
Anymatrix: An Extensible MATLAB Matrix
Collection

Higham, Nicholas J. and Mikaitis, Mantas

2021

MIMS EPrint: 2021.16

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Anymatrix: An Extensible MATLAB Matrix
Collection

Nicholas J. Higham · Mantas Mikaitis

Version of October 11, 2021

Abstract Anymatrix is a MATLAB toolbox that provides an extensible col-
lection of matrices with the ability to search the collection by matrix prop-
erties. Each matrix is implemented as a MATLAB function and the matrices
are arranged in groups. Compared with previous collections, Anymatrix offers
three novel features. First, it allows a user to share a collection of matrices
by putting them in a group, annotating them with properties, and placing the
group on a public repository, for example on GitHub; the group can then be
incorporated into another user’s local Anymatrix installation. Second, it pro-
vides a tool to search for matrices by their properties, with Boolean expres-
sions supported. Third, it provides organization into sets, which are subsets
of matrices from the whole collection appended with notes, which facilitate
reproducible experiments. Anymatrix v1.0 comes with 146 built-in matrices
organized into 7 groups with 49 recognized properties. The authors continue
to extend the collection and welcome contributions from the community.

Keywords MATLAB, matrix collection, test matrices

Mathematics Subject Classification (2020) 15B99, 65F99

1 Introduction

In a 1957 “SIAM Notes” column in the SIAM Newsletter (a precursor to
SIAM News), Clement obtained the inverses, determinants, and eigenvalues

Nicholas J. Higham
Department of Mathematics, University of Manchester
M13 9PL, Manchester, UK
E-mail: nick.higham@manchester.ac.uk

Mantas Mikaitis
Department of Mathematics, University of Manchester
M13 9PL, Manchester, UK
E-mail: mantas.mikaitis@manchester.ac.uk

2 N. J. Higham and M. Mikaitis

of a certain family of tridiagonal matrices [7]. This article was reprinted in
SIAM Review [8] two years later. Clement’s motivation was that “For testing
and experimentation it is important to have matrices for which exact inverses
and eigenvalues are known”. Many authors have subsequently studied partic-
ular matrices and published papers documenting their properties. Some have
published collections of matrices, early examples being Rutishauser’s article
[43], the book by Gregory and Karney [20], and an appendix in the book by
Westlake [53].

In addition to their use in computation, matrices with known properties
can also be employed in theoretical investigations to test conjectures, explore
the sharpness of bounds, and formulate possible new results.

Several collections of test matrices are available in software. These include

• matrices built into MATLAB through the gallery function and other
MATLAB functions that generate individual matrices;

• the Test Matrix Toolbox [26], [27], much of which was subsequently incor-
porated into the MATLAB gallery function;

• Matrix Market1 [4];
• the SuiteSparse Matrix Collection (previously known as the University of
Florida Sparse Matrix Collection)2 [10], which contains large, sparse ma-
trices of fixed size, coming from applications;

• CONTEST [51], a MATLAB toolbox providing adjacency matrices from
random network models;

• the Regularization Tools toolbox3 [21], [22], the IR Tools toolbox4 [17], and
the AIR Tools II toolbox5 [23], all of which contain several test problems,
each defining a matrix and a right-hand side;

• the Julia Matrix Depot package [55], which has similar functionality to the
MATLAB gallery function and also gives access to matrices from Regu-
larization Tools, the SuiteSparse Matrix Collection, and Matrix Market;

• the NLEVP collection6 of nonlinear eigenvalue problems, each of which is
defined by two or more matrices [2], [35].

Matrix Depot and SuiteSparse allow users to contribute to the collection (via
https://sparse.tamu.edu/submit in the latter case).

Anymatrix is a new MATLAB toolbox, available at https://github.com/
mmikaitis/anymatrix, that provides an extensible matrix collection and has
several key features:

• it is large and easily extensible;
• it includes parametrized matrices and both fixed size and variable size
matrices;

• it offers the ability to search for matrices with specific properties;

1 http://math.nist.gov/MatrixMarket/
2 https://sparse.tamu.edu/
3 http://www.imm.dtu.dk/~pcha/Regutools/
4 https://github.com/jnagy1/IRtools
5 https://github.com/jakobsj/AIRToolsII
6 https://github.com/ftisseur/nlevp

https://sparse.tamu.edu/submit
https://github.com/mmikaitis/anymatrix
https://github.com/mmikaitis/anymatrix
http://math.nist.gov/MatrixMarket/
https://sparse.tamu.edu/
http://www.imm.dtu.dk/~pcha/Regutools/
https://github.com/jnagy1/IRtools
https://github.com/jakobsj/AIRToolsII
https://github.com/ftisseur/nlevp

Anymatrix collection 3

Table 1 Features of various matrix collections.

Search by Extensible
Collection Location properties by user

Anymatrix GitHub Yes Yes
CONTEST Own website No No
gallery MATLAB No No
Matrix Depot GitHub No Yes
Matrix Market Own website Yes No
NLEVP GitHub Yes No
Regularization Tools Own website No No
IR Tools Own website No No
AIR Tools II Own website No No
SuiteSparse Own website Yes No

• it organizes matrices into groups and the user can easily create a new group
that behaves like the built-in groups and share it on a public repository;
and

• it enables subsets of matrices to be easily created, stored, and re-used to
help make experiments reproducible.
The collections listed above do not have all these features; see Table 1. In

particular, the MATLAB gallery function does not provide a means to search
matrices by properties and is not extensible by the user; Matrix Market has
not been updated for many years and is not tightly integrated with MATLAB;
and SuiteSparse focuses on sparse matrices and provides only matrices of fixed
size.

Unlike the NLEVP collection [2], where all matrix integration was done by
hand (hard-coded into a function called nlevp_query), in Anymatrix proper-
ties are defined within the program files defining the matrices or groups and
are read in when Anymatrix initializes itself on the first call in a MATLAB
session, and it is this feature than makes the extensibility possible.

Our aim in designing Anymatrix was that anyone who comes across inter-
esting matrices in their research should be able to document them and easily
make them available for inclusion in Anymatrix.

2 The Anymatrix Toolbox

In this section we outline the design of Anymatrix and how it is used. Full
details are given in the users’ guide [34].

2.1 Groups of Matrices

The matrices in Anymatrix are organized in groups and there are seven built-in
groups:
• contest: the matrices from CONTEST [51], listed in Table 2.

4 N. J. Higham and M. Mikaitis

• core: a miscellaneous selection of matrices, listed in Table 3. Several of
these matrices are adapted from the Matrix Computation Toolbox [25].

• gallery: the 61 MATLAB gallery matrices [24, Table 5.3].
• hadamard: 659 Hadamard matrices of dimension up to 428, mostly from
the collection of Sloan [46], together with some complex Hadamard ma-
trices from [48]; see Table 4. A Hadamard matrix is a real n × n matrix
with elements ±1 satisfying HTH = nI. A complex Hadamard matrix has
entries of modulus 1 and satisfies H∗H = nI.

• matlab: matrices that are in MATLAB but are not part of gallery, namely
the 12 matrices in Table 5.

• nessie: matrices from the NESSIE collection coming from real-life net-
works [52], listed in Table 6.

• regtools: matrices from the regularization Tools toolbox [21], [22], listed
in Table 7. The whole toolbox, including the regularization routines, is
included in Anymatrix, but only the matrices are used. The regtools

matrices have optional output arguments that generate a right-hand side
b and, in some cases, a solution x (which are discretizations of the right-
hand side and exact solution of the underlying Fredholm integral equation).
We note that the problems in Regularization Tools are discretizations of
mainly one-dimensional problems that are regarded as easy problems today.
Discretizations of more challenging two-dimensional problems can be found
in the IR Tools toolbox [17] and the AIR Tools II toolbox [23].

Every matrix is accessed through an identifier that combines the group
name and the matrix name. For example, the 5×5 beta matrix from the core
group is constructed by

Table 2 Matrices in the Anymatrix contest group of adjacency matrices from random
network models.

Matrix Description

baitsample Bait and prey subsampling.
curvature Curvatures (clustering coefficients).
erdrey Erdős–Rényi model graph.
geo Geometric random graph.
gilbert Gilbert model graph.
kleinberg Kleinberg model graph.
lap Laplacian matrix (normalized or unnormalized).
lockandkey Lock and key model graph.
mht Mean hitting times.
pagerank PageRank matrix.
pathlength Minimum path lengths.
pref Scale free random graph.
renga Range dependent random graph.
rewire Redirect edges.
short Add shortcuts.
smallw Small world random graph.
sticky Stickiness model random graph.
unisample Uniform subsampling.

Anymatrix collection 5

Table 3 Matrices in the Anymatrix core group.

Matrix Description

augment Augmented system matrix.
beta Symmetric totally positive matrix of integers.
blockhouse Block Householder matrix.
dembo9 Symmetric Hankel matrix of order 9 and rank 5.
edelman27 Matrix for which det is computed as the wrong integer.
fourier Fourier matrix.
gfpp Matrix giving maximal growth for Gaussian elim. with pivoting.
hessfull01 Totally nonnegative binary lower Hessenberg Toeplitz matrix.
hessmaxdet Upper Hessenberg matrix with maximal determinant.
kms nonsymm Nonsymmetric Kac–Murdock–Szego Toeplitz matrix.
nilpot triang Nilpotent triangular matrix.
nilpot tridiag Nilpotent tridiagonal matrix (sparse).
rschur Upper quasi-triangular matrix.
soules Soules matrix.
symmstoch Symmetric stochastic matrix with given spectrum.
totally nonneg Nonsingular totally nonnegative matrix.
triminsval01 Optimal upper triangular binary Toeplitz matrix.
vand Vandermonde matrix.
vecperm Vec-permutation matrix.
wilson Wilson matrix.
zielke nonsymm Nonsymmetric matrix of Zielke.
zielke symm Symmetric matrix of Zielke.

Table 4 Matrices in the Anymatrix hadamard group.

Matrix Description

complex hadamard Complex Hadamard matrices.
hadamard Hadamard matrices of dimension up to 428.

Table 5 Matrices in the Anymatrix matlab group.

Matrix Description

compan Companion matrix.
hadamard Hadamard matrix.
hankel Hankel matrix.
hilb Hilbert matrix.
invhilb Inverse Hilbert matrix.
magic Magic square.
pascal Pascal matrix.
rosser Classic symmetric eigenvalue test problem.
spiral Matrix with elements in a rectangular spiral pattern.
toeplitz Toeplitz matrix.
vander Vandermonde matrix.
wilkinson Wilkinson’s eigenvalue test matrix.

6 N. J. Higham and M. Mikaitis

Table 6 Matrices in the Anymatrix nessie group from real-life networks.

Matrix Description

benguela Adjacency matrix for South Africa marine ecosystem network.
carcorr Correlation matrix associated with Scottish car travel times.
eer Adjacency matrix for network of European economic regions.
gene Adjacency matrix for a gene network.
guppy Adjacency matrix for network of guppy social interactions.
hexgrid Adjacency matrix for network from nuclear reactors.
metabolite Adjacency matrix for metabolite network.
p53 Adjacency matrix for network of genes related to the oncogene p53.
ppi Adjacency matrix for yeast protein-protein interaction network.
spl0708a Adjacency matrix for network of Scottish football transfers.
spl0708b Adjacency matrix for network of Scottish football transfers.
spl0809 Adjacency matrix for network of Scottish football transfers.
traincorr Correlation matrix associated with Scottish train travel times.
usshelf Adjacency matrix of network for Northeast US continental shelf.
whiskycorr Correlation matrix associated with malt whisky tasting.
whiskydist Matrix of Euclidean distances between whisky distilleries.

Table 7 Matrices in the Anymatrix regtools group.

Matrix Description

baart Fredholm integral equation of the first kind.
blur Image deblurring test problem with structured matrix.
deriv2 Computation of the second derivative.
foxgood Severely ill-posed problem.
gravity One-dimensional gravity surveying problem.
heat Inverse heat equation.
i laplace Inverse Laplace transformation.
parallax Stellar parallax problem with 28 fixed observations.
phillips Phillips’ “famous” test problem.
regutm Test matrix for regularization methods.
shaw One-dimensional image restoration problem.
spikes Test problem with a “spiky” solution.
tomo Two-dimensional tomography problem with sparse matrix.
ursell Integral equation with no square integrable solution.
wing Test problem with a discontinuous solution.

>> B = anymatrix('core/beta',5)
B =

1 2 3 4 5

2 6 12 20 30

3 12 30 60 105

4 20 60 140 280

5 30 105 280 630

Importantly, as long as the group names are distinct (which is enforced by
the directory structure), matrices in different groups have different identifiers
even if they have the same matrix name. Each matrix is a MATLAB function,
but these functions are not on the MATLAB path (but rather in a private

Anymatrix collection 7

directory), so there is no danger of namespace clashes with other MATLAB
functions.

Help for the core/beta matrix is obtained with

>> anymatrix('core/beta','help')
beta Symmetric totally positive matrix of integers.

beta(n) is an n-by-n symmetric totally positive matrix of integers.

It is also infinitely divisible.

[A,R] = beta(n) returns both the matrix and its explicitly constructed

Cholesky factor R.

Most of the functionality of Anymatrix is implemented with name–value pairs
of input parameters, and the name and the value can be given in any order.
Anymatrix supports both the comma-separated “name, value” syntax and the
“name = value” syntax introduced in MATLAB R2021a. Taking account of
the command/function duality of MATLAB, the following lines are equivalent:

anymatrix('core/beta','help')
anymatrix('help','core/beta')
anymatrix(help = 'core/beta')
anymatrix help core/beta

Moreover, “name” can be abbreviated as long as there is a unique completion,
so

anymatrix('core/beta','h')
anymatrix core/beta h

anymatrix(h = 'core/beta')
anymatrix h core/beta

are further equivalent forms.

The contents of a group, and a cell array of matrix identifiers for the group,
can be obtained as follows, where we denote omitted output by [...].

>> anymatrix('core','c')

% CORE group

%

% augment - Augmented system matrix.

% beta - Symmetric totally positive matrix of integers.

% blockhouse - Block Householder matrix.

% dembo9 - Symmetric Hankel matrix of order 9 and rank 5.

% edelman27 - Matrix for which det is computed as the wrong integer.

[...]

>> g = anymatrix('core','g')
g =

22×1 cell array

{'core/augment' }

{'core/beta' }

{'core/blockhouse' }

{'core/dembo9' }

{'core/edelman27' }

[...]

8 N. J. Higham and M. Mikaitis

2.2 Matrix Properties

Every matrix has a set of properties associated with it and it is possible to
extract the identifiers of all matrices having a specified set of properties.

For the most part a matrix is assigned a property if it has that property
for the default values of any input parameters. An exception is “rectangu-
lar”, which is assigned if the matrix is rectangular for some choice of input
parameters, and if the default shape is square then the matrix is given both
the “square” and “rectangular” properties. Examples of matrices having both
properties are gallery/krylov and gallery/randsvd. Likewise a matrix can
be “real”, “complex”, or both.

Anymatrix recognizes the properties listed in Table 8. The properties are
not case-sensitive. For definitions of the properties not defined in the table see
linear algebra or numerical linear algebra textbooks.

We do not regard the properties defined for real matrices as being in-
cluded in the corresponding ones for complex matrices, thus “symmetric” is
not included in “Hermitian” and “orthogonal symmetric” is not included in
“unitary”.

The properties of the core/beta matrix are obtained with

>> props = anymatrix('core/beta','properties')
props =

12×1 cell array

{'built-in' }

{'infinitely divisible'}
{'integer' }

{'nonnegative' }

{'positive' }

{'positive definite' }

{'real' }

{'scalable' }

{'square' }

{'symmetric' }

{'totally nonnegative' }

{'totally positive' }

We can find which other matrices are nonnegative and either stochastic or
totally positive (abbreviating 'properties' to 'p'):

>> anymatrix('p','nonnegative and (stochastic or totally positive)')
ans =

5×1 cell array

{'core/beta' }

{'core/symmstoch'}
{'gallery/cauchy'}
{'matlab/hilb' }

{'matlab/pascal' }

In Anymatrix properties are read in when Anymatrix initializes itself on
the first call in a MATLAB session. Anymatrix provides a warning if a matrix
is detected to have a property not contained in Table 8. Properties can be
defined in two ways. The first way is within the functions defining the matrices.
A template for a function is

Anymatrix collection 9

Table 8 Matrix properties.

Property Comments

banded

binary Elements 0 or 1.
block Toeplitz

built-in Included in the base Anymatrix collection.
complex

correlation Symmetric positive (semi)definite with unit diagonal.
defective

diagonally dominant

eigenvalues Part of the eigensystem is known explicitly.
fixed size The matrix size is fixed at one or a finite set of values.
Hankel Constant along the antidiagonals.
Hermitian

Hessenberg

idempotent

ill conditioned The matrix is ill conditioned for some parameter values.
indefinite

infinitely divisible A is symmetric positive semidefinite with nonnegative entries
and A.^r is positive semidefinite for all r ≥ 0 [3].

integer All integer entries.
inverse The inverse of the matrix is known explicitly.
involutory A2 = I
M-matrix

nilpotent Ak = 0 for some positive integer k.
nonnegative All nonnegative entries.
normal Normal, but not symmetric/Hermitian/orthogonal/unitary.
orthogonal

parameter-dependent Matrix depends on parameters other than the dimension.
permutation

positive All positive entries.
positive definite Applies for both Hermitian and symmetric. Includes semidef-

inite. Search for positive definite and rank deficient to locate
singular semidefinite matrices.

pseudo-orthogonal Also known as J-orthogonal [29].
random Random numbers are used in the construction.
rank deficient

real

rectangular

scalable The problem dimension (or a function of it) is a parameter.
Not every dimension is necessarily supported.

singular values Part of the singular value decomposition is known explicitly.
skew-Hermitian

skew-symmetric

sparse The matrix is stored in the MATLAB sparse format.
square

stochastic Nonnegative with unit row sums.
symmetric

Toeplitz Constant along the diagonals.
totally nonnegative Every submatrix has nonnegative determinant.
totally positive Every submatrix has positive determinant.
triangular

tridiagonal

unimodular Integer entries and determinant ±1.
unitary

10 N. J. Higham and M. Mikaitis

function [A,properties] = mymatrix(n)

%MYMATRIX My matrix.

% MYMATRIX(n) return an n-by-n matrix.

properties = {'symmetric', 'indefinite', 'nonnegative', 'toeplitz'};
if nargin == 0, A = []; return, end

% Assign A.

% A = ...

This function returns properties in its final output argument and the prop-
erties can be obtained without generating the matrix by calling the function
with no input arguments. As an alternative, a function am properties.m can
be placed in the private directory of a group, with the properties for all
matrices in the group defined within. For example, am properties.m might
contain

properties = ...

{'mymatrix1', 'symmetric', 'indefinite', 'nonnegative', 'toeplitz';
'mymatrix2', 'hessenberg', 'toeplitz', 'binary', 'rank deficient';

};

This second option makes it easier to incorporate an existing group of matrices,
as just one file needs to be edited. For example, for the built-in gallery and
matlab groups we did not modify the corresponding M-files (which are part of
MATLAB) but instead wrote an am properties.m function for each group.

2.3 Remote Groups

We have incorporated Git integration to allow remote groups to be downloaded
from Git repositories into Anymatrix storage space and treated in the same
way as the built-in groups. For example, we can incorporate the following four
matrix collections.

• https://github.com/higham/matrices-correlation-invalid: invalid
correlation matrices collected by Higham and Strabić [36], [37]. These are
matrices that are intended to be correlation matrices but for various rea-
sons relating to their construction have a negative eigenvalue and so are
not positive semidefinite.

• https://github.com/higham/hpl-ai-matrix: a parametrized n×n ma-
trix designed for use in the HPL-AI Mixed Precision Benchmark7 [14].

• https://github.com/Xiaobo-Liu/matrices-mp-cosm: a collection of ma-
trices used for testing multiprecision algorithms for computing the matrix
cosine [1].

• https://github.com/mfasi/randsvdfast-matlab: randsvdfast, a func-
tion that provides similar functionality to anymatrix('gallery/randsvd')
but uses a faster algorithm [13].

7 https://icl.bitbucket.io/hpl-ai/

https://github.com/higham/matrices-correlation-invalid
https://github.com/higham/hpl-ai-matrix
https://github.com/Xiaobo-Liu/matrices-mp-cosm
https://github.com/mfasi/randsvdfast-matlab
https://icl.bitbucket.io/hpl-ai/

Anymatrix collection 11

To incorporate the matrices in the first GitHub repository as a group named
corrinv we can use the 'groups' command as follows8.

>> anymatrix('g','corrinv','higham/matrices-correlation-invalid');
Cloning into '[...]/corrinv/private'...
[...]

Anymatrix remote group cloned.

Anymatrix automatically rescans the file storage to pick up any new groups
and matrices that were downloaded. If the repository is updated we can run
the command that was used to create the group again, which runs git pull

to update the group.

2.4 Sets of Matrices

A matrix set is a user-created subset of all the matrices in an Anymatrix
collection, from one or multiple groups, gathered into one named entity. It
provides a convenient way to record and later reuse a set of matrices that
have something in common, such as being used in an experiment. It thereby
aids reproducibility of experiments. A set is defined by creating a text file in
anymatrix/sets/.

Here is an example usage of Anymatrix sets:

% List all sets.

>> anymatrix('sets')
ans =

1×1 cell array

{'my_set'}

% Show matrices in a particular set.

>> S = anymatrix('sets','my_set')
ans =

5×2 cell array

{'core/dembo9' } {1×1 missing }

{'core/augment' } {'[1, 1; 2, 2]'}
{'gallery/wilk' } {[3]}

{'matlab/pascal'} {'5, 1' }

{'matlab/pascal'} {'5, 2' }

% Generate the matrices (the first output is the same as above).

>> [S, D, A, W, P1, P2] = anymatrix('sets','my_set')
[...]

In this case my set is the name of the set. The file that describes this set
is anymatrix/sets/my set.txt and it has the following contents (it can be
viewed with type my_set.txt).

% This is an example anymatrix set.

% Comments start with a '%' symbol as the first character of the line.

% Following are declarations of some matrices in this set.

8 A full URL can be provided to clone a repository that is not on GitHub.

12 N. J. Higham and M. Mikaitis

% Dembo9 matrix without any input arguments.

core/dembo9:

% Augment matrix with a matrix as an input argument.

core/augment: [1, 1; 2, 2]

% Wilkinson matrix with a single input.

gallery/wilk: 3

% Two pascal matrices with different input arguments.

matlab/pascal: 5, 1

matlab/pascal: 5, 2

A set entry comprises a matrix ID followed by a colon and a set of input
arguments, and it is terminated by a new line character. Adding a new set
into Anymatrix involves creating such a file and rescanning the filestore with
anymatrix('scan'). Note that comments can only be made by starting a line
with a percentage sign.

2.5 Testing

Anymatrix contains two types of tests. The first type uses the MATLAB unit
testing framework to check that the matrices have the claimed properties,
which is done mainly for properties that are structural and do not require
numerical tolerances. We do not test for positive definiteness or diagonal dom-
inance, for example. The tests are carried out on samples of the matrices for
several small dimensions, with default values of any parameters. These tests
are run by calling the function test_anymatrix_properties located in the
anymatrix/testing directory.

A second set of tests is specific to the groups. Tests for all the groups that
have them can be run by anymatrix('test'). Specific group tests can be
run by anymatrix('test',group_name). Currently, the hadamard group and
the hpl-ai-matrix and randsvdfast downloadable groups have such specific
tests.

3 Examples of Use of Anymatrix

Here we provide some examples to illustrate how Anymatrix can be useful in
research.

3.1 Growth Factors for LU Factorization

The growth factor for LU factorization on A ∈ Cn×n is defined by

ρn(A) =
maxi,j,k |a(k)ij |
maxi,j |aij |

,

Anymatrix collection 13

where A(1) = A and the a
(k)
ij are the elements at the start of the kth stage of

LU factorization [28, sect. 9.3], [54]. For complete pivoting, which selects as
the pivot element at each stage an element of largest modulus in the active
submatrix, it is known that ρn ≤ n usually holds in practice, but that ρn > n
is possible [11], [18]. Cryer [9, Conjecture 5.1] conjectured that ρn = n for any
Hadamard matrix. This conjecture is still open [40], [44] and substantial effort
was required even to show that ρ16 = 16 for any 16×16 Hadamard matrix [39].
We will check the value of ρn for the real and complex Hadamard matrices in
Anymatrix using the following code.

%HADAMARD_GROWTH Growth factors for complete pivoting on Hadamard matrices.

for j = 1:2

switch j

case 1, matrix = 'hadamard/hadamard'; str = '';
case 2, matrix = 'hadamard/complex_hadamard'; str = 'complex'

end

[~,dims] = anymatrix(matrix);

tol = 1e2*eps;

nn = length(dims);

for i = 1:nn

n = dims(i,1); m = dims(i,2);

fprintf('Testing %3.0f %s Hadamard matrices with n = %2.0f.\n',m,str,n)
for k = 1:m

A = anymatrix(matrix,n,k);

[L,U,P,Q,rho] = gep(A,'c');
if abs(rho - n) >= tol*rho

fprintf('Growth %g for n = %g, matrix %g\n', rho,n,k)

end

end

end

fprintf('%g matrices tested of dimension up to %g.\n', ...

sum(dims(:,2)), dims(end,1))

end

The code uses the function gep from the Matrix Computation Toolbox [25],
which implements LU factorization with several pivoting strategies and returns
the growth factor. The code tries all 659 Hadamard matrices of dimension up
to 428 in the group as well as 9 complex Hadamard matrices of dimension up
to 13 (even though Cryer’s conjecture does not apply to the latter matrices).
The code finds that the growth factor is always equal to n to within the toler-
ance (which accounts for rounding errors), lending support to the conjecture.
The same is true if we repeat the computation for partial pivoting and rook
pivoting.

We note that because of rounding errors the pivot sequences may be dif-
ferent from those that would arise in exact arithmetic, so care is needed in
interpreting these results; see the discussion in [11].

14 N. J. Higham and M. Mikaitis

3.2 Specific Matrices

Anymatrix provides a convenient way to record and make available particular
matrices of interest. We mention three examples.

Consider this computation with the matrix core/edelman27, a matrix of
order 27 whose elements are all ±1:

>> A = anymatrix('core/edelman27');
>> format long g, d1 = det(A), d2 = double(det(vpa(A)))

d1 =

839466457497601

d2 =

839466457497600

The determinant is obviously an integer and d2, computed in 32-digit variable-
precision arithmetic (VPA) using the Symbolic Math Toolbox is the exact
value. Yet in double precision arithmetic, det computes an inexact value. An
explanation for this surprising behavior is given in [31].

In numerical linear algebra we often deal with matrices of integers, but
the factorizations we compute typically have some noninteger entries. It is not
well known that for n ≤ 7 every symmetric positive definite n × n matrix A
of integers with determinant 1 has a factorization A = ZTZ with Z an n× n
matrix of integers, though in general such a factorization does not exist for
n ≥ 8. This result is mentioned by Taussky [49, p. 336], [50, pp. 812–813] and
goes back to Hermite, Minkowski, and Mordell [42]. Finding an integer factor
Z is a nontrivial task. Higham, Lettington, and Schmidt [33] have recently
derived conditions for integer factorizations to exist and have developed an
approach to computing them. A case in point is the Wilson matrix, a moder-
ately ill-conditioned symmetric positive definite matrix that has a long history
as a test matrix. An integer factor was discovered in [32] and two rational fac-
tors were discovered in [33]. The matrix and its factors are available through
core/wilson:

>> [W,Z,Y,X] = anymatrix('core/wilson');
>> W, Z, format rat, Y, X

W =

5 7 6 5

7 10 8 7

6 8 10 9

5 7 9 10

Z =

2 3 2 2

1 1 2 1

0 0 1 2

0 0 1 1

Y =

3/2 2 1 0

1/2 1 0 1

3/2 2 3 3

1/2 1 0 0

X =

3/2 2 2 1

1/2 1 1 2

Anymatrix collection 15

-1/2 -1 1 1

3/2 2 2 2

Here,W = ZTZ = Y TY = XTX, and Z can be thought of as a block Cholesky
factor.

A group could be constructed of matrices that provide examples and coun-
terexamples for a particular problem, such as the embeddability problem. This
problem, which arises in Markov models, concerns whether a stochastic ma-
trix can be written as the exponential of a matrix with zero row sums and
nonnegative diagonal entries. Necessary and sufficient conditions for the exis-
tence of a generator are not known. Specific matrices have been identified that
demonstrate different possibilities as regards existence of generators and the
nature of a generator as a logarithm of the stochastic matrix; see, for example,
[5], [30, sec. 2.3], [45]. Collecting such matrices into a group would facilitate
numerical experiments in this area of research.

3.3 Matrix Generators

Often one wants to generate many matrices of a particular type, either ran-
domly or by varying parameters. Examples of MATLAB functions with these
capabilities are gallery/randsvd, for generating random nonsymmetric ma-
trices with a specified singular value distribution or symmetric positive definite
matrices with a specified eigenvalue distribution, and gallery/randcorr, for
generating random correlation matrices with specified eigenvalues. Anymatrix
includes two other routines of this type.

The function core/totally_nonneg, generates totally nonnegative matri-
ces, which are square matrices for which every submatrix has nonnegative
determinant. It uses a representation of such matrices as a product of non-
negative bidiagonal matrices [16] and allows the elements of the factors to be
specified or to be chosen randomly.

The function core/symmstoch generates symmetric stochastic matrices
(symmetric nonnegative matrices with unit row and column sums) with eigen-
values determined by an n-vector of input parameters (which must satisfy a
certain nonnegativity condition). The construction makes use of a Soules ma-
trix, an orthogonal matrix of a special type generated by core/soules [47].

These functions can be called as anymatrix('core/totally_nonneg',n)
and anymatrix('core/symmstoch',n), which generate random and nonran-
dom n× n matrices, respectively.

3.4 Optimal Matrices

Much research has focused on finding matrices in a given class with largest
determinant, largest condition number, smallest singular value, and so on.
Anymatrix includes a number of optimal matrices that have been identified,
as summarized in Table 9.

16 N. J. Higham and M. Mikaitis

Table 9 Matrices with optimality properties.

Matrix Optimality property

'core/hessmaxdet',n,d Maximum determinant over all n × n upper Hessenberg
matrices with unit subdiagonal and elements in the upper
triangle on [−d, d] [12], [15].

'core/triminsval01',n Minimal smallest singular value over all n×n nonsingular
upper triangular binary matrices [41].

'gallery/dramadah',n,k Maximal, or relatively large, determinant or value of
∥A−1∥2F (depending on k) over all n × n binary matri-
ces [6], [19].

3.5 Condition Estimator

Our final example shows how to run a test across all the matrices in Anymatrix,
which can be useful in various circumstances. MATLAB does not provide any
easy way to access sequentially all the matrices in galllery.

For the square matrices in Anymatrix, the following code computes the
underestimation ratio for the MATLAB condition number estimator condest,
which uses the algorithm of Higham and Tisseur [38] to compute a lower
bound for κ1(A) = ∥A∥1∥A−1∥1. The code filters out matrices defined in the
cell array omit, which would require a specific dimension or more than one
input argument.

%CONDEST_TEST Condition estimator.

n = 16; rng(1)

mats = anymatrix('p','square');
nmats = length(mats);

ratio = zeros(nmats,1);

% Matrices to omit because they require special arguments.

omit = {'contest/mht','contest/unisample','gallery/wathen','gallery/wilk',...
'hadamard/hadamard','matlab/compan','matlab/hadamard'};

for i = 1:nmats

fprintf('%s %g/%g.\n',mats{i},i,nmats)

if ismember(mats{i},omit), continue, end

props = anymatrix(mats{i},'p');
% Use matrices from built-in groups but not user-added groups.

if ~ismember('built-in',props), continue, end

if ismember('scalable',props)
A = anymatrix(mats{i},n);

else

A = anymatrix(mats{i});

end

A = full(A); % Convert sparse matrices to full.

if rcond(A) <= 1e-15, continue, end % Skip numerically singular matrices.

est = condest(A); cond1 = cond(A,1);

Anymatrix collection 17

ratio(i) = est/cond1;

end

ratio = ratio(find(ratio)); % Remove zeros (skipepd matrices).

fprintf('Out of %g matrices:\n',length(ratio))
fprintf('Min = %7.2e, mean = %7.2e, max = %7.2e\n',...

min(ratio),mean(ratio),max(ratio))

The output is

contest/baitsample 1/154.

contest/curvature 2/154.

[...]

regtools/wing 154/154.

Out of 86 matrices:

Min = 6.62e-01, mean = 9.91e-01, max = 1.00e+00

The results of this experiment are consistent with the experience that the
estimator is usually within a factor 3 of the true condition number [38].

4 How to Extend or Contribute to the Collection

Users can extend Anymatrix in several ways. New groups can easily be added,
as explained in the users’ guide [34, Sec. 10.1]. Such groups are on the same
footing as the built-in groups.

One can make a group available to others by putting it in an online GitHub
repository, as explained in Section 2.3.

We welcome suggestions for matrices to add to existing groups as well as
suggestions for new groups to be added, and will be happy to link to remote
groups on the Anymatrix GitHub page.

5 Conclusion

The MATLAB gallery matrix collection is a valuable tool, but it is so large
that it is difficult to find within it matrices with specific properties. We de-
signed Anymatrix to provide a unified, searchable interface to a wide variety of
matrices, in such a way that remote groups can be included, allowing the basic
Anymatrix collection to be expanded by users. We have been using Anymatrix
in our research throughout its development and find that it matches our needs
for finding suitable matrices for testing and experimentation, as well as being
a convenient way to make available specific matrices that have been found in
the research of us or our colleagues (such as core/edelman27 and the integer
factors of core/wilson).

Our code makes use of many recent features of MATLAB, including certain
string handling functions and the unit testing framework. Much of it is not
specific to organizing matrices and so it can be reused to organize, into groups
and sets, any kind of objects appended with properties.

18 N. J. Higham and M. Mikaitis

Acknowledgements We thank Des Higham for permission to include CONTEST and
NESSIE, Per Christian Hansen for permission to include Regularization Tools, Neil Sloane
for permission to include his collection of Hadamard matrices, and Cleve Moler for permis-
sion to use his function for the Hadamard matrix of Baumert, Golomb, and Hall.

We thank Bobby Cheng, Mike Croucher, Massimiliano Fasi, Xiaobo Liu, Srikara Pranesh,
and Mawussi Zounon for comments and suggestions.

This was supported by MathWorks, the Royal Society, and Engineering and Physical
Sciences Research Council grant EP/P020720/1.

References

1. Al-Mohy, A.H., Higham, N.J., Liu, X.: Arbitrary precision algorithms for computing the
matrix cosine and its Fréchet derivative. MIMS EPrint 2021.13, Manchester Institute for
Mathematical Sciences, The University of Manchester (2021). URL http://eprints.

maths.manchester.ac.uk/2832/
2. Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: A collection

of nonlinear eigenvalue problems. ACM Trans. Math. Software 39(2), 7:1–7:28 (2013).
DOI 10.1145/2427023.2427024

3. Bhatia, R.: Infinitely divisible matrices. Amer. Math. Monthly 113(3), 221–235 (2006).
DOI 10.2307/27641890

4. Boisvert, R.F., Pozo, R., Remington, K., Barrett, R.F., Dongarra, J.J.: Matrix Market:
A Web resource for test matrix collections. In: R.F. Boisvert (ed.) Quality of Numeri-
cal Software: Assessment and Enhancement, pp. 125–136. Chapman and Hall, London
(1997)

5. Casanellas, M., Fernández-Sánchez, J., Roca-Lacostena, J.: An open set of 4×4 embed-
dable matrices whose principal logarithm is not a Markov generator. Linear Multilinear
Algebra pp. 1–12 (2020). DOI 10.1080/03081087.2020.1854165

6. Ching, L.: The maximum determinant of an n×n lower Hessenberg (0, 1) matrix. Linear
Algebra Appl. 183, 147–153 (1993). DOI 10.1016/0024-3795(93)90429-R

7. Clement, P.A.: A class of triple-diagonal matrices for test purposes. SIAM Newsletter
5(8), 3–5 (1957)

8. Clement, P.A.: A class of triple-diagonal matrices for test purposes. SIAM Rev. 1(1),
50–52 (1959). DOI 10.1137/1001006

9. Cryer, C.W.: Pivot size in Gaussian elimination. Numer. Math. 12, 335–345 (1968).
DOI 10.1007/BF02162514

10. Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM Trans.
Math. Software 38(1), 1:1–1:25 (2011). DOI 10.1145/2049662.2049663

11. Edelman, A.: The complete pivoting conjecture for Gaussian elimination is false. The
Mathematica Journal 2, 58–61 (1992)

12. Fasi, M., Feng, J., Negri Porzio, G.M.: Corrigendum to “Determinants of normalized
Bohemian upper Hessenberg matrices”. Electron. J. Linear Algebra 37, 160–162 (2021).
DOI 10.13001/ela.2021.5849

13. Fasi, M., Higham, N.J.: Generating extreme-scale matrices with specified singular values
or condition numbers. SIAM J. Sci. Comput. 43(1), A663–A684 (2021). DOI 10.1137/
20M1327938

14. Fasi, M., Higham, N.J.: Matrices with tunable infinity-norm condition number and no
need for pivoting in LU factorization. SIAM J. Matrix Anal. Appl. 42(1), 417–435
(2021). DOI 10.1137/20m1357238

15. Fasi, M., Negri Porzio, G.M.: Determinants of normalized Bohemian upper Hessenberg
matrices. Electron. J. Linear Algebra 36(36), 352–366 (2020). DOI 10.13001/ela.2020.
5053

16. Gasca, M., Peña, J.M.: On factorizations of totally positive matrices. In: M. Gasca,
C.A. Micchelli (eds.) Total Positivity and Its Applications, pp. 109–130. Springer-Ver-
lag (1996). DOI 10.1007/978-94-015-8674-0 7

17. Gazzola, S., Hansen, P.C., Nagy, J.G.: IR tools: a MATLAB package of iterative reg-
ularization methods and large-scale test problems. Numer. Algorithms 81(3), 773–811
(2018). DOI 10.1007/s11075-018-0570-7

http://eprints.maths.manchester.ac.uk/2832/
http://eprints.maths.manchester.ac.uk/2832/

Anymatrix collection 19

18. Gould, N.I.M.: On growth in Gaussian elimination with complete pivoting. SIAM J.
Matrix Anal. Appl. 12(2), 354–361 (1991). DOI 10.1137/0612025

19. Graham, R.L., Sloane, N.J.A.: Anti-Hadamard matrices. Linear Algebra Appl. 62,
113–137 (1984). DOI 10.1016/0024-3795(84)90090-9

20. Gregory, R.T., Karney, D.L.: A Collection of Matrices for Testing Computational Al-
gorithms. Wiley, New York, USA (1969). Reprinted with corrections by Robert E.
Krieger, Huntington, New York, 1978

21. Hansen, P.C.: Regularization Tools: A Matlab package for analysis and solution of
discrete ill-posed problems. Numer. Algorithms 6(1), 1–35 (1994). DOI 10.1007/
BF02149761

22. Hansen, P.C.: Regularization Tools version 4.0 for Matlab 7.3. Numer. Algorithms
46(2), 189–194 (2007). DOI 10.1007/s11075-007-9136-9

23. Hansen, P.C., Jørgensen, J.S.: AIR tools II: Algebraic iterative reconstruction methods,
improved implementation. Numer. Algorithms 79(1), 107–137 (2018). DOI 10.1007/
s11075-017-0430-x

24. Higham, D.J., Higham, N.J.: MATLAB Guide, third edn. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (2017). DOI 10.1137/1.9781611974669

25. Higham, N.J.: The Matrix Computation Toolbox. http://www.maths.manchester.ac.

uk/~higham/mctoolbox

26. Higham, N.J.: Algorithm 694: A collection of test matrices in MATLAB. ACM Trans.
Math. Software 17(3), 289–305 (1991). DOI 10.1145/114697.116805

27. Higham, N.J.: The Test Matrix Toolbox for MATLAB (version 3.0). Numerical Analysis
Report No. 276, Manchester Centre for Computational Mathematics, UK (1995). URL
http://www.maths.manchester.ac.uk/~higham/papers/high95m.pdf

28. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, second edn. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA (2002). DOI 10.1137/1.
9780898718027

29. Higham, N.J.: J-orthogonal matrices: Properties and generation. SIAM Rev. 45(3),
504–519 (2003). DOI 10.1137/S0036144502414930

30. Higham, N.J.: Functions of Matrices: Theory and Computation. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA (2008). DOI 10.1137/1.
9780898717778

31. Higham, N.J., Edelman, A.: The strange case of the determinant of a matrix of 1s and
−1s. https://nhigham.com/2017/12/11/the-strange-case-of-the-determinant-of-

a-matrix-of-1s-and-1s/ (2017)
32. Higham, N.J., Lettington, M.C.: Optimizing and factorizing the Wilson matrix. MIMS

EPrint 2021.3, Manchester Institute for Mathematical Sciences, The University of
Manchester, UK (2021). URL http://eprints.maths.manchester.ac.uk/2803/. To
appear in Amer. Math. Monthly

33. Higham, N.J., Lettington, M.C., Schmidt, K.M.: Integer matrix factorisations, superal-
gebras and the quadratic form obstruction. Linear Algebra Appl. 622, 250–267 (2021).
DOI 10.1016/j.laa.2021.03.028

34. Higham, N.J., Mikaitis, M.: Anymatrix: An extensible MATLAB matrix collection.
Users’ guide. MIMS EPrint 2021.15, Manchester Institute for Mathematical Sciences,
The University of Manchester, UK (2021). URL http://eprints.maths.manchester.

ac.uk/2834/

35. Higham, N.J., Negri Porzio, G.M., Tisseur, F.: An updated set of nonlinear eigenvalue
problems. MIMS EPrint 2019.5, Manchester Institute for Mathematical Sciences, The
University of Manchester, UK (2019). URL http://eprints.maths.manchester.ac.uk/

2699/

36. Higham, N.J., Strabić, N.: Anderson acceleration of the alternating projections method
for computing the nearest correlation matrix. Numer. Algorithms 72(4), 1021–1042
(2016). DOI 10.1007/s11075-015-0078-3

37. Higham, N.J., Strabić, N.: Bounds for the distance to the nearest correlation matrix.
SIAM J. Matrix Anal. Appl. 37(3), 1088–1102 (2016). DOI 10.1137/15M1052007

38. Higham, N.J., Tisseur, F.: A block algorithm for matrix 1-norm estimation, with an
application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl. 21(4), 1185–1201
(2000). DOI 10.1137/S0895479899356080

http://www.maths.manchester.ac.uk/~higham/mctoolbox
http://www.maths.manchester.ac.uk/~higham/mctoolbox
http://www.maths.manchester.ac.uk/~higham/papers/high95m.pdf
https://nhigham.com/2017/12/11/the-strange-case-of-the-determinant-of-a-matrix-of-1s-and-1s/
https://nhigham.com/2017/12/11/the-strange-case-of-the-determinant-of-a-matrix-of-1s-and-1s/
http://eprints.maths.manchester.ac.uk/2803/
http://eprints.maths.manchester.ac.uk/2834/
http://eprints.maths.manchester.ac.uk/2834/
http://eprints.maths.manchester.ac.uk/2699/
http://eprints.maths.manchester.ac.uk/2699/

20 N. J. Higham and M. Mikaitis

39. Kravvaritis, C., Mitrouli, M.: The growth factor of a Hadamard matrix of order 16 is
16. Numer. Linear Algebra Appl. 16, 715–743 (2009). DOI 10.1002/nla.637

40. Kravvaritis, C.D.: Hadamard matrices: Insights into their growth factor and determinant
computations. In: M.T. Rassias, V. Gupta (eds.) Mathematical Analysis, Approxima-
tion Theory and Their Applications, pp. 383–415. Springer-Verlag, Berlin, Germany
(2016). DOI 10.1007/978-3-319-31281-1 17

41. Loewy, R.: On the smallest singular value in the class of invertible lower triangular (0, 1)
matrices. Linear Algebra Appl. 608, 203–213 (2021). DOI 10.1016/j.laa.2020.08.030

42. Mordell, L.J.: The definite quadratic forms in eight variables with determinant unity. J.
Math. Pures Appl. 17(4), 41–46 (1938). URL https://gallica.bnf.fr/ark:/12148/

bpt6k6459126x/f53.image

43. Rutishauser, H.: On test matrices. In: Programmation en Mathématiques Numériques,
Besançon, 1966, Éditions Centre Nat. Recherche Sci., Paris, vol. 7 (no. 165), pp. 349–
365 (1968)

44. Seberry, J., Yamada, M.: Hadamard Matrices. Wiley, New Jersey, USA (2020). DOI
10.1002/9781119520252

45. Singer, B., Spilerman, S.: The representation of social processes by Markov models.
Amer. J. Sociology 82(1), 1–54 (1976). DOI 10.1086/226269

46. Sloane, N.J.A.: A library of Hadamard matrices. http://neilsloane.com/hadamard/
47. Soules, G.W.: Constructing symmetric nonnegative matrices. Linear Multilinear Alge-

bra 13, 241–251 (1983). DOI 10.1080/03081088308817523
48. Tadej, W., Życzkowski, K.: A concise guide to complex Hadamard matrices. Open

Systems & Information Dynamics 13(2), 133–177 (2006). DOI 10.1007/s11080-006-
8220-2

49. Taussky, O.: Matrices of rational integers. Bull. Amer. Math. Soc. 66(5), 327–346
(1960). DOI 10.1090/s0002-9904-1960-10439-9

50. Taussky, O.: Sums of squares. Amer. Math. Monthly 77(8), 805–830 (1970). DOI
10.1080/00029890.1970.11992594. URL http://www.jstor.org/stable/2317016

51. Taylor, A., Higham, D.J.: CONTEST: A controllable test matrix toolbox for MATLAB.
ACM Trans. Math. Software 35(4), 26:1–26:17 (2009). DOI 10.1145/1462173.1462175

52. Taylor, A., Higham, D.J.: NESSIE: Network example source supporting innovative ex-
perimentation. In: E. Estrada, M. Fox, D.J. Higham, G.L. Oppo (eds.) Network Science:
Complexity in Nature and Technology, pp. 85–106. Springer-Verlag, London (2010).
DOI 10.1007/978-1-84996-396-1 5

53. Westlake, J.R.: A Handbook of Numerical Matrix Inversion and Solution of Linear
Equations. Wiley, New York, USA (1968)

54. Wilkinson, J.H.: Error analysis of direct methods of matrix inversion. J. ACM 8, 281–
330 (1961). DOI 10.1145/321075.321076

55. Zhang, W., Higham, N.J.: Matrix Depot: An extensible test matrix collection for Julia.
PeerJ Comput. Sci. 2, e58 (2016). DOI 10.7717/peerj-cs.58

https://gallica.bnf.fr/ark:/12148/bpt6k6459126x/f53.image
https://gallica.bnf.fr/ark:/12148/bpt6k6459126x/f53.image
http://neilsloane.com/hadamard/
http://www.jstor.org/stable/2317016

