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Numerical Stability of
Algorithms at Extreme Scale
and Low Precisions*

Nicholas J. Higham

Abstract
The largest dense linear systems that are being solved today are of order 𝑛 = 107. Single
precision arithmetic, which has a unit roundoff 𝑢 ≈ 10−8, is widely used in scientific com-
puting, and half precision arithmetic, with 𝑢 ≈ 10−4, is increasingly being exploited as it
becomes more readily available in hardware. Standard rounding error bounds for numer-
ical linear algebra algorithms are proportional to 𝑝(𝑛)𝑢, with 𝑝 growing at least linearly
with 𝑛. Therefore we are at the stage where these rounding error bounds are not able to
guarantee any accuracy or stability in the computed results for some extreme-scale or
low-accuracy computations. We explain how rounding error bounds with much smaller
constants can be obtained. Blocked algorithms, which break the data into blocks of size 𝑏,
lead to a reduction in the error constants by a factor 𝑏 or more. Two architectural features
also reduce the error constants: extended precision registers and fused multiply–add oper-
ations, either at the scalar level or in mixed precision block form. We also discuss a new
probabilistic approach to rounding error analysis that provides error constants that are the
square roots of those of the worst-case bounds. Combining these different considerations
provides new understanding of the numerical stability of extreme scale and low precision
computations in numerical linear algebra.

* Version of September 13, 2021.



1. Introduction
We are approaching the exascale computing era, in which the world’s fastest com-

puters will be able to perform 1018 double precision floating-point operations (flops) per
second. With the increased speed comes an increase in the size of problems that can be
solved in reasonable time, provided that sufficient memory is available.

A problem of particular interest is solving a dense system of linear equations
𝐴𝑥 = 𝑏, where 𝐴 ∈ R𝑛×𝑛 is nonsingular and 𝑏 ∈ R𝑛. Table 1 shows the sizes of large systems
that have been solved at different points in time. The data is taken from the TOP500* list,
which ranks the world’s fastest computers by their speed (measured in flops per second) in
solving a random linear system 𝐴𝑥 = 𝑏 by LU factorization with partial pivoting. Generally,
a benchmark run needs to be done with the largest 𝑛 possible in order to obtain the best
performance, so the tabulated values give an indication of the largest systems solved at each
point in time. Table 1 suggests that the size of the largest linear systems being solved is
growing by roughly a factor 10 each decade.

The standard componentwise backward error result for a solution 𝑥̂ computed by
LU factorization in floating-point arithmetic is as follows [21, Thm. 9.4]. We write |𝐴| =
( |𝑎𝑖 𝑗 |) and inequalities between matrices hold componentwise. We need the constant

𝛾𝑛 =
𝑛𝑢

1 − 𝑛𝑢 ,

where 𝑢 is the unit roundoff, which is 𝑢 = 2−𝑡 for a base-2 floating-point arithmetic with 𝑡
bits in the significand.

Theorem 1.1. Let 𝐴 ∈ R𝑛×𝑛 and suppose that LU factorization produces computed LU
factors 𝐿̂, 𝑈, and a computed solution 𝑥̂ to 𝐴𝑥 = 𝑏. Then there is a matrix Δ𝐴 such that

(1.1) (𝐴 + Δ𝐴)𝑥̂ = 𝑏, |Δ𝐴| ≤ 𝛾3𝑛 | 𝐿̂ | |𝑈 |.

Ideally, we would like the backward error matrix Δ𝐴 in (1.1) to satisfy ∥Δ𝐴∥∞ ≈
𝑢∥𝐴∥∞. It can be shown that

(1.2) ∥ | 𝐿̂ | |𝑈 | ∥∞ ≤ 𝑝(𝑛)𝜌𝑛∥𝐴∥∞

for a quadratic polynomial 𝑝 [21, Lem. 9.6], where the growth factor 𝜌𝑛 ≥ 1 measures the
growth of elements during the factorization process. If, however, we make the very favorable
assumption that ∥ | 𝐿̂ | |𝑈 | ∥∞ ≈ ∥𝐴∥∞ then we obtain

(1.3)
∥Δ𝐴∥∞
∥𝐴∥∞

≲ 𝛾3𝑛 = 3𝑛𝑢 +𝑂 (𝑢2).

For the largest 𝑛 in Table 1, in IEEE double precision arithmetic (see Table 2) we
have 𝑛𝑢 ≈ (2.1× 107) (1.11× 10−16) ≈ 2.3× 10−9, so even with these favorable assumptions
our bound indicates the potential for a significant loss of numerical stability. If we work in
IEEE single precision then 𝑛𝑢 ≈ (2.1 × 107) (5.96 × 10−8) ≈ 1.25, and our backward error
bound is of order 1, suggesting the possibility of a complete loss of stability.

* http://www.top500.org
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Table 1 Size of large linear systems solved. The data is from the TOP500.

Machine Date 𝑛

Fugaku June 2021 2.1 × 107
Jaguar June 2010 6.3 × 106

ASCI RED June 2000 3.6 × 105
CM-5/1024 June 1993 5.2 × 104

Table 2 Parameters for floating-point arithmetics: number of bits in significand (including implicit
most significant bit) and exponent (sig, exp), unit roundoff 𝑢, smallest normalized positive
number 𝑥min, and largest finite number 𝑥max. The last three columns are given to three
significant figures. The arithmetics whose names begin “fp” are from the IEEE standard
[25].

Precision Name (sig, exp) 𝑢 𝑥min 𝑥max

Half bfloat16 (8, 8) 3.91 × 10−3 1.18 × 10−38 3.39 × 1038
Half fp16 (11, 5) 4.88 × 10−4 6.10 × 10−5 6.55 × 104
Single fp32 (24, 8) 5.96 × 10−8 1.18 × 10−38 3.40 × 1038
Double fp64 (53, 11) 1.11 × 10−16 2.22 × 10−308 1.80 × 10308
Double extended (Intel) (64, 16) 5.32 × 10−20 3.36 × 10−4932 1.19 × 104932
Quadruple fp128 (113, 15) 9.63 × 10−35 3.36 × 10−4932 1.19 × 104932

Modern hardware increasingly supports half precision arithmetic, which is attrac-
tive because of its speed, its lower energy usage, and its reduced storage and data movement
costs. The two currently available half precision formats are bfloat16 [26] and IEEE half pre-
cision; see Table 2. The optimistic bound (1.3) provides useful information only if 3𝑛𝑢 < 1,
but 3𝑛𝑢 > 1 for problems of order 𝑛 ≥ 684 in IEEE half precision and 𝑛 ≥ 86 in bfloat16.
Yet machine learning codes routinely use half precision in inner products and matrix–vector
products with 𝑛≫ 682 with apparent success [18], [38]. Moreover, the machine topping the
HPL-AI mixed-precision benchmark [14] in the June 2021 TOP500 list solved a linear sys-
tem of order 1.6 × 107 using IEEE half precision arithmetic for most of the computations,
and the result was good enough to pass the benchmark’s test that the residual is of order the
unit roundoff for double precision.

How can this apparent mismatch between theory and practice be explained, and
what are the implications for the future as the size of the largest problems continues to
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increase and the use of low precision arithmetic becomes more common? Have we reached
the point where our techniques for analyzing rounding errors, honed over seventy years of
digital computation, are unable to predict the accuracy of numerical linear algebra compu-
tations that are now routine? I will show that we can, in fact, understand to a considerable
extent the behavior of extreme-scale and low accuracy computations. To do so we need to
take account of a number of algorithmic design techniques and architectural features of pro-
cessors that help to reduce error growth and we need to exploit a new probabilistic approach
to rounding error analysis.

The main purpose of backward error analysis results such as Theorem 1.1 is to show
the form of the backward error bound and to reveal the circumstances (if any) in which the
backward error could be large. As Wilkinson [37], Parlett [31], and the present author [21,
Sec. 3.2] have noted, the constants in a backward error bound are the least important part of
it. Wilkinson recommends that if sharp error estimates are required they should be computed
a posteriori [36, Sec. 12], [37]. This is indeed good advice, but it nevertheless remains valid
to ask what a priori bounds can tell us—about the limits of what can be computed and about
whether a successful computation can be guaranteed for a mission-critical application or one
that takes up substantial computational resources. Furthermore, this question is also relevant
for future benchmarking: will the HPL benchmark [13], [32] (used in the TOP500) or the
HPL-AI mixed precision benchmark need modifying in the future because their criteria for
successful completion can no longer be satisfied?

We assume that the floating-point arithmetic in use satisfies the standard model [21,
Sec. 2.2]

(1.4) fl(𝑥 op 𝑦) = (𝑥 op 𝑦) (1 + 𝛿), |𝛿 | ≤ 𝑢, op = +,−, ∗, /.

This model is certainly satisfied by IEEE arithmetic, which defines fl(𝑥 op 𝑦) to be the
rounded exact value. In general, we denote by fl(expr) the value of the expression expr
when it is evaluated in floating-point arithmetic.

We begin, in Section 2, by showing how the use of blocked inner products and
blocked matrix factorizations reduces constants in rounding error bounds by a factor approx-
imately equal to the block size. In Section 3 we explain how extended precision registers on
Intel x86 processors and fused multiply–add operations and their mixed precision block gen-
eralizations yield reductions in the error constants. In Section 4 we explain how probabilistic
rounding error analysis gives rounding error bounds with constants that are the square roots
of the constants in the worst-case bounds. Some other relevant considerations are discussed
in Section 5. We offer our conclusions in Section 6.
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2. Blocked algorithms
Blocked algorithms* which are primarily designed to give better performance

on modern computers with hierarchical memories, also lead to improved rounding error
bounds, as we now explain.

2.1. Blocked inner products
Let 𝑥, 𝑦 ∈ R𝑛 and consider the inner product 𝑠 = 𝑥𝑇𝑦. If we evaluate 𝑠 in the natural

way as

(2.1) 𝑠 = 𝑥1𝑦1, 𝑠← 𝑠 + 𝑥𝑘𝑦𝑘 , 𝑘 = 2: 𝑛,

then the computed result 𝑠̂ satisfies [21, Sec. 3.1]

(2.2) |𝑠 − 𝑠̂ | ≤ 𝛾𝑛 |𝑥 |𝑇|𝑦 |.

In fact, this bound holds no matter what order the terms are summed in. Another way to
compute the inner product is by summing two half-length inner products, where we assume
𝑛 = 2𝑏 for simplicity:

𝑠1 = 𝑥(1 : 𝑏)𝑇 𝑦(1 : 𝑏),
𝑠2 = 𝑥(𝑏 + 1 : 𝑛)𝑇 𝑦(𝑏 + 1 : 𝑛),
𝑠 = 𝑠1 + 𝑠2.

For this formulation the error bound is

|𝑠 − 𝑠̂ | ≤ 𝛾
𝑛/2+1 |𝑥 |

𝑇|𝑦 |,

so the error constant has been reduced by a factor 2. We can generalize this idea. Assuming
that** 𝑛 = 𝑘𝑏, we can compute

(2.3)
𝑠𝑖 = 𝑥((𝑖 − 1)𝑏 + 1 : 𝑖𝑏)𝑇 𝑦((𝑖 − 1)𝑏 + 1 : 𝑖𝑏), 𝑖 = 1 : 𝑘,

𝑠 = 𝑠1 + 𝑠2 + · · · + 𝑠𝑘 ,

and the error bound is [21, Sec. 3.1]

(2.4) |𝑠 − 𝑠̂ | ≤ 𝛾
𝑏+𝑛/𝑏−1 |𝑥 |

𝑇|𝑦 |.

As long as 𝑏 ≪ 𝑛 the error constant has been reduced by about a factor 𝑏. The reason for
the reduction is that whereas for the standard evaluation (2.1) elements of 𝑥 and 𝑦 take part
in up to 𝑛 − 1 additions, for (2.3) they take part in at most 𝑏 + 𝑛/𝑏 − 2 additions. The value

* A blocked algorithm organizes a computation so that it works on separate chunks of data.
It is also commonly called a “block algorithm”, but the use of “block” is best reserved for
properties, factorizations, and algorithms in which scalars are generalized into blocks. For
example, a block tridiagonal matrix is not, in general, tridiagonal, and a block LU factoriza-
tion is different from an LU factorization because it has a block upper triangular𝑈.

** This is not a practical restriction, as for general 𝑛 we can compute the inner product of the
last 𝑛 mod 𝑏 elements separately or pad the vectors with zeros so that their dimension is a
multiple of 𝑏.
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(a) Elements of 𝑥 and 𝑦 generated as
−0.25 + randn, where randn is
drawn from the normal (0, 1)
distribution.
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(b) Elements of 𝑥 and 𝑦 generated
from the uniform distribution on
(0, 1) .

Figure 1 Relative errors in inner products computed in single precision with no blocking and with
block size 256.

of 𝑏 that minimizes the bound (2.4) is 𝑏 =
√
𝑛, so if we take for 𝑏 the nearest integer to

√
𝑛

we will have
|𝑠 − 𝑠̂ | ≲ 𝛾2

√
𝑛
|𝑥 |𝑇|𝑦 |.

By splitting the inner product into pieces, computing the partial inner products, and sum-
ming the results, we have reduced the error constant from 𝑛 to 2

√
𝑛, which is a substantial

reduction for large 𝑛.
Blocking of inner products is common in practice, though a fixed block size rather

than one depending on 𝑛 is normally taken [8]. It may be done in a low-level kernel for
performance considerations and so may be invisible to a user.

To illustrate the benefits of blocking we show in Figure 1 the relative errors in inner
products computed with and without blocking for two types of random vector. The dimen-
sion 𝑛 ranges from 103 to 109, the block size is 256, and the relative errors are averaged
over 10 pairs of vectors 𝑥 and 𝑦 for each 𝑛. The reason for shifting the normally distributed
random vectors is to make the mean nonzero, as for a zero mean the errors tends to be much
smaller [23]. The more rapid growth of the errors for the unblocked computation that begins
around 𝑛 = 107 for both distributions is due to stagnation (described in Section 4.3).

The blocking approach just described can be improved by using a combination of
two different methods. We will illustrate the idea for summation, but it trivially generalizes
to inner products.

Assume that we have at our disposal two summation algorithms: a fast one, referred
to as the FastSum algorithm, and an accurate one, referred to as the AccurateSum algorithm.
Algorithm 2.1 uses these two algorithms to compute

∑𝑛
𝑖=1 𝑧𝑖 by an algorithm of Blanchard,
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Higham, and Mary [6]. The algorithm is called FABsum, which stands for “fast and accurate
blocked summation.” To compute the inner product 𝑥𝑇𝑦, we can take 𝑧𝑖 = 𝑥𝑖𝑦𝑖 . We assume
that 𝑛 is a multiple of 𝑏.

Algorithm 2.1 (FABsum). This algorithm takes as input 𝑛 summands 𝑧𝑖 , a block size 𝑏

that divides 𝑛, and two summation algorithms FastSum and AccurateSum. It returns the sum
𝑠 =

∑𝑛
𝑖=1 𝑧𝑖 .

1 for 𝑖 = 1 : 𝑛/𝑏
2 Compute 𝑠𝑖 =

∑𝑖𝑏
𝑗=(𝑖−1)𝑏+1 𝑧 𝑗 with FastSum.

3 end
4 Compute 𝑠 =

∑𝑛/𝑏
𝑖=1 𝑠𝑖 with AccurateSum.

Note that for 𝑏 = 1, FABsum reduces to AccurateSum and for 𝑏 = 𝑛 it reduces to
FastSum. The motivation for FABsum is that if 𝑏 is chosen large enough most of the work
is done by FastSum but the use of AccurateSum can lead to improved accuracy.

Assume that for a sum 𝑠 =
∑𝑛

𝑖=1 𝑧𝑖 the computed 𝑠̂ from FastSum satisfies

(2.5) 𝑠̂ =

𝑛∑︁
𝑖=1

𝑧𝑖 (1 + 𝜇 𝑓

𝑖
), |𝜇 𝑓

𝑖
| ≤ 𝜖 𝑓 (𝑛)

and the computed 𝑠̂ from AccurateSum satisfies

(2.6) 𝑠̂ =

𝑛∑︁
𝑖=1

𝑧𝑖 (1 + 𝜇𝑎
𝑖 ), |𝜇𝑎

𝑖 | ≤ 𝜖𝑎 (𝑛),

where 𝜖 𝑓 (𝑛) and 𝜖𝑎 (𝑛) are 𝑂 (𝑢) and depend on 𝑛 and 𝑢. With these assumptions on the
backward errors of the underlying summation algorithms, we have the following backward
error result [6, Thm. 3.1].

Theorem 2.2. Let 𝑠 =
∑𝑛

𝑖=1 𝑧𝑖 be computed by Algorithm 2.1. The computed 𝑠̂ satisfies

𝑠̂ =

𝑛∑︁
𝑖=1

𝑧𝑖 (1 + 𝜇𝑖), |𝜇𝑖 | ≤ 𝜖 (𝑛, 𝑏) = 𝜖 𝑓 (𝑏) + 𝜖𝑎 (𝑛/𝑏) + 𝜖 𝑓 (𝑏)𝜖𝑎 (𝑛/𝑏).

To see the gains in accuracy Algorithm 2.1 can bring, consider the following two
choices. For FastSum take recursive summation, which is the usual algorithm that com-
putes 𝑠 = 𝑧1 + 𝑧2, 𝑠 ← 𝑠 + 𝑧𝑘 , 𝑘 = 3 : 𝑛. Then 𝜖 𝑓 (𝑏) = (𝑏 − 1)𝑢 + 𝑂 (𝑢2). If AccurateSum
is recursive summation at twice the working precision then 𝜖𝑎 (𝑛/𝑏) = 𝑢 + 𝑂 (𝑢2) and so
𝜖 (𝑛, 𝑏) = 𝑏𝑢 +𝑂 (𝑢2) is independent of 𝑛 to first order. If AccurateSum is the method known
as compensated summation [21, Sec. 4.3], which works entirely in the working precision
and for which 𝜖𝑎 (𝑛/𝑏) = 2𝑢 +𝑂 (𝑢2), then 𝜖 (𝑛, 𝑏) = (𝑏 + 1)𝑢 +𝑂 (𝑢2), which again does not
grow with 𝑛 to first order. Analysis of the second order terms in [6, Sec. 3.1.2] shows that
they are not significant unless 𝑛 is extremely large.
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Denote by 𝐶 (𝑛, 𝑏) the cost in flops of Algorithm 2.1. If 𝐶 𝑓 (𝑛) and 𝐶𝑎 (𝑛) are the
costs for summing 𝑛 terms by FastSum and AccurateSum, respectively, then

𝐶 (𝑛, 𝑏) = 𝑛

𝑏
𝐶 𝑓 (𝑏) + 𝐶𝑎

( 𝑛
𝑏

)
.

In particular, if the costs 𝐶 𝑓 and 𝐶𝑎 are linear functions of the number of summands, as is
usually the case, 𝐶 (𝑛, 𝑏) simplifies to

𝐶 (𝑛, 𝑏) = 𝐶 𝑓 (𝑛) +
1
𝑏
𝐶𝑎 (𝑛) +𝑂

( 𝑛
𝑏

)
.

Therefore the cost of Algorithm 2.1 can be made arbitrarily close to that of FastSum by
increasing the block size 𝑏. The parameter 𝑏 can be tuned to achieve the highest possible
performance on a given target architecture, while keeping it independent of 𝑛 to avoid error
growth.

We have seen that by using a blocked implementation of summation or an inner
product it is possible to reduce the error constant 𝑛𝑢 + 𝑂 (𝑢2) by a constant factor, or even
to reduce it to (𝑏 + 1)𝑢 + 𝑂 (𝑢2) by using FABsum, while at the same time increasing the
performance. The increased performance and reduced error bound go hand in hand.

2.2. Blocked matrix multiplication
The standard error bound for a matrix product 𝐶 = 𝐴𝐵, where 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈

R𝑛×𝑡 , is
|𝐶 − 𝐶 | ≤ 𝛾𝑛 |𝐴| |𝐵 |,

which is an immediate consequence of (2.2), and this bound holds for any order of evalua-
tion. Consider Algorithm 2.3, which is a blocked implementation of matrix multiplication
that amounts to computing each element of the product by the blocked inner product (2.3).

Algorithm 2.3 (Blocked matrix multiplication). Let 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑛×𝑡 be partitioned
into 𝑏 × 𝑏 blocks 𝐴𝑖 𝑗 and 𝐵𝑖 𝑗 , where 𝑝 = 𝑚/𝑏1, 𝑞 = 𝑛/𝑏, and 𝑟 = 𝑡/𝑏2 are assumed to be
integers. This algorithm computes 𝐶 = 𝐴𝐵.

1 for 𝑖 = 1: 𝑝
2 for 𝑗 = 1: 𝑟
3 𝐶𝑖 𝑗 = 0
4 for 𝑘 = 1: 𝑞
5 𝑋 = 𝐴𝑖𝑘𝐵𝑘 𝑗

6 𝐶𝑖 𝑗 = 𝐶𝑖 𝑗 + 𝑋
7 end
8 end
9 end

We have written lines 5 and 6 as shown in order to make clear that 𝐴𝑖𝑘𝐵𝑘 𝑗 is
computed and then added to 𝐶𝑖 𝑗 . The expression “𝐶𝑖 𝑗 = 𝐶𝑖 𝑗 + 𝐴𝑖𝑘𝐵𝑘 𝑗” would be ambiguous
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because for an individual element of 𝐶𝑖 𝑗 it has the form

(2.7) 𝑐𝑖1 , 𝑗1 = 𝑐𝑖1 , 𝑗1 +
𝑏∑︁

ℓ=1
𝑎𝑖1 ,ℓ𝑏ℓ, 𝑗1 ,

and the order in which the 𝑏 additions are done is not specified. If the additions are done
from left to right then the algorithm is numerically equivalent to standard matrix multipli-
cation. However, in Algorithm 2.3 the addition involving 𝑐𝑖1 , 𝑗1 is done last.

A rounding error result for Algorithm 2.3 follows readily from that for a blocked
inner product: the computed 𝐶 satisfies

(2.8) |𝐶 − 𝐶 | ≤ 𝛾
𝑏+𝑛/𝑏−1 |𝐴| |𝐵 |.

Again, if 𝑏 ≪ 𝑛 then the error constant has been reduced by about a factor 𝑏. In a highly
optimized matrix multiplication algorithm there may be multiple levels of blocking [17],
which give a further reduction in the error bound.

We note that the FABsum algorithm (Algorithm 2.1) and its rounding error analysis
trivially extend to matrix multiplication [6, Sec. 4].

2.3. Blocked matrix factorizations
The LAPACK library [3] pioneered the use of blocked algorithms that compute a

matrix factorization a block at a time, where each block is square or rectangular with 𝑏

columns, with the block size typically 𝑏 = 128 or 𝑏 = 256. These algorithms typically con-
tain operations of the form 𝐴𝑖 𝑗 = 𝐴𝑖 𝑗 − 𝑋𝑖𝑌 𝑗 , and these are implemented as calls to a level 3
BLAS gemm (general matrix multiply) routine [12], which computes 𝐶 ← 𝛼𝐴𝐵 + 𝛽𝐶 for
arbitrary matrices 𝐴, 𝐵, and 𝐶 of conformable dimensions. In view of the error bound (2.8)
for Algorithm 2.3, the blocked algorithm will have a constant in a (componentwise) back-
ward error bound that is about 𝑏 times smaller than for the unblocked algorithm provided
that the gemm computes 𝛼𝐴𝐵 before adding the result to 𝛽𝐶. And of course, for block-level
computations that are inner product-based, the blockings of the previous subsections can be
applied with a smaller block size, giving a further reduction in error bound.

Most references do not take advantage of blocking when stating error bounds. The
LAPACKmanual [3] states error bounds of the form 𝑝(𝑛)𝑢 for 𝑛 × 𝑛matrices, where 𝑝(𝑛) is
independent of the block size. Standard texts such as those of Demmel [11], Golub and Van
Loan [16], and Higham [21] give error analysis only for unblocked algorithms, so do not
derive the 𝑏-dependent constants for the blocked algorithms (though [21, Sec. 13.2] derives
the constants for blocked LU factorization). We suggest three reasons why error analyses for
blocked algorithms are usually not provided. First, as explained in Section 1, there has long
been a feeling, going back to Wilkinson, that the most important part of a bound is not the
constants but the form of the bound and that optimizing constants is not worthwhile. Second,
the precise constants depend on which blocked algorithm variant of a factorization is chosen
(there are usually several) and precisely how it is implemented. Third, the error analysis for
a blocked algorithm tends to be more complicated than for the unblocked algorithm, which
can obscure the main ideas of the analysis.
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The important point to note is that with a suitable implementation the constant in
a backward error bound for a blocked factorization with block size 𝑏 will be reduced by a
factor of order 𝑏 or more.

3. Architectural features
A number of features of modern processors contribute to reducing the error in

numerical computations.

3.1. Extended precision registers
Intel x86 processors support an 80-bit extended precision format with a 64-bit sig-

nificand (see Table 2), which is compatible with that specified in the IEEE standard [25],
[27, Sec. 4.2.2], [29, Sec. 3.4.3]. When a compiler uses this format with 80-bit registers
to accumulate sums and inner products it is effectively working with a unit roundoff of
2−64 rather than 2−53 for double precision, giving error bounds smaller by a factor up to
211 = 2048. We note, however, that extra precision registers can lead to strange rounding
effects, in particular because of double rounding [21, sec. 2.3, Probs. 27.1, 27.3], [29].

3.2. Fused multiply–add
Another architectural feature that provides benefits to accuracy is a fused multiply–

add (FMA) operation, which computes 𝑥 + 𝑦 ∗ 𝑧 with just one rounding error instead of two.
Without an FMA,

fl(𝑥 + 𝑦 ∗ 𝑧) =
(
𝑥 + 𝑦 ∗ 𝑧(1 + 𝛿1)

)
(1 + 𝛿2), |𝛿1 | ≤ 𝑢, |𝛿2 | ≤ 𝑢,

whereas with an FMA,

fl(𝑥 + 𝑦 ∗ 𝑧) = (𝑥 + 𝑦 ∗ 𝑧) (1 + 𝛿), |𝛿 | ≤ 𝑢,

which means that the result is computed with a relative error bounded by 𝑢. The motivation
for an FMA is speed, as it is implemented in such a way that it takes the same time as a
single multiplication or addition. With the use of an FMA standard error bounds for inner
product-based computations are reduced by a factor 2. It should be noted, though, that an
FMA can lead to unexpected results when applied to certain expressions [21, sec. 2.6].

3.3. Mixed precision block fused multiply–add
A mixed precision block FMA takes as input matrices 𝐴 ∈ R𝑏1×𝑏, 𝐵 ∈ R𝑏×𝑏2 , and

𝐶 ∈ R𝑏1×𝑏2 , where 𝐴 and 𝐵 are provided in a given precision 𝑢low and𝐶 is either in precision
𝑢low or in a higher precision 𝑢high, and computes

(3.1) 𝐷︸︷︷︸
𝑢low or 𝑢high

= 𝐶︸︷︷︸
𝑢low or 𝑢high

+ 𝐴︸︷︷︸
𝑢low

𝐵︸︷︷︸
𝑢low

,

returning 𝐷 in precision 𝑢low or 𝑢high. We will assume that the internal computations are at
precision 𝑢high. The output matrix 𝐷 can be used as the input 𝐶 to a subsequent FMA, so by
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Table 3 Processing units or architectures equipped with mixed-precision fused multiply–add
accelerators. Matrix dimensions are expressed as 𝑏1 × 𝑏 × 𝑏2, where 𝑏1 is the number of
rows in 𝐴, 𝑏 is the number of columns in 𝐴 and rows in 𝐵, and 𝑏2 is the number of columns
in 𝐵. The input and output precisions 𝑢low and 𝑢high are defined in (3.1). Sources [4], [9],
[30].

Year of Matrix
release Device dimensions 𝑢low 𝑢high

2016 Google TPU v2 128 × 128 × 128 bfloat16 fp32
2017 Google TPU v3 128 × 128 × 128 bfloat16 fp32
2017 NVIDIA V100 4 × 4 × 4 fp16 fp32
2018 NVIDIA T4 4 × 4 × 4 fp16 fp32
2019 ARMv8.6-A 2 × 4 × 2 bfloat16 fp32

2020 NVIDIA A100

8 × 8 × 4 bfloat16 fp32
8 × 8 × 4 fp16 fp32
8 × 4 × 4 TensorFloat-32 fp32
2 × 4 × 2 fp64 fp64

chaining FMAs together in this way, larger matrix products can be computed [5, Alg. 3.1].
Table 3 gives the precisions and matrix dimensions for block FMAs available in hardware.
These block FMAs are designed to give one result per cycle and so can give significant per-
formance benefits. For example, on the NVIDIA V100 GPU, whose tensor cores implement
block FMAs, half precision arithmetic on the tensor cores runs 8 times faster than single
precision arithmetic, which in turn runs at twice the speed of double precision arithmetic.

When 𝐶 and 𝐷 in (3.1) are taken at the higher precision, 𝑢high, mixed precision
block FMAs give an increase in accuracy compared with computations carried out at the
lower precision, 𝑢low. Let 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑛×𝑡 be given in precision 𝑢high and partitioned
into 𝑏1 × 𝑏 blocks 𝐴𝑖 𝑗 and 𝑏 × 𝑏2 blocks 𝐵𝑖 𝑗 , respectively, where 𝑝 = 𝑚/𝑏1, 𝑞 = 𝑛/𝑏, and
𝑟 = 𝑡/𝑏2 are assumed to be integers. When the product𝐶 = 𝐴𝐵 is computed by a sequence of
chained block FMAs using [5, Alg. 3.1] (which has the same general form as Algorithm 2.3),
it can be shown [5, Thm. 3.2] that the computed 𝐶 satisfies

(3.2) |𝐶 − 𝐶 | ≤ 𝑓 (𝑛, 𝑏, 𝑢low, 𝑢high) |𝐴| |𝐵 |,

where the first order part of 𝑓 is given in Table 4. We see that for 𝑛 < 2𝑢low/𝑢high =: 𝑛∗ the
block FMA constant is independent of 𝑛. It is always smaller than the constant for standard
multiplication at precision 𝑢low and of similar magnitude to the constant for standard multi-
plication at precision 𝑢high for 𝑛 > 𝑛∗. When 𝑢low corresponds to fp16 or bfloat16 and 𝑢high
to fp32, we have 𝑛∗ = 16,384 and 𝑛∗ = 131,072, respectively. Hence while a mixed precision
block FMA takes inputs at precision 𝑢low, for large 𝑛 it produces results as good as if the
computation was done at precision 𝑢high.
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Table 4 First order part of constant term 𝑓 (𝑛, 𝑏, 𝑢low, 𝑢high) in error bound (3.2) for matrix
multiplication with and without use of a mixed precision block FMA.

Evaluation method Bound

Standard in precision 𝑢low (𝑛 + 2)𝑢low
Block FMA, 𝑢high internally 2𝑢low + 𝑛𝑢high
Standard in precision 𝑢high 𝑛𝑢high

Note that (3.2) assumes that, in the notation of Algorithm 2.3, lines 5 and 6 are
evaluated as 𝐶𝑖 𝑗 = 𝐶𝑖 𝑗 + 𝐴𝑖𝑘𝐵𝑘 𝑗 , in left to right order; if the evaluation uses lines 5 and 6 as
stated then the 𝑢high term in Table 4 for the block FMA is further reduced. However, NVIDIA
tensor cores in the Volta, Turing, and Ampere microarchitectures with 𝑏 = 4 do not use a
fixed order when evaluating each individual element 𝑐𝑖 𝑗 + 𝑎𝑖1𝑏1 𝑗 + 𝑎𝑖2𝑏2 𝑗 + 𝑎𝑖3𝑏3 𝑗 + 𝑎𝑖4𝑏4 𝑗
in (3.1), but rather evaluate the expression starting with the largest magnitude term [15].

4. Probabilistic rounding error analysis
We have now seen two main reasons why standard rounding error bounds may be

pessimistic: first, they do not account for block algorithms and second, architectural features
of the computer may provide increased accuracy for certain types of operations. We now
discuss a third reason, which has to do with the very nature of rounding error bounds.

In the model (1.4), the relative error 𝛿 in fl(𝑥 op 𝑦) is typically strictly less than
𝑢 in magnitude, and of course it is zero if 𝑥 op 𝑦 happens to be a floating-point number.
Rounding error analyses apply (1.4) repeatedly. Typically, a product of 1 + 𝛿𝑖 terms appears,
which can be handled by the next lemma [21, Lem. 3.1].

Lemma 4.1. If |𝛿𝑖 | ≤ 𝑢 and 𝜌𝑖 = ±1 for 𝑖 = 1 : 𝑛, and 𝑛𝑢 < 1, then

(4.1)
𝑛∏
𝑖=1
(1 + 𝛿𝑖)𝜌𝑖 = 1 + 𝜃𝑛, |𝜃𝑛 | ≤ 𝛾𝑛.

This lemma, combined with some useful identities satisfied by the 𝛾
𝑘
and 𝜃𝑘 [21,

Lem. 3.3], provides a convenient way to carry out rounding error analyses. However, the
proof of the lemma involves multiple uses of the triangle inequality and so the bound |𝜃𝑛 | ≤
𝛾𝑛 can be expected to be potentially weak.

For a given algorithm and a given set of data we would like to be able to say that
there exists a set of rounding errors 𝛿𝑖 that, if they occur, produce an error of roughly the
same size as the rounding error bound. This is usually not the case, but it can be true if in
every invocation of (1.4) 𝛿 has the same sign. For basic kernels it may be possible to show

12



that the error bound is approximately attainable for a special choice of the data, as is the
case for recursive summation [21, Prob. 4.2], [35, p. 19], but such examples do not indicate
the quality of the bound in typical cases.

In an early paper on rounding error analysis, Wilkinson derives rounding error
bounds for Gaussian elimination, Givens QR factorization, and Householder QR factoriza-
tion and then states that [34, p. 318]

“The bounds we have obtained are in all cases strict upper bounds. In general, the
statistical distribution of the rounding errors will reduce considerably the function
of n occurring in the relative errors. We might expect in each case that this func-
tion should be replaced by something which is no bigger than its square root and
is usually appreciably smaller.”

He makes similar statements in [35]. For many years, primarily because of Wilkinson’s
comments, it has been regarded as a rule of thumb that a worst-case rounding error bound
𝑓 (𝑛)𝑢 is more realistic if it is replaced by

√︁
𝑓 (𝑛)𝑢. No proof has been given to make this

rule of thumb rigorous, but one can argue as follows:

• linearize the error into a sum 𝑒 =
∑𝑝

𝑖=1 𝑡𝑖𝛿𝑖 , where the 𝛿𝑖 are rounding errors and
the 𝑡𝑖 depend on the data;

• assume that the 𝛿𝑖 are independent random variables of mean zero;

• apply the central limit theorem to deduce that the probability distribution of
𝑒/(∑𝑛

𝑖=1 𝑡
2
𝑖
)1/2 tends towards a normal distribution of mean zero and standard

deviation 𝜎 ≤ 𝑢;

• conclude that for sufficiently large 𝑛, the probability that |𝑒 | will not exceed
𝑢(∑𝑛

𝑖=1 𝑡
2
𝑖
)1/2 times a small constant is very high.

Compared with the worst-case constant
∑𝑛

𝑖=1 |𝑡𝑖 |, the quantity (
∑𝑛

𝑖=1 𝑡
2
𝑖
)1/2 can be smaller by

a factor up to
√
𝑛. This argument, however, has a number of weaknesses. First, it is essentially

forward error-based, whereas we prefer to work with backward errors if possible. Second,
the argument is based on the first-order part of the error, so says nothing about higher order
terms. Third, it is not clear how large 𝑛 must be for the application of the central limit
theorem to be valid.

Despite the weaknesses of a central limit theorem argument, a probabilistic
approach seems to be necessary to obtain substantially better bounds than the worst-case
ones. Indeed, as Stewart [33] has noted,

“To be realistic, we must prune away the unlikely. What is left is necessarily a
probabilistic statement.”

We will discuss probabilistic rounding error analysis in the next two subsections.
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4.1. Error analysis for nonrandom data
Higham andMary [22] introduced a new probabilistic rounding error analysis, mak-

ing use of a concentration inequality. This work was extended by Higham and Mary for
random data [23], and by Ipsen and Zhou [28], and Connolly, Higham, and Mary [10], all of
whom use martingales. We will present the most general results for nonrandom data, which
are those from [10].

We need the following probabilistic version of Lemma 4.1 [10, Lem. 4.2], [22,
Thm. 2.4], which includes the constant

(4.2) 𝛾̃𝑛 (𝜆) = exp
(
𝜆
√
𝑛𝑢 + 𝑛𝑢2
1 − 𝑢

)
− 1 = 𝜆

√
𝑛𝑢 +𝑂 (𝑢2).

Theorem 4.2. Let 𝛿1, 𝛿2, . . . , 𝛿𝑛 be random variables of mean zero with |𝛿𝑘 | ≤ 𝑢 for all 𝑘
such that E(𝛿𝑘 | 𝛿1, . . . , 𝛿𝑘−1) = E(𝛿𝑘) = 0 for 𝑘 = 2: 𝑛. Then for 𝜌𝑖 = ±1, 𝑖 = 1: 𝑛 and any
constant 𝜆 > 0,

(4.3)
𝑛∏
𝑖=1
(1 + 𝛿𝑖)𝜌𝑖 = 1 + 𝜃𝑛, |𝜃𝑛 | ≤ 𝛾̃𝑛 (𝜆)

holds with probability at least 1 − 2 exp(−𝜆2/2).

The key difference between (4.1) and (4.3) is that, to first order, the bound in (4.3)
is proportional to

√
𝑛𝑢 rather than 𝑛𝑢.

Next, we need the following model of rounding errors.

Model 4.3 (probabilistic model of rounding errors). Let the computation of interest generate
rounding errors 𝛿1, 𝛿2, . . . in that order. The 𝛿𝑘 are random variables of mean zero such
that E(𝛿𝑘 | 𝛿1, . . . , 𝛿𝑘−1) = E(𝛿𝑘) (= 0).

The model says that the rounding errors 𝛿𝑖 are mean independent and of mean zero,
but they do not need to be from the same distribution. Mean independence is a weaker con-
dition than independence: if the rounding errors are independent then they can be shown to
be mean independent, but the converse implication does not hold. Under the model, Theo-
rem 4.2 holds and allows us to bound rounding error terms that appear in analyses of inner
product-based computations. This leads to the following three results [10, Thms. 4.8–4.10],
in which

𝑄(𝜆, 𝑛) = 1 − 2𝑛 exp(−𝜆2/2).

Theorem 4.4 (inner products). Let 𝑠 = 𝑥𝑇 𝑦, where 𝑥, 𝑦 ∈ R𝑛, be evaluated in floating-point
arithmetic. Under Model 4.3, no matter what the order of evaluation the computed 𝑠̂ satisfies

𝑠̂ = (𝑥 + Δ𝑥)𝑇 𝑦 = 𝑥𝑇 (𝑦 + Δ𝑦), |Δ𝑥 | ≤ 𝛾̃𝑛 (𝜆) |𝑥 |, |Δ𝑦 | ≤ 𝛾̃𝑛 (𝜆) |𝑦 |(4.4)

with probability at least 𝑄(𝜆, 𝑛).

Theorem 4.5 (matrix products). Let𝐶 = 𝐴𝐵 with 𝐴 ∈R𝑚×𝑛 and 𝐵 ∈R𝑛×𝑝 . Under Model 4.3,
the 𝑗 th column of the computed 𝐶 satisfies

(4.5) 𝑐̂ 𝑗 = (𝐴 + Δ𝐴 𝑗 )𝑏 𝑗 , |Δ𝐴 𝑗 | ≤ 𝛾̃𝑛 (𝜆) |𝐴|, 𝑗 = 1: 𝑛,
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with probability at least 𝑄(𝜆, 𝑚𝑛), and hence

(4.6) |𝐶 − 𝐶 | ≤ 𝛾̃𝑛 (𝜆) |𝐴| |𝐵 |

with probability at least 𝑄(𝜆, 𝑚𝑛𝑝).

Theorem 4.6 (linear system). Let 𝐴 ∈ R𝑛×𝑛 and suppose that LU factorization and substi-
tution produce computed factors 𝐿̂ and𝑈 and a computed solution 𝑥̂ to 𝐴𝑥 = 𝑏. Then, under
Model 4.3,

(4.7) (𝐴 + Δ𝐴)𝑥̂ = 𝑏, |Δ𝐴| ≤
(
3𝛾̃𝑛 (𝜆) + 𝛾̃𝑛 (𝜆)2

)
| 𝐿̂ | |𝑈 |

holds with probability at least 𝑄(𝜆, 𝑛3/3 + 3𝑛2/2 + 7𝑛/6).

Matrix multiplication and LU factorization both have triply nested loops, which can
be ordered in 3! = 6 ways. Theorems 4.5 and 4.6 both hold no matter which ordering of the
loops is taken.

Let us now focus our attention on Theorem 4.6. For 𝑛 = 108, the function𝑄(𝜆,𝑛3/3+
3𝑛2/2 + 7𝑛/6) approaches 1 rapidly as 𝜆 increases and is approximately 1 − 10−3 for 𝜆 = 11
and 1 − 10−8 for 𝜆 = 12. Moreover, as shown in [22, Sec. 3.5], 𝑄(𝜆, 𝑓 (𝑛)) remains inde-
pendent of 𝑛 as long as 𝜆 increases proportionally to log 𝑛. Experiments show that the
probability 𝑄(𝜆, 𝑓 (𝑛)) is actually very pessimistic and in practice the bounds usually hold
with 𝜆 = 1.

Theorems 4.2– 4.6 provide a rigorous proof of the rule of thumb stated by Wilkin-
son, under the assumptions of Model 4.3.

Probabilistic error analysis can also be applied to blocked algorithms, with the
blocking and the probabilistic approach combining to reduce the error constant. For exam-
ple, the error constant (𝑏 + 𝑛/𝑏 − 1)𝑢 +𝑂 (𝑢2) in (2.4) for a blocked inner product translates
to (
√
𝑏 +

√︁
𝑛/𝑏)𝑢 +𝑂 (𝑢2) in a probabilistic bound.

4.2. Error analysis for random data
Numerical experiments show that the bounds in Theorems 4.4–4.6 reflect the actual

rate of growth of the error with 𝑛 for some problems [22], [23], but the bounds can never-
theless be pessimistic. Higham and Mary [23] investigate the case where the data is random.
They use the following model for the data, which is denoted by 𝑑 𝑗 , 𝑗 = 1: 𝑛.

Model 4.7 (probabilistic model of the data). The 𝑑 𝑗 , 𝑗 = 1 : 𝑛, are independent random
variables sampled from a given distribution of mean 𝜇𝑥 and satisfy |𝑑 𝑗 | ≤ 𝐶𝑥 , 𝑗 = 1 : 𝑛,
where 𝐶𝑥 is a constant.

A modified version of Model 4.3 is needed.

Model 4.8 (modified probabilistic model of rounding errors). Let the computation of inter-
est generate rounding errors 𝛿1, 𝛿2, . . . in that order. The 𝛿𝑖 are random variables of mean
zero and, for all 𝑘 , the 𝛿𝑘 are mean independent of the previous rounding errors and of the
data, in the sense that

(4.8) E(𝛿𝑘 | 𝛿2, . . . , 𝛿𝑘−1, 𝑑1, . . . , 𝑑𝑛) = E(𝛿𝑘) (= 0).
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Under these models, Higham and Mary [23] obtain error bounds for an inner prod-
uct, a matrix–vector product, and a matrix product. We state the result for matrix products
[23, Thm. 3.4].

Theorem 4.9. Let 𝐴 ∈R𝑚×𝑛 and 𝐵 ∈R𝑛×𝑝 satisfy Model 4.7with means 𝜇𝐴, 𝜇𝐵 and bounds
𝐶𝐴, 𝐶𝐵, and let 𝐶 = 𝐴𝐵. Under Model 4.8, the computed 𝐶 satisfies

(4.9) max
𝑖, 𝑗
| (𝐶 − 𝐶)𝑖 𝑗 | ≤

(
𝜆 |𝜇𝐴𝜇𝐵 |𝑛3/2 + (𝜆2 + 1)𝐶𝐴𝐶𝐵𝑛

)
𝑢 +𝑂 (𝑢2)

with probability at least 𝑃(𝜆) = 1 − 2𝑚𝑛𝑝 exp(−𝜆2/2).

The rate of growth of the bound (4.9) is 𝑛3/2 except when 𝜇𝐴 or 𝜇𝐵 is small or
zero, in which case it is just 𝑛. Thus the error bound depends on the means of the data.
Furthermore, it is shown in [23, Thm. 3.3] that for an inner product 𝑥𝑇𝑦 in which either 𝑥 or
𝑦 has zero mean the backward error is bounded by 𝑐1𝑢 + 𝑂 (𝑢2) instead of 𝑐2

√
𝑛𝑢 + 𝑂 (𝑢2)

as in Theorem 4.4, where 𝑐1 and 𝑐2 are constants.
We note that extending this analysis with random data to the solution of linear

systems by LU factorization is an open problem, as noted in [23, Sec. 5].

4.3. Limitations
It is important to realise that the assumptions of the probabilistic rounding error

analysis may not hold: the rounding errors may be dependent or may have nonzero mean, and
in these cases the error may grow as 𝑛𝑢 rather than

√
𝑛𝑢. Consider a sum

∑𝑛
𝑖=1 𝑥𝑖 computed

by recursive summation, where the 𝑥𝑖 are positive and decrease with 𝑖. For a large enough 𝑖,
the summand 𝑥𝑖 may be so small that it does not change the current partial sum in floating-
point arithmetic. From this point on no summand changes the sum so the rounding errors
are all negative and Model 4.3 does not hold, and in this circumstance the worst-case linear
growth can be achieved, as can be shown by numerical examples [10], [22]. This problem
is called stagnation. A cure for stagnation is to randomize the rounding using stochastic
rounding [10], which ensures that the sum can increase. Indeed with stochastic rounding,
Model 4.3 is always satisfied and so by Theorem 4.4 the error in the sum grows as

√
𝑛𝑢

instead of 𝑛𝑢 with high probability.

5. Other considerations
5.1. Sharpness of error bounds
The bound (1.1) of Theorem 1.1 is not the best we can obtain. In the proof of the

bound in [21] it is first shown that 𝐴 + Δ𝐴1 = 𝐿̂𝑈, where

(5.1) |Δ𝐴1 | ≤



𝛾1 𝛾1 . . . . . . 𝛾1
𝛾1 𝛾2 . . . . . . 𝛾2
...

...
. . . . . .

...
...

...
. . . 𝛾

𝑛−1 𝛾
𝑛−1

𝛾1 𝛾2 . . . 𝛾
𝑛−1 𝛾𝑛


◦ | 𝐿̂ | |𝑈 | ≡ 𝐻 ◦ |𝑈 |,
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where ◦ is the Hadamard product: 𝐴 ◦ 𝐵 = (𝑎𝑖 𝑗𝑏𝑖 𝑗 ). The bound (1.1) corresponds to replac-
ing every element of 𝐻 by 𝛾𝑛. Analogous replacements are made in the part of the analysis
dealing with the solution of the triangular systems by substitution. Clearly, then, not all 𝑛2

inequalities in (1.1) are sharp. The same is true of (4.7), as its proof is analogous to that of
(1.1). However, (5.1) still contains a term 𝛾𝑛 and so this sharper bound does not bring any
significant benefits.

5.2. Growth factor at low precisions
Wilkinson showed that with partial pivoting the growth factor 𝜌𝑛 for LU factor-

ization is bounded by 2𝑛−1, and he noted that 𝜌𝑛 is nevertheless usually small in practice.
Many years of experience have confirmed that 𝜌𝑛 is indeed usually less than 50 (say) in
practice. The growth factor directly affects the backward error bounds, through the size
of the elements of 𝑈 and (1.2). When we are working in half precision, with unit round-
off 𝑢 ≈ 5 × 10−4 for fp16 or 𝑢 ≈ 4 × 10−3 for bfloat16, element growth can have a much
bigger relative effect on the quality of a solution than for single precision or double pre-
cision. Matrices that give large growth factors for partial pivoting are known, and a class
of random matrices of arbitrary condition number that typically have 𝜌𝑛 ≥ 𝑛/(4 log 𝑛) was
recently identified by Higham, Higham, and Pranesh [20]. For the latter class of matrices,
growth alone can cause a complete loss of numerical stability for 𝑛 ≥ 105 in fp16—and, to
complicate matters, it can also cause overflow in fp16 [24].

5.3. Iterative refinement
If we solve 𝐴𝑥 = 𝑏 in half precision arithmetic then of course we cannot expect a

backward error smaller than the unit roundoff 𝑢ℎ for half precision. However, we can obtain
a numerically stable solution at higher precision by using the computed half precision solu-
tion as a first approximation that we improve by iterative refinement at the higher precision,
using the half precision LU factors. This procedure is guaranteed to work only for condition
numbers 𝜅(𝐴) = ∥𝐴∥∥𝐴−1∥ up to 𝑢−1

ℎ
. GMRES-based iterative refinement solves the update

equation by GMRES preconditioned by the LU factors and can tolerate much more ill condi-
tioned 𝐴. See [2], [7], [19] for details of GMRES-based iterative refinement. Although this
mixed precision algorithm uses higher precision to raise the quality of the initial solution,
the conditions for success rest on the rounding error bounds for the factorization, and so the
considerations of this paper contribute to our understanding of the algorithm.

6. Conclusions
We have seen that several factors combine to make errors in inner-product based

computations much smaller than worst-case rounding error bounds suggest. Block algo-
rithms can reduce error bounds by a factor of the block size 𝑏, and if blocking is used at
multiple levels then the reduction factors can accumulate. Extended precision registers and
(block) FMAs can give automatic accuracy boosts. With a block size 𝑏 = 256 and the 80-
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bit registers on Intel x86-64 processors a reduction in an error bound by a constant factor
256 × 2048 = 5.2 × 105 is possible for large problems.

The rate of growth of the error can be much smaller than the worst-case bounds
because of statistical effects. If the rounding errors are mean independent and of mean zero
then, as explained in Section 4.1, for inner products, matrix–vector products, matrix prod-
ucts, and the solution of linear systems by LU factorization, the constant 𝛾𝑛 = 𝑛𝑢 +𝑂 (𝑢2) in
a worst-case componentwise backward error bound can be replaced by 𝛾̃𝑛 =

√
𝑛𝑢 + 𝑂 (𝑢2)

to obtain a bound that holds with high probability. Even these bounds can be pessimistic
because, as explained in Section 4.7, when the data is random with zero mean the error
bound reduces further—to a constant independent of 𝑛 for an inner product.

Together, these aspects go a considerable way to explaining why linear systems,
and other linear algebra problems, are able to be successfully solved with ever growing
dimensions and with the use of low precision arithmetics (perhaps within a mixed precision
algorithm [1]).

It is pleasing to note that blocked algorithms and (block) FMAs, which were intro-
duced to boost performance, also yield smaller rounding error bounds. It will be important
to analyze future developments in algorithms and computer architectures to understand their
effects on rounding error analysis.
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