
The dynamical functional particle method for the
generalized Sylvester equation

Dmytryshyn, Andrii and Fasi,
Massimiliano and Gulliksson, Mårten

2021

MIMS EPrint: 2021.4

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


The dynamical functional particle method
for the generalized Sylvester equation∗

Andrii Dmytryshyn† Massimiliano Fasi† Mårten Gulliksson†

Recent years have seen a renewal of interest in the study of generalized Sylvester
equations, which have come to play a role in a number or applications. Here we
consider the solution of such equations by means of the dynamical functional par-
ticle method, an iterative technique that relies on the construction and numerical
integration of a damped second order dynamical system. We develop a new al-
gorithm for the solution of a large class of these equations, a class that includes,
among others, all generalized Sylvester equations with Hermitian positive definite
coefficients. Our numerical experiments show that the new implementations out-
perform existing methods for the solution of generalized Sylvester equations, and
can be faster and more accurate than the Bartels–Stewart algorithm for the solu-
tion of the Sylvester equation AX −XB = C, when A and B are well conditioned
and have very different order.

Key words. Generalized Sylvester equation, discrete functional particle method,
Sylvester equation, Lyapunov equation, Stein equation.

AMS subject classifications. 15A24, 65F30

1 Introduction

The matrix equation AX+XB = C, where A ∈ Cm×m, B ∈ Cn×n, and X,C ∈ Cm×n, is named
after Joseph J. Sylvester, who was the first to investigate the homogeneous case [23]. Many
similar equations appear in various branches of science and have been extensively investigated.
Here we are interested in numerical algorithms for the solution of the so-called “generalized”
Sylvester equation

∑̀
i=1

AiXBi = C, A1, . . . , A` ∈ Cm×m, B1, . . . , B` ∈ Cn×n, X,C ∈ Cm×n. (1)

Stating conditions for the existence and uniqueness of solutions to (1) in terms of the coefficients
Ai and Bi is a difficult problem in the general case, although well-known results are available

∗Version of 24 February 2021.
†School of Science and Technology, Örebro University, Örebro, 701 82, Sweden (andrii.dmytryshyn@oru.se,
massimiliano.fasi@oru.se, marten.gulliksson@oru.se).

1

andrii.dmytryshyn@oru.se
massimiliano.fasi@oru.se
marten.gulliksson@oru.se


for special cases [19, Ch. 9, 10, and 11]. As suggested by Lancaster [20], by using the Kronecker
product one can recast (1) as the mn×mn linear system

M vec(X) = vec(C), M :=
∑̀
i=1

(
BT
i ⊗Ai

)
, (2)

where · ⊗ · and vec denote the Kronecker product and the operator that stacks the columns of a
matrix into a column vector, respectively. In the following, we denote by unvecm,n the operator
that reshapes a vector of length mn into an m× n matrix, so that unvecm,n(vec(X)) = X for
X ∈ Cm×n. As it is customary, we will omit the subscript and not specify the dimensions
of the reshaped matrix when these are clear from the context. The linear system (2) has a
unique solution if and only if detM 6= 0, that is, if the coefficient matrix M is full rank. If
detM = 0 then (1) has infinitely many solutions if M has the same rank as the augmented
matrix [M vec(C)] ∈ Cmn×(mn+1) and no solution otherwise.

Some special cases of (1) are well known, and have been extensively studied in the literature.
The most obvious example is that of a linear system with multiple right-hand sides. Here we
will discuss, in particular, the following:

• the two-sided linear equation
AXB = C, (3)

• the generalized inverse
AXA = A, (4)

• the continuous-time Lyapunov equation

AX +XA∗ = C, (5)

• the discrete-time Lyapunov equation

AXA∗ −X = C, (6)

• the Sylvester equation
AX +XB = C, (7)

• the Stein equation
AXB +X = C. (8)

A couple of decades ago, the generalized equation (1) was considered to be mainly of the-
oretical interest [17, sect. 16.5]. In recent years, however, it has come to play an important
role in a variety of applications [22] such as the numerical study of certain bilinear dynam-
ical systems [2], [12], [16, sect. 2.2], or uncertainty quantification in PDEs with random in-
puts [7], [8], [21]. In many of these applications, the matrix coefficients show a special structure,
and in particular are often Hermitian and positive definite or semi-definite.

Here we adapt the dynamical functional particle method [5] to the numerical solution of (1).
The algorithm we develop requires the eigenvalues of the coefficient matrix M in (2) to be
real and have same sign. The class of equations that satisfy this requirements is of particular
interest as it includes, among others, all the generalized Sylvester equations with Hermitian

2



positive definite coefficients, which are of great interest in applications. The general technique
we develop can be tailored to the special cases (3)–(8), in order to obtain a reduction of the
computational cost and therefore of the execution time.

In its basic form, the algorithm involves only matrix-matrix multiplications, and a more
refined variant can exploit the availability of routines for the solution of linear systems. This
simplicity translates into ease of implementation, which makes the approach very suitable
for all those frameworks, such as multiprecision libraries, in which only a few linear algebra
kernels are typically available. The technique developed by Bartels and Stewart for the solution
of (5) and (7), for example, requires the Schur factorization of the coefficients of the matrix
equation [1]. This factorization is computed by means of Francis’s algorithm [26], also known as
QR algorithm [24], [25], which is one of the most complex algorithms in matrix computation [11,
Chap. 13], and is not always available in a multiprecision computing environment [9].

Moreover, the iterative nature of the new method allows for a finer control of the accuracy of
the computed solution, as it allows the user to stop the iteration as soon as the target precision
has been reached, which would not be possible if the Bartels–Stewart method were used. We
remark that ours is not the only iterative method for the solution of generalized Sylvester
equations of the form (1). Ding and Chen have developed several gradient-based algorithms
for the solution of generalized Sylvester equations [3], which can be adapted to the case of
coupled Sylvester equations [4].

The next section summarizes the main features of the dynamical functional particle method,
upon which our technique for the solution of the generalized Sylvester equation (1) is built. In
view of the equivalent formulation (2), particular emphasis is given to the theoretical aspects
specific to the solution of linear systems. In Section 3 we describe how the method can
be adapted to the solution of generalized Sylvester equations of the form (1), and discuss
how the algorithm can be tailored to the solution of (3)–(8). In Section 4 we compare our
implementation of the new algorithms with the built-in MATLAB function sylvester, and
with an implementation of the gradient-based iterative algorithm of Ding and Chen [3], [4].
Finally in Section 5 we draw our conclusion and outline possible directions for future work.

2 The dynamical functional particle method

Edvardsson, Gulliksson, and Persson originally introduced the dynamical functional parti-
cle method as a technique for the solution of boundary value problems arising in quantum
chemistry [5], but the use of this technique has been investigated for a number of applications,
including constrained optimization and linear eigenvalue problems [13], and linear least squares
and ill-posed linear systems [14].

Our iterative method for the solution of (1) builds upon the corresponding method for the
solution of linear systems of equations [6], which we now briefly recall. Let G ∈ Cn×n be a
matrix with positive real eigenvalues, let b ∈ Cn, and let x : R+ → Cn, where R+ denotes the
closed positive real axis, be a function of the dummy time variable t. In order to solve the
linear system Gx = b, consider the second order dynamical system

ẍ(t) + µ ẋ(t) = b−Gx(t), µ > 0, (9)

which can equivalently be written as the first order system{
ẋ(t) = v

v̇(t) = −µẋ(t) + b−Gx(t).
(10)

3



The system (10) can be integrated efficiently in time using the symplectic Euler algorithm [15,
Chap. VI], which for ∆t > 0 yields{

vk+1 = vk − µ∆t vk + ∆t(b−Gxk)
xk+1 = xk + ∆t vk+1.

(11)

For the initial conditions, x(0) is initialized to a random vector and ẋ(0) is set to 0 for simplicity.
It is easy to see that if (11) converges, then x̃ := x(ts) satisfies Gx̃ = b for some ts > 0.

The convergence of the symplectic scheme (11) is governed by the damping coefficient µ > 0
in the dissipation term and by the discretization step ∆t. The optimal choice of these two
parameters is [6]

µ∗ =
2
√
λmin(G)λmax(G)√

λmin(G) +
√
λmax(G)

, ∆t∗ =
2√

λmin(G) +
√
λmax(G)

, (12)

where λmin(G) and λmax(G) denote the smallest and largest eigenvalue of the matrix G, re-
spectively. This method is shown to be stable and convergent for positive definite matrices
in [14, Cor. 1].

3 Solving the generalized Sylvester equation

The dynamical functional particle method for the solution of the generalized Sylvester equa-
tion (1) can readily be formulated by using the alternative expression (2). For efficiency’s sake,
the coefficient matrix M in (2) is never explicitly computed, and the matrix-vector product
Gx in (11) is performed implicitly, as we now explain.

Let X̃0 ∈ Cmn be a vector with randomly generated entries, and let Ỹ0 ∈ Cmn be vector of
length mn with all entries set to 0. Then we can apply the symplectic Euler scheme in (11)
to (2) and write 

R̃k = vec(C)−M vec
(
X̃k

)
,

Ỹk+1 = Ỹk + ∆t ·
(
R̃k − µỸk

)
,

X̃k+1 = X̃k + ∆t · Ỹk+1,

(13)

where the matrix M is the sum of Kronecker products defined in (2). The approximate solution
to (1) at step k′ will be unvecm,n(X̃k′).

The iterative scheme (13) is not practical, as at each step it requires the evaluation of the
matrix-vector product M vec(X). As M is a matrix of order mn, this matrix computation
requires 2m2n2 + o(m2n2) floating-point operations (flops), and can become unduly expensive
even for moderate values of m and n. The computation of the residual Rk, however, can
equivalently be written

R̃k = vec

(
C −

∑̀
i=1

AiXkBi

)
, (14)

so that one step of the iteration now requires only 2`(m2n+mn2) + o
(
`(m2n+mn2)

)
flops.

In view of this observation, we can rewrite (13) in the more natural form
Rk = C −

∑`
i=1AiXkBi,

Yk+1 = Yk + ∆t ·
(
Rk − µYk

)
,

Xk+1 = Xk + ∆t · Yk+1,

(15)

4



Matrix equation Coefficient M λmin(M) λmax(M)

AXB = C BT ⊗A λmin(A)λmin(B) λmax(A)λmax(B)
AXA = C AT ⊗A λmin(A)2 λmax(A)2

AX +XA∗ = C Im ⊗A+A⊗ Im 2λmin(A) 2λmax(A)

AXA∗ −X = C A⊗A− Im ⊗ Im λmin(A)2 − 1 λmax(A)2 − 1
AX +XB = C Im ⊗A+BT ⊗ Im λmin(A) + λmin(B) λmax(A) + λmax(B)
AXB +X = C BT ⊗A+ Im ⊗ Im λmin(A)λmin(B) + 1 λmax(A)λmax(B) + 1

Table 1: The spectrum of the Kronecker form of some special cases of the generalized Sylvester
equation in (1).

where Xk, Yk, Rk ∈ Cm×n.
In order to obtain the optimal damping and time step for this scheme we still need an efficient

way of estimating the extreme eigenvalues of M in (2), which are real by assumption. In the
most general case, the most efficient way of estimating λmax(M) is the power method [27,
Ch. 10], an iteration that approximates an eigenvector corresponding to the largest eigenvalue
in absolute value. At each step, this algorithm requires only one matrix-vector product, which
can be implemented implicitly without ever forming the matrix M explicitly. The power
method could also be used to efficiently estimate λmin(M) = λmax(M−1) if a routine for
solving linear system having M as coefficient is available. To the best of our knowledge, no
such routine exists for the general matrix M in (2) for ` greater than 2, but the extreme
eigenvalues of M can be computed efficiently for some special cases, as we now explain.

For the one-term and two-terms linear equations in (3)–(8) we can use the following well-
know result.

Proposition 3.1. [18, Theorem 4.2.12 and Exercise 19, p. 251] Let λ1, . . . , λm be the
eigenvalues of A ∈ Cm×m and ξ1, . . . , ξn be the eigenvalues of B ∈ Cn×n. Then for i = 1,
. . . , n and j = 1, . . . , m, the mn eigenvalues of A ⊗ B and A ⊗ In + Im ⊗ B have the form
λiξj and λi + ξj, respectively.

Combining this result with the fact that a matrix and its transpose have the same character-
istic polynomial and thus the same eigenvalues, allows us to obtain formulae for the extreme
eigenvalues of M which only require knowledge of the extreme eigenvalues of the coefficient
matrices appearing on the left-hand side of the matrix equation. We summarize the results for
the special cases of interest in Table 1.

The method described in this section inherits the convergence behavior and the stability of
the algorithm for linear systems described in Section 2.

4 Numerical experiments

Now we compare the algorithm discussed in Section 3 with existing methods for the solution
of Sylvester and generalized Sylvester equations. The results in this section were obtained by
running the experiments in MATLAB 9.8.0 (R2020a) on a machine equipped with an Intel
I5-5287U running at 2.9 GHz and 16 GiB of RAM. We compared the following five codes.

• gs kron solves the linear system in (2) by explicitly constructing the matrix M and then
using the MATLAB backslash operator.

5



• gs dfpm opt solves (1) by using the dynamical functional particle method described in
Section 3 with optimal damping and time step computed according to (12) for G =
M . The quantities λmin(M) and λmax(M) are computed by constructing the matrix M
explicitly, with the exception of the special cases in Table 1.

• gs dfpm app solves (1) by using the dynamical functional particle method described in
Section 3 with parameters chosen according to (12) for G = M , but using the estimates

λmin(A) ≈
∑̀
i=1

λmin(BT
i ⊗Ai), λmax(A) ≈

∑̀
i=1

λmax(BT
i ⊗Ai),

which do not require the explicit computation of the matrix M .

• gs gbia solves (1) by using the gradient based iterative algorithms for solving generalized
Sylvester matrix equations developed by Ding and Chen [3], [4].

• sylvester solves the continuous-time Lyapunov equation (5) and the Sylvester equa-
tion (7) by means of the MATLAB function sylvester, which implements the algorithm
of Bartels and Stewart [1].

For the iterative algorithms, we set the maximum number of iterations to 50 000 and keep
iterating until the 1-norm difference between two successive iterates is below 23u, where
u = 2−53 ≈ 1.11× 10−16 denotes the unit roundoff of binary64 floating-point arithmetic.

In our tests, the superscript notation A(η) ∈ Rm×m denotes the real non-symmetric matrix
generated as

A(η) = PD(η)P−1, (16)

where the P ∈ Rm×m is such that κ2(P ) = 2 and is generated using the randsvdfast func-
tion [10], whereas Dη is a diagonal matrix with extreme eigenvalues

√
η−1 and

√
η and remain-

ing diagonal elements uniformly distributed in [
√
η−1,

√
η]. This choice of P and D(η) ensures

that κ2(A
(η)) ≤ 4η, and in practice provide a matrix A(η) such that κ2(A

(η)) ≈ η.

4.1 The Sylvester equation

In this first experiment we consider the solution of the Sylvester equation

A(η)X −XB(η) = C, (17)

where A(η) ∈ Rm×m and B(η) ∈ Rn×n are as in (16) and C ∈ Rm×n is generated using a matrix
X ∈ Rm×n with entries from the Gaussian distribution.

In Figure 1 we report the execution time required by sylvester and gs dfpm opt to
solve (17) and the forward error of the solutions the two algorithms computed. In the plots
we consider two moderate values of η, namely 10 (top row) and 100 (bottom row), and we
fix n = 500 and allow m to vary. For both values of η, gs dfpm opt is more accurate than
sylvester for all the test matrices. The forward error of gs dfpm opt is of the order of κ1(M)u
for η = 10 and about one order of magnitude smaller than the accuracy reference for η = 100.

We now discuss the timings of the two algorithms. As gs dfpm opt is an iterative algorithm,
its execution time depends not only on the total number of iterations the algorithm requires to
converge, but also on the computational cost of each iteration. As discussed above, the most

6



0 50 100 150 200 250
0

0.1

0.2

0.3

m

(a) Execution time for η = 10.

0 50 100 150 200 250
10−15

10−14

10−13

m

(b) Relative forward error for η = 10.

0 50 100 150 200 250
0

0.5

1

1.5

2

m

(c) Execution time for η = 100.

0 50 100 150 200 250
10−15

10−14

10−13

m

(d) Relative forward error for η = 100.

gs dfpm opt sylvester κ1(M)u

Figure 1: Left: execution time, in seconds, required by gs dfpm opt and sylvester to solve the
matrix equation in (17) for n = 500. Right: relative forward error of the computed
solution.

expensive operation of each iteration of gs dfpm opt is the computation of the residual, thus
each iteration asymptotically requires 2(m2n + mn2) flops. Therefore, we should expect the
timings of this algorithm to grow with the order of A(η) and B(η), which is confirmed by the
plots in the left column of Figure 1.

The total number of iteration required by gs dfpm opt is proportional to the conditioning
of the matrix M in (2), which in turn roughly depend on the parameter η. This is consistent
with previous findings in the literature on the dynamical functional particle method for the

7



solution of linear systems with positive definite coefficients. In our experiments, the algorithm
required 44 and 64 iterations for the matrices in the top row and between 201 and 948 for
those in the bottom row.

In our experimental setup, for η = 10 gs dfpm opt is faster than sylvester when the order
of A(η) is at most 20% of that of B(η), a percentage that reduces to about 5% when η = 100.
For larger values of η, gs dfpm opt is typically slower but still more accurate than sylvester.
Similar results obtained for larger values of n suggest that gs dfpm opt is typically marginally
but consistently more accurate than sylvester, but is faster than the latter only when the
coefficients of the matrix equation (17) are well conditioned and differ considerably in size.

4.2 The generalized Sylvester equation

Now we consider the solution of the more general matrix equation

5∑
i=1

A
(η)
i XB

(η)
i = C. (18)

In our experiments, the m×m matrices A
(η)
1 , . . . , A

(η)
5 are simultaneously diagonalizable, and

so are the m ×m matrices B
(η)
1 , . . . , B

(η)
5 , although the eigenvectors of A

(η)
i and B

(η)
i are in

general different. We resort to this technique to ensure that the matrix M in (2) has positive
real eigenvalues. As in the previous experiment, the matrix C ∈ Rm×m is computed by using
a matrix X ∈ Rm×m with entries from the Gaussian distribution.

In Figure 2 we compare the performance and accuracy of gs kron, gs dfpm opt, gs dfpm app,
and gs gbia for the solution of (18) asm varies. As we are mainly interested in well-conditioned
matrices, as in the previous experiment we consider the two cases η = 10 and η = 100.

Our results suggest that gs kron is the most accurate of the four algorithms, and is the
only one that achieves a forward error of the magnitude of κ1(M)u. The two implementations
based on the dynamical functional particle method achieve a similar level of accuracy, whereas
gs gbia is always the least accurate of the algorithms we test, and for three of our test matrices
it fails to satisfy our stopping criterion within 50 000 iterations.

We now compare the four algorithms in terms of execution time. For matrix equations
of small size, gs kron is typically the most efficient algorithm, followed by gs dfpm opt,
gs dfpm app, and finally gs gbia. For these small matrices, the approximation of the ex-
treme eigenvalues of M in (2) is inexpensive, and the cost of the three iterative algorithms
depends mostly on the number of iterations that are necessary to achieve convergence. As
gs dfpm opt requires considerably fewer iterations than the other two methods, it is the fastest
for m below 40.

We note that, in our implementations, gs dfpm opt cannot achieve an execution time lower
than that of gs kron. In fact, estimating λmin(M) requires the solution of at least one—but
typically several—linear systems with coefficient matrix M . Therefore the computation that
gs kron performs is, in a sense, just a pre-processing step for gs dfpm opt. In order for this
method to be competitive, an alternative technique for estimating the smallest eigenvalue of
M is necessary. We do not investigate this further, as the choice of said technique is likely
to depend on the problem being solved and on a priori knowledge of the properties of the
coefficient matrices.

As the size of the matrix coefficients of the equations grows, estimating the extreme eigen-
values of M becomes more expensive, and the lower number of iterations that the optimal

8



0 20 40 60 80 100
10−5

10−4

10−3

10−2

10−1

100

101

102

m

(a) Execution time for η = 10.

0 20 40 60 80 100
10−16

10−15

10−14

10−13

10−12

m

(b) Relative forward error for η = 10.

0 20 40 60 80 100
10−5

10−4

10−3

10−2

10−1

100

101

102

m

(c) Execution time for η = 100.

0 20 40 60 80 100

10−15

10−13

10−11

10−9

10−7

m

(d) Relative forward error for η = 100.

gs kron gs dfpm opt gs dfpm app gs gbia κ1(M)u

Figure 2: Left: execution time, in seconds, required by gs kron, gs dfpm opt, gs dfpm app

and gs gbia to solve the matrix equation in (18) m = n between 1 and 100. Right:
relative forward error of the computed solution.

choice of parameters produces is not sufficient to offset the time spent estimating λmin(M).
Thus for larger matrices the crude choice of parameters of gs dfpm app pays off, leading to an
execution time two order of magnitudes smaller for m as small as 100.

9



5 Conclusion

We have developed a family of algorithms for the solution of a class of generalized Sylvester
equations in the form (1), and we have explained how these methods can be tailored to tackle
some special cases of particular importance in applications. The new techniques build upon
the dynamical functional particle method for the solution of linear systems, and exploit the
equivalence between the two formulations (1) and (2).

Numerical results show that our implementations are typically capable of outperforming
existing methods for the solution of (1) in terms of both accuracy and execution speed. In
order to show the potential of our new techniques, we compared the algorithm for the Sylvester
equation (7) to the built-in MATLAB function sylvester. We found that if the matrix
coefficients on the left-hand side are sufficiently well conditioned and have very different size,
then our implementation of the discrete functional particle method can outperform sylvester

in terms of both accuracy and speed.
As the dynamical functional particle method has been successfully applied to nonlinear

optimization problems, it is natural to ask whether similar techniques for the solution of
nonlinear matrix equations can be derived. This nontrivial problem will be the subject of
future work.

Acknowledgements

The work of Massimiliano Fasi was supported by the Wenner-Gren Foundations [grant UPD2019-
0067].

References

[1] Richard H. Bartels and George W. Stewart, Algorithm 432: Solution of the
matrix equation AX +XB = C, Comm. ACM, 15 (1972), pp. 820–826.

[2] Peter Benner and Tobias Damm, Lyapunov equations, energy functionals, and model
order reduction of bilinear and stochastic systems, SIAM J. Control Optim., 49 (2011),
p. 686–711.

[3] Feng Ding and Tongwen Chen, Gradient based iterative algorithms for solving a class
of matrix equations, IEEE Trans. Automat. Control, 50 (2005), p. 1216–1221.

[4] Feng Ding and Tongwen Chen, On iterative solutions of general coupled matrix equa-
tions, SIAM J. Control Optim., 44 (2006), p. 2269–2284.

[5] Sverker Edvardsson, Mårten Gulliksson, and Johan Persson, The dynamical
functional particle method: An approach for boundary value problems, J. Appl. Mech., 79
(2012).

[6] Sverker Edvardsson, Magnus Neuman, Per Edström, and Håkan Olin, Solving
equations through particle dynamics, Comput. Phys. Comm., 197 (2015), p. 169–181.

[7] Howard C. Elman, Darran G. Furnival, and Catherine E. Powell, H(div) pre-
conditioning for a mixed finite element formulation of the diffusion problem with random
data, Math. Comp., 79 (2009), p. 733–760.

10

http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1137/09075041x
http://dx.doi.org/10.1137/09075041x
http://dx.doi.org/10.1109/tac.2005.852558
http://dx.doi.org/10.1109/tac.2005.852558
http://dx.doi.org/10.1137/s0363012904441350
http://dx.doi.org/10.1137/s0363012904441350
http://dx.doi.org/10.1115/1.4005563
http://dx.doi.org/10.1115/1.4005563
http://dx.doi.org/10.1016/j.cpc.2015.08.028
http://dx.doi.org/10.1016/j.cpc.2015.08.028
http://dx.doi.org/10.1090/s0025-5718-09-02274-1
http://dx.doi.org/10.1090/s0025-5718-09-02274-1
http://dx.doi.org/10.1090/s0025-5718-09-02274-1


[8] Oliver G. Ernst, Catherine E. Powell, David J. Silvester, and Elisabeth
Ullmann, Efficient solvers for a linear stochastic Galerkin mixed formulation of diffusion
problems with random data, SIAM J. Sci. Comput., 31 (2009), p. 1424–1447.

[9] Massimiliano Fasi and Nicholas J. Higham, Multiprecision algorithms for computing
the matrix logarithm, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 472–491.

[10] , Generating extreme-scale matrices with specified singular values or condition num-
bers, MIMS EPrint 2020.8, Manchester Institute for Mathematical Sciences, The Univer-
sity of Manchester, UK, Mar. 2020. Revised October 2020. To appear in SIAM J. Sci.
Comput.

[11] Gene H. Golub and Charles F. Van Loan, Matrix Computations, Johns Hopkins
University Press, Baltimore, MD, USA, 4th ed., 2013.

[12] W. Steven Gray and Joseph Mesko, Energy functions and algebraic Gramians for
bilinear systems, IFAC P. Vol., 31 (1998), p. 101–106.

[13] Mårten Gulliksson, The discrete dynamical functional particle method for solving con-
strained optimization problems, Dolomites Res. Notes Approx., 10 (2017), p. 6–12.

[14] Mårten Gulliksson, Magnus Ögren, Anna Oleynik, and Ye Zhang, Damped dy-
namical systems for solving equations and optimization problems, Handbook of the Math-
ematics of the Arts and Sciences, (2018), p. 1–44.

[15] Ernst Hairer, Gerhard Wanner, and Christian Lubich, Geometric Numerical In-
tegration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer
Series in Computational Mathematics, Springer-Verlag, 2006.

[16] Carsten Hartmann, Boris Schäfer-Bung, and Anastasia Thöns-Zueva, Bal-
anced averaging of bilinear systems with applications to stochastic control, SIAM J. Control
Optim., 51 (2013), p. 2356–2378.

[17] Nicholas J. Higham, Accuracy and Stability of Numerical Algorithms, Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, second ed., 2002.

[18] Roger A. Horn and Charles R. Johnson, Topics in Matrix Analysis, 1991.

[19] Mihail Konstantinov, Da-Wei Gu, Volker Mehrmann, and Petko Petkov,
Perturbation Theory for Matrix Equations, vol. 9 of Studies in Computational Mathemat-
ics, Elsevier, Amsterdam, The Netherlands, 2003.

[20] Peter Lancaster, Explicit solutions of linear matrix equations, SIAM Rev., 12 (1970),
p. 544–566.

[21] Catherine E. Powell, David Silvester, and Valeria Simoncini, An efficient re-
duced basis solver for stochastic Galerkin matrix equations, SIAM J. Sci. Comput., 39
(2017), p. A141–A163.

[22] Valeria Simoncini, Computational methods for linear matrix equations, SIAM Rev., 58
(2016), p. 377–441.

11

http://dx.doi.org/10.1137/070705817
http://dx.doi.org/10.1137/070705817
http://dx.doi.org/10.1137/17M1129866
http://dx.doi.org/10.1137/17M1129866
http://eprints.maths.manchester.ac.uk/2786/
http://eprints.maths.manchester.ac.uk/2786/
http://dx.doi.org/10.1016/s1474-6670(17)40318-1
http://dx.doi.org/10.1016/s1474-6670(17)40318-1
http://dx.doi.org/10.14658/pupj-drna-2017-Special_Issue-2
http://dx.doi.org/10.14658/pupj-drna-2017-Special_Issue-2
http://dx.doi.org/10.1007/978-3-319-70658-0_32-1
http://dx.doi.org/10.1007/978-3-319-70658-0_32-1
http://dx.doi.org/10.1007/3-540-30666-8
http://dx.doi.org/10.1007/3-540-30666-8
http://dx.doi.org/10.1137/100796844
http://dx.doi.org/10.1137/100796844
http://dx.doi.org/10.1137/1.9780898718027
http://dx.doi.org/10.1017/CBO9780511840371
http://dx.doi.org/10.1016/s1570-579x(13)60003-8
http://dx.doi.org/10.1137/1012104
http://dx.doi.org/10.1137/15m1032399
http://dx.doi.org/10.1137/15m1032399
http://dx.doi.org/10.1137/130912839


[23] James Joseph Sylvester, Sur l’equations en matrices px = xq, C. R. Acad. Sci. Paris,
99 (1884), pp. 67–71.

[24] David Scott Watkins, Understanding the QR algorithm, SIAM Rev., 24 (1982),
pp. 427–440.

[25] , The QR algorithm revisited, SIAM Rev., 50 (2008), pp. 133–145.

[26] , Francis’s algorithm, Amer. Math. Monthly, 118 (2011), p. 387.

[27] James Hardy Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press,
1965.

12

https://gallica.bnf.fr/ark:/12148/bpt6k3055h/f67.item
http://dx.doi.org/10.1137/1024100
http://dx.doi.org/10.1137/060659454
http://dx.doi.org/10.4169/amer.math.monthly.118.05.387

