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ABSTRACT
Let L = (L1,L2) be a list consisting of structural data for a matrix polynomial;
here L1 is a sublist consisting of powers of irreducible (monic) scalar polynomials
over the field R, and L2 is a sublist of nonnegative integers. For an arbitrary such
L, we give easy-to-check necessary and sufficient conditions for L to be the list of
elementary divisors and minimal indices of some real T -palindromic quadratic matrix
polynomial. For a list L satisfying these conditions, we show how to explicitly build
a real T -palindromic quadratic matrix polynomial having L as its structural data;
that is, we provide a T -palindromic quadratic realization of L over R. A significant
feature of our construction differentiates it from related work in the literature; the
realizations constructed here are direct sums of blocks with low bandwidth, that
transparently display the spectral and singular structural data in the original list L.

KEYWORDS
matrix polynomials, real quadratic realizability, elementary divisors, minimal
indices, T -palindromic, inverse problem

1. Introduction

Matrix polynomials, i.e., matrices whose entries are scalar polynomials, arise in a va-
riety of applications and have been intensively studied over the last several decades.
Classical references on matrix polynomials and their applications include [16,21], while
more modern treatments can be found in [4,17,38]. The most relevant structural data
related to matrix polynomials are finite and infinite elementary divisors, together with
left and/or right minimal indices, which only exist if the matrix polynomial is rank
deficient over the field of rational functions. Matrix polynomials arising in applications
often have a special structure, e.g., (skew) symmetric, (skew) Hermitian, T -alternating
and T -palindromic [2,5,12,23,26,32,38,40], which typically translates to polynomials
having structural data that satisfy additional constraints [2,6,26–29,32]. Here we are
mainly concerned with the class of T -palindromic matrix polynomials over R, that
is, polynomials of the form P (λ) =

∑k
i=0Aiλ

i such that ATk−i = Ai ∈ Rn×n, for
i = 0, . . . , k.

The primary goal of this paper is to further contribute to the theory of inverse
eigenproblems of structured matrix polynomials. These kinds of polynomial eigenvalue
problems have been investigated for at least 40 years [31, Thm. 5.2], including in the
classical reference [16]. In recent years, these topics have been actively studied not only
from the theoretical standpoint [10], but also in relation to other problems such as the
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stratification of orbits of matrix polynomials [19] — for more details about inverse
polynomial eigenproblems see [9, Sec. 1] and the references therein.

In this paper, we consider a particular variation of the inverse polynomial eigenvalue
problem that we refer to as the Quadratic Realizability Problem (QRP), consisting of
the following two subproblems (SPs) [9]:

(SP-1) Characterization of those lists L = (L1,L2), where L1 comprises the de-
sired spectral structure (elementary divisors) and L2 the desired singular
structure (minimal indices), that can appear as the complete structural
data of some quadratic matrix polynomial in a given structure class C .

(SP-2) For each such realizable list L, show how to concretely construct a
quadratic matrix polynomial in the class C whose structural data is
exactly the list L. It is also desirable for this concrete realization to dis-
play the given structural data as simply and transparently as possible.

In [9], the authors provided a complete and transparent solution to the QRP for the
class C of T -palindromic matrix polynomials over an algebraically closed field. This
was achieved by developing a Kronecker-like quasi-canonical form for quadratic T -
palindromic matrix polynomials. Here we extend those results and provide a complete
solution to the QRP for the class of T -palindromic matrix polynomials over the field
of real numbers. What makes this extension nontrivial is the fact that elementary
divisors of real matrix polynomials can be (powers of) irreducible quadratics, in stark
contrast to matrix polynomials over an algebraically closed field, whose elementary
divisors are all (powers of) linear factors. In order to accommodate this additional
type of elementary divisor, new tools and ideas are necessary to construct transparent
T -palindromic quadratic realizations over R, as described in Sections 3-5.

To see the results of this paper in a broader context, let us consider some closely
related problems. The simplest analog of the QRP is the corresponding “linear realiz-
ability problem (LRP)”, that is, the inverse eigenvalue problem for matrix pencils. But
this problem has a classical solution (1890) in the Kronecker canonical form (KCF)
[15,20]. Specifically, the KCF shows how to build a block diagonal matrix pencil in
which each individual block realizes exactly one finite or infinite elementary divisor, or
one left or right minimal index. The KCF thus provides a “linear realization” of any list
L = (L1,L2) of structural data as a direct sum of bidiagonal blocks with simple and
transparent spectral and singular structures. We regard the KCF as the prototype of
an ideal solution for an inverse polynomial eigenproblem; to achieve something as close
as possible to this for quadratic matrix polynomials is the main motivation behind the
formulation of the (SP-2) part of the QRP.

Much is also known about structured linear realizability problems, starting with
the work of Thompson [37] in developing structured Kronecker-like canonical forms
for real and complex symmetric and skew-symmetric matrix pencils; [37] also contains
an extensive bibliography on related works. More recently, structured Kronecker-like
canonical forms have been found for other structure classes of matrix pencils. Examples
include the work of Lancaster and Rodman [22] on Hermitian pencils, and the work
of Schröder [33–35] and Horn and Sergeichuk [18] on real and complex T -palindromic
pencils, thus solving the structured linear realizability problems for those structure
classes in the spirit of (SP-1) and (SP-2) above. One way, then, to view the results of
this paper is as an extension of the notion of a structured KCF for structured pencils to
something analogous for quadratic, real T -palindromic matrix polynomials; recall that
the corresponding T -palindromic QRP over an algebraically closed field was settled
in [9].
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Other variations of the quadratic inverse eigenproblem have also been studied. These
include the general (unstructured) QRP [7,24] and the Hermitian QRP [30], in which
Kronecker-like quasi-canonical forms are developed. Much research has also been done
on approaches to quadratic inverse eigenproblems that do not involve the development
of Kronecker-like forms. One important example of this is work by Tisseur and Zaballa
on triangularizing quadratic matrix polynomials [39]. Another is work of Lancaster and
Zaballa on real symmetric quadratics, in which information about desired eigenvectors
is also part of the given structural data; see, for example, [23] and the references within.

Significant efforts have been made to extend the known results for the quadratic
inverse eigenproblem to higher degree [1,3,10,11,36], but none are completely satis-
factory. Some lack transparency in displaying the original structural data, some have
restrictions on the underlying field. Indeed, the prospect of finding a Kronecker-like
form for general matrix polynomials of arbitrary degree and over arbitrary fields seems
quite remote, due to the likely combinatorial explosion in the number of realizable but
irreducible combinations of structural data as a function of the degree.

This paper, then, adds to our knowledge of structured Kronecker-like forms for
quadratic matrix polynomials, a setting where such forms are still feasible and of a
manageable complexity. Section 2 begins by establishing notation, introducing new
definitions, and recalling key results from [9]. In Sections 3, 4, and 5 we provide com-
plete solutions to (SP-1) and (SP-2) of the QRP for T -palindromic matrix polynomials
over R, respectively. Finally, in Section 6 we summarize the main contributions in this
paper and discuss some open questions.

2. Preliminaries

In the first part of this section we introduce notation, nomenclature and basic facts
about matrix polynomials, most of which can be found in [15,16]. In the second part
we briefly review the structural properties of T -palindromic matrix polynomials [28].

The algebraic closure of a field F is denoted by F, while the ring of univariate
polynomials in the variable λ with coefficients in F is denoted by F[λ]. The field of
fractions of F[λ] is denoted by F(λ). Matrices with entries in F[λ] are referred to as
matrix polynomials. In general, anm×n matrix polynomial P (λ) over F, often denoted
simply by P , can be expressed as

P (λ) =

k∑
i=0

Aiλ
i , Ai ∈ Fm×n , i = 0, 1, . . . , k . (1)

Analogous to scalar polynomials, the degree of P (λ), denoted by deg(P ), is defined
as the largest integer i such that Ai 6= 0 in (1); keep in mind that this largest integer
need not be k. The matrix polynomial P (λ) in (1) is said to have grade k, denoted by
grade(P ) = k, which is greater than or equal to the deg(P ), and a matter of choice. Now
with respect to an arbitrary but fixed grade, one can define the notion of j-reversal,
which among other things enables us to define T -palindromic matrix polynomials.
More specifically, for any nonzero P of degree d and any j ≥ d, the j-reversal of P is
the matrix polynomial revjP given by (revjP )(λ) := λjP (1/λ) [28, Def. 3.3]. In the
special case when j = d, i.e., when grade is chosen to be equal to degree, the j-reversal
of P is referred to as just the reversal of P , and denoted by revP .

The rank of P (λ) (sometimes called “normal rank”) is the rank of P (λ) considered
as a matrix over the field F(λ), and is denoted by rank(P ). P (λ) is said to be regular
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if P is square and det(P ) 6≡ 0, or equivalently if P is n× n and rankP = n; otherwise
P (λ) is said to be singular. Any singular P (λ) has non-trivial left and/or right “rational
nullspaces”, i.e., subspaces of F(λ)m or F(λ)n over the field of rational functions F(λ),
which we denote by N`(P ) and Nr(P ), respectively. Note that for each of these rational
nullspaces one can always find a polynomial basis; e.g., take any rational basis and
multiply each of the basis vectors by the product of the denominators of all its entries.
The degree of a polynomial vector is the maximum degree of its entries; the order of
a polynomial basis is defined as the sum of the degrees of its vectors. A polynomial
basis with the smallest order is called a minimal basis [13]. Any rational subspace has
many minimal bases, but it is well known that for any given subspace V ⊆ F(λ)n, the
ordered list of degrees of the vector polynomials in any minimal basis of V is always
the same [13,25]. These uniquely defined degrees are called the minimal indices of V
[13]. The minimal indices of the left and right nullspaces of P are then called the left
and right minimal indices of P .

Two matrix polynomials of the same size P (λ) and Q(λ) are said to be unimodularly
equivalent, denoted P (λ) ∼ Q(λ), if there are unimodular matrix polynomials (i.e.,
square matrix polynomials with a nonzero constant determinant) U(λ), V (λ) such that
U(λ)P (λ)V (λ) = Q(λ).

Theorem 2.1. (Smith Form [14])
Let P (λ) be an m× n matrix polynomial with r = rankP . Then P (λ) is unimodularly
equivalent to

D(λ)m×n := diag
(
d1(λ) , . . . , dr(λ) , 0(m−r)×(n−r)

)
, (2)

where:

(i) d1(λ), . . . , dr(λ) are monic scalar polynomials (i.e., each leading coefficient is 1),
(ii) d1(λ), . . . , dr(λ) form a divisibility chain, i.e., dj(λ) is a divisor of dj+1(λ), for

j = 1, . . . , r − 1,
(iii) the polynomials d1(λ), d2(λ), . . . , dr(λ) are uniquely determined by the multiplica-

tive relations

d1(λ)d2(λ) · · · dj(λ) = gcd
{
all j × j minors of P (λ)

}
, for j = 1, . . . , r .

The diagonal matrix D(λ) in (2) is thus unique, and is known as the Smith form of P .

The scalar polynomials dj(λ), for j = 1, 2, . . . , r, in the Smith form of P are called
the invariant polynomials of P . The roots λ0 ∈ F of the product d1(λ) · · · dr(λ) in
(2) are the (finite) eigenvalues of P . Furthermore, ∞ is said to be an eigenvalue of P
whenever 0 is an eigenvalue of revjP , where j = gradeP . Given that the definition of
the reversal depends on the choice for the grade of P , one has to explicitly specify it
when considering an eigenvalue at∞. It is well known that if grade(P ) > deg(P ), then
P definitely has an eigenvalue at ∞ [8, Lem. 2.17]. On the other hand, if grade(P ) =
deg(P ), then P has an eigenvalue at∞ if and only if the rank of the leading coefficient
of P is strictly less than rank(P ) [8, Rem. 2.14].

Definition 2.2. Let P (λ) ∈ F[λ]m×n be of grade k and have rank(P ) = r. Then:

(i) For any nonzero π(λ) ∈ F[λ] and i = 1, . . . , r, there exist unique nonnegative
integers αi and scalar polynomials qi such that
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di(λ) = π(λ)αiqi(λ) , with gcd(π(λ), qi(λ)) ≡ 1 ,

where di(λ)’s are invariant polynomials of P . By the divisibility chain property
of the Smith form, the sequence of exponents (α1, . . . , αr) satisfies the condition
0 ≤ α1 ≤ . . . ≤ αr.

(ii) Let π(λ) be a nonconstant monic irreducible scalar polynomial over F with a
nonzero sequence of exponents (α1, . . . , αr), and let 1 ≤ g ≤ r be the index such
that α1 = . . . = αg−1 = 0 and αj > 0 for all g ≤ j ≤ r. Then each π(λ)αj is said
to be a finite elementary divisor of P , and αg, αg+1, . . . , αr are the associated
partial multiplicities of π(λ).

(iii) The infinite elementary divisors of P correspond to the elementary divisors at λ of
revkP . More specifically, if λβ1 , . . . , λβ` with 0 < β1 ≤ · · · ≤ β` are the elementary
divisors for revkP , then P has ` corresponding elementary divisors at∞, denoted
by ωβ1 , . . . , ωβ` . Here we use the notation ωβ to denote the elementary divisors
at ∞ as a way to prevent possible confusion with elementary divisors at λ.

We conclude this section by introducing key concepts that play a role in the solu-
tion of the T -palindromic QRP over R. The subsequent definition closely follows [10,
Def. 2.17].

Definition 2.3. (Structural data of a matrix polynomial).
Let P (λ) be an m× n matrix polynomial with grade k over a field F.

(i) The collection of all finite and infinite elementary divisors, including repetitions,
is said to comprise the spectral structure of P .

(ii) The left and right minimal indices of P are the minimal indices of N`(P ) and
Nr(P ), respectively, and together comprise the singular structure of P .

(iii) The structural data of P consists of the elementary divisors (spectral structure)
of P , together with the left and right minimal indices (singular structure) of P .

It follows from Definition 2.3(i) that if F is an algebraically closed field (i.e., F = F),
then all the finite elementary divisors of P are of the form π(λ)α, where α > 0 and
π(λ) = (λ− λ0) for some λ0 ∈ F. On the other hand, if F = R, then finite elementary
divisors are π(λ)α with α > 0, where either π(λ) = (λ − λ0) for some λ0 ∈ R, or
π(λ) = λ2 + bλ+ c is an irreducible quadratic polynomial over R with b, c ∈ R.

The following well-known property of the structural data of direct sums of matrix
polynomials plays a crucial background role for our solution of the real T -palindromic
QRP.

Lemma 2.4. (Spectral and singular structures of a direct sum).
Let P (λ) and Q(λ) be two grade k matrix polynomials over an arbitrary field F, with
L(P ) and L(Q) denoting the lists of elementary divisors and minimal indices of P and
Q, respectively. Then the list of elementary divisors and minimal indices of the grade k
matrix polynomial diag(P , Q) is simply the concatenation of the lists L(P ) and L(Q),
i.e., c(L(P ),L(Q)) as in (5).

Proof. A proof of the concatenation property for finite elementary divisors can be
found in [15]. The same result in [16, Prop. S1.5] is given only for algebraically closed
fields, but the argument is easily adapted to arbitrary fields. For infinite elementary
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divisors, just apply the result for the finite case to the elementary divisors associated
with zero in revk(diag(P,Q)) = diag(revkP, revkQ). The concatenation property for
minimal indices of direct sums can be found in [25].

This direct sum property of elementary divisors and minimal indices will form the
basis for our transparent quadratic realization of structural data, analogous to how the
KCF achieves a direct sum realization of structural data for matrix pencils. Here, then,
is the “direct sum strategy” for solving the QRP. Given a list of structural data for a
real T -palindromic quadratic matrix polynomial, break up that list into the simplest,
most primitive sublists possible that can each still be realized by a real T -palindromic
quadratic matrix polynomial in its own right. Then show how to construct a canonical
block realizing each of these finitely many primitive sublists. The final realization of
the complete structural data list is then just the direct sum of these canonical blocks.
Although we will try to make each direct summand as simple as possible, it will turn
out that for quadratic realizations this is necessarily significantly more complicated
than it is for pencils. In particular, it will no longer be possible for each quadratic
canonical block to contain just a single elementary divisor or a single minimal index,
as is the case in the KCF for matrix pencils.

2.1. Spectral and singular structure of T -palindromic matrix polynomials

In this section we briefly recall some well-known facts about T -palindromic matrix
polynomials that will be used in the rest of the paper.

Definition 2.5. [26, Table 2.1] (T -palindromic).
A nonzero n × n matrix polynomial P of degree d ≥ 1 is said to be T -palindromic if
(revjP )(λ) = P T (λ), for some j ≥ d.

It is important to highlight the fact that the notion of T -palindromicity in Defini-
tion 2.5 is defined “with respect to some grade j.” For example, consider the degree-
one scalar polynomial p(λ) = λ. Then rev1p(λ) = λ · (1/λ) = 1 6= λ = p(λ)T ,
that is, p(λ) is not T -palindromic with respect to its degree. On the other hand,
rev2p(λ) = λ2 · (1/λ) = p(λ)T , and so p(λ) is T -palindromic with respect to grade
two. In [28, Prop. 4.3], the authors proved that if a degree d polynomial P is T -
palindromic, then there is a unique j ≥ d such that revjP = P T . This j is known as
the grade of palindromicity of P . Consequently, for the rest of the paper whenever we
refer to a T -palindromic matrix polynomial P with grade k, we are assuming that k is
its unique grade of palindromicity.

We conclude this section with a remark that collects all of the important facts from
[6,28] about the singular and spectral structures of T -palindromic matrix polynomials
that are relevant to our present work.

Remark 2.6. Let Q(λ) be a matrix polynomial over R and assume that Q is T -
palindromic with grade of palindromicity two. Then the following statements hold:

(i) If p(λ) = (λ+1)α(λ−1)βq(λ), with q(1) 6= 0 6= q(−1), is any invariant polynomial
of P (λ), then q(λ) is palindromic [28, Thm. 7.6] and monic. Moreover, q(λ) can
be factored as

q(λ) = λν ·
∏̀
i=1

bi(λ)
mi ·

w∏
j=1

(
(cjdj(λ)revdj(λ)

)nj , (3)
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where the mi’s, nj ’s, and ν are positive integers, and the irreducible factors bi(λ),
dj(λ), and revdj(λ) are distinct and satisfy the following properties:
(a) Each bi(λ) and each dj(λ) is monic and coprime to λ, (λ+ 1), and (λ− 1).

The nonzero constants cj ∈ R are chosen so that cjrevdj(λ) is also monic
for j = 1, 2, . . . , w.

(b) Each bi(λ) is of degree two and is palindromic with respect to its degree.
(c) Factors dj(λ) and revdj(λ) are of degree one or two and are not palindromic.

(ii) Any odd degree elementary divisor of Q(λ) associated with either of the eigen-
values λ0 = ±1 has even multiplicity [28, Cor. 8.2].

(iii) For any β ≥ 1, the elementary divisors λβ and ωβ have the same multiplicity
(i.e., they appear the same number of times) [28, Cor. 8.1].

(iv) The left and right minimal indices of Q(λ) coincide. Namely, if η1 ≥ η2 ≥ . . . ≥ ηq
and ε1 ≥ ε2 ≥ . . . ≥ εp are the left and right minimal indices of P (λ), respectively,
then p = q and ηi = εi, for i = 1, . . . , p [6, Thm. 3.6].

3. Solution of the first part of the real T -palindromic QRP

In this section we completely solve (SP-1), and lay out the strategy for solving (SP-2)
of the real T -palindromic QRP. We adopt the convention that when the field F is not
explicitly mentioned in a definition or a result, then it is to be understood to hold
for an arbitrary field. Otherwise, we will specify that F is algebraically closed with
char(F) 6= 2, or that F = R.

We start by introducing some basic concepts about lists of elementary divisors and
minimal indices, analogous to [9, Def. 3.1].

Definition 3.1. (Lists of elementary divisors and minimal indices).

(i) A list of finite elementary divisors is a list of the form

Lfin =
{
π1(λ)

α1,1 , . . . , π1(λ)
α1,g1 , . . . , πs(λ)

αs,1 , . . . , πs(λ)
αs,gs

}
,

where π1(λ), . . . , πs(λ) ∈ F[λ] are nonconstant monic polynomials, irreducible
over F, such that gcd(πi(λ), πj(λ)) ≡ 1 for i 6= j, and αi,j ’s are positive integers.

(ii) An elementary divisor chain of length g associated with π(λ) ∈ F[λ] is a list of
the form (π(λ)α1 , . . . , π(λ)αg ), with 0 < α1 ≤ α2 ≤ · · · ≤ αg.

(iii) An infinite elementary divisor chain of length g is a list of the form
L∞ = (ωβ1 , . . . , ωβg ), with 0 < β1 ≤ β2 ≤ · · · ≤ βg.

(iv) A list L of elementary divisors and minimal indices is of the form

L =
{
Lfin ; L∞ ; Lleft ; Lright

}
, (4)

where Lfin is a list of finite elementary divisors, L∞ is an infinite elementary di-
visor chain, and Lleft = {η1, . . . , ηq} and Lright = {ε1, . . . , εp} are lists of nonneg-
ative integers. L is said to be nontrivial if at least one of the lists Lfin,L∞,Lleft,
and Lright is nonempty.
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(v) Given two lists L and L̂ as in (4), the concatenation of L and L̂, denoted by
c(L, L̂), is the list of elementary divisors and minimal indices

c
(
L , L̂

)
:=
{
{Lfin, L̂fin}; {L∞, L̂∞}; {Lleft, L̂left}; {Lright, L̂right}

}
, (5)

obtained by simply adjoining the corresponding lists as in (5), including all rep-
etitions.

Several of the key quantities associated with a list L of elementary divisors and
minimal indices that play a central role in the rest of the paper are introduced next.

Definition 3.2. ([9, Def. 3.3]) Let L be a list as in (4).

(i) The total finite degree and the total infinite degree of L, denoted by δfin(L) and
δ∞(L), respectively, are defined by

δfin(L) :=

s∑
i=1

gi∑
j=1

αi,j and δ∞(L) := β1 + · · ·+ βg ,

where αi,1, . . . , αi,gi , for i = 1, . . . , s, are the (nonzero) finite partial multiplicities
in L, and β1, . . . , βg are the (nonzero) infinite partial multiplicities in L.

(ii) The total degree of L is the number given by δ(L) := δfin(L) + δ∞(L).

(iii) The sum of all minimal indices of L is defined as µ(L) :=
∑p

i=1 εi +
∑q

j=1 ηj .

(iv) The length of the longest elementary divisor chain in L (finite or infinite) is
denoted by γ(L).

For the rest of this paper, we adopt a convention that when the list L under consid-
eration is clear from the context, the quantities (ii)–(iv) from Definition 3.2 will simply
be denoted by δ, µ, and γ, respectively. A list L is said to be the list of elementary
divisors and minimal indices of some matrix polynomial P when all the elementary
divisors and minimal indices of P are precisely those in L; when necessary such a list
is denoted as L(P ). Finally, there is a simple but powerful result, known as the Index
Sum Theorem, that relates the quantities δ(L), µ(L), grade(P ), and rank(P ).

Theorem 3.3. [8, Thm. 6.5] (Index Sum Theorem).
Let P (λ) be an arbitrary matrix polynomial over an arbitrary field, and let L denote
the list of elementary divisors and minimal indices of P , i.e., L = L(P ). Then :

δ(L) + µ(L) = grade(P ) · rankP. (6)

Now with the clearly defined notions of a list of elementary divisors and minimal
indices and related quantities, we are ready to tackle (SP-1) of the T -palindromic QRP
over R. A natural place to start is the following notion.

Definition 3.4. [9, Def. 3.5] (p-quad realizability).
A list L of elementary divisors and minimal indices is said to be p-quad realizable over
the field F if there exists some T -palindromic quadratic matrix polynomial over F, with
grade of palindromicity 2, whose elementary divisors and minimal indices are exactly
the ones in L.
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Note that throughout the rest of the paper the phrases “Q is a (quadratic) realization
of L”, and “Q realizes L”, are used interchangeably to mean that Q is a quadratic
matrix polynomial whose elementary divisors and minimal indices are precisely those
in L. Since this paper concerns quadratic realizations that are T -palindromic over R, we
introduce several new concepts that capture the special spectral and singular structure
particular to real quadratic T -palindromic matrix polynomials (see Section 2.1). These
are adaptations of analogous concepts defined in [9], where the underlying field is
algebraically closed.

Definition 3.5. (p-quad symmetry over R)
A list L of elementary divisors and minimal indices over R is said to have p-quad
symmetry over R (or to have real p-quad symmetry) if the following conditions are
satisfied:

(1) (a) For any a ∈ R with a 6= 0,±1, and β ≥ 1, the elementary divisor (λ − a)β
appears in L with the same multiplicity as (λ− 1

a)
β (i.e., they appear exactly

the same number of times, perhaps zero).
(b) For any β ≥ 1, the elementary divisors λβ and ωβ appear in L with the

same multiplicity.
(c) Any odd degree elementary divisor in L associated with either eigenvalue

a = +1 or a = −1 has even multiplicity.
(d) An elementary divisor (λ2 + bλ+ 1)β , where λ2 + bλ+ 1 is any palindromic

irreducible quadratic scalar polynomial over R and β ≥ 1, may occur with
either odd or even multiplicity.

(e) For any elementary divisor (λ2 + bλ + c)β , where λ2 + bλ + c is a non-
palindromic irreducible quadratic scalar polynomial over R and β ≥ 1, the
elementary divisor 1

cβ (cλ
2 + bλ+1)β = 1

cβ

(
rev2(λ

2 + bλ+ c)
)β appears in L

with the same multiplicity.
(2) The ordered sublists of left and right minimal indices are identical.

Note that if in Definition 3.5 the underlying field F had been algebraically closed
rather than R, then conditions (1d) and (1e) would be vacuously satisfied for any
spectral data list L; over such a field F all finite elementary divisors are of the form
(λ−a)β for some a ∈ F. Thus (1d) and (1e) are exactly what is required to accommodate
the additional spectral structure arising from the underlying field being R, see [28, Thm.
7.6]. These two conditions in Definition 3.5 also highlight the importance of “quadratic
irreducibles”, i.e., R-irreducible scalar polynomials of degree two, when solving the T -
palindromic QRP over R.

Conditions (1d) and (1e) in Definition 3.5 also clearly indicate the importance of
distinguishing between palindromic and non-palindromic quadratic irreducibles. Con-
sequently, throughout this paper we adopt the notational convention that p(λ) and
q(λ) stand for quadratic irreducibles over R that are, respectively, palindromic and
non-palindromic. Equivalently, scalar polynomials p(λ) and q(λ) are of the form

p(λ) := λ2 + bλ+ 1 and q(λ) := λ2 + bλ+ c , c 6= 1 . (7)

Observe that as a consequence of the quadratic formula we have that p(λ) and q(λ)
are R-irreducible if and only if −2 < b < 2 for p(λ), and 0 ≤ b2 < 4c for q(λ). The
final piece of notation concerns the (scaled) reversals of p(λ) and q(λ), namely
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p̂(λ) := rev2p(λ) = λ2 + bλ+ 1 ,

q̂(λ) := rev2q(λ) = cλ2 + bλ+ 1 , and
q̃(λ) := (1/c) · rev2q(λ) = λ2 + (b/c)λ+ (1/c) .

(8)

Next we introduce the concept that plays a pivotal role in the solution of (SP-1) for
the T -palindromic QRP over R. In fact, we will see in Theorem 3.13 that this concept
comprises the necessary and sufficient conditions for a list of elementary divisors and
minimal indices to be p-quad realizable over R.

Definition 3.6. (p-quad admissibility over R)
A list L of elementary divisors and minimal indices is said to be p-quad admissible over
R (or to be real p-quad admissible) if the following two conditions are satisfied:
(a) γ ≤ 1

2

(
δ + µ

)
, and

(b) L has p-quad symmetry over R.

It should be pointed out that the conditions in Definition 3.6 are in fact all of the
previously known necessary conditions for a list L to be p-quad realizable over R.
More specifically, condition (a) follows from Theorem 3.3, while condition (b) for p-
quad symmetry over R is a consequence of [28, Cor. 8.1–8.2] for the elementary divisors
and [6, Thm. 3.6] for the minimal indices. Also, note that in terms of Definitions 3.4
and 3.6, the main result of this paper states that a list L is p-quad realizable over R if
and only if L is p-quad admissible over R (see Theorem 3.17).

One of the key properties of real p-quad admissibility is that it is preserved by the
operation of list concatenation as defined in Definition 3.1(v) – the next lemma de-
scribes this for two real p-quad admissible lists, though the result immediately extends
to the concatenation of any finite number of such lists.

Lemma 3.7. Let L and L̂ be any two lists of elementary divisors and minimal indices
that are p-quad admissible over R. Then the concatenated list c(L, L̂) is also p-quad
admissible over R.

Proof. Suppose L and L̂ are real p-quad admissible lists, so that both lists have real p-
quad symmetry. Then it is straightforward to see that the concatenated list c(L, L̂) still
has real p-quad symmetry. But L and L̂ also both satisfy condition (a) in Definition 3.6,
so we claim that c(L, L̂) does as well. This follows from the sub-additivity of γ, i.e.,
that γ

(
c(L , L̂)

)
≤ γ(L) + γ( L̂) , together with the additivity of δ and µ, i.e., that

δ
(
c(L , L̂)

)
= δ(L) + δ(L̂) and µ

(
c(L , L̂)

)
= µ(L) + µ(L̂) . Altogether this shows

that concatenation preserves real p-quad admissibility, as desired.

A notion complementary to the concatenation of lists of elementary divisors and
minimal indices is that of partition. More specifically, a partition of a list L consists
of lists L1, . . . ,Lm, m > 1, such that L = c(L1,L2, . . . ,Lm). A partition is said to be
nontrivial whenever at least two of the lists L1, . . . ,Lm are non-empty. In the context
of the T -palindromic QRP over R, we now define the simplest, most primitive lists
having real p-quad symmetry.

Definition 3.8. (p-quad Irreducibility over R)
A list L is p-quad irreducible over R (or real p-quad irreducible) if it is p-quad admissible
over R, and there is no nontrivial partition of L into real p-quad admissible sublists.
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One of the main results in this section consists of identifying a complete set of all
possible p-quad irreducible lists over R (see Tables 1-3). In our recent work [9], we have
identified an equivalent notion of p-quad irreducible lists when the underlying field is
algebraically closed. In fact, Tables 1-2 correspond to Tables 1-2 in [9], respectively, and
are included here for the sake of completeness. Note that all of the lists in these two
tables are still p-quad irreducible over R, with the understanding that the constant
a in these lists is an element of R. However, a closer examination of Definition 3.5
immediately indicates that the lists in Tables 1-2 can not be sufficient to describe all
possible real p-quad irreducible lists. We will show that the lists in Table 3, all ones
that are new to this work, constitute all of the additional real p-quad irreducible lists
that are needed to accommodate the additional spectral structure specific to real T -
palindromic matrix polynomials. Now one can easily verify in a direct manner, first
that each list in Tables 1-3 is p-quad admissible over R, and second that any nontrivial
partition of any of these lists into two sublists will violate at least one of the conditions
in Definition 3.6; in other words, lists in Tables 1-3 are all p-quad irreducible over R.

Type Subtype Elementary Divisors/Minimal Indices Conditions

X X1 (λ− a)m, (λ− 1
a)
m m ≥ 1, a 6= 0,±1

X2 λm, ωm m ≥ 1

Y Y1 (λ− 1)2m m ≥ 1

Y ′1 (λ+ 1)2m m ≥ 1

Y2 (λ− 1)2m+3, (λ− 1)2m+3 m ≥ 0

Y ′2 (λ+ 1)2m+3, (λ+ 1)2m+3 m ≥ 0

S S1 ε = 2k , η = 2k k ≥ 0

S2 ε = 2k + 1 , η = 2k + 1 k ≥ 0

Table 1.: The irreducible NoDO lists over F = F

Remark 3.9. Note that for any of the lists of elementary divisors given in Table 3,
it is easy to determine the Smith form of any possible quadratic matrix polynomial
realizing that list. For example, consider the D1-type list of elementary divisors

D1 =
{
λ− 1, . . . , λ− 1︸ ︷︷ ︸

2m

, p(λ)k
}
,

where p(λ) is an R-irreducible quadratic palindromic scalar polynomial, and
k ≥ m > 0. Now if Q(λ) is any quadratic matrix polynomial that has exactly
this spectral data, then it must be regular (there are no minimal indices in D1), and so
by the Index Sum Theorem 3.3 must have rank = m+k, and hence size (m+k)×(m+k).
Consequently, the Smith form of Q(λ) would be

diag
(
Ik−m , (λ− 1) · I2m−1 , (λ− 1) · pk(λ)

)
.
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Type Subtype Elementary Divisors/Minimal Indices Conditions

A A1 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, (λ− a)n , (λ− 1
a)
n n ≥ m > 0, a 6= 0,±1

A ′1 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, (λ− a)n , (λ− 1
a)
n n ≥ m > 0, a 6= 0,±1

A2 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, λn , ωn n ≥ m > 0

A ′2 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, λn , ωn n ≥ m > 0

B B1 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, (λ+ 1)2n n ≥ m > 0

B ′1 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, (λ− 1)2n n ≥ m > 0

B2 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, (λ− 1)2n n > m > 0

B ′2 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, (λ+ 1)2n n > m > 0

C C1 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, (λ+ 1)n , (λ+ 1)n n odd, 0 < m ≤ n

C′1 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, (λ− 1)n , (λ− 1)n n odd, 0 < m ≤ n

C̃1 λ− 1 , λ− 1 , λ+ 1 , λ+ 1

C2 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, (λ− 1)n , (λ− 1)n n odd, m ≥ 0
2n− 2m ≥ 4

C ′2 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, (λ+ 1)n , (λ+ 1)n n odd, m ≥ 0
2n− 2m ≥ 4

M M1 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, ε = 2k , η = 2k 2k ≥ m > 0

M ′
1 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸

2m

, ε = 2k , η = 2k 2k ≥ m > 0

M2 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, ε = 2k + 1 , η = 2k + 1 2k + 1 ≥ m > 0

M ′
2 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸

2m

, ε = 2k + 1 , η = 2k + 1 2k + 1 ≥ m > 0

Table 2.: The irreducible “degree-one” lists over F = F

In the remainder of this section the bulk of our effort goes into showing that every real
p-quad admissible list of elementary divisors and minimal indices can be partitioned
into p-quad irreducible lists over R, in particular into lists only of the types appearing
in our three tables.

Definition 3.10. (p-quad partitioning over R)
A list of elementary divisors and minimal indices is p-quad partitionable over R (or
real p-quad partitionable) if it can be partitioned into real p-quad irreducible sublists
of the types appearing in Tables 1-3.

We are now almost ready to state and prove the Palindromic Quadratic Partitioning
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Type Subtype Elementary Divisors/Minimal Indices Conditions

Z Z1 pk(λ) k ≥ 1

Z2 qk(λ) , q̃ k(λ) k ≥ 1

D D1 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, pk(λ) , k ≥ m > 0

D′1 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, pk(λ) k ≥ m > 0

D2 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, qk(λ) , q̃ k(λ) 2k ≥ m > 0

D′2 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, qk(λ) , q̃ k(λ) 2k ≥ m > 0

Table 3.: Additional p-quad irreducible lists over R, where p(λ), q(λ), and q̃(λ) are
R-irreducibles as in (7) and (8).

Theorem over R, but we still need one more result, namely, the NoDO Lemma over R.
This lemma is a mild adaptation of [9, Lem. 4.2], a result which in [9] assumed that
the underlying field is algebraically closed.

Lemma 3.11. (NoDO Lemma over R)
Let L be a list of spectral data containing No Degree One elementary divisors of the
form (λ± 1)α with α > 0; for short, we call such a list L a NoDO list. If a NoDO list
L has real p-quad symmetry, then L is p-quad partitionable over R. In particular, L
can be partitioned into lists of types S1, S2, X1, X2, Y1, Y ′1, Y2, Y ′2, Z1, and Z2.

Proof. The proof closely follows the argument in [9, Lem. 4.2]. We start by partitioning
L into two sublists E and T , where T contains all minimal indices and E all elementary
divisors; note that both sublists inherit real p-quad symmetry from L. In addition, T
is also a p-quad admissible list over R, since γ(T ) = 0 due to the fact that T contains
only minimal indices, and thus condition (a) in Definition 3.6 is satisfied. Furthermore,
real p-quad symmetry implies that left and right minimal indices come in pairs of equal
value, and therefore T can be partitioned into sublists of type S1 and S2 from Table 1.

On the other hand, list E is a NoDO list, and due to its p-quad symmetry over R,
elementary divisors can be partitioned into four groups:

(i) all (λ− a)β with β ≥ 1, and a ∈ R with a 6= 0,±1,
(ii) all λα and ωβ with α, β ≥ 1,
(iii) all (λ± 1)β with β ≥ 2

(iv) all t(λ)β with β ≥ 1 and t(λ) ∈ R[λ] is quadratic and R-irreducible.

(9)

Now conditions (1a) and (1b) in Definition 3.5 guarantee that the elementary divisors
in groups (i) and (ii) can all be paired up to form lists of type X1 and X2, respectively.
The elementary divisors in group (iii) of even degree individually form lists of type Y1
or Y ′1; those of odd degree can be paired up to form lists of type Y2 or Y ′2.

Finally, condition (1d) in Definition 3.5 implies that all elementary divisors in group
(iv) with palindromic t(λ) can be used one at a time to form lists of type Z1. For all
elementary divisors in (iv) in which t(λ) is not palindromic, condition (1e) in Defini-
tion 3.5 implies that these can all be paired up to form lists of type Z2.
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Remark 3.12. Careful analysis of the proof of Lemma 3.11 shows that no mixed lists
of quadratic irreducibles and minimal indices are needed in a p-quad partitioning of any
NoDO list. In such a list the spectral and singular structures can be kept completely
separate and disentangled from each other, while respecting the requirements of a
palindromic, quadratic partitioning.

Finally, the stage is set to state and prove one of the key results in this section,
which can be viewed as an extension of [9, Thm. 3.16].

Theorem 3.13. (Palindromic Quadratic Partitioning Theorem over R)
Let L be a list of elementary divisors and minimal indices over R. Then

L is p-quad partitionable over R ⇐⇒ L is p-quad admissible over R .

Proof. (⇒) Assume that L is p-quad partitionable over R. Then from Definition 3.10
it follows that L is a concatenation of real p-quad irreducible, and hence real p-
quad admissible lists. Since real p-quad admissibility is preserved by concatenation
(Lemma 3.7), the desired conclusion follows.

(⇐) Assume that L is p-quad admissible over R. If L contains any zero minimal
indices, then they can be paired together to form sublists of type S1. It is easy to
see that after partitioning away any type S1 sublist from L, the remaining list is still
p-quad admissible over R. Thus for the rest of this proof we assume that L contains
no zero minimal indicies.

Next we examine different possibilities for L with respect to the number and types
of degree-one elementary divisors associated with the eigenvalues λ0 = ±1. To that
end, let r and s be the number of degree-one elementary divisors (λ− 1) and (λ+ 1),
respectively, contained in L. There are four cases to consider:

(i) r = s = 0, (ii) r = s > 0, (iii) r > s ≥ 0, (iv) s > r ≥ 0.

In case (i), L has no degree-one elementary divisors (λ±1), so the desired conclusion
follows from the NoDO Lemma 3.11. In case (ii), r/2 lists of type C̃1 can be partitioned
away from L so that the remaining list L′ still has p-quad symmetry over R, but no
degree-one elementary divisors (λ ± 1). Once again, Lemma 3.11 comes to the rescue
to conclude that L′ can be p-quad partitioned over R.

Undoubtedly, the hardest case to consider is (iii). Let r − s =: ` > 0. Note that by
condition (1c) in Definition 3.5, we know that r and s, and hence also `, must be even.
The partitioning of the list L now proceeds in two phases.
Phase 1: We start by grouping all s elementary divisors (λ + 1) with s elementary
divisors (λ − 1), four at a time, to form 1

2 s lists of type C̃1. Partitioning away these
lists from L leaves a new list L′ that we claim is still p-quad admissible over R, and
has exactly ` degree-one elementary divisors, all of which are (λ − 1). It is easy to
see that L′ still has real p-quad symmetry, but why does it possess the first property
required for real p-quad admissibility, i.e., condition (a) in Definition 3.6? To see why
this is so, consider the partitioning away of just one C̃1 list from L, leaving behind the
list L̃. For convenience, we define ρ(L) := 1

2

(
δ(L) + µ(L)

)
. Note that 2ρ(L) is just the

index sum of L, so ρ(L) equals the rank of any possible quadratic realization of the list
L, and γ(L) ≤ ρ(L) is condition (a) in Definition 3.6. Now observe that the longest
elementary divisor chain in L that does not involve (λ± 1) can have length that is at
most ρ(L) − 2; any longer such chain would involve irreducible quadratics p or q, or
pairs (λ− a), (λ− 1

a) or λ, ω, and thus by itself contribute too much to the index sum
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to leave room for the degree 4 contribution from the C̃1 list being partitioned away.
The same length bound on elementary divisor chains not involving (λ ± 1) must also
then hold for the list L̃. Now in the passage from L to L̃, the length of elementary
divisor chains involving (λ± 1) must decrease by 2, so their length in L̃ must also be
bounded by ρ(L)− 2. Hence

γ(L̃) ≤ ρ(L)− 2 = ρ(L̃) ,

the latter equality holding since δ(L̃) = δ(L) − 4, due to the loss of the C̃1 sublist.
This is the condition that guarantees real p-quad admissibility for L̃, and by repeated
application also for L′.

Phase 2: The second step of the partitioning of L is to conjoin as many as possible of
the (λ− 1)’s with both (nonzero) minimal indices in L′ and elementary divisors in L′
that are not associated with the eigenvalue λ0 = 1, forming lists of type

M1 ,M2 , A1 , A2 , B1 , C1 , D1 , and/or D2 . (10)

Now each of the lists in (10) has the capacity to contain a number of (λ−1) elementary
divisors, up to the total degree of all the other elementary divisors (or the sum of the
minimal indices) contained in that list. For example, list D1 can contain up to 2k copies
of (λ − 1), One still has to verify that after partitioning away lists of type (10) from
L′, that the remaining list L′′ is real p-quad admissible, and p-quad partitionable over
R. It turns out that this is the case, as long as the conjoining of (λ− 1)’s into the lists
(10) is done in such a way that the maximum possible number of (λ− 1)’s is absorbed
by each of the lists in (10). We do not include the argument justifying this last claim
here; although it requires a rather substantial amount of tedious bookkeeping, it is
essentially identical to the proof given for [9, Thm. 3.14]. This concludes the proof of
case (iii).

Finally, in case (iv), where L contains more (λ+1) elementary divisors than (λ−1)’s,
the proof proceeds in the same way as in case (iii), but with the roles of (λ − 1) and
(λ+ 1) reversed. To achieve this role reversal, the lists A1,A2,B1,D1, and D2 in (10)
are simply replaced with their primed counterparts.

One of the consequences of Theorem 3.13 worth highlighting is that we now know
what all of the real p-quad irreducible structural data lists are.

Corollary 3.14. (All p-quad irreducible lists over R)
The structural data lists in Tables 1, 2, and 3 together include all of the possible real
p-quad irreducible lists.

Proof. By Theorem 3.13, any real p-quad admissible list that is not in Tables 1-3 can
be partitioned into lists from those tables, and hence is not irreducible.

A result about the uniqueness of the real p-quad partitioning now follows in turn from
Corollary 3.14.

Corollary 3.15. (Unique partitioning of NoDO lists)
Let L be any NoDO list with p-quad symmetry. Then the real p-quad partitioning of L
described in Lemma 3.11 is the unique way to partition L into real p-quad irreducible
sublists.
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Proof. For each elementary divisor or minimal index in a NoDO list L, there is only
one type of list in Tables 1-3 that contains that particular kind of elementary divisor
or minimal index. Since there are NO other types of real p-quad irreducible lists that
exist, that implies that the partitioning obtained in Lemma 3.11 must be unique.

Remark 3.16. The uniqueness of partitioning of p-quad symmetric NoDO lists has
further ramifications. We will see in Section 4 that each of the NoDO lists in Tables 1
and 3, i.e., those of types X , Y , Z , and S , has a realization that can reasonably be
viewed as canonical. This unique partitioning together with these canonical realizations
essentially constitutes a quadratic palindromic canonical form for every structural data
list that forms a p-quad symmetric NoDO list.

On the other hand, the uniqueness of partitioning of NoDO lists also immediately
raises the question of whether this uniqueness extends to all real p-quad admissible
lists. The answer to this is a definite NO. There are many admissible lists for which
partitioning is not unique, but they have one thing in common – the presence of
the elementary divisors (λ − 1) and/or (λ + 1). Let us try to convey an intuitive
sense for why these elementary divisors can cause a problem. The primary source
of non-unique partitioning lies in Phase 2 of the partitioning algorithm described in
the proof of Theorem 3.13, in which “excess” (λ ± 1)’s are being “absorbed” by other
elementary divisors and nonzero minimal indices. At this stage, if the number of excess
(λ±1) elementary divisors is less than the total capacity of the rest of the non-(λ±1)
elementary divisors (and minimal indices) to absorb, then the distribution of these
excess (λ ± 1)’s can be done in more than one way, leading to qualitatively distinct
partitionings. To illustrate this phenomenon, consider the real p-quad admissible list

L =
{
λ− 1, λ− 1, λ− 1, λ− 1, λ+ 1, λ+ 1, p1(λ), p2(λ), p3(λ)

}
, (11)

where the three pi(λ)’s are distinct quadratic irreducible palindromic scalar polynomi-
als. Then after partitioning off a C̃1 list we are left with

L′ =
{
λ− 1, λ− 1, p1(λ), p2(λ), p3(λ)

}
.

The remaining two “excess” (λ − 1)’s can now be grouped (as a pair) with either p1,
p2, or p3, leading to three qualitatively distinct real p-quad partitionings of L. (For
further discussion and examples of non-unique partitioning, see [9, Remark 4.5].)

There is an additional mechanism (present in this example) that can sometimes
lead to further non-uniqueness of partitioning. And that is to skip Phase 1 of the
partitioning procedure (in Theorem 3.13) altogether. Note, however, that doing this
will not always lead to a valid real p-quad partitioning. But in this example it is a
feasible pathway to additional partitionings. Observe that in the original list L one can
pair up two (λ−1)’s, the other two (λ−1)’s, and the two (λ+1)’s. Then each of these
pairs can be conjoined to one of the pi’s. This can be done in three ways, thus leading
to three additional qualitatively distinct real p-quad partitionings of the list L.

It is worth emphasizing, though, that the mere presence of (λ ± 1)’s in a list L
does not automatically lead to non-uniqueness of partitioning. If the number of excess
(λ±1)’s are greater than the absorption capacity of the non-(λ±1)’s, then uniqueness
of partitioning may now return. As an example of this, consider the list L̃ formed by
removing p2 and p3 from the list L in (11). For L̃, it is not hard to see that there is
only one way to group the four (λ−1)’s: two with the two (λ+1)’s in a C̃1 list and the
other two with p1(λ) in a D1 list. In other words, L̃ has a unique real p-quad partition.
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Beyond these Corollaries, the most important role for Theorem 3.13 is as one of the
two key ingredients in proving one of the main results in this paper, the solution of
(SP-1) for the T-palindromic QRP. The other key ingredient in this proof is the explicit
real T -palindromic quadratic realization of each of the real p-quad irreducible lists in
Tables 1-3. The construction of these realizations will be completed in Section 4.

Theorem 3.17. ((SP-1) for the T -palindromic QRP)
A structural data list L of elementary divisors and minimal indices is p-quad realizable
over R if and only if it is p-quad admissible over R.

Proof. (⇒) Let Q(λ) be a real p-quad realization of L, i.e., L = L(Q). Then from
Remark 2.6 it follows that L has p-quad symmetry over R. The desired conclusion
will follow once we verify that L satisfies condition (a) in Definition 3.6. From the
Smith form of Q we know that γ(L) ≤ rank(Q), where γ(L) is the length of the
longest elementary divisor chain in L. Combining this inequality with the Index Sum
Theorem 3.3 and equation (6) gives us γ(L) ≤ rank(Q) = 1

2

(
δ(L) + µ(L)

)
, as desired.

(⇐) Assume L is p-quad admissible over R. Then Theorem 3.13 implies that L can be
partitioned into a finite number of real p-quad irreducible lists, let’s say L1,L1, . . . ,Lm.
Once we show that each of the real p-quad irreducible lists in Tables 1-3 can be realized
by a T-palindromic quadratic matrix polynomial over R – this is Theorem 5.1 – the
desired conclusion will follow by taking a direct sum of the real p-quad realizations of
L1,L2, . . . ,Lm.

Theorem 3.17 now provides us with a very simple characterization of p-quad real-
izability over R. All that is needed is to verify the two easy-to-check conditions for
real p-quad admissibility given in Definition 3.6. Now although this theorem is itself
very simple to state and in the end has a rather short proof, that brevity is somewhat
misleading. Underpinning Theorem 3.17 are many technical results, both from this
paper and from [9] underlying Theorem 3.13, as well as Theorem 5.1 in the penulti-
mate section, where it is shown how to concretely realize each of the new real p-quad
irreducible lists that have been introduced in this paper in order to handle the real
T -palindromic QRP. Note that any real T -palindromic quadratic realizations of real
p-quad irreducible lists from Tables 1-3 would suffice for the purpose of proving The-
orem 3.17. However, we will use the whole next section to build the infrastructure
needed to show how each of the real p-quad irreducible lists can in fact be realized by
a “canonical” real T -palindromic quadratic block that transparently reveals its spectral
and singular structures. Then taking a direct sum of such blocks will produce not just a
quadratic realization for any given real p-quad admissible list L, but in fact a structured
Kronecker-like real quasi-canonical form for any real T-palindromic quadratic matrix
polynomial having structural data list L. In other words, we will have solved (SP-2) of
the T -palindromic QRP over R.

4. Transparent real p-quad realizations of lists in Table 3

In the previous section, we have defined the notion of real p-quad irreducible lists of
elementary divisors and minimal indices and have shown how they can be used to
partition an arbitrary p-quad admissible list over R. That in itself brought us a step
closer to solving (SP-1) of the T -palindromic QRP over R, i.e., showing that a real
p-quad admissible list is in fact p-quad realizable over R. The missing part needed to
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complete the solution of (SP-1), and at the same time solve (SP-2), is to show how to
explicitly construct a real T -palindromic quadratic matrix polynomial whose spectral
and singular structures are transparently displayed and realize each of the real p-quad
irreducible lists from Tables 1-3; the current section accomplishes exactly this.

4.1. Background technical results

We start by introducing notation for two types of matrices commonly encountered
throughout the rest of this paper. With Ĩk and Ñk we denote the k × k constant
matrices given by

Ĩk :=

[
1

. .
.

1

]
k×k

and Ñk :=


0

0 1
. .
.
. .
.

0 1


k×k

. (12)

Of particular interest to us will be block-matrix polynomials of the form

Ĩk ⊗A(λ) + Ñk ⊗B(λ) =


A(λ)

A(λ) B(λ)

. .
.

. .
.

A(λ) B(λ)


nk×nk

,

where A(λ) and B(λ) are n× n matrix polynomials, possibly constant. Of course, all
of the omitted entries/blocks are assumed to be zero.

Next we recall two fundamental lemmas from our earlier work [9] that also play an
important role in this paper – they are included here for the sake of completeness and
without proof. As a reminder, the notation P (λ) ∼ Q(λ) is used to denote that matrix
polynomials P (λ) and Q(λ) are unimodularly equivalent, Rowi and Colj denote the
ith row and jth column of a general matrix, the notation (?)→ (•) corresponds to the
elementary row/column operation that replaces the row/column (?) by the row/column
(•), and (?)↔ (•) denotes row/column swap between (?) and (•). Finally, we assume
that the gcd of two scalar polynomials is always taken to be monic.

Lemma 4.1. ([9, Lem. 5.2]) Let f, g, h ∈ F[λ] and let r := gcd(f, h). Then:

(a)
[

0 g
f h

]
· U =

[
t s
r 0

]
, where U is a unimodular matrix, both s and t are

polynomial multiples of g, and the relation rs = fg holds.

(b) Let r, s, t ∈ F[λ] be such that r divides t. Then
[
t s
r 0

]
∼
[

0 s
r 0

]
, using exactly

one elementary row operation of the form Row1 → Row1+k·Row2, where k ∈ F[λ].

(b) Let r, s, t ∈ F[λ] be such that gcd(r, s) ≡ 1. Then
[
t s
r 0

]
∼
[

0 s
r 0

]
, using

exactly one elementary column operation of the form Col1 → Col1+β ·Col2 and one
elementary row operation of the form Row1 → Row1+k ·Row2, where β, k ∈ F[λ].

Lemma 4.2. (Bi-antidiagonal Collapsing Lemma, [9, Lem. 5.4]).
Let B(λ) be an n× n matrix polynomial over an arbitrary field of the form
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B(λ) =


an(λ)

an−1(λ) bn−1(λ)

. .
.

. .
.

a2(λ) b2(λ)
a1(λ) b1(λ)

 .

Let r(λ) := gcd(a1, b1) and assume the following:

(a) r divides each of the polynomials a1, a2, . . . , an, and

(b) gcd
(a1a2 · · · aj

rj−1
, bj

)
= r, for j = 1, . . . , n− 1.

Then B(λ) is unimodularly equivalent to the anti-diagonal matrix W (λ), where
W (λ) := Ĩn · diag

(
r(λ) , . . . , r(λ)︸ ︷︷ ︸

n−1

, p(λ)
)

and

p(λ) := r(λ) ·
(
a1(λ)a2(λ) · · · an(λ)

rn(λ)

)
=

a1(λ)a2(λ) · · · an(λ)
rn−1(λ)

.

Moreover, the unimodular equivalence B(λ) ∼ W (λ) can be achieved in such a way
that the only elementary row operation involving the first row is of the form Row1 →
Row1 + h(λ) · Row2, for some polynomial h(λ).

Remark 4.3. It is important to note that a “downwards version” of Lemma 4.2 is also
available. More specifically, if r(λ) := gcd(an, bn−1), condition (b) is replaced by

gcd
(anan−1 · · · an−j+1

rj−1
, bn−j

)
= r(λ) , for j = 1, . . . , n− 1 ,

and W (λ) is replaced by diag(r(λ), . . . , r(λ), p(λ)) · Ĩn =W T (λ), then Lemma 4.2 still
holds. Moreover, the only elementary column operation in the unimodular reduction
of B(λ) that involves the first column of B(λ) is of the form Col1 → Col1+h(λ) ·Col2,
for some polynomial h(λ) – for additional details see [9, Rem. 5.5].

4.2. Basic building blocks and auxiliary results

In this section we introduce the essential building blocks used to construct real p-quad
realizations for the lists from Table 3, and examine the structural data of these blocks.
Furthermore, we establish several auxiliary results that play a key role in our solution
of (SP-2).

Lemma 4.4. For an R-irreducible palindromic scalar polynomial p(λ) = λ2 + bλ+1,
define J(p) and J ′(p) to be the 2× 2 matrix polynomials

J(p) :=

[
(β + 1)(λ− 1)2 (λ− 1)(βλ− 1)
(λ− 1)(λ− β) (λ− 1)2

]
=(λ− 1)

[
(β + 1)(λ− 1) (βλ− 1)

(λ− β) (λ− 1)

]
,

J ′(p) :=

[
(δ + 1)(λ+ 1)2 (λ+ 1)(δλ+ 1)
(λ+ 1)(λ+ δ) (λ+ 1)2

]
=(λ+ 1)

[
(δ + 1)(λ+ 1) (δλ+ 1)

(λ+ δ) (λ+ 1)

]
,

(13)
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where β and δ are scalars such that

(β − 1)2 = b+ 2 and (δ − 1)2 = 2− b . (14)

Then:

(a) J(p) and J ′(p) are T -palindromic quadratic matrix polynomials over R.
(b) J(p) and J ′(p) are unimodularly equivalent to J̃(p) and J̃ ′(p), respectively, where

J̃(p) := (λ− 1)

[
0 −1

p(λ) λ− 1

]
and J̃ ′(p) := (λ+ 1)

[
0 −1

p(λ) λ+ 1

]
.

Proof. The assumption that p(λ) = λ2 + bλ + 1 is an R-irreducible quadratic poly-
nomial is equivalent to the condition −2 < b < 2, which together with (14) implies
that β − 1 and δ − 1 are nonzero real constants. Consequently, β, δ ∈ R and so, by
construction, J(P ) and J ′(p) are real matrix polynomials. Now direct inspection easily
confirms that J(p) and J ′(p) are in fact T -palindromic and quadratic, thus proving
statement (a). To see why (b) is true, consider the matrix polynomials

F (λ) :=

[
1 0
−1 1

]
·
[

1 0
ζ(λ) 1

]
·
[
1 0
0 1

1−β

]
=

[
1 0

ζ(λ)− 1 1
1−β

]
,

F ′(λ) :=

[
1 0
−1 1

]
·
[

1 0
ζ ′(λ) 1

]
·
[
1 0
0 1

δ−1

]
=

[
1 0

ζ ′(λ)− 1 1
δ−1

]
,

E :=

[
1 −β
0 1− β

]
, and E ′ :=

[
1 −δ
0 δ − 1

]
,

(15)

where

ζ(λ) :=
(λ− 1) + (β − 1)2

1− β
and ζ ′(λ) :=

(λ+ 1)− (δ − 1)2

δ − 1
.

Observe that matrix polynomials F (λ), F ′(λ), E, and E′ all have nonzero constant
determinants and hence are unimodular. Finally, it is easy to verify that

E · J(p) · F (λ) = J̃(p) and E ′ · J ′(p) · F ′(λ) = J̃ ′(p) , (16)

which proves part (b).

Remark 4.5. Matrices E,F (λ), E ′, and F ′(λ) from (15) have several notable features.
First, all of them are just products of elementary unimodular matrix polynomials
corresponding to row and column operations, and hence they are also unimodular.
Second, F (λ) and F ′(λ) are lower triangular, while E and E ′ are upper triangular
matrices; we will see later that this observation is essential when investigating spectral
structures of block matrix polynomials having J(p) and J ′(p) as their blocks.

The matrix polynomials J(p) and J ′(p) in Lemma 4.4 also have easily traceable
spectral data. The characterization of invariant polynomials in terms of gcd’s of mi-
nors (from Theorem 2.1(iii)) applied to J̃(p) and J̃ ′(p) implies that the Smith forms
of J(p) and J ′(p) are diag

(
(λ − 1) , (λ − 1)p(λ)

)
and diag

(
(λ + 1) , (λ + 1)p(λ)

)
,
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respectively. Consequently, δfin(J(p)) = δfin(J
′(p)) = 4. Coupling this informa-

tion with Theorem 3.3 and the fact that rank and grade of both J(p) and J ′(p) is
two, implies that δ∞(J(p)) = δ∞(J ′(p)) = 0. Hence, the spectral structures of J(p)
and J ′(p) consist solely of the finite elementary divisors {(λ− 1) , (λ− 1) , p(λ)} and
{(λ+ 1) , (λ+ 1) , p(λ)}, respectively.

The alert reader will have spotted an ambiguity in the definitions of the matrix
polynomials J(p) and J ′(p). The equations in (14) defining the constants β and δ each
admit two possible values, β = 1 ±

√
b+ 2 and δ = 1 ±

√
2− b . So it is natural to

wonder whether it matters which values are used. Within the confines of Lemma 4.4,
it does not matter; the claims in the statement are true regardless of which values are
chosen. However, for the purposes of the rest of the paper, where J(p) and J ′(p) will be
used as elements of larger block constructions, it is essential that one value be picked
for each of β and δ, and to stick with those values throughout. To that end, then, we
will simply make the arbitrary choices β := 1+

√
b+ 2 and δ := 1+

√
2− b , and keep

those values fixed for the rest of the paper.

The following simple, but important, result will be used frequently throughout the
rest of the paper, so we state it here for the sake of easier reference.

Lemma 4.6. Let E(λ) and F (λ) be 2×2 upper triangular and lower triangular matrix
polynomials, respectively, such that the (1, 1) entry of each is equal to one. Then

E(λ) ·
[
• 0
0 0

]
= E(λ) ·

[
• 0
0 0

]
· F (λ) =

[
• 0
0 0

]
· F (λ) =

[
• 0
0 0

]
, (17)

where • is an arbitrary scalar polynomial, possibly a constant.

Definition 4.7. Let t(λ) ∈ R[λ] and G(λ) ∈ R[λ]2×2. For a positive integer m, the
m×m matrix Rm(t) and the 2m× 2m matrices Hm(G) and H ′m(G) are defined as

Rm(t) := t(λ) · Ĩm + λÑm , (18)

Hm(G) := Ĩm ⊗G(λ) + Ñm ⊗Q−(λ) , (19)

H ′m(G) := Ĩm ⊗G(λ) + Ñm ⊗Q+(λ) , (20)

where Ĩm and Ñm are given in (12), Q−(λ) =
[
(λ−1)2 0

0 0

]
, and Q+(λ) =

[
(λ+1)2 0

0 0

]
.

The following lemma investigates properties of several special Hm and H ′m blocks.

Lemma 4.8. Let p(λ) = λ2 + bλ+ 1 be an R-irreducible quadratic palindromic scalar
polynomial and let m be a positive integer. Then :

(a) Hm(J(p)) and H ′m(J ′(p)) are real T -palindromic quadratic matrix polynomials.
(b) Hm(J̃(p)) and H ′m(J̃ ′(p)) are bi-antidiagonal with sub-antidiagonal entries (λ−1)2

and (λ+ 1)2, respectively.
(c) Hm(J(p)) ∼ Hm(J̃(p)) and H ′m(J

′(p)) ∼ H ′m(J̃ ′(p)).
(d) The Smith form of Hm(J(p)) is diag

(
(λ− 1) · I2m−1 , (λ− 1) · pm

)
.

(e) The Smith form of H ′m(J ′(p)) is diag
(
(λ+ 1) · I2m−1 , (λ+ 1) · pm

)
.

Proof. Part (a) follows directly from the block structure of Hm(J(P )) and H ′m(J(p)),
properties of block matrix transpose, and the fact that all J(p), Q−(λ), and Q+(λ)

21



are T -palindromic quadratic matrix polynomials. Part (b) is a consequence of the fact
that J̃(p) and J̃ ′(p) are 2× 2 bi-antidiagonal matrix polynomials whose (2, 2) entries
are (λ− 1)2 and (λ+ 1)2, respectively.

To prove part (c) we consider unimodular matrix polynomials E,E′, F (λ), and F ′(λ)
from (15) and observe that the (1, 1) entry of each of them is equal to one. Using the
properties of block multiplication, the special triangular structures of E,E′, F (λ), and
F ′(λ), together with Lemma 4.6, one can verify directly that(

Im ⊗ E
)
·Hm(J(p)) ·

(
Im ⊗ F (λ)

)
= Hm(J̃(p)) ,(

Im ⊗ E ′
)
·H ′m(J ′(p)) ·

(
Im ⊗ F ′(λ)

)
= H ′m(J̃

′(p)) .
(21)

Now since the determinants of Im ⊗ E, Im ⊗ E′, Im ⊗ F (λ), and Im ⊗ F ′(λ) are the
determinants of E,E′, F (λ), and F ′(λ) raised to the power ofm, respectively, it follows
that they are nonzero constants. Therefore, Im⊗E, Im⊗E′, Im⊗F (λ), and Im⊗F ′(λ)
are unimodular matrix polynomials, and so (21) proves part (c).

Next we apply Lemma 4.1 to Hm(J̃(p)) to obtain

Hm(J(p)) ∼ Hm(J̃(p)) ∼
[

(−1)m(λ− 1)pm(λ)

(λ− 1)Ĩ2m−1

]
. (22)

Finally, scaling the last column of (22) by (−1)m, followed by an appropriate permu-
tation of rows and columns implies part (d); mutatis mutandis, this argument also
applies to part (e).

We proceed with some further technical results.

Lemma 4.9. Let r(λ), s(λ), t(λ), and u(λ) be nonzero scalar polynomials such that

• r(λ) and s(λ) are each relatively prime to λ and (λ− 1), and
• t(λ) and u(λ) are each relatively prime to λ and (λ+ 1).

Define the associated scalars

ρ := −r(1)s(1) and ρ′ := t(−1)u(−1) , (23)

and consider the 3× 3 matrix polynomials T (r, s) and T ′(t, u) given by

T (r, s) :=

 ρ · λ 0 s(λ)
0 (λ− 1)2 λ(1− λ)

r(λ) (λ− 1) −λ

 , T ′(t, u) :=
 ρ′ · λ 0 u(λ)

0 (λ+ 1)2 λ(λ+ 1)
t(λ) (λ+ 1) λ

 . (24)

Then

(a) T (r, s) has the Smith form diag
(
1 , (λ− 1) , (λ− 1) · r̃(λ) · s̃(λ)

)
, and

(b) T ′(t, u) has the Smith form diag
(
1 , (λ+ 1) , (λ+ 1) · t̃(λ) · ũ(λ)

)
,

where r̃(λ), s̃(λ), t̃(λ), and ũ(λ) denote the scalar multiples of r(λ), s(λ), t(λ), and u(λ),
respectively, that are monic.
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Proof. Let G(λ) and U(λ) be the matrix polynomials defined by

G(λ) :=

 0 0 −1
1 0 s(λ)
0 −1 (λ− 1)

 and U(λ) :=

 0 1 0
1 r(λ) λ
1 r(λ) (λ− 1)

 . (25)

Computing the determinants of G(λ) and U(λ) shows that both matrix polynomials
are unimodular. Now let T̂ (λ) be the 2× 2 matrix polynomial given by

T̂ (λ) :=

[
ρ · λ+ r(λ) · s(λ) (λ− 1) · s(λ)
(λ− 1) · r(λ) 0

]
(26)

and observe that

G(λ) · T (r, s) · U(λ) =

[
1

T̂ (λ)

]
. (27)

But (27) implies that if D̂(λ) is the Smith form of T̂ (λ), then diag
(
1, D̂(λ)

)
is the

Smith form of T (r, s). We now show that D̂(λ) = diag
(
(λ− 1), (λ− 1) · r̃(λ) · s̃(λ)

)
.

The specific choice of ρ in (23) implies that the polynomial ρ · λ+ r(λ) · s(λ), when
evaluated at λ = 1, equals zero. Therefore, (λ− 1) is a factor of ρ · λ+ r(λ) · s(λ), i.e.,
there exists a scalar polynomial h(λ) such that

ρ · λ+ r(λ) · s(λ) = (λ− 1) · h(λ) . (28)

Combining (28) and (26) together shows that (λ− 1) is a common factor of all entries
of T̂ (λ), and so (λ−1) divides the first invariant polynomial of T̂ (λ). To prove that the
first invariant polynomial is exactly (λ − 1), it suffices to show that h(λ) is relatively
prime to s(λ) and/or r(λ) (see Theorem 2.1(iii)).

From the assumption that both r(λ) and s(λ) are relatively prime to λ we know that
r(λ) · s(λ) is also relatively prime to λ. Consequently, there exist scalar polynomials
a(λ) and b(λ) such that

a(λ) ·
(
r(λ) · s(λ)

)
+ b(λ) · λ = 1 . (29)

Furthermore, the assumption that both r(λ) and s(λ) are also relatively prime to λ−1
implies that ρ 6= 0. Hence, there exist polynomials x1(λ) and x2(λ) such that

b(λ) = ρ · x2(λ) and a(λ) = x1(λ) + x2(λ) . (30)

From (29) and (30) we obtain

x1(λ) ·
(
r(λ) · s(λ)

)
+ x2(λ) ·

(
ρ · λ+ r(λ) · s(λ)

)
= 1 , (31)

which in turn implies that r(λ) · s(λ) s relatively prime to ρ · λ+ r(λ) · s(λ). But this
fact together with (28) implies that h(λ) is relatively prime to r(λ) ·s(λ), and therefore
that the first invariant polynomial of T̂ (λ) is (λ− 1), as desired.
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Now note that det(T̂ ) is just the product of the invariant polynomials of T̂ (λ) up
to a scalar multiple. Since det(T̂ ) = −(λ − 1)2r(λ)s(λ), we conclude that the second
invariant polynomial of T̂ (λ) is (λ−1)·r̃(λ)·s̃(λ), which completes our proof of part (a).

Finally, part (b) can be verified by a similar argument, replacing the matrix poly-
nomials G(λ), U(λ), and T̂ (λ) with their primed counterparts, namely,

G′(λ) :=

[
0 0 −1
1 0 u(λ)
0 −1 (λ+ 1)

]
, U ′(λ) :=

[
0 1 0
−1 −t(λ) −λ
1 t(λ) (λ+ 1)

]
,

T̂ ′(λ) :=

[
ρ′ · λ+ t(λ) · u(λ) (λ+ 1) · u(λ)

(λ+ 1) · t(λ) 0

]
.

An interesting feature of our proof of Lemma 4.9 concerns the matrix polynomials
G(λ) and U(λ). At first sight, it is unclear why these matrix polynomials are unimod-
ular, where they come from, and why they give us the desired unimodular equivalence
(27). But the answer is quite simple – G(λ) and U(λ) are products of the elemen-
tary unimodular matrix polynomials corresponding to elementary row and column
operations, respectively, used to transform T (r, s) into diag

(
1, T̂ (λ)

)
as in (27). More

specifically, pre- and post-multiplying T (r, s) by G(λ) and U(λ) from (25), respectively,
is the same as performing the following sequence of elementary unimodular operations
on T (r, s)

1 Row2 −→ (1− λ) · Row3 + Row2 7 Row3 −→ (−1) · Row3

2 Col3 −→ Col2 + Col3 8 Row3 ←→ Row2

3 Col2 −→ (λ− 1) · Col3 + Col2 9 Row2 ←→ Row1

4 Row1 −→ s(λ) · Row3 + Row1 10 Col3 ←→ Col2
5 Col1 −→ r(λ) · Col3 + Col1 11 Col2 ←→ Col1
6 Row2 −→ (−1) · Row2

We now take a closer look at matrix polynomials T and T ′ from (24). Our initial
motivation for considering these matrix polynomials was to construct T -palindromic
quadratic realizations for special cases of lists of type D1 from Table 3. To that end,
note that if t(λ) is a real nonzero scalar polynomial of grade two, then T (t, rev2t) and
T ′(t, rev2t) from (24) are quadratic T -palindromic matrix polynomials over R. The
following result follows directly from Lemma 4.9.

Corollary 4.10. Let p(λ) and q(λ) be R-irreducible quadratic scalar polynomials,
where p(λ) is palindromic and q(λ) is not. Consider the following two D1-type lists
of elementary divisors,

L1 =
{
λ− 1 , λ− 1 , p2(λ)

}
and L2 = {λ+ 1 , λ+ 1 , q(λ) , q̃(λ)} ,

where p(λ), q(λ), and q̃(λ) are given by (7)-(8). Then T (p, p) and T ′(q , rev2q) are
T -palindromic quadratic realizations of L1 and L2, respectively.

The next two results are also motivated by the desire to construct T -palindromic
quadratic realizations for additional cases of D1-type lists of elementary divisors. The
5 × 5 matrix polynomials in these two results contain one or the other of the matrix
polynomials T (r, s) and T (t, u) from Lemma 4.9 as their central 3× 3 blocks. Further-
more, Lemma 4.11 (resp., Lemma 4.12) describes the effect on the Smith form when
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rk(λ) and sk(λ) (resp., tk(λ) and uk(λ)) are “attached” to the corners of T (r, s) (resp.,
T (t, u)) and “glued” with λ and λ± 1.

Lemma 4.11. Let the polynomials r(λ), s(λ), t(λ), u(λ), r̃(λ), s̃(λ), t̃(λ), ũ(λ) and the
scalars ρ, ρ ′ be as in Lemma 4.9. Then the 5× 5 matrix polynomials Nm,n,k(r, s) and
N ′m,n,k(t, u) given by

Nm,n,k(r, s) :=


(λ− 1)mλn sk(λ)

ρ · λ 0 s(λ) λ
0 (λ− 1)2 λ(1− λ)

r(λ) (λ− 1) −λ
rk(λ) λ

 , (32)

N ′m,n,k(t, u) :=


(λ+ 1)mλn uk(λ)

ρ ′ · λ 0 u(λ) λ
0 (λ+ 1)2 λ(λ+ 1)
t(λ) (λ+ 1) λ

tk(λ) λ

 , (33)

where integers m, k are positive and n is nonnegative, have the following properties:

(a) Nm,n,k(r, s) has the Smith form diag
(
I3, (λ− 1), (λ− 1) · r̃ k+1(λ) · s̃ k+1(λ)

)
,

(b) N ′m,n,k(t, u) has the Smith form diag
(
I3, (λ+ 1), (λ+ 1) · t̃ k+1(λ) · ũ k+1(λ)

)
.

Lemma 4.12. Let the polynomials r(λ), s(λ), t(λ), u(λ), r̃(λ), s̃(λ), t̃(λ), ũ(λ) and the
scalars ρ, ρ ′ be as in Lemma 4.9. Then the 5× 5 matrix polynomials Lm,n,k(r, s) and
L ′m,n,k(t, u) given by

Lm,n,k(r, s) :=


(λ− 1)mλn (λ− 1) · sk(λ)

ρ · λ 0 s(λ) (λ− 1)2

0 (λ− 1)2 λ(1− λ)
r(λ) (λ− 1) −λ

(λ− 1) · rk(λ) (λ− 1)2

 , (34)

L ′m,n,k(t, u) :=


(λ+ 1)mλn (λ+ 1) · uk(λ)

ρ ′ · λ 0 u(λ) (λ+ 1)2

0 (λ+ 1)2 λ(λ+ 1)
t(λ) (λ+ 1) λ

(λ+ 1) · tk(λ) (λ+ 1)2

 , (35)

where integers m, k are positive and n is nonnegative, have the following properties:

(a) Lm,n,k(r, s) has the Smith form diag
(
1 , (λ− 1) · I3 , (λ− 1) · r̃ k+1(λ) · s̃ k+1(λ)

)
,

(b) L ′m,n,k(t, u) has the Smith form diag
(
1 , (λ+ 1) · I3 , (λ+ 1) · t̃ k+1(λ) · ũ k+1(λ)

)
.

The proofs of Lemma 4.11 and Lemma 4.12 are left to Appendix A and Appendix B,
respectively. For now we only emphasize that the key idea in our proofs is similar to
the proof of Lemma 4.1 [9, Lem. 5.2], i.e., we perform carefully constructed elementary
unimodular row/column operations on the 5 × 5 matrix polynomials while exploiting
the assumptions of the relative primeness of r(λ) and s(λ) with λ and (λ− 1), and the
relative primeness of t(λ) and u(λ) with λ and (λ+ 1).
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Next we turn our attention to establishing basic building blocks that will help us
construct T -palindromic quadratic realizations for lists of elementary divisors of type
D2. The following lemma is just the first step.

Lemma 4.13. Let q(λ) = λ2 + bλ+ c be an R-irreducible quadratic non-palindromic
scalar polynomial, and consider q̂(λ) := rev2(q) = cλ2+bλ+1. Define the 2×2 matrix
polynomials V (q), V ′(q), W (q̂), W ′(q̂), Ṽ (q), Ṽ ′(q), W̃ (q̂), and W̃ ′(q̂) as below:

V (q) := (λ− 1)

[
(λ− 1) (b+ 2)λ+ (c− 1)
−1 (λ− 1)

]
, Ṽ (q) := (λ− 1)

[
0 q(λ)
−1 λ− 1

]
,

V ′(q) := (λ+ 1)

[
(λ+ 1) (b− 2)λ+ (c− 1)
−1 (λ+ 1)

]
, Ṽ ′(q) := (λ+ 1)

[
0 q(λ)
−1 λ+ 1

]
,

W (q̂) := (λ− 1)

[
(λ− 1) λ

−(c− 1)λ− (b+ 2) (λ− 1)

]
, W̃ (q̂) := (λ− 1)

[
0 1

−q̂(λ) λ− 1

]
,

W ′(q̂) := (λ+ 1)

[
(λ+ 1) −λ

(c− 1)λ+ (b− 2) (λ+ 1)

]
, W̃ ′(q̂) := (λ+ 1)

[
0 1

−q̂(λ) λ+ 1

]
.

Then

(a)
(
rev2V (q)

)T
=W (q̂) and

(
rev2V

′(q)
)T

=W ′(q̂) ,
(b) V (q) ∼ Ṽ (q) and V ′(q) ∼ Ṽ ′(q) ,
(c) W (q̂) ∼ W̃ (q̂) and W ′(q̂) ∼ W̃ ′(q̂) .

Proof. The truth of statement (a) can be verified by a straightforward computation
of appropriate reversals and transposes. For statements (b) and (c) note that

q(λ) = λ2+ bλ+ c = (λ− 1)2+(b+2)λ+(c− 1) = (λ+1)2+(b− 2)λ+(c− 1) , (36)

and consider the following 2× 2 unimodular matrix polynomials

E1(λ) :=

[
1 (λ− 1)
0 1

]
, E2(λ) :=

[
1 (λ+ 1)
0 1

]
, E3 :=

[
1 −1
0 1

]
, E4 :=

[
1 1
0 1

]
,

F3(λ) :=

[
1 0

−(cλ+ b+ 1) 1

]
, and F4(λ) :=

[
1 0

−(cλ+ b− 1) 1

]
.

(37)

Then one can verify directly that

E1(λ) · V (q) = Ṽ (q) , E3 · W (q̂) · F3(λ) = W̃ (q̂) ,

E2(λ) · V ′(q) = Ṽ ′(q) , E4 · W ′(q̂) · F4(λ) = W̃ ′(q̂) ,
(38)

which proves parts (b) and (c), as desired.

Even though Lemma 4.13 is quite simple in its own right, we will see that it plays
a crucial role when constructing real T -palindromic quadratic realizations of more
complicated lists of elementary divisors of type D2. Furthermore, it is important to
emphasize that the matrix polynomials Ei and Fj from (37) are in fact upper and lower
triangular, respectively. We have already seen the relevance of a similar observation
in Remark 4.5, Lemma 4.6, and Lemma 4.8; this fact is also essential in the following
result.

26



Lemma 4.14. Let q(λ) = λ2 + bλ+ c be an R-irreducible quadratic non-palindromic
scalar polynomial, and consider q̂(λ) := rev2(q) = cλ2 + bλ + 1. Then for a positive
integer m, the following statements are true:

(a)
(
rev2Hm

(
V (q)

))T
= Hm

(
W (q̂)

)
and

(
rev2H

′
m

(
V ′(q)

))T
= H ′m

(
W ′(q̂)

)
.

(b) Hm(V (q)) ∼ Hm(Ṽ (q)) and H ′m(V
′(q)) ∼ H ′m(Ṽ

′(q)) .
(c) Hm(W (q̂)) ∼ Hm(W̃ (q̂)) and H ′m(W

′(q̂)) ∼ H ′m(W̃
′(q̂)) .

Proof. Statement (a) can be verified directly, while (b) and (c) follow from (38) along
with the equalities in (39) (

Im ⊗ E1(λ)
)
·Hm

(
V (q)

)
= Hm

(
Ṽ (q)

)
,(

Im ⊗ E2(λ)
)
·H ′m

(
V ′(q)

)
= H ′m

(
Ṽ ′(q)

)
,(

Im ⊗ E3

)
·Hm

(
W (q̂)

)
·
(
Im ⊗ F3(λ)

)
= Hm

(
W̃ (q̂)

)
,(

Im ⊗ E4

)
·H ′m

(
W ′(q̂)

)
·
(
Im ⊗ F4(λ)

)
= H ′m

(
W̃ ′(q̂)

)
,

(39)

where E1(λ), E2(λ), E3, E4, F3(λ), and F4(λ) are the unimodular matrix polynomials
in (37).

In the next section we will see how Lemmas 4.14 and 4.2 can be combined in order
to construct real T -palindromic quadratic realizations for a large subclass of D2-type
lists of elementary divisors from Table 3, in particular when m = 2k. But before we
can realize the remaining D2-type lists we need the following two technical results.

Lemma 4.15. For nonzero scalar polynomials r(λ) and t(λ), both of which are coprime
to λ−1, and an arbitrary (m−4)× (m−4) polynomial Z(λ), m ≥ 5, define the m×m
matrix polynomial K(λ) as

K(λ) :=



ψ(λ) 0 0 (λ− 1) t(λ)

0 0 (λ− 1)u(λ) (λ− 1)2

ν(λ)
Z(λ)

0 (λ− 1) s(λ) η(λ)

(λ− 1) r(λ) (λ− 1)2


,

where η(λ), ν(λ), s(λ), u(λ), ξ(λ) are arbitrary scalar polynomials, ψ(λ) := (λ−1) ξ(λ),
and η(λ) and ν(λ) are respectively the (m− 1, 3) and (3,m− 1) entries of K(λ). Then
K(λ) is unimodularly equivalent to K̃(λ), where

K̃(λ) :=



0 0 0 (λ− 1)
0 (λ− 1)2 ψ(λ) (λ− 1)u(λ) t(λ) 0

ν(λ)
Z(λ)

0 (λ− 1) r(λ) s(λ) η(λ)
(λ− 1) 0

 .

Lemma 4.16. For nonzero scalar polynomials r(λ) and t(λ), both of which are coprime
to λ, and an arbitrary (m − 4) × (m − 4) polynomial Z(λ), m ≥ 5, define the m ×m
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matrix polynomial O(λ) as

O(λ) :=


ψ(λ) 0 0 t(λ)
0 0 u(λ) λ

ν(λ)
Z(λ)

0 s(λ) η(λ)
r(λ) λ

 ,

where η(λ), ν(λ), s(λ), u(λ), ψ(λ) are arbitrary scalar polynomials, and η(λ) and ν(λ)
are respectively the (m−1, 3) and (3,m−1) entries of O(λ). Then O(λ) is unimodularly
equivalent to Õ(λ), where

Õ(λ) :=


0 0 0 1
0 λ2 ψ(λ) t(λ)u(λ) 0

ν(λ)
Z(λ)

0 r(λ) s(λ) η(λ)
1 0

 .

Remark 4.17. Unimodular equivalences in Lemmas 4.15 and 4.16 can be written ex-
plicitly, and are very similar in their design; thus for the sake of limiting repetitiveness
we only provide a complete proof of Lemma 4.15 in Appendix C. What is more impor-
tant is just to remember that both of these results actually describe how the diagonal
term ψ(λ) is affected as Lemma 4.1 is applied along the anti-diagonal with different
“gluing” entries, namely, (λ− 1)2 in Lemma 4.15 and λ in Lemma 4.16.

4.3. Real T -palindromic quadratic realizations of list types “Z” and “D”

In this section we provide the last missing piece of a solution to the T -palindromic
QRP over R, i.e., we explicitly construct real T -palindromic quadratic blocks (see
Tables 4 and 5) that realize the p-quad irreducible lists of elementary divisors from
Table 3. Note that, by design, these blocks have low bandwidth and transparently
display their elementary divisor structure, thus resembling the Kronecker canonical
blocks corresponding to individual elementary divisors of a matrix pencil.

We start by reminding the reader of some notation conventions adopted so far, and
recall relevant definitions of the basic building blocks from Section 4.2 that appear as
elements of the realizations in Tables 4 and 5.

(a) Real p-quad realizations of elementary divisor lists Z and D from Table 3 are
denoted by “Z” and “D” in Tables 4 and 5, respectively.

(b) The entries ∗, †, �, and � appearing between neighboring anti-diagonal blocks in
Tables 4 and 5 are always assumed to be located in the upper left corner. In other
words, if the first row of the lower block of a neighboring pair is the kth1 row of
the entire matrix, and the first column of the higher block in the pair is the kth2
column of the entire matrix, then the entries ∗, †, �,� are in the (k1, k2) position.

(c) The entry • appearing in the D1b and D2b blocks in Tables 4 - 5 is always located
in the upper left corner of the whole matrix, i.e., it is the (1, 1) entry D1b and D2b.

(d) p(λ), q(λ), q̂(λ), and q̃(λ) are the R-irreducible quadratic polynomials in (7)-(8).
(e) J(p) and J ′(p) are the 2× 2 matrix polynomials defined in Lemma 4.4.
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(f) V (q) and W (q̂ ) are the 2× 2 matrix polynomials defined in Lemma 4.13.
(g) T (p, p) and T (q, q̂ ) are the 3× 3 matrix polynomials defined in Lemma 4.9.
(h) Rk, Hm, and H ′m are the block matrices from Definition 4.7.

Subtype Block Conditions

Z1 Rk(p) k ≥ 1

Z2

[
0 Rk( q̂ )

Rk(q) 0

]
k ≥ 1

D1a


R`(p)

Hm(J(p))
∗

R`(p)
∗


m > 0
k = m+ 2`
` ≥ 0
∗ = λ

D1b



• Rj(p)

Hn(J(p))
∗

T (p, p)
�

Hn(J(p))
�

Rj(p)
∗



m = 2n+ 1
k = 2n+ 2j + 2
j ≥ 0
∗ = λ
� = (λ− 1)2

• = (λ− 1)2

D1c


Hn(J(p))

R2`+1(p)
�

Hn(J(p))
†


m = 2n > 0
k = 2n+ (2`+ 1)
` ≥ 0
† = λ− 1
� = rev2(†)

D ′1a Replace the Hm(J(p)) block with the H ′m(J ′(p)) block.

D′1b Replace each Hn(J(p)) block with the H ′n(J ′(p)) block, and � = (λ+ 1)2

replace the T (p, p) block with the T ′(p, p) block. • = (λ+ 1)2

D′1c Replace each Hn(J(p)) block with the H ′n(J ′(p)) block. † = λ+ 1

Table 4.: Blocks of types Z and D1

Remark 4.18. While reading the proof of Theorem 4.19, it is important to keep in
mind that the values of the parameters m and k come from the description of the
elementary divisor list that is to be realized. The values of any of the parameters j, `,
and n that appear in the block realization for this list are then easily determined from
the “Conditions” in the right-most column of Table 4 or 5.

Theorem 4.19. Any real p-quad irreducible list L from Table 3 is p-quad realizable
over R. Furthermore, L is realizable by the corresponding block in Tables 4 and 5.
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Subtype Block Conditions

D2a



Rj( q̂ )

Hn(W ( q̂ )) ∗

Hn(V (q ))

Rj(q )
∗


m = 2n > 0
k = n+ j
j ≥ 0
∗ = λ

D2b



• Rj( q̂ )

Hn(W ( q̂ )) ∗

T (q, q̂ ) �

Hn(V (q)) �

Rj(q) ∗



m = 2n+ 1
k = n+ j + 1
j ≥ 0
∗ = λ
� = (λ− 1)2

• = (λ− 1)2

D ′2a Replace the Hn(V (q)) block with the H ′n(V ′(q)), and
replace the Hn(W ( q̂ )) block with the H ′n(W ′( q̂ )) block.

D′2b Replace the Hn(V (q)) block with an H ′n(V ′(q)) block ,
replace the Hn(W ( q̂ )) block with the H ′n(W ′( q̂ )) block, and � = (λ+ 1)2

replace the T (q, q̂ ) block with a T ′(q, q̂ ) block. • = (λ+ 1)2

Table 5.: Blocks of type D2

Proof. The proof proceeds by individually considering each type of block in Tables 4
and 5, and showing that its spectral structure corresponds to one of the p-quad irre-
ducible lists from Table 3. Note that for the rest of this proof we focus on analyzing
the unprimed blocks, since the analysis of their primed counterparts is completely
analogous and hence omitted.

To start, note that the blocks of types Z and D are clearly real and quadratic, while
their T -palindromic structure is either obvious or follows from Lemmas 4.4(a), 4.8(a),
4.13(a), 4.14(a) and Corollary 4.10. Moreover, both Z and D blocks are regular, i.e.,
rank(Z) = size(Z) and rank(D) = size(D). Next we show that selected blocks from
Tables 4 and 5 have the claimed elementary divisor lists, while the same conclusion
about other blocks can be obtained analogously.

Z blocks Applying Lemma 4.2 to Z1 shows that Z1 ∼ diag
(
Ik−1 , p

k
)
, and there-

fore, Z1 is regular and its only finite elementary divisor is pk(λ). The fact that Z1 has
no infinite elementary divisors follows from the Index Sum Theorem 3.3, since

2 · k = grade
(
Z1

)
· rank

(
Z1

)
= δfin

(
Z1

)
+ δ∞

(
Z1

)
= 2k + δ∞

(
Z1

)
, (40)

and hence δ∞
(
Z1

)
= 0. Thus Z1 is in fact a real T -palindromic quadratic realization

of the Z1-type list.
On the other hand, applying Lemma 4.2 to the upper-right and lower-left k × k
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submatrices of Z2 shows that

Z2 ∼


q̂ k(λ)

Ĩk−1
qk(λ)

Ĩk−1

 ,
and so the only finite elementary divisors of the Z2 block are

{
q k(λ) , q̃ k(λ)

}
. One can

use an index sum argument similar to (40) to show that Z2 has no infinite elementary
divisors. Therefore Z2 is a real T -palindromic quadratic realization of the Z2-type list
of elementary divisors.

D1 blocks We now show that any possible D1-list from Table 3 can in fact be
p-quad realized over R using D1 blocks from Table 4. The reason for having the three
blocks D1a, D1b, and D1c is so that all the possible relations between k and m are
included, while still satisfying the condition k ≥ m > 0 from Table 3. More specifically,
we claim that:

(i) A D1-type list of elementary divisors with m and k having the same parity is
p-quad realizable via the corresponding D1a block.

(ii) A D1-type list of elementary divisors with m odd and k even is p-quad realizable
via the corresponding D1b block.

(iii) A D1-type list of elementary divisors with m even and k odd is p-quad realizable
via the corresponding D1c block.

D1a block There are three cases we need to consider.
Case 1: If ` = 0, then k = m and D1a = Hm(J(p)). Then the desired conclusion

follows from Lemma 4.8(d), together with the fact that D1a has no infinite elementary
divisors. To see why the latter is true, one can use either the Index Sum Theorem 3.3
or the fact that the leading coefficient of D1a, when viewed as a matrix polynomial, is
invertible.

Case 2: Assume m = 1 and ` > 0, and let E and F (λ) be the unimodu-
lar matrix polynomials from the proof of Lemma 4.4 as in (15). Pre-multiplying
and post-multiplying D1a by the unimodular matrix polynomials diag(I` , E , I` ) and
diag(I` , F (λ) , I` ), respectively, together with Lemmas 4.8 and 4.6, gives

D1a ∼


R`(p)

Hm(J̃(p)) ∗

R`(p) ∗

 =: D(1)
1a .

Applying Lemma 4.2 and Remark 4.3 to the lower-left and the upper-right (` + 1) ×
(`+ 1) submatrices of D(1)

1a, respectively, gives

D1a ∼ D(1)
1a ∼


Ĩ`

(λ− 1) · p`(λ)
(λ− 1) · p`+1(λ) (λ− 1)2

Ĩ`

 =: D(2)
1a .
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But D(2)
1a ∼ diag

(
I2` , (λ− 1) , (λ− 1) · pk

)
, where k = 2`+m = 2`+1. Again, one can

show that D1a has no infinite elementary divisors, and conclude that D1a is a quadratic
T -palindromic realization for one kind of D1-type list of elementary divisors.

Case 3: Assume m ≥ 2 and ` > 0, and let E and F (λ) be the unimodular matrix
polynomials as in (15). Pre-multiplying and post-multiplying D1a by the unimodular
matrix polynomials diag(I` , Im ⊗ E , I` ) and diag(I` , Im ⊗ F (λ) , I` ), respectively,
together with Lemmas 4.8 and 4.6, gives

D1a ∼


R`(p)

Hm(J̃(p))
∗

R`(p)
∗

 =: D(3)
1a ,

where D(3)
1a is a bi-anti-diagonal matrix polynomial. Applying Lemma 4.2 and Re-

mark 4.3 to the lower-left and the upper-right (` + 1) × (` + 1) submatrices of D(3)
1a,

respectively, we obtain

D(3)
1a ∼



Ĩ`

−(λ− 1) · p`(λ)
(λ− 1) · p(λ) (λ− 1)2

Hm−2(J̃(p)) (λ− 1)2

0 −(λ− 1)

(λ− 1) · p`+1(λ) (λ− 1)2
(λ− 1)2

Ĩ`


=: D(4)

1a .

Finally, applying Lemma 4.2 to the middle 2m× 2m submatrix of D(4)
1a gives

D1a ∼ D(3)
1a ∼ D(4)

1a ∼


Ĩ`

(λ− 1) · pk(λ)
(λ− 1) · Ĩ2m−1

Ĩ`

 ,

where k = m+2`. So the finite elementary divisors of D1a comprise a D1-type list from
Table 3. In order to conclude that D1a is a T -palindromic quadratic realization of a
D1-type list of elementary divisors, we must show that D1a has no infinite elementary
divisors. This follows from the Index Sum Theorem 3.3 and the following calculation:

grade(D1a) · size(D1a) = δfin(D1a) + δ∞(D1a)

2 · (2m+ 2`) = 2m+ 2k + δ∞(D1a)

2 · (2m+ 2`) = 2m+ 2 · (m+ 2`) + δ∞(D1a)

0 = δ∞(D1a) . (41)
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D1b block There are three cases we need to consider.

Case 1: If j = n = 0, then D1b = T (p, p), which by Lemma 4.9(a) has the Smith
form diag(1, (λ − 1), (λ − 1)p2(λ)). The fact that the leading coefficient of T (p, p) is
invertible implies that T (p, p) has no infinite eigenvalues, and consequently, the list of
elementary divisors of D1b = T (p, p) is exactly a D1-type.

Case 2: If j = 0 and n > 0, then D1b is given by

D1b =


• Hn(J(p))

T (p, p)
�

Hn(J(p))
�

 .

Once again consider the unimodular matrix polynomials E and F (λ) from (15).
Pre-multiplication and post-multiplication of D1b with the unimodular polynomials
diag

(
In ⊗E , I3 , In ⊗E

)
and diag

(
In ⊗ F (λ) , I3 , In ⊗ F (λ)

)
, respectively, together

with Lemmas 4.8 and 4.6, bi-anti-diagonalizes the Hn(J(p)) blocks to obtain

D1b ∼


• Hn(J̃(p))

T (p, p)
�

Hn(J̃(p))
�

 =: D(1)
1b .

Repeated use of Lemma 4.15 on D(1)
1b shows that D(1)

1b ∼ D
(2)
1b , where



(λ− 1)Ĩ2n−1

(λ− 1)4n (λ− 1)pn(λ)

−p2(1) · λ 0 p(λ) (λ− 1)2

0 (λ− 1)2 λ(1− λ)
p(λ) (λ− 1) −λ

(λ− 1)pn(λ) (λ− 1)2

(λ− 1)Ĩ2n−1


=: D(2)

1b .

From Lemma 4.12(a) applied to the middle 5 × 5 block of D(2)
1b , and several row and

column permutations, we conclude that the Smith form of D1b is

diag
(
1, (λ− 1) · I4n+1 , (λ− 1) · p2n+2

)
,

where 2n+ 2 = k and 4n+ 1 = 2m− 1. Finally, in order to conclude that D1b is a T -
palindromic realization of a D1-type list of elementary divisors, we must show that D1b

has no infinite elementary divisors. But this follows from the Index Sum Theorem 3.3
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and the following chain of equalities:

grade(D1b) · size(D1b) = δfin(D1b) + δ∞(D1b)

2 · (2n+ 3 + 2n) = (4n+ 2) + 2 · (2n+ 2) + δ∞(D1b)

0 = δ∞(D1b) . (42)

Case 3: Assume j > 0 and n > 0, and let E and F (λ) be the unimodular matrices
from the proof of Lemma 4.4 in (15). Pre-multiplying and post-multiplying D1b by
diag

(
Ij , In⊗E, I3, In⊗E, Ij

)
and diag

(
Ij , In⊗F, I3, In⊗F, Ij

)
, respectively, together

with Lemmas 4.8 and 4.6, bi-anti-diagonalizes the Hn(J(p)) blocks to obtain

• Rj(p)

Hn(J̃(p)) ∗

T (p, p) �

Hn(J̃(p)) �

Rj(p) ∗


=: D(3)

1b .

Applying Lemma 4.16 repeatedly to D(3)
1b gives

Ĩj

•̃ P̃ (λ)

Hn−1(J̃(p)) �

T (p, p) �

Hn−1(J̃(p)) �

P (λ) �

Ĩj


=: D(4)

1b ,

where •̃ = (λ− 1)2λ2j and

P̃ (λ) := (λ− 1)

[
0 −pj(λ)

p(λ) λ− 1

]
and P (λ) := (λ− 1)

[
0 −1

pj+1(λ) λ− 1

]
.

Next apply Lemma 4.15 repeatedly to D(4)
1b to obtain D(4)

1b ∼ D
(5)
1b , where

D(5)
1b :=



Ĩj

(λ− 1)Ĩ2n−1

(λ− 1)4nλ2j 0 0 0 (λ− 1)pn+j(λ)

0 (λ− 1)2

0 T (p, p) 0
0 0

(λ− 1)pn+j(λ) (λ− 1)2 0 0 0

(λ− 1)Ĩ2n−1

Ĩj



.
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Now observe that the middle 5 × 5 block of D(5)
1b is just the L4n,2j,1(p

n+j , pn+j) block
from Lemma 4.12. With several simple row and column swaps we obtain that

D1b ∼ D(3)
1b ∼ D

(4)
1b ∼ D

(5)
1b ∼ diag

(
I2j , (λ− 1) · I4n−2 , L4n,2j,1(p

n+j , pn+j )
)
. (43)

Finally, from (43) and Lemma 4.12 we conclude that the Smith form of D1b is given by

diag
(
I2j+1 , (λ− 1) · I4n+1 , (λ− 1) · p2n+2j

)
,

which in turn implies that the finite elementary divisor list of D1b is of D1-type. In
order to conclude that D1b is a T -palindromic quadratic realization of a D1-type list of
elementary divisors from Table 3, one must show that D1b has no infinite elementary
divisors; this can be done analogously to (42), and hence is omitted.

D1c block Let E and F (λ) be the unimodular matrix polynomials from (15).
Pre- and post-multiplication of D1c by diag

(
In ⊗ E , I2`+1 , In ⊗ E

)
and diag

(
In ⊗

F (λ) , I2`+1 , In ⊗ F (λ)
)
, respectively, together with Lemmas 4.8 and 4.6, bi-anti-

diagonalizes the Hn(J(p)) blocks to obtain

D1c ∼


Hn(J̃(p))

R2`+1(p) �

Hn(J̃(p)) †

 =: D(1)
1c .

Applying Lemma 4.2 and Remark 4.3 to the lower-left and the upper-right (2n+ 1)×
(2n+ 1) submatrices of D(1)

1c , respectively, gives

D1c ∼ D(1)
1c ∼



(λ− 1) · Ĩ2n
pn+1

p λ

. .
.

. .
.

p λ
pn+1 λ

(λ− 1) · Ĩ2n


=: D(2)

1c

Finally, applying Lemma 4.2 to the middle (2`+1)× (2`+1) block of D(2)
1c shows that

D1c ∼ D(1)
1c ∼ D

(2)
1c ∼


(λ− 1) · Ĩ2n

pk

Ĩ2`

(λ− 1) · Ĩ2n

 ,

where k = 2`+2n+1. Hence, the finite elementary divisors of D1c comprise a D1-type
list. Finally, to conclude that D1c is in fact a T -palindromic quadratic realization of a
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D1-type list from Table 3, one must show that D1c has no infinite elementary divisors.
But that can be done analogously to (41), and so we omit the details.

D2 blocks We now show that any possible D2-list from Table 3 has in fact a real p-
quad realization using D2 blocks from Table 4. Similarly to the D1 blocks, we consider
two blocks D2a and D2b in order to account for all the possible relations between k
and m, while still satisfying the condition 2k ≥ m > 0 from Table 3. In particular, we
consider the following two cases:

(i) A D2-type list of elementary divisors with m even, and k even or odd; such a list
is p-quad realizable via the corresponding D2a block. Note that if m > 0 is even,
then m = 2n for some positive integer n. But the condition 2k ≥ m implies that
k ≥ n, or that there exists a non-negative integer j such that k = n+ j.

(ii) A D2-type list of elementary divisors with m odd, and k even or odd; such a
list is p-quad realizable via the corresponding D2b block. If m > 0 is odd, then
m = 2n + 1 for some non-negative integer n. But the condition 2k ≥ m implies
that k ≥ n + 1

2 . Since k is an integer, it must be that k ≥ n + 1. Consequently,
there exists a non-negative integer j such that k = n+ j + 1.

D2a block There are two cases to consider.
Case 1: If j = 0, then D2a is given by

D2a =

[
0 Hn(W ( q̂ ))

Hn(V (q )) 0

]
.

Now consider the unimodular matrix polynomials E1(λ), E3, and F3(λ) from the proof
of Lemma 4.13, as in (37). Pre- and post-multiplication of D2a by the unimodular
matrix polynomials diag

(
In⊗E3 , In⊗E1(λ)

)
and diag

(
I2n , In⊗F3(λ)

)
, respectively,

gives

D2a ∼

[
0 Hn(W̃ ( q̂ ))

Hn(Ṽ (q )) 0

]
=: D(1)

2a .

Applying Lemma 4.2 and Remark 4.3 to the lower-left and upper-right 2n × 2n sub-
matrices of D(1)

2a, respectively, gives
(λ− 1) · Ĩ2n−1

(λ− 1) · q̂ n(λ)

(λ− 1) · qn(λ)
(λ− 1) · Ĩ2n−1


. (44)

One can argue that D2a has no infinite elementary divisors by using an index sum
argument as in (41), and consequently, from (44) conclude that D2a is a T -palindromic
realization of a D2-type list of elementary divisors from Table 3.

Case 2: Assume j > 0 and n > 0, and again consider the unimodular matrix polyno-
mials E1(λ), E3, and F3(λ) from (37). Pre- and post-multiplyingD2a by the unimodular
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matrix polynomials diag
(
Ij , In⊗E3 , In⊗E1(λ) , Ij

)
and diag

(
Ij , I2n , In⊗F3(λ) , Ij

)
,

respectively, together with Lemma 4.6, gives

D2a ∼



Rj( q̂ )

Hn(W̃ ( q̂ )) ∗

Hn(Ṽ (q ))

Rj(q ) ∗


=: D(1)

2a .

Applying Lemma 4.2 and Remark 4.3 to the lower-left and upper-right (j+1)× (j+1)

submatrices of D(1)
2a, respectively, gives



Ĩj

0 (λ− 1) q̂ j

−(λ− 1) q̂ (λ− 1)2

Hn−1(W̃ ( q̂ )) (λ− 1)2

Hn−1(Ṽ (q ))

0 (λ− 1) q

−(λ− 1) q j (λ− 1)2
(λ− 1)2

Ĩj



=: D(2)
2a .

Finally, applying Lemma 4.2 on the middle 2n× 2n submatrices of D(2)
2a produces the

unimodular equivalnce D2a ∼ D(2)
2a ∼ D

(3)
2a, where

D(3)
2a :=



Ĩj

(λ− 1) · Ĩ2n−1
(λ− 1) · q̂ n

(λ− 1) · qn

(λ− 1) · Ĩ2n−1
Ĩj


. (45)

From (45) we conclude that the elementary divisor list of D2a is exactly of D2-type.
which can be done analogously to (42).

D2b block The proof that D2b is a T -palindromic quadratic realization for a D2-
type list of elementary divisors from Table 3 is completely analogous to the case of the
block D1b, except that the initial bi-anti-diagonalization of Hn(V (q)) and Hn(W ( q̂ ))
blocks is achieved by pre- and post-multiplication of D2b with the unimodular matrix
polynomials diag

(
Ij , In ⊗ E3, I3, In ⊗ E1(λ), Ij

)
and diag

(
Ij , I2n, I3, In ⊗ F3(λ), Ij

)
,

respectively, where E1(λ), E3, and F3(λ) are as in the proof of Lemma 4.13 in (37).

5. Solution of the second part of the real T -palindromic QRP

All the work of Sections 3 and 4 now comes together to bring us to the culmination of
this paper in the following theorem.
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Theorem 5.1. ((SP-2) for the T -palindromic QRP)
Suppose a structural data list L of elementary divisors and minimal indices is p-
quad admissible over R. Then L has a transparent realization by a real T -palindromic
quadratic matrix polynomial that is a direct sum of canonical blocks, each block realizing
one of the real p-quad irreducible lists in Tables 1-3. The converse also holds.

Proof. By Theorem 3.13, any real p-quad admissible list L can be partitioned (some-
times uniquely and sometimes not) into real p-quad irreducible sublists from Tables 1-3,
which by Corollary 3.14 contain all of the possible real p-quad irreducible lists. From
the results in [9] for realizations of the real p-quad irreducible lists in Tables 1 and 2,
and the realizations in Section 4 for real p-quad irreducible lists in Table 3, we know
that every real p-quad irreducible list has a transparent realization by a sparse real
T -palindromic matrix polynomial. Invoking Lemma 2.4, we now see that the list L can
be realized by a direct sum of real T -palindromic blocks, one block for each real p-quad
irreducible sublist in the real palindromic quadratic partitioning of L.

That the converse also holds follows from the discussion surrounding Definition 3.6,
where it is shown why real p-quad realizability implies real p-quad admissibility.

With this theorem, we have now achieved the two main goals of this paper: to develop
simple necessary and sufficient conditions to detect the real quadratic T -palindromic
realizability of a given list of structural data, and to provide an explicit, non-numerical,
finite procedure to construct such a structured realization whenever it exists, one that
sparsely but transparently displays the given structural data.

6. Conclusion

This paper has extended the results of [9] on the T -palindromic quadratic realizability
problem, from algebraically closed fields (in [9]) to the real field R. These results
can be viewed as providing a structured Kronecker-like real quasi-canonical form for
real T-palindromic quadratic matrix polynomials, essentially a degree 2 analog for the
palindromic Kronecker canonical form for T -palindromic pencils in [34]. In order to
achieve these results, we have extended and adapted the concepts in [9] to handle the
real case, and also developed constructions to obtain canonical realizations of the new
irreducible structural data lists that appear when the underlying field is R, rather than
algebraically closed. Although many of these canonical realizations have (anti-diagonal)
bandwidth of three or less, it has sometimes been necessary to extend the bandwidth
beyond three. However, in all cases the realizations are very sparse, and transparently
display their structural data.

There are two natural directions to consider for further extension of this work. One is
to the T -palindromic realizability problem for degree three, or degree four (or higher),
or even to consider the problem for arbitrary degree. Another natural direction is to
consider classes of underlying field which support irreducible scalar polynomials of
degree higher than two. However, in our view it is unlikely that the strategy used in
this paper (i.e., forming a direct sum of canonical blocks that each realize irreducible
lists of structural data), will produce a reasonable solution for any such extension. As
the degree of the desired realization or the complexity of the field increases, there is
likely to be a combinatorial explosion in the number of primitive, irreducible cases to
consider, so that the complexity of any solution of this type becomes unmanageable.
It is likely that a new approach will be needed in order to find a good solution to any
of these extended realizability problems. One such approach [11] is currently under
development.
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Appendix A. Proof of Lemma 4.11

(a) The key idea in our proofs is similar to the proof of Lemma 4.1 [9, Lem. 5.2], i.e., we
perform carefully constructed elementary unimodular row/column operations on the
5× 5 matrix polynomials while exploiting the assumptions of the relative primeness of
r(λ) and s(λ) with λ and (λ− 1), and the relative primeness of t(λ) and u(λ) with λ
and (λ+ 1).
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We start by introducing notation for quantities that play an important role in our
unimodular reduction of Nm,n,k(r, s). The assumption that both r(λ) and s(λ) are
coprime to λ implies that the scalars r0 := rk(0) and s0 := sk(0) are nonzero. Further-
more, there exist scalar polynomials qr(λ) and qs(λ) such that rk(λ) = qr(λ) · λ + r0
and sk(λ) = qs(λ) · λ+ s0. We now claim that Nm,n,k(r, s) ∼ N (1)

m,n,k(r, s), where

N (1)
m,n,k(r, s) :=


I2

(λ− 1)mλn+2 + ρ λ rk(λ)sk(λ) 0 sk+1(λ)
0 (λ− 1)2 λ(1− λ)

rk+1(λ) (λ− 1) −λ

 . (A1)

An explicit unimodular equivalence that achieves this can be obtained by starting
with Nm,n,k(r, s) and performing the sequence of elementary unimodular row/column
operations given in Figure A1, where η(λ) = (λ− 1)m · λn+1 + qs · ρ · λ · rk.

1 Col1 −→ (−qr) · Col2 + Col1 11 Col5 −→ (1/s0) · Col5
2 Col2 −→ (−1/r0) · λ · Col1 + Col2 12 Col4 −→ (qs · s) · Col5 + Col4
3 Col2 −→ (r0) · Col2 13 Col2 −→ (η(λ)) · Col5 + Col2
4 Row5 −→ (1/r0) · (Row)5 14 Row1 ←→ Row5

5 Row4 −→ (qr · r) · Row5 + Row4 15 Row5 ←→ Row4

6 Row2 −→ (qr · ρ · λ) · Row5 + Row2 16 Row4 ←→ Row3

7 Row1 −→ (−(λ− 1)m · λn) · Row5 + Row1 17 Row3 ←→ Row2

8 Row1 −→ (−qs) · Row2 + Row1 18 Col5 ←→ Col4
9 Row2 −→ (−1/s0) · λ · Row1 + Row2 19 Col4 ←→ Col3
10 Row2 −→ (s0) · Row2 20 Col3 ←→ Col2

Figure A1.: Unimodular reduction of Nm,n,k(r, s) to N
(1)
m,n,k(r, s)

Next, by slightly adapting matrices from (25) so they apply to N (1)
m,n,k(r, s), we define

new unimodular matrix polynomials G(λ) and U(λ) given by

G(λ) =


I2

0 0 −1
1 0 sk+1

0 −1 (λ− 1)

 and U(λ) =


I2

0 1 0
1 rk+1 λ
1 rk+1 λ− 1

 . (A2)

Then G(λ) ·N (1)
m,n,k(r, s) · U(λ) = N (2)

m,n,k(r, s) , where

N (2)
m,n,k(r, s) :=

 I3

(λ− 1)mλn+2 + ρ λ rk sk + rk+1sk+1 (λ− 1) sk+1

(λ− 1)rk+1 0

 , (A3)

implies Nm,n,k(r, s) ∼ N (1)
m,n,k(r, s) ∼ N (2)

m,n,k(r, s). Consequently, in order to complete
the proof of part (a) it suffices to show that the Smith form of the bottom right 2× 2

block of N (2)
m,n,k(r, s) is diag

(
(λ− 1) , (λ− 1) r̃ k+1(λ)s̃ k+1(λ)

)
.

Inspired by the proof of Lemma 4.9, we consider the (4, 4) entry of N (2)
m,n,k(r, s). The

assumption that ρ = −r(1)s(1) implies that ρ λ rk(λ) sk(λ)
∣∣∣
λ=1

= −rk+1(1) sk+1(1),
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and so [
(λ− 1)mλn+2 + ρ · λ rk(λ)sk(λ) + rk+1(λ)sk+1(λ)

]∣∣∣
λ=1

= 0 . (A4)

From (A4) it follows that there exist a scalar polynomial h(λ) such that

(λ− 1)mλn+2 + ρ λ rk(λ) sk(λ) + rk+1(λ)sk+1(λ) = (λ− 1)h(λ) . (A5)

Combining (A5) and (A3) results in the following unimodular equivalence

Nm,n,k(r, s) ∼

 I3
(λ− 1)h(λ) (λ− 1)sk+1 (λ)

(λ− 1) rk+1(λ) 0

 =: N (3)
m,n,k(r, s) . (A6)

We now claim that gcd
{
(λ− 1)h(λ) , (λ− 1)rk+1(λ) , (λ− 1)sk+1(λ)

}
= λ − 1 ,

or equivalently, that

gcd
{
h(λ) , rk+1(λ) , sk+1(λ)

}
= 1 . (A7)

In order to verify (A7) it suffices to show that h(λ) is coprime to either r(λ) or s(λ).
Without loss of generality, assume that h(λ) is not coprime to r(λ). Since r(λ) is an R-
irreducible nonzero scalar polynomial by assumption, it must be that h(λ) = d(λ)r(λ)
for some d(λ) ∈ R[λ]. Then,

(λ− 1)mλn+2 + ρ λ rk(λ) sk(λ) + rk+1(λ)sk+1(λ) = (λ− 1)d(λ)r(λ)

⇐⇒ (λ− 1)mλn+2 = r(λ)
[
(λ− 1) d(λ)− ρ λ rk−1(λ) sk(λ)− rk(λ)sk+1(λ)

]
.

But this implies that r(λ) divides either (λ − 1) or λ, which is a contradiction to the
assumption that r(λ) is coprime to both (λ−1) and λ. Thus it must be that (A7) holds,
and therefore, the first non-constant invariant polynomial of N (3)

m,n,k(r, s) is (λ− 1).
Finally, we determine the second non-constant invariant polynomial of N (3)

m,n,k(r, s)
by computing its determinant, dividing it by the first non-constant invariant poly-
nomial (λ − 1), and scaling the resulting polynomial to make it monic. An easy
calculation shows that the second non-constant invariant polynomial of N (3)

m,n,k(r, s)

is (λ − 1) · r̃ k+1(λ) · s̃ k+1(λ) which together with (A6) reveal that the Smith form of
Nm,n,k(r, s) is diag

(
I3 , (λ− 1) , (λ− 1)r̃ k+1s̃ k+1

)
, as desired.

(b) The proof is completely analogous to the one for part (a) and hence is omitted. 2
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Appendix B. Proof of Lemma 4.12

(a) We start by showing that Lm,n,k(r, s) is unimodularly equivalent to L(1)
m,n,k(r, s),

where

L(1)
m,n,k(r, s) :=


(λ− 1)

(λ− 1)

(λ− 1)m+2λn + ρ λ rk(λ) sk(λ) 0 sk+1(λ)
0 (λ− 1)2 λ(1− λ)

rk+1(λ) (λ− 1) −λ

 .

By an argument almost identical to that used for Lemma 4.11 (see Appendix A),
we can conclude that the Smith form of the bottom right 3× 3 block of L(1)

m,n,k(r, s) is
diag

(
1, (λ−1), (λ−1)r̃ k+1(λ)s̃ k+1(λ)

)
, which together with Lm,n,k(r, s) ∼ L(1)

m,n,k(r, s)

proves part (a).
Now it only remains to show that Lm,n,k(r, s) ∼ L(1)

m,n,k(r, s). The assumption that
both r(λ) and s(λ) are coprime to (λ − 1) implies that the scalars r1 := rk(1) and
s1 := sk(1) are nonzero. Furthermore, there exist scalar polynomials qr(λ) and qs(λ)
such that rk(λ) = qr(λ) · (λ− 1) + r1 and sk(λ) = qs(λ) · (λ− 1) + s1.

On the other hand, the assumption that both r(λ) and s(λ) are coprime to (λ− 1)
also implies that rk+1(λ) and sk+1(λ) are coprime to (λ−1). Consequently, there exist
real scalar polynomials a(λ), b(λ), c(λ) and d(λ) such that

a(λ) · (λ− 1) + b(λ) · rk+1(λ) = 1 ,

c(λ) · (λ− 1) + d(λ) · sk+1(λ) = 1 .
(B1)

Finally, the desired unimodular equivalence Lm,n,k(r, s) ∼ L(1)
m,n,k(r, s) can be

achieved by starting with Lm,n,k(r, s) and performing the sequence of elementary
unimodular row/column operations given in Figure B1, which are then followed by
several row/column swaps identical to the ones in Figure A1. Here the scalar poly-
nomials ξ(λ) and ψ(λ) in Figure B1 are given by ξ(λ) = (λ − 1)m ·λn ·r ·qr · b and
ψ(λ) = (λ− 1)mλn− qs·s·d·(λ− 1)m+1·λn+ ρ·λ·qs·rk·c. While this completes the proof
of part (a), one additional point is worth emphasizing. Note that the operations in
Figure B1 extensively utilize the auxiliary polynomials a(λ), b(λ), c(λ), and d(λ) from
(B1), which is in stark contrast to the analogous unimodular reduction in Lemma 4.11.

1 Col1 −→ (−qr)·Col2 + Col1 9 Row2 −→ (qr ·ρ·λ·a)·Row5 + Row2

2 Col2 −→ (1/r1)·(1− λ)·Col1 + Col2 10 Row1 −→ (−qs)·Row2 + Row1

3 Col2 −→ (r1)·Col2 11 Row2 −→ (1/s1)·(1− λ)·Row1 + Row2

4 Row5 −→ (1/r1)·Row5 12 Col5 −→ (1/s1)Col5
5 Row1 −→ −(λ− 1)m−1λn ·Row5 + Row1 13 Row2 −→ (s1)·Row2

6 Row4 −→ (r·qr ·a)·Row5 + Row4 14 Col4 −→ (qs ·s·c)·Col5 + Col4
7 Col1 −→ (r·qr ·b)·Col2 + Col1 15 Row1 −→ (qs ·s·d)·Row2 + Row1

8 Row1 −→ ξ(λ)·Row5 + Row1 16 Col2 −→ ψ(λ)·Col5 + Col2

Figure B1.: Unimodular reduction of Lm,n,k(r, s) to L
(1)
m,n,k(r, s)

(b) The proof is completely analogous to the one for part (a), and hence is omitted. 2

43



Appendix C. Proof of Lemma 4.15

The assumption that both r(λ) and t(λ) are coprime to (λ−1) implies that the scalars
r1 := r(1) and t1 := t(1) are nonzero. Furthermore, there exist scalar polynomials
qr(λ) and qt(λ) such that

r(λ) = qr(λ) · (λ− 1) + r1 and t(λ) = qt(λ) · (λ− 1) + t1 .

Then the desired unimodular equivalence K(λ) ∼ K̃(λ) can be achieved by starting
with K(λ) and performing the sequence of elementary unimodular row/column oper-
ations given in Figure C1.

1 Col1 −→ (−qr) · Col2 + Col1 8 Row2 −→ (t1) · Row2

2 Row1 −→ (−qt)·Row2 + Row1 9 Rowm−1 −→ (qr ·s)·Rowm + Rowm−1
3 Col2 −→ (1/r1)·(1− λ)·Col1 + Col2 10 Colm−1 −→ (qt ·u)·Colm + Colm−1
4 Row2 −→ (1/t1)·(1− λ)·Row1 + Row2 11 Row2 −→ (ψ)·Rowm + Row2

5 Colm −→ (1/t1)·Colm 12 Col2 −→ (ψ)·Colm + Col2
6 Rowm −→ (1/r1)·Rowm 13 Col1 −→ (−ξ)·Colm + Col1
7 Col2 −→ (r1)·Col2

Figure C1.: Unimodular reduction with λ− 1 as the “gluing” entry

2
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