, Hopkins et al. [37] and Mikaitis [38] have recently
implemented a set of rounding and multiplication operations12 and used them on low power
ARM integer processors. Multiplication routines for various fixed-point formats in the ISO 18037
embedded C standard [52] were developed by exploiting the fact that ARM processors return the
full-precision result of integer multiplication using two registers: multiplying two 32-bit fixed-
point values, for example, returns the exact 64-bit result with all the information of integer and
fraction bits of products preserved. The bottom bits of the fraction can then be used to round
the results to one of the standard fixed-point formats stochastically. In this implementation the
comparisons between the random numbers and the round off bits are implemented directly as in
(7.3), except using integer arithmetic.

(e) Overview of available devices and patents
Now we review hardware designs discussed in the literature, some of which are already available
in commercial hardware.

The Graphcore Intelligence Processing Unit (IPU) is a highly parallel machine learning
accelerator that supports SR for binary32 and binary16 arithmetic [53, Sec. 2.1], [54, Ch. 10],
[55] (see Table 4.1). The patent filed by Graphcore [56] reveals some technical details that are
not specified in the documentation but may reflect the hardware implementation of the IPU.
The document explains how binary32 values are stochastically rounded to binary16 precision
in hardware by using a PRNG, also implemented in hardware—this kind of conversion might be
performed in the IPU, although this is not reported. The algorithm begins by generating a 24-bit
random number, that is, one random bit for each bit in the significand of a binary32 value. It then
uses 13 or more of those bits to round a number to binary16. The number of random bits that are
actually used depends on whether rounding will result in a normal or subnormal number. The
actual rounding is performed by adding these random bits to the part of the significand that will
be discarded. This operation may generate a carry bit to be added to the least significant bit of the
significand of the input truncated to 11 significant bits. A nonzero carry bit will cause the absolute
value of the number to round up. This type of implementation is used in most of the references
mentioned below.

Two patents filed by IBM disclose methods for implementing floating-point adders [57] and
multipliers [58] that use SR. The authors demonstrate the techniques on an 8-bit data type, but
mention binary32 and binary64 as examples of other formats to which the approach can be
applied. The procedures require a fixed number of random bits be loaded into a register, but
the patents do not explicitly mention how these bits should be generated. SR is performed by
using the bits that drop off when fitting the result of the adder or multiplier into the 8-bit format,

10https://github.com/milankl/StochasticRounding.jl
11https://juliarandom.github.io/RandomNumbers.jl/stable/man/xorshifts/
12https://github.com/SpiNNakerManchester/spinn_common/blob/master/include/round.h

https://github.com/milankl/StochasticRounding.jl
https://juliarandom.github.io/RandomNumbers.jl/stable/man/xorshifts/
https://github.com/SpiNNakerManchester/spinn_common/blob/master/include/round.h


16and as in the case of the Graphcore IPU, the rounding step is implemented by adding the random
bit stream to the round off bits, in both the adder [58] and the multiplier [57]. It is not mentioned,
however, whether the sum is normalised before being rounded, and if so whether the bits that
are to be shifted out during the normalisation are also taken into account when rounding—in the
algorithms outlined in Section 7 we propose that the rounding step should be performed after the
normalisation for a correct implementation.

A patent from AMD describes methods and circuits to use SR in conjunction with integer
adders or accumulators [59]. The document shows the design of 1) a mixed-precision adder that
computes the sum of a 32-bit and a 16-bit number by using a 16-bit random number supplied
through a third input lane, and 2) a 32-bit accumulator which takes as inputs both the next 16-
bit value to accumulate and a 16-bit random number, and returns a 16-bit stochastically rounded
sum—once again, SR is implemented by adding random bits to the round-off digits, as was the
case for the Graphcore IPU. The pseudo-random numbers in the proposed SR unit are generated
with a linear-feedback shift register (LFSR), but no specific algorithm is mentioned.

A patent from NVIDIA demonstrates a method to round stochastically floating-point values
to lower precision, using a fixed, programmable, or computable rounding bit position [60]. The
authors explain how to round binary64 values to binary32, and binary32 values to binary16 and
bfloat16. A distinctive feature of this design is that it performs SR by using the bottom bits of
the significand of the number to be rounded without relying on a random number generator [60,
Fig. 2B]. For example, the 23-bit fraction of a binary32 number can be rounded to the 10-bit fraction
of a binary16 value by setting k= 8, taking the bottom 8 bits of the fraction in place of a random bit
stream, aligning and adding them to the significand as in Figure 7.1, and finally setting the 13 least
significant bits to zero. The authors note that this method for performing SR has an advantage
over using real random numbers, since it is deterministic and cheaper to implement. They do not
mention, however, whether replacing the random number with part of the input causes SR to lose
any of its desirable properties.

Gupta et at. [7] discuss the hardware prototype of a fixed-point matrix multiplier based on a
2D systolic array architecture and demonstrate experimental results from a field-programmable gate
array (FPGA) implementation. Each node of the systolic array is a multiply-and-accumulate digital
signal processing (MACC DSP) unit that multiplies two integers and accumulates the result into
an internal register. Each element of the matrix product is produced by a single MACC DSP unit.
The hardware is generalised, but the authors report results for an implementation in which each
MACC DSP unit accepts inputs of at most 18 bits and accumulate the partial results in an internal
48-bit register. When the matrix product is computed, each 48-bit element is passed through a
SR unit (there is one for each column of the 2D array of MACC DSP units) to produce the 18-
bit rounded and saturated results. The pseudo-random numbers needed to implement SR are
generated using a LFSR. The 30 random bits are added to the 30 least significant bits of the 48-bit
internal register. This may cause a carry to propagate to the 18 most significant bits of the result.
Finally, the trailing 30 bits are set to zero, thereby producing the rounded number.

The Intel Loihi [36] and the SpiNNaker2 [8], [38], [61] digital neuromorphic processors
include SR. The Intel Loihi processor has multiply-accumulate hardware that computes a 7-bit
approximation to x[t] = α · x[t− 1] + δ · s[t] (with s[t]∈ {0, 1}, α a decay factor, and δ an impulse
amount added at each step). It is not specified where SR is applied in this computation, what
precision and type of random numbers are used, and how SR is implemented. The SpiNNaker2
SR accelerator rounds and saturates 64-, 32-, or 16-bit to 32- or 16-bit fixed-point numbers with SR.
As a special case it also includes rounding from IEEE 754 binary32 to bfloat16. The random bits
needed for rounding are produced using the 32-bit hardware pseudo-random number generator
available on SpiNNaker2 [61]. The number of bits to be used for rounding is programmable for
fixed-point formats (it can be anything between 1 and 32 bottom bits of the input) and is fixed to 16
for binary32-to-bfloat16 rounding. As in the implementations mentioned above, SR is performed
by adding the random bits to the round-off bits (Figure 7.1).
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Figure 8.1. Relative errors for computing
∑n

i=1 1/i with RN and SR. The densely dashed and dash-dotted lines are

the worst-case error bound for RN and the probabilistic error bound for SR (with λ= 1), respectively. Stochastic rounding

experiments are repeated 10 times; the solid line represents the average error, the edges of the shaded area the minimum

and maximum error.

8. Applications
In applications, SR can replace existing rounding modes (usually RN) either globally or in certain
parts of an algorithm, and either true random numbers or pseudo-random numbers can be used.
The latter are often preferred as they ensure reproducibility of the result. In this section we review
applications where SR has been applied, and in some cases provide MATLAB experiments for
demonstration, which are made available on GitHub13.

(a) Numerical linear algebra
For most numerical linear algebra algorithms, rounding error analysis builds on Lemma 6.1, or
some variation of it, thus these algorithms can benefit from the smaller bound guaranteed for SR
by the probabilistic error analysis of Theorem 6.2. For inner products, in particular, we have the
following result [1, Thm. 4.8].

Theorem 8.1 (inner products). Let y= aT b, where a, b∈Rn, be evaluated in floating-point arithmetic
with SR. Then for any constant λ> 0 the computed ŷ satisfies

ŷ= (a+∆a)T b= aT (b+∆b), |∆a| ≤ γ̃n(λ)|a|, |∆b| ≤ γ̃n(λ)|b| (8.1)

with probability at least 1− 2n exp(−λ2/2) regardless of the order of evaluation.

The worst-case error bound corresponding to (8.1) has the same form but with the constant
γ̃n(λ) replaced by γn, which is roughly a factor

√
n larger [15, sec. 3.1].

As a special case we can take bi ≡ 1 and deduce that∣∣∣∣∣
n∑
i=1

ai − f l

(
n∑
i=1

ai

)∣∣∣∣∣≤ γ̃n
n∑
i=1

|ai|.

13https://github.com/mmikaitis/stochastic-rounding-survey-experiments

https://github.com/mmikaitis/stochastic-rounding-survey-experiments
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Figure 8.2. Backward error for computing y=Ax with RN and SR, where A∈R100×n is a random matrix with entries

drawn uniformly at random from the interval [0, 1]. The densely dashed and dash-dotted lines are the worst-case error

bound for RN and the probabilistic error bound for SR (with λ= 1), respectively. Stochastic rounding experiments are

repeated 10 times; the solid line represents the average error, and the edges of the shaded area the minimum and

maximum error.

Figure 8.1 plots the relative errors for the sum
∑n
i=1 f l(1/i) computed in binary16 (Table 4.1) with

RN and SR for a range of n. Note that the summands are already converted to binary16 (with
RN), so the only errors are in the summation. This example models a very slowly growing sum
of decaying summands. We see that SR has much smaller errors than RN for larger n and that the
errors for SR are mostly well within the probabilistic bound with λ= 1.

Matrix products are considered in the following result [1, Thm. 4.9], in which we denote by aj
the jth column of a matrix A.

Theorem 8.2 (matrix–matrix products). Let C =AB with A∈Rm×n and B ∈Rn×p be evaluated in
floating-point arithmetic with SR. For any λ> 0 the jth column of the computed Ĉ satisfies

ĉj = (A+∆Aj)bj , |∆Aj | ≤ γ̃n(λ)|A|, j = 1, . . . , n, (8.2)

with probability at least 1− 2mn exp(−λ2/2), and hence

|C − Ĉ| ≤ γ̃n(λ)|A||B| (8.3)

with probability at least 1− 2mnp exp(−λ2/2).

The worst-case error bounds corresponding to (8.2) and (8.3) have the same form but with γ̃(λ)
replaced by γn [15, Sec. 3.5].

This result is illustrated in Figure 8.2, which plots the backward error for computing a matrix-
vector product y=Ax where A∈R100×n and x∈Rn have entries sampled from the uniform
distribution over [0, 1]. We see that RN attains its worst-case rate of error growth and hits a relative
error of 1, whereas SR has slower error growth and maintains some accuracy for all n. In fact,
stagnation (see Section 6(a)) occurs in this example when n& 103 for binary16 and when n& 102

for bfloat16, as shown by the increased rate of error growth from these points onwards for RN.
As this rounding error analysis and the examples illustrate, SR is especially useful for large

scale and/or low precision computations.
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The use of SR in neural networks is not a new idea. Höhfeld and Fahlman [62], [63] proposed it in
1992, calling it probabilistic rounding. Today, SR is being used in machine learning in conjunction
with half precision arithmetic, not least because of its ability to avoid the problem of stagnation
that affects RN. Gupta et al. [7] show that SR can be used for training deep neural networks
in 16-bit fixed-point arithmetic with little or no degradation in the classification accuracy. Su et
al. [64] successfully train neural networks in 8-bit fixed-point arithmetic using SR and offer some
suggestions as to why SR is beneficial in this context. Muller and Indivieri [65] use SR (called
randomised rounding or online stochastic) to map continuous neural network weights to a discrete
low precision fixed-point representation. It is shown that with SR the networks can perform well
with lower precision weights than required with the standard rounding.

Essam et al. [66] combine SR with dynamic precision fixed-point arithmetic formats (variable
integer scaling factors) in training neural networks. Na et al. [67] implement SR with dynamic
fixed-point arithmetic in hardware for neural network applications. Used to train neural networks
with 24-bit fixed-point numbers, SR provides performance similar to that of binary32, but with
lower hardware area and energy costs. The authors also show that without SR even 64-bit
arithmetic is not enough to train the kinds of neural networks they used.

Joardar et al. [68] implement a 32- to 16-bit fixed-point arithmetic SR unit in an in-memory
computing device for neural network training, based on resistive random access memory (ReRAM),
which uses an LFSR 16-bit pseudo-random number generator. They report that SR added
negligible ReRAM cell area overhead with each SR circuit adding less than 1%. SR was
implemented by adding a 16-bit pseudo-random number to the bottom 16 bits of a 32-bit addition
result, following by truncating the result to 16 bits—the same technique as used in most of the
hardware designs mentioned in Section 7.

SR has also been applied in machine learning with floating-point arithmetic. Wang et al. [69]
train neural networks in 8-bit floating-point arithmetic with SR, obtaining factor 2–4 speedups
over 32-bit training. Zamirai et al. [70] find that either of SR and compensated summation
[15, Sec. 4.3] enables training in bfloat16 to match 32-bit training. Liu et al. [71] use mode 2 SR
and show faster convergence in training using 16-bit fixed-point numbers. They modify mode 2
SR, in that instead of rounding only the values that are not representable, all values are rounded,
including those that are exactly representable in the current floating-point format. Mellempudi
et al. [72] show that training neural networks using SR with 8-bit floating-point numbers yields
performance comparable to that of binary32. Ortiz et al. [73] compare 12-bit fixed- and floating-
point formats with and without SR with binary32 arithmetic in the training of neural networks.
They find that SR can be very useful in improving the accuracy: in their experiments with a 12-bit
fixed-point format, using RN produced a training accuracy of just 10%, while switching to SR
produced a training accuracy on par with that of binary32 arithmetic [73, Table 2].

Zhang, McDanel and Kung [74] use SR with the Block Floating Point (BFP) [75, p. 26] number
representation technique in a training system for deep neural networks. Their system exploits BFP
of variable precision over the whole training process, based on the number of training iterations
and neural network layers used. In this work SR is applied in conversion of floating-point values
to a lower precision BFP representation [74, Sec. III]. There is some indication [74, Fig. 4] that SR
is implemented, similarly to most implementations reviewed here, by adding random bit streams
to parts of numbers later truncated (as shown in Figure 7.1). A hardware implementation of the
proposed training method is also presented, with a matrix multiplier in BFP with SR [74, Sec. V].
To perform SR in hardware, the authors use 8-bit random binary streams from an LFSR which they
sum with the significands of BFP numbers [74, Sec. V-C], followed by truncation of the bottom
bits. The authors report a 2-6× speedup over prior approaches when using variable precision BFP
for this application. At the same time they report having similar accuracy to previous approaches,
which is attributed to the combination of variable precision BFP and SR.



20We note that the survey by Wang et al. [76] of custom hardware for deep learning includes
a review of work that uses SR. Another survey by Lee et al. [77] reviews arithmetic- and
implementation-level techniques in deep learning and includes various works that use SR.

There are many more examples of SR being of use in low precision machine learning
applications. For more details, see the references cited in the papers discussed above.

(c) Numerical verification software
Numerical verification software uses SR to explore the propagation of rounding errors in
applications: a particular computation is repeated multiple times and the distribution of errors
from these runs is used to draw conclusions about the sensitivity of a code to rounding errors.
Mode 2 SR, known as stochastic arithmetic [78], is used for example in the CADNA library [79].

An approach that includes as options both mode 1 and mode 2 SR is Monte Carlo
arithmetic [80], [81], a method used by tools such as Verificarlo [49] and Verrou [50], [51]. Monte
Carlo arithmetic is more general than SR, not least because as well as randomly rounding the
result of a floating-point operation it can also randomly perturb its inputs and output.

(d) Ordinary differential equations
The analysis of rounding errors in ODEs typically follows the classical convergence theory of
timestepping methods [29], [82], in which the global error introduced by the ODE integration
procedure is expressed in terms of the local errors introduced at each time step, and the global
error is bounded in terms of the stepsize h, which we will assume is fixed. These local errors
are comprised of both (local) truncation errors and (local) rounding errors. It is clear that unless
the contribution to the global error from rounding errors decays to zero at the same rate as
the contribution from truncation error the overall convergence of the method can be impacted.
Unfortunately, the analysis by Henrici [29], [82] shows that the global error of an order-p ODE
solver under RN is O(uh−1 + hp). The O(uh−1) term is often overlooked in the literature, and
indeed in binary64 arithmetic the unit roundoff u is usually small enough to make it negligible
for the stepsizes h of interest, but the O(uh−1) term cannot be neglected when computations are
performed in reduced precision arithmetic.

While not explicitly mentioning SR, early work by Henrici in the 1960s [29], [82] and by Arató
in the 1980s [83] considers rounding errors arising in ODE solvers as independent (rather than
mean-independent) random variables of zero mean. Henrici indicates that whenever rounding
errors have this random structure the term O(u∆t−1) can be replaced with a term characterised
by a milder growth in ∆t. The analysis by Arató in [83] rewrites the problem of estimating
the global rounding error as the solution of a stochastic differential equation. It is curious that
stochastic differential equations have not yet appeared in the actual analysis of SR errors for ODEs
and PDEs.

It has been shown experimentally that SR can alleviate the accumulation of rounding errors
in ODE solvers. Hopkins et al. [37] and Mikaitis [38] use, on an ODE that models neurons in
two configurations, four different solvers including RK2 Midpoint and RK3 Heun. They compare
the results obtained in fixed-point arithmetic with those obtained using the same solvers run
in binary32 and binary64 arithmetics. For the fixed-point solvers, they consider three rounding
variants in the multiplication operation: bit truncation, RN, and mode 1 SR. In the experiments,
32-bit fixed-point arithmetic with SR in multipliers shows accuracy similar to that of binary64
arithmetic in all cases, while fixed-point arithmetic with RN and bit truncation, as well as binary32
arithmetic, accumulate significant errors in the progression of the ODE system, ending up with a
very different neuron behaviour.

Floating-point arithmetics (binary16, bfloat16, binary32) with SR in adds and multiplies have
been considered by Fasi and Mikaitis [42]. ODEs exhibiting exponential decay were solved with
Euler, midpoint, and Heun solvers. For very small timesteps, where rounding errors dominate
the overall error of the solution, using SR produced a final solution error lower than that of RN.
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Figure 8.3. Absolute errors in the forward Euler method for an ODE with exponentially decaying solutions with different

floating-point arithmetics and rounding modes. Stochastic rounding experiments are repeated 10 times; the solid line

represents the average error, the edges of the shaded area the minimum and maximum error. The stepsize is the interval

length divided by n. The experiment is adapted from [42].

Figure 8.3 shows this for the solution errors with the forward Euler method solved in various
arithmetics.

The ODE system

u′(t) = v(t), u(0) = 1,

v′(t) =−u(t), v(0) = 0,
(8.4)

whose solution is the unit circle in the (u, v) plane, was solved using binary16 and bfloat16
arithmetics for increasingly smaller integration steps [42, Sec. 8.3.2]. The results in Figure 8.4 for
the forward Euler method with h= 2π/n demonstrate that with RN the computed solutions are
not meaningful for very small integration steps, while with SR the computed solution reproduces
the unit circle quite well.

(e) Partial differential equations
Little is known about the interplay between SR and the typical algorithmic components of
PDE solvers, namely sparse iterative solvers, preconditioning, optimization, and timestepping
methods.

Croci and Giles [41] analyze the effects of RN and SR in the solution of the heat equation with
Runge–Kutta methods and finite differences, and explain how the numerical scheme should be
implemented in order to reduce rounding errors. The analysis for RN yields the same O(u∆t−1)

rate in all dimensions as in Henrici’s work on ODEs [29], [82], and in related work on the
heat equation by Jézéquel [84]. On the other hand, using SR yields considerably smaller error
bounds. In fact, Croci and Giles prove that the leading-order component of the rounding errors
introduced by SR are zero-mean random variables that are independent in space and mean-
independent in time. Thanks to this lack of correlation, much milder blow-up rates are obtained
for the global rounding errors, essentially O(u∆t−1/4) in 1D, O(u| log(∆t)|1/2) in 2D, and O(u)

in 3D. Interestingly, rounding errors become asymptotically smaller as the dimension increases:
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the larger the dimension, the more error cancellation occurs because of the spatial independence
of the SR errors.

The lack of error correlation and the zero-mean property are not solely responsible for the
success of SR for this problem. Croci and Giles also show that the RN solution is prone to
stagnation, and in fact the phenomenon may occur from the very first step if ∆t is small enough
to cause the RN solution to never move away from the initial condition. On the other hand, SR is
resilient to stagnation, which did not affect the SR solution in numerical experiments.

In unpublished work, these results have been extended to linear parabolic PDEs and the
finite element method and, together with numerical experimentation in binary16 and bfloat16
precision, show that while RN can fail to compute meaningful solutions, SR computations always
exhibit near-machine-precision accuracy for sufficiently small timesteps and mesh sizes. We
expect similar results as in the parabolic case to hold for hyperbolic PDEs, with the exception
perhaps of the stagnation behaviour.

Here we consider a diffusion equation with Dirichlet boundary conditions,{
ut(t, x) =∇ · (D(x)∇u(t, x)) + f(x), x∈D= [0, 1]d, t∈ [0, 1],

u(0, x) = u0(x), u(t, s) = 1, s∈ ∂D, t∈ [0, 1],
(8.5)

where

D(x) =


1
2 (sin(πx)

2 + 1), in 1D,

1
3

[
sin(πx1)

2+1 sin(πx1) cos(πx2)

sin(πx1) cos(πx2) cos(πx2)
2+1

]
, in 2D,
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and f(x) is chosen so that the exact solutions to (8.5) at steady-state is

u(∞, x) =

16
(
x(1− x)

)2
+ 1, in 1D,(

16x1x2(1− x1)(1− x2)
)2

+ 1, in 2D.

By using the bfloat16 format with RN and SR, in Figure 8.5 we show the effect of stagnation on
the numerical steady-state solution of this problem in 1D as we vary the initial condition. We
solve (8.5) using the finite element method with piecewise linear basis functions and the forward
and backward Euler schemes. We note that the RN solution always stagnates close to the initial
condition, while SR successfully captures the correct steady-state solution.

In Figure 8.6 we plot the relative (i.e., normalised by the unit roundoff) global rounding errors
for both RN and SR against the theoretical bounds of Croci and Giles [41]. While the RN error
indeed grows linearly with ∆t−1 until stagnation, the SR error increases very mildly in 1D and
almost unnoticeably in 2D. For a similar 3D problem (not shown), the errors are just bounded by a
multiple of the unit roundoff. It therefore seems that SR is able to control the growth of rounding
errors without requiring more accurate summation techniques such as that in [85].

Paxton et al. [43] investigate experimentally the effects of RN and SR in chaotic ODE and PDE
systems related to climate modelling: the Lorenz system, heat diffusion, a nonlinear shallow-
water model for turbulent flow over a ridge, and a coarse resolution global atmospheric model
with simplified parameterisations. They simulate these models in various precisions using from
62- to 10-bit floating-point formats and compare their results via the Wasserstein distance, a
metric used to measure the discrepancy between probability distributions. They find that SR can
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effectively mitigate the growth of rounding errors in both simple heat diffusion and turbulent
models. Furthermore, they report the occurence of stagnation when RN is used to solve the heat
equation, confirming the results in [41].

Overall, the findings by Paxton et al. show that reduced precision with SR is a valid alternative
to standard binary64 precision computations. The authors also suggest that SR might become
relevant in next-generation climate models.

(f) Quantum mechanics
In quantum mechanics, an integer variant of SR has been used by several authors in order
to estimate the dominant eigenvalues of Hamiltonian matrices using Monte Carlo versions of
the power iteration. The goal is to compute the ground-state eigenvector ϕ0 of a Hamiltonian
matrix H as a linear combination of a set of basis states |0〉, . . . , |n〉. The coefficients of the linear
combination, or basis-state amplitudes, are the inner products ci = 〈i|ϕ0〉. At each step of the power
method, the coefficient ci is approximated by an integer n(k)i , and for all i the approximations at
step k + 1 are computed from those at step k. Once the iteration has converged numerically, the
basis-state amplitude for the state |i〉 is estimated as the average value of n(k)i over k.

Nightingale and Blöte [86] are the first to suggest the use of SR for the solution of this problem.
They use a random-walk model, and in their work the integers n(k)i count the number of random
walkers that are in state |i〉 at iteration k. The integer SR function used in this work is

f l(x) =

{
[x] + 1 with probability x− [x],

[x] with probability 1− (x− [x]),
(8.6)



25where [x] denotes the integer part of x∈R, defined by

[x] =

{
bxc x≥ 0,

dxe x< 0.

Allton, Yung, and Hamer [87] improve on this idea by suggesting a new scheme, called
stochastic truncation, further developed by Hamer et al. [88] and Hamer and Court [89]. All these
variants of the stochastic truncation method use essentially the same rounding function (8.6).

Price, Hamer, and O’Shaughnessy [90] propose a variation of (8.6) which essentially applies
integer SR only to a specific interval:

f l(x) =


x, x≥ 1,

1, 1>x>P,

0, P ≥ x> 0,

where P is a random number from the interval [0, 1]. This rounding operator keeps the “exact”
value of x for large x but allows some of the values below 1 to be stochastically replaced by 0.

(g) Quantum computing
Krishnakumar and Zeng [44] show how to implement mode 1 and 2 SR for quantum computing
applications and demonstrate that mode 1 provides accuracy or circuit complexity improvements.
Mode 1 SR in this work is called quantum rounding. It is shown that quantum rounding can
be implemented by utilizing the fact that quantum computing has a probabilistic component—
measuring a state of a quantum register can return different results with certain probabilities.
The authors show that a quantum rounding circuit can be made to round with proportional
probabilities according to mode 1 SR of (2.1). Once such a circuit is used multiple times to measure
the value of a quantum register (as is commonly done in quantum computing in order to improve
confidence in the results), the average value will be more accurate because of the properties of
mode 1 SR. The authors show that implementing fixed-point multiplication in a fault-tolerant
quantum setting requires 2 to 3 times less resources for the same accuracy targets, compared with
when RN is used.

(h) Other applications
Various other applications use SR in one way or another. We give overviews of a few such
applications.

In digital signal processing, SR goes under the name random rounding and has been considered
for fixed-point arithmetic. Callahan [91] demonstrates a simple 16-bit filter that is more accurate
with SR than with the standard rounding. Two hardware implementations of SR are also
demonstrated, and one of them interestingly does not require random number generation but
uses a value that is perturbed on each rounding operation.

Bargh et al. [92] and Tran et al. [93] address the problem of preserving privacy when publicly
releasing data sets. Their goal is to find the best ways to minimise the disclosure of personal
information and share only data that does not infringe peoples’ privacy. One of the aspects
considered is how to transform sensitive information in specific cells of tabulated data. In [92,
Sec. 4.2.2], rounding is discussed as an alternative to suppression, which is the simple removal of
values that are at risk of disclosing private information, a process which may potentially delete
useful data. In this research SR, under the name of random rounding [94, Sec. 5.4.3], is used to round
numerical data to one of the two nearest integer multiples of a given base. In base 10, for example,
the number 26 would be rounded to 20 or to 30 with probabilities 40% and 60% respectively. SR
is useful here as it does not always increase large values and decrease small ones as round to
nearest would [92]. Being unbiased, moreover, SR can hide the information about the original



26data [94], and may even provide protection against differencing, where sensitive information can
be extracted from the differences in multiple tables [94].

Rounding to integer in a stochastic fashion is also considered by Gösgens et at. [95] in the
study of models for the spread of infections, by Matter and Potgieter [96], to solve a problem
of resource allocation, and by Hörls and Balac [97], for exploring travel demand in cities using
transport simulations.

Wu [98] explores SR and a modification of it called dither rounding in the context of stochastic
computing. Dither rounding is more complex than SR, as it requires keeping track of the number
of rounding operations performed. However, Wu shows that dither rounding can achieve similar
accuracy, but with lower variance, in matrix multiplication and in machine learning algorithms
for digit classification.

There is some connection between SR and the technique of dither that is a common component
in audio analogue-to-digital and digital-to-analogue conversion [99–101]. In analogue-to-digital
conversion, dither relates to the randomization the analogue signal undergoes before being
converted to a low-precision quantised digital representation [100]. The same term is used by
the authors to refer to the randomization at the other end, when converting a digital signal back
to analogue. For example, the following excerpt from [100] discusses a method of dither of the
digital signal that is similar to an implementation of SR mode 1 where a set of random bits are
added to the part of fraction to be truncated.

If a digital manipulation (such as a gain reduction) is performed, there may be a tendency to take
the intermediate higher precision numbers generated by the multiplication and simply truncate or
round them to the bit width of the system. This will in many cases leave the signal improperly
dithered. [...] The fractional truncated bits have some influence on the dither, in keeping with their
relative position. If cost or processing time were no object, then any digital manipulation should be
carried out with full accuracy, and the dither carry bit (0 or 1) can be determined by an appropriate
digital random number added to the bits to be truncated. In practice such schemes would probably
work well by considering only the first 3 or 4 bits to be truncated.

See also [100, Fig. 9] for a diagram that sketches an implementation of SR mode 1 in an integer
multiplier.

9. Conclusions
Hardware units supporting stochastic rounding are not yet widely available, but have started
to appear: as we discussed in Section 7(e), Graphcore and Intel are producing processors with
SR built in. Patents from AMD, NVIDIA, IBM, and other computing companies describing
implementations of SR in fixed- or floating-point arithmetic units show that this rounding mode
could become more widely available in the future.

When hardware is not available, simulation in software of arithmetics with SR can be used
to explore its behaviour. Multiple simulators have been developed, as discussed in Section 7(d).
These are available in various forms for MATLAB, C, Julia, and Python.

Rounding error analysis with SR, discussed in Section 6, shows that compared with the
standard rounding modes, SR guarantees probabilistic errors bounds significantly smaller than
the worst-case bounds and it also avoids the problem of stagnation (Section 6(a)), where small
values are lost to rounding when they are added to an increasingly large accumulator. This
explains the success of SR in the applications described in Section 8.

We covered work utilizing SR in various forms, in numerical linear algebra, machine learning,
ODE and PDE solvers, quantum computing, and other areas. The wide array of applications in
which SR has been tried and led to improved accuracy demonstrates that it is a useful technique
to consider when arithmetics with standard rounding modes are insufficiently accurate. SR



27provides a useful alternative to extended precision registers, arbitrary-precision libraries, multi-
word representations and arithmetics, compensated algorithms, and other means for improving
accuracy.
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