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ROBUST RATIONAL APPROXIMATIONS OF NONLINEAR
EIGENVALUE PROBLEMS∗

STEFAN GÜTTEL† , GIAN MARIA NEGRI PORZIO† , AND FRANÇOISE TISSEUR†

Abstract. We develop algorithms that construct robust (i.e., reliable for a given tolerance,
and scaling independent) rational approximants of matrix-valued functions on a given subset of the
complex plane. We consider matrix-valued functions provided in both split form (i.e., as a sum of
scalar functions times constant coefficient matrices) and in black box form. We develop a new error
analysis and use it for the construction of stopping criteria, one for each form. Our criterion for split
forms adds weights chosen relative to the importance of each scalar function, leading to the weighted
AAA algorithm, a variant of the set-valued AAA algorithm that can guarantee to return a rational
approximant with a user-chosen accuracy. We propose two-phase approaches for black box matrix-
valued functions that construct a surrogate AAA approximation in phase one and refine it in phase
two, leading to the surrogate AAA algorithm with exact search and the surrogate AAA algorithm
with cyclic Leja–Bagby refinement. The stopping criterion for black box matrix-valued functions is
updated at each step of phase two to include information from the previous step. When convergence
occurs, our two-phase approaches return rational approximants with a user-chosen accuracy. We
select problems from the NLEVP collection that represent a variety of matrix-valued functions of
different sizes and properties and use them to benchmark our algorithms.
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1. Introduction. Consider a matrix-valued function F : Ω → Cn×n defined on
a nonempty open subset Ω of the complex plane and its rational approximant

(1.1) R(m)(z) = b0(z)R0 + b1(z)R1 + · · ·+ bm(z)Rm

on the compact target set ΣT ⊂ Ω. The Rj ∈ Cn×n in (1.1) are constant-coefficient
matrices and the bj are polynomials of degree at most m or rational functions of type
(m,m), that is, quotients of polynomials of degree at most m. Such approximants
play an important role in model order reduction [1, 2] and the solution of the nonlinear
eigenvalue problem (NEP) for F on ΣT [13, sect. 6]. The latter consists of finding all
the pairs (λ, v) ∈ ΣT × Cn \ {0} such that

(1.2) F (λ)v = 0.

A scalar λ satisfying (1.2) is an eigenvalue of F and v 6= 0 is the corresponding
eigenvector. If R(m) approximates F well on ΣT then, rather than solving the NEP
(1.2), we can solve the rational eigenvalue problem

(1.3) R(m)(λ)v = 0,

which is still nonlinear in λ but simpler to solve numerically as long as R(m) is ex-
pressed in an appropriate basis. Indeed, in this case linearization techniques exist that
allow the n× n rational eigenproblem (1.3) to be rewritten as a linear eigenproblem

L(λ)x = 0
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of larger dimension (typically nm × nm) but which can be solved by a variety of
algorithms [13]. All that is left to do is to recover approximate eigenpairs (λ, v) of
F (λ) from approximate eigenpairs (λ, x) of L(λ). The quality of such NEP eigensolvers
depends on a good understanding and careful implementation of all these steps. In
particular, it is important that R(m) is a good uniform approximation to F on the
target set ΣT so that the eigenpairs of the two eigenproblems are related.

In this paper we focus on the numerical construction of rational approximants that
are robust in the sense that they are reliable for a given tolerance and are scaling-
independent. To be more specific, for the numerical construction of such approximants
we use a discrete compact set Σ ⊆ ΣT in place of the target set ΣT (Σ is usually a fine
mesh of the compact superset ΣT or its boundary contour). For a given tolerance ε, we
describe four algorithms that, when they succeed, return rational approximants R(m)

satisfying

(1.4) ‖F −R(m)‖
Σ
≤ ε‖F‖

Σ
,

where

(1.5) ‖F‖
Σ

= max
z∈Σ
‖F (z)‖2.

When F and R(m) are continuous on ΣT , we argue in section 2 that (1.4) implies that

(1.6) ‖F −R(m)‖ΣT
≤ εcΣ‖F‖ΣT

holds for some constant cΣ > 1. As a consequence of (1.6), we show that any eigenpair
(λ, v) of R(m) with λ ∈ ΣT is an exact eigenpair of the perturbed matrix-valued
function F + ∆F with ‖∆F‖

ΣT
≤ c

Σ
ε‖F‖

ΣT
. We consider both the case where F is

provided in the split form1

(1.7) F (z) =

s∑
j=1

fj(z)Aj ,

with Aj ∈ Cn×n and the fj(z) being functions defined on Ω, and the case where F is
provided as a black box that only returns evaluations F (z0) for z0 ∈ Ω.

There is a growing body of work on the approximation or interpolation of matrix-
valued functions. Taylor approximation has been applied successfully, in particular to
NEPs arising in delay differential equations [16]. Chebyshev interpolants are more ap-
propriate for NEPs with eigenvalues lying on a smooth curve in the complex plane [7].
For the nonlinear eigensolver NLEIGS, Güttel et al. used a rational Leja–Bagby sam-
pling approach to construct a rational approximant R(m), where the bj in (1.1) are
rational Newton basis functions [12]. Hochman [15] and Lietaert et al. [17] showed
how to extend the adaptive Antoulas–Anderson (AAA) algorithm [18] from scalar
functions to a set of multiple scalar functions, with the rational approximants for
each function expressed in barycentric form. This led to the fastAAA algorithm for
rational fitting [15] and the set-valued AAA algorithm for NEPs [17], which require
F to be provided in the split form (1.7). Saad et al. [19] used the Cauchy integral
formula to approximate the scalar functions fj in (1.7) by a rational function and ap-
plied this approach successfully to solve acoustic nonlinear problems [8]. Güttel and
Elsworth [9] showed how to construct a matrix-valued rational approximant with the

1Observe that we can always express F (z) in that form with at most s = n2 matrix coefficients.
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AAA algorithm when F is provided as a black box function, using a scalar surrogate
function f for F , and named this approach surrogate AAA. This surrogate approach
in combination with the NLEIGS method is implemented in the NEP module of the
SLEPc library [4]. A drawback of the surrogate AAA approach is that there might
be a significant gap between the accuracy of the scalar surrogate approximant for f
and the accuracy of the matrix-valued approximant for the original function F . In
the SLEPc implementation this is addressed by polynomially expanding the surrogate
rational approximant with poles placed at infinity.

In all the above approaches the computed families of rational approximants share
the same barycentric scalar support points and weights, and therefore all functions
share the same set of poles. A recent preprint by Gosea and Güttel describes a
block-AAA algorithm which is based on a barycentric formula with matrix-valued
weights [11]. This approach can deliver accurate rational approximants of lower order
compared to algorithms using scalar weights, but the involved linear algebra compu-
tations currently make it only suitable for problems of very small dimensions. None
of the above contributions provide an error analysis of the expected approximation
accuracy returned by their algorithms.

The main contributions of our work are as follows.
• In section 2 we provide an error analysis for the eigenpairs of F computed

from a rational approximant R(m) ≈ F . This analysis gives insights into the
sampling accuracy required to solve NEPs with a guaranteed backward error,
an essential requirement for a robust eigensolver.

• In section 3 we apply the new error analysis for the development of a stop-
ping criterion for rational approximation procedures that exploit the split
form (1.7). Our criterion includes weights that are chosen relative to the
“importance” of each function fj . This leads to a new variant of the set-
valued AAA algorithm, called weighted AAA, that guarantees to return a
rational approximant with a user chosen accuracy and possibly lower degree
than set-valued AAA.

• In section 4 we consider the problem of approximating F given only as a black
box. Here we introduce several two-phase methods that combine the ability
of surrogate AAA to identify good pole parameters with the robustness of
the Leja–Bagby approach in NLEIGS. Here our contributions over previous
works are three-fold.
– Instead of refining the surrogate AAA approximant by poles at infinity as

in [4], we argue that poles should instead be ordered in the Leja–Bagby
manner and then be repeated cyclically.

– Instead of discarding previous evaluations of the surrogate f(z) at sam-
pling points zj , which involves expensive evaluations of F (zj), we show
how to reuse these computations for the second phase of our algo-
rithm. While the resulting rational approximant R(m) combines data
in barycentric and Newton form, the rational eigenproblem (1.3) is eas-
ily linearized as shown in Appendix A. Hence this rational approximant
in mixed bases can be used as part of an NEP eigensolver.

– We propose a stopping criterion that is less strict than the divided differ-
ence based criterion in [12], typically leading to approximants of slightly
lower degree without sacrificing accuracy.

• Finally, section 5 contains a comprehensive comparison of the discussed al-
gorithms on a large range of problems from the NLEVP collection (version
4.1) representing a variety of matrix-valued functions with different sizes and
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properties. We believe this is the first comparison of so much detail available
in the literature. MATLAB codes needed to reproduce these experiments are
available from https://github.com/Gmnp/nep2rat. Our set of benchmark
problems may be useful for future developments of eigensolvers for nonlinear
eigenvalue problems.

2. Error analysis of approximate nonlinear eigenpairs. Let Σ ⊆ ΣT ⊂
Ω ⊆ C be the sets introduced in section 1 and let F : Ω→ Cn×n. One of the objectives
of this paper is to numerically construct an approximant R(m) of F on the discrete
set Σ such that (1.4) holds. This does not in general guarantee that the relative error
of R(m) on the target set ΣT will be bounded above by the given tolerance ε. But
assuming that F and R(m) are (uniformly) continuous on ΣT , we can argue using [5,
Lem. 2, p. 86] that (1.4) implies

‖F −R(m)‖
ΣT
≤ ωF (δ) + ωR(m)(δ) + ε‖F‖

ΣT
,

where
ωF (δ) = sup

|x−y|≤δ
‖F (x)− F (y)‖2

is the modulus of continuity of F (and likewise for R(m)) and

δ = max
z∈ΣT

min
σ∈Σ
|σ − z|

is the ‘density’ of Σ in the target set ΣT . If for a given ε we choose δ such that

ωF (δ) + ωR(m)(δ) ≤ ε‖F‖ΣT

then (1.6) holds for cΣ = 2. Hence the relative error on the target set ΣT can be
controlled by the relative error on the finite set Σ provided that δ is sufficiently small,
i.e., Σ is sufficiently dense in ΣT .

The above argument also applies if both F and R(m) are holomorphic in Ω and
Σ is only a sufficiently fine discretization of the boundary ∂ΣT . In this case (1.4)
implies (1.6) with ΣT replaced by ∂ΣT , i.e.,

‖F −R(m)‖
∂ΣT
≤ ε c

∂ΣT
‖F‖

∂ΣT

with some constant c
∂ΣT

. By the maximum norm principle (see, e.g., [6, Thm. 2]),
‖F‖

∂ΣT
= ‖F‖ΣT

and therefore

‖F −R(m)‖
ΣT
≤ εc

∂ΣT
‖F‖

ΣT
.

Now suppose we have an approximant R(m) to F satisfying (1.6). Can we use any
computed eigenpair of R(m) as an approximate eigenpair of F? Let us look at back-
ward errors. A natural definition for the backward error ηF (λ̂, v̂) of an approximate
eigenpair (λ̂, v̂) of F with λ̂ in the target set ΣT is given by

(2.1) ηF (λ̂, v̂) := min{ε : (F (λ̂) + ∆F (λ̂))v̂ = 0, ‖∆F‖
ΣT
≤ ε‖F‖

ΣT
}.

Starting from (F (λ̂) + ∆F (λ̂))v̂ = 0, we find that

‖F (λ̂)v̂‖2 = ‖∆F (λ̂)v̂‖2 ≤ ‖∆F (λ̂)‖2‖v̂‖2 ≤ ‖∆F‖ΣT
‖v̂‖2 ≤ ε‖F‖ΣT

‖v̂‖2,
4
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so that

ηF (λ̂, v̂) ≥ ‖F (λ̂)v̂‖2
‖F‖

ΣT
‖v̂‖2

.

This lower bound on ηF (λ̂, v̂) is attained by the perturbation

∆F (z) = −F (λ̂)
v̂v̂∗

v̂∗v̂
.

Indeed, for this perturbation we have that (F (λ̂)+∆F (λ̂))v̂ = 0, so the first constraint
in (2.1) is satisfied. Moreover,

‖∆F‖
ΣT

= sup
z∈ΣT

‖∆F (z)‖2 =
‖F (λ̂)v̂‖2
‖v̂‖2

=
‖F (λ̂)v̂‖2
‖F‖

ΣT
‖v̂‖2

‖F‖
ΣT
.

Hence, for the backward error ηF (λ̂, v̂) in (2.1) we have the explicit expression

(2.2) ηF (λ̂, v̂) =
‖F (λ̂)v̂‖2
‖F‖ΣT

‖v̂‖2
.

Now if we can construct an approximant R(m) of F such that (1.6) holds and if (λ̂, v̂)

is a computed eigenpair of R(m) with backward error ηR(m)(λ̂, v̂), i.e.,
(
R(m)(λ̂) +

∆R(m)(λ̂)
)
v̂ = 0 with ‖∆R(m)‖

ΣT
= ηR(m)(λ̂, v̂)‖R(m)‖

ΣT
, then

ηF (λ̂, v̂) =
‖F (λ̂)v̂‖2
‖F‖

ΣT
‖v̂‖2

=
‖F (λ̂)v̂ −R(m)(λ̂)v̂ −∆R(m)(λ̂)v̂‖2

‖F‖
ΣT
‖v̂‖2

≤
‖F −R(m)‖ΣT

‖F‖
ΣT

+
‖∆R(m)‖

ΣT

‖F‖
ΣT

≤ cΣε+
‖R(m)‖

ΣT

‖F‖
ΣT

ηR(m)(λ̂, v̂).(2.3)

This implies that if (λ̂, v̂) with λ̂ ∈ ΣT is a computed eigenpair of R(m) with backward
error ηR(m)(λ̂, v̂) ≤ ε then as long as ‖R(m)‖

ΣT
/‖F‖

ΣT
≈ 1 and c

Σ
is not too large,

we can expect (λ̂, v̂) to be an approximate eigenpair of F with a backward error
ηF (λ̂, v̂) <∼ ε. We illustrate this in Example 2.1 below.

The explicit formula in (2.2) is not practical due to the presence of the ΣT -norm
in the denominator. Hence, when computing backward errors, we use instead the
upper bound

η̂F (λ̂, v̂) =
‖F (λ̂)v̂‖2
‖F‖

Σ
‖v‖2

.

This affects the bounds in (2.3) by a factor ‖F‖
ΣT
/‖F‖

Σ
.

Example 2.1. Let us consider the 2× 2 matrix-valued function

(2.4) F (z) =

[
eiz2

1
1 1

]
,

which has eigenvalues

λ1,2 = 0, λ3 =
√

2π, λ4 = i
√

2π, λ5 = −i
√

2π, λ6 = −
√

2π
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Table 2.1: Backward errors for approximate eigenpairs of F in (2.4) computed as
eigenpairs of R(m).

m
‖F−R(m)‖

Σ
‖F‖

Σ
η̂F (λ̂1, v̂1) η̂F (λ̂2, v̂2) η̂F (λ̂3, v̂3) η̂F (λ̂4, v̂4) η̂F (λ̂5, v̂5) η̂F (λ̂6, v̂6)

14 3.3e-5 2.5e-8 2.6e-8 7.0e-7 1.6e-6 1.7e-6 1.2e-6
18 1.8e-7 1.4e-10 1.4e-10 2.0e-9 2.9e-9 4.8e-9 2.0e-9
22 3.6e-10 9.1e-14 9.1e-14 2.7e-12 7.8e-13 3.7e-12 3.2e-12
28 1.5e-14 1.4e-15 1.4e-15 3.4e-15 7.4e-16 1.5e-15 4.9e-15

in the target set ΣT consisting of the disc of center 0 and radius 3. For the finite set
Σ ⊂ ΣT , we generate 1000 random points inside ΣT and another 200 points uniformly
distributed on the boundary of ΣT . We then construct four rational approximants
of F on Σ having different relative errors and degrees m—see columns 1 and 2 in
Table 2.1. The computed eigenpairs (λ̂j , v̂j) of R(m) with eigenvalues λ̂j ∈ ΣT are
returned as approximate eigenpairs of F . The corresponding backward errors are
displayed in Table 2.1. We checked that for all these eigenpairs, η̂R(m)(λ̂j , v̂j) ≤
7 × 10−15. As predicted by (2.3), the backward errors η̂F (λ̂j , v̂j) are smaller than
ε = ‖F − R(m)‖

Σ
/‖F‖

Σ
. We also see that the smaller ‖F − R(m)‖

Σ
/‖F‖

Σ
is, the

smaller the backward errors η̂F (λ̂j , v̂j) are.
Since we know the exact eigenvalues, we can compute the absolute errors for the

double and defective eigenvalue at 0 and the relative errors for the other nonzero
eigenvalues. These are provided in Table 2.2. Assuming that they satisfy the rule of
thumb that

forward error <∼ condition number× backward error,

we anticipate that the nonzero simple eigenvalues λ3, . . . , λ6 have a condition number
of order 103. A normwise condition number for a nonzero simple eigenvalue λ ∈ ΣT
of F with eigenvector v that is consistent with the backward error definition in (2.1)
is given by

κF (λ) = lim sup
ε→0

{
|∆λ|
ε|λ|

: (F (λ+ ∆λ) + ∆F (λ+ ∆λ))(v + ∆v) = 0, ‖∆F‖ΣT
≤ ε‖F‖ΣT

}
.

Following the proof of [13, Thm. 2.20] we find that

κF (λ) =
‖F‖

ΣT
‖w‖2‖v‖2

|λ||w∗F ′(λ)v|
,

were w is a left eigenvector of F with corresponding eigenvalue λ. Now for F in (2.4),
we find that ‖F‖

ΣT
≈ e9 ≈ 8× 103. Also, all the left and right eigenvectors of F are

nonzero multiples of
[

1
−1

]
. An easy calculation shows that

‖w‖2‖v‖2/(|λj ||w∗F ′(λj)v|) = 1/(2π)

so that κF (λj) ≈ 1.3×103, j = 3, . . . , 6 as anticipated from the numerical experiments.

3. Matrix-valued functions in split form. A natural approach to approx-
imate a matrix-valued function F provided in split form (1.7) with a rational ap-
proximant R(m) consists of approximating the scalar functions fj with scalar rational

6



Table 2.2: Absolute and relative errors for approximate eigenvalues of F in (2.4)
computed as eigenvalues of R(m).

m
‖F−R(m)‖

Σ
‖F‖

Σ
|λ1 − λ̂1| |λ2 − λ̂2| |λ3−λ̂3|

|λ3|
|λ4−λ̂4|
|λ4|

|λ5−λ̂5|
|λ5|

|λ6−λ̂6|
|λ6|

14 3.3e-5 1.7e-2 1.7e-2 6.4e-4 1.5e-3 1.5e-3 1.1e-3
18 1.8e-7 1.2e-3 1.3e-3 1.8e-6 2.7e-6 4.4e-6 1.8e-6
22 3.6e-10 3.2e-5 3.2e-5 2.5e-9 7.1e-10 3.4e-9 2.9e-9
28 1.5e-14 4.0e-6 4.0e-6 3.1e-12 6.8e-13 1.3e-12 4.5e-12

functions r(m)
j , j = 1, . . . , s and let

(3.1) R(m)(z) :=

s∑
j=1

r
(m)
j (z)Aj =:

m∑
i=0

bi(z)Ri,

where the bi(z) are as in (1.1). The rational approximants r(m)
j can be constructed

in several ways. We concentrate on the following.
Cauchy approximation. When the fj in (1.7) are holomorphic on Σ̂T ⊃ ΣT , Saad

et al. [19] use Cauchy’s integral formula to rewrite the fj as

fj(z) =
1

2πi

∫
∂Σ̂T

fj(u)

u− z
du, z ∈ Σ̂T \ ∂Σ̂T , j = 1, . . . , s.

If the boundary ∂Σ̂T of Σ̂T is piecewise regular with parametrization γ :
[0, 2π]→ ∂Σ̂T then the substitution u = γ(t) leads to

fj(z) =
1

2πi

∫ 2π

0

fj(γ(t))γ′(t)

γ(t)− z
dt.

A quadrature rule with m + 1 nodes σi and weights ωi is then employed to
approximate the fj with the rational functions

(3.2) r
(m)
j (z) =

m∑
i=i

wifj(σi)

σi − z
, j = 1, . . . , s.

AAA approximation. The adaptive Antoulas–Anderson (AAA) algorithm aims at
interpolating a scalar function f : Ω→ C by a rational function r(m) expressed
in barycentric form [18]

(3.3) r(m)(z) =

m∑
i=0

f(σi)wi
z − σi

/ m∑
i=0

wi
z − σi

.

The core of the procedure is a greedy selection of support points σi, one at
a time, from a given discrete set Σ of M points. To be more specific, at step
m, the next support point σm is chosen such that

max
σ∈Σ(m−1)

|f(σ)− r(m−1)(σ)| = |f(σm)− r(m−1)(σm)|,

where Σ(m−1) = Σ\{σ0, . . . , σm−1}. The vector of weights w = [w0, w2, . . . , wm]T

is obtained by solving a least squares problem min‖w‖2=1 ‖A(m)w‖2 with an
7



(M − m − 1) × (m + 1) Loewner matrix A(m) (see [18] for detail). The
construction stops when

(3.4) ‖f − r(m)‖Σ = ‖f − r(m)‖
Σ(m)

≤ ε‖f‖Σ ,

where the norm on Σ defined in (1.5) reduces to ‖g‖
Σ

= maxz∈Σ|g(z)| for a
scalar function g.
For matrix-valued functions in split form (1.7), Hochman [15] and Lietaert
et al. [17] propose to approximate all the scalar functions fj with the AAA
procedure using the same support points and weights for all the functions fj .
This leads to the rational approximant

(3.5) r
(m)
j (z) =

m∑
i=0

fj(σi)wi
z − σi

/ m∑
i=0

wi
z − σi

, j = 1, . . . , s.

How well the rational r(m)
j in (3.2) or (3.5) approximates fj on Σ has a direct

consequence on how well R(m) in (3.1) approximates F on Σ. Indeed,

(3.6) ‖F −R(m)‖
Σ

= max
z∈Σ

∥∥∥ s∑
j=1

(fj(z)− r(m)
j (z))Aj

∥∥∥
2
≤

s∑
j=1

‖fj − r(m)
j ‖

Σ
‖Aj‖2.

So we propose to use the stopping criterion

(3.7)
s∑
j=1

‖fj − r(m)
j ‖

Σ
‖Aj‖F ≤ εβ,

where β is a lower bound on ‖F‖
Σ
that we assume can be computed cheaply. Then

under the assumption that (3.7) holds, we have

‖F −R(m)‖
Σ
≤

s∑
j=1

‖fj − r(m)
j ‖

Σ
‖Aj‖2 ≤

s∑
j=1

‖fj − r(m)
j ‖

Σ
‖Aj‖F ≤ εβ ≤ ε‖F‖Σ .

Hence if r(m)
j in (3.2) or (3.5) satisfies (3.7) then the resulting rational approximation

R(m) in (3.1) is guaranteed to satisfy (1.4). A lower bound β on ‖F‖
Σ
can be computed

as follows: let u ∈ Cn be some normally distributed vector of unit length and let
uj = Aju, j = 1, . . . , s. Then we let

(3.8) β := max
z∈Σ
‖

s∑
j=1

fj(z)uj‖2 ≤ ‖F‖Σ .

The lower bound can be attained, but it can be several orders of magnitude smaller
than ‖F‖

Σ
with a bad choice for u. A poor lower bound will result in a few unnec-

essary extra steps in the construction of the approximant and hence a larger degree
m than is needed. Note that the stopping criterion (3.7) is scaling independent. It
returns the same approximation when applied to the split form F (z) in (1.7) and
to F (z) =

∑s
j=1 gj(z)Bj with gj(z) = αjfj(z) and Aj = αjBj , αj 6= 0. Also, the

criterion (3.7) returns αR(m) when applied to αF , where R(m) is the approximant to
F with this criterion. We call the AAA approximant R(m) obtained with the stopping
criterion (3.7), the weighted AAA rational approximant.
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For their set-valued AAA algorithm, Lietaert et al. [17] use

(3.9) max
1≤j≤s

‖fj − r(m)
j ‖Σ/‖fj‖Σ ≤ ε

as stopping criterion. The latter satisfies

(3.10) ‖F −R(m)‖
Σ
≤

s∑
j=1

‖fj − r(m)
j ‖

Σ
‖Aj‖2 ≤

(
s max

1≤j≤s
‖fj‖Σ‖Aj‖2

)
ε.

Since (smax1≤j≤s ‖fj‖Σ‖Aj‖2)/‖F‖
Σ
≥ 1 we cannot conclude that (1.4) holds. Our

stopping criterion (3.7) takes into account the magnitude of the coefficient matrices
while (3.9) does not. In particular, (3.7) assigns more importance to scalar functions
fj associated with coefficient matrices Aj of large norm. As a consequence, if the
lower bound β on ‖F‖

Σ
is sharp, we can expect the construction of R(m) to stop

earlier with (3.7) than with (3.9). We will illustrate this behaviour in section 5.
The Cauchy approximant (3.2) for holomorphic functions is in principle easy to

construct. However, it requires choosing a set Σ̂T ⊃ ΣT such that the functions fj
are still holomorphic on Σ̂T and with interpolation points on the boundary ∂Σ̂T that
are not too close to the boundary of ΣT . This makes an automatic implementation
of the Cauchy approximant difficult. The numerical experiments we conducted with
the trapezium rule on a variety of problems usually returned Cauchy approximants
of degree higher than that of the corresponding set-valued or weighted AAA approxi-
mants. On the other hand, for a holomorphic F on ΣT , the set-valued or the weighted
AAA procedure can return a rational R(m) with poles in ΣT (although we did not
observe this happening in the experiments we conducted).

Example 3.1. Let F be the 2× 2 matrix-valued function in (2.4) with target set
ΣT the disc of centre 0 and radius ρ = 3. Rewrite F in split form as

(3.11) F (z) =

[
0 1
1 1

]
+ eiz2

[
1 0
0 0

]
and construct a Cauchy approximant R(m) using the trapezium rule and contours ∂Σ̂T
that are circles of centre 0 and radius αρ, α ∈ {1.05, 1.1, 1.25, 1.5}. For each value
of α, we plot in Figure 3.1 the relative error ‖F − R(m)‖Σ/‖F‖Σ as the degree, or
equivalently, the number of quadrature nodes m increases. For the finite set Σ, we
generate 400 random points inside ΣT and add 100 uniformly distributed points on
the boundary of ΣT . While the convergence is slow for α close to 1, it improves for
larger values of α but the limiting accuracy of the approximation increases as well. For
comparison, we also plotted the convergence of the AAA approximant of F in (3.11).

The AAA approximation can stagnate when the tolerance ε is too small. We then
see numerical Froissart doublets appear. These are poles with very small residues or
pole-support point pairs that are so close together that they nearly cancel [10]. We
use the “clean-up” procedure described in [18, Sec. 5] to remove them.

4. Two phase approximation of black box matrix-valued functions. Elsworth
and Güttel [9] use the support points σi and weights wi, i = 1, . . . ,m from the AAA
approximant r(m) to a surrogate scalar function

(4.1) f(z) = u∗F (z)v,

9



Fig. 3.1: Demonstration of four different choices for the contour ∂Σ̂T (a circle of centre
0 and radius αρ) for the Cauchy approximation of F in (2.4) on ΣT , the disc of centre
0 and radius ρ = 3. Refer to Example 3.1 for a detailed discussion.

where u and v are normally distributed vectors of unit length. The rational matrix-
valued approximant is then defined as

(4.2) R(m)(z) =

m∑
i=0

F (σi)wi
z − σi

/
m∑
i=0

wi
z − σi

.

They refer to this approach as surrogate AAA, the latter being applicable to matrix-
valued functions provided in black box or split form. They argue that f has a region
of analyticity similar to F and so the support points and the weights computed for the
AAA approximant of f should be good choices for the function F as well. The proce-
dure stops when (3.4) holds. Unfortunately, there is no guarantee that R(m) ≈ F with
good accuracy; see also section 5. However, when combined with a refinement phase,
the surrogate approach can be a viable option. In particular, the AAA approximant
to the surrogate function (4.1) also provides information about the location of poles
that can then be fed to the NLEIGS Leja–Bagby sampling procedure [12, Section 5].
Indeed, the m poles of the AAA approximation r(m) of f in (4.1) or equivalently, the
m poles of R(m) in (4.2) can be computed by following the procedure in [18], i.e., by
first constructing the (m+ 2)× (m+ 2) pencil

(4.3)


0 w0 w1 . . . wm
1 σ0

1 σ1

...
. . .

1 σm

− z


0
1

1
. . .

1


then computing its eigenvalues, discarding the two eigenvalues at infinity, and return-
ing the remaining m eigenvalues as poles {λ1, . . . , λm} =: Ξ of R(m).

Also, the first step of the AAA procedure applied to the surrogate function f
in (4.1) allows the computation of a lower bound for ‖F‖

Σ
at almost no extra cost.

10



Indeed, for surrogate AAA, f(z) = u∗g(z) with g(z) = F (z)v is evaluated for all
z ∈ Σ so that

(4.4) β̃ = max
z∈Σ
‖g(z)‖2 ≤ ‖F‖Σ

is easy to compute. Having access to such a lower bound is useful when constructing a
stopping criterion that ensures that the rational approximant R(m) to F has a relative
error bounded by ε for some given tolerance ε.

4.1. NLEIGS with poles from surrogate AAA. The new NEP module in-
side the SLEPc library for the solution of nonlinear eigenvalue problems [4] starts
by constructing a surrogate AAA approximant to the scalar function f in (4.1) and
then feeds its poles to the NLEIGS Leja–Bagby sampling procedure [12, Section 5].
This approach combines the convenience of the AAA algorithm, which only requires
as inputs samples of the function to be approximated, with the robustness and full
parameter control of the Leja–Bagby approach. By the latter we mean in particular
that poles returned by AAA can be preprocessed before being used for the Leja–Bagby
procedure. This might be necessary in case where AAA returns unwanted poles in
the target set ΣT . The NLEIGS with poles from surrogate AAA algorithm works as
follows.
step 1. Run the AAA algorithm on the surrogate function (4.1) and discretized target

set Σ to compute the d + 1 support points σi and weights wi, i = 0, . . . , d

defining the AAA rational approximant r(d)(z) =
∑d
i=0

f(σi)wi

z−σi

/∑d
i=0

wi

z−σi
.

step 2. Compute the d poles of r(d) (i.e., the eigenvalues of the pencil (4.3) with
m = d minus the two extra eigenvalues at infinity).

step 3. Apply NLEIGS with Leja–Bagby sampling, i.e., start with a random point
σ0 ∈ Σ and let

R0 = F (σ0), b0(z) = 1

be the first term in (1.1). The Leja–Bagby pairs (σk, ξk) are formed one at a
time using

(4.5) σk = arg max
z∈Σ

|sk−1(z)|, ξk = arg min
z∈Ξ

|sk−1(z)|, k = 1, 2, . . . ,

where

sk(z) =

k∏
j=0

(z − σj)
/ k∏

j=1
ξj 6=∞

(z − ξj).

Then the coefficient matrix Rk and rational function bk in (1.1) are computed
as [12]

(4.6) Rk =
F (σk)−

∑k−1
i=0 bi(σk)Ri

bk(σk)
, bk(z) =

z − σk−1

βk(1− z/ξk)
bk−1(z)

with scaling parameters βk such that ‖bk‖∂Σ
= maxz∈∂Σ

|bk(z)| = 1.

4.1.1. Stopping criterion for the Leja–Bagby procedure. Güttel et al. [12]
stop the Leja–Bagby sampling procedure at step k = m when

(4.7) ‖Rm‖F ≤ ε‖R0‖F .
11



But if the Leja–Bagby procedure converges then

‖F −R(m)‖
Σ

= max
z∈Σ

∥∥∥ ∞∑
k=0

bk(z)Rk −
m∑
k=0

bk(z)Rk

∥∥∥
2
≤

∞∑
k=m+1

max
z∈Σ
‖bk(z)‖2‖Rk‖F .

If none of the poles ξk are inside Σ then the rational functions bk in (4.6) are holo-
morphic on Σ and by construction, maxz∈Σ ‖bk(z)‖2 = ‖bk‖Σ = ‖bk‖∂Σ = 1 so that

‖F −R(m)‖
Σ
≤

∞∑
j=m+1

‖Rj‖2.

Also, ‖F‖
Σ
≥ n−1/2 max0≤k≤m ‖F (σk)‖F and since we assume the Leja–Bagby pro-

cedure converges then for m large enough we have ‖Rj‖F < ‖Rm‖F for j > m and∑∞
j=m+1 ‖Rj‖2 ≤ κ‖Rm‖F for some constant κ > 1 (we use κ = 3 in our imple-

mentation). Hence, instead of (4.7) we suggest to stop the Leja–Bagby procedure
when

(4.8) ‖Rm‖F ≤
ε

κ
max

0≤k≤m
‖F (σk)‖F ,

which, once convergence has taken place, guarantees ‖F − R(m)‖
Σ
≤ ε‖F‖

Σ
. Note

that (4.8) is usually less strict than (4.7) since R0 = F (σ0) so with (4.8) as stopping
criterion, NLEIGS with Leja–Bagby sampling returns a rational approximant with
the required accuracy but with a smaller degree m than when (4.7) is used.

4.1.2. On the choice of poles to feed to the Leja–Bagby sampling proce-
dure. When the number of poles ξ1, . . . , ξd in the approximant R(d) returned by the
surrogate AAA procedure is smaller than the degree m needed to satisfy the NLEIGS
stopping criterion, i.e., d < m, Campos and Roman [4] add extra poles at infinity.
Using the denominator polynomial

qd(z) = (z − ξ1) · · · (z − ξd)

and the nodal polynomial

sd(z) = (z − σ0)(z − σ1) · · · (z − σd)

of the interpolation nodes σj , we show that this approach is equivalent to computing
a polynomial interpolant P of degree m− d− 1 to the error function

(4.9) E(z) := qd(z)(F (z)−R(d)(z))/sd(z)

and then setting

(4.10) R(m)(z) := R(d)(z) + sd(z)P (z)/qd(z).

To this end we need to recall a basic fact from linearized rational interpolation: a
rational function r(z) = p(z)/qd(z) of type (m,m) with fixed prescribed denominator
qd is uniquely determined by m + 1 interpolation conditions r(σj) = fj at distinct
points σj . The only requirement is that qd(σj) 6= 0 for all j = 0, 1, . . . ,m. The same
result holds for a rational matrix-valued interpolant of the form R(z) = P (z)/qd(z),
where now P is a matrix polynomial of degree m because every matrix entry is a
scalar rational function with the interpolation property.
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The interpolant obtained after d iterations of the surrogate approach is of the form
R(d)(z) = Q(z)/qd(z), with a matrix polynomial Q of degree d, and it interpolates F
at the nodes σ0, σ1, . . . , σd by construction. After m−d more steps of the Leja–Bagby
procedure with poles ξd+1 = · · · = ξm = ∞ and interpolation nodes σd+1, . . . , σm,
we obtain a degree m rational interpolant R(m)(z) = Q̃(z)/qd(z) satisfying m + 1
interpolation conditions at σ0, σ1, . . . , σm. By uniqueness of the interpolant, this
function must coincide with R(m) defined in (4.10), which has the same denominator
qd and satisfies the same m+ 1 interpolation conditions by construction.

The above discussion shows that choosing poles at infinity in the refinement phase,
amounts to falling back to polynomial interpolation of the error function defined
in (4.9). The asymptotic convergence of this process is governed by the region of
analyticity of E in a neighbourhood of the target set ΣT . Note that the roots σj
of sd do not introduce singularities in E(z), as F (σj) − R(d)(σj) = 0 due to the
interpolation conditions (j = 0, 1, . . . , d). Also, qd(z)R(d) is a matrix polynomial.
Hence, the asymptotic convergence of this polynomial interpolation process is entirely
governed by the region of analyticity of the original function F .

In situations where rational interpolation is of advantage, e.g. if F has singulari-
ties nearby the target set ΣT , falling back to polynomial interpolation might lead to
significant inefficiencies in the sampling procedure. On the other hand, in the refine-
ment phase we only have d pole parameters at our disposal. Our recommendation is
therefore to repeat these d poles cyclically in Leja–Bagby order, i.e., once the number
k of Leja–Bagby points generated by the sampling procedure exceeds d, the expression
for the poles ξk in (4.5) is replaced with

(4.11) ξk = ξ1+(k−1 mod d)

until we reach the final degree k = m required to satisfy a stopping criterion. This is
no longer a true Leja–Bagby procedure as d pole parameters are repeated cyclically,
so we refer to it as d-cyclic Leja–Bagby procedure. The Leja–Bagby ordering of the
poles ensures that the scalar basis functions bk(z) defined in (4.6) vary only mildly
over the target set Σ, thus avoiding problems with numerical under- or overflow.

Example 4.1. In order to illustrate the above discussion, it suffices to consider
a scalar 1× 1 NEP F (z) = f(z) = 0.2

√
z− 0.6 sin(2z), which can also be found in the

introduction of [12]. As target set we use the interval ΣT = [10−2, 4], discretized by
103 logarithmically spaced points (the discrete set Σ). Figure 4.1 shows four conver-
gence curves each corresponding to one of the approaches discussed above.

• AAA (solid blue): This curve shows the uniform error maxz∈ΣT
|f(z) −

r(m)(z)| of the degree m interpolant of f obtained by AAA. The algorithm
resolves f efficiently, with the degree 19 approximant achieving an error be-
low 10−14, but we note the spikes in the curve for some degrees and overall
stagnation behaviour with noisy fluctuations around ≈ 10−13.

• Leja–Bagby (dashed red with square markers): This curve corresponds to
the original NLEIGS approach in [12], computing Leja–Bagby points on ΣT
and the singularity set of f , which is Ξ = (−∞, 0]. The observed geometric
convergence behaviour is robust, at an asymptotic rate that is given in terms
of the logarithmic capacity of the condenser 1/cap(ΣT ,Ξ) ≈ 0.569, i.e.,

lim supm→∞‖f(z)− r(m)(z)‖ΣT
≤ exp(−1/cap(ΣT ,Ξ));

see e.g. [12, 20] for more details. The downside of the Leja–Bagby approach
13
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Fig. 4.1: Demonstration of four different choices for the rational approximation of
a scalar function, including our proposed d-cyclic Leja–Bagby procedure (d = 10).
Refer to Example 4.1 for a detailed discussion.

is that the singularity set Ξ needs to be specified by the user, which might be
difficult in particular for NEPs given as a black box.

• LB(10)+infinite (dotted yellow with circles): This is similar to what is used
in [4], namely an initial phase of AAA (in this example d = 10 iterations),
followed by a Leja–Bagby procedure using the d poles obtained from the AAA
approximant, and then using poles at infinite for the remaining process. We
observe a sudden drop in error for degree 10, approximately to the level of the
AAA approximant of the same degree, but then a very slow convergence in
the refinement phase for degrees m > 10. As explained above, this approach
amounts to using polynomial interpolation in the refinement phase. For this
particular problem an asymptotic geometric convergence rate of only (

√
k −

1)/(
√
κ+ 1) ≈ 0.905 is expected, where κ = max(ΣT )/min(ΣT ). We refer to

the discussion in [12].
• 10-cyclic LB (solid purple with diamonds): This is our recommendation of
running an initial phase of AAA to get d = 10 poles, and then repeat them
cyclically in Leja–Bagby order. This approach combines the convenience of
not having to specify the singularity set with the robust convergence of the
Leja–Bagby approach.

4.2. Surrogate AAA with exact/relaxed search. The Leja–Bagby con-
struction of the support points in (4.5) does not use information from F unlike the
surrogate AAA construction through the surrogate function f(z) = u∗F (z)v. So in-
stead of constructing R(m) entirely with NLEIGS as explained above we propose to
refine the rational approximation

(4.12) R(d)(z) =

d∑
i=0

F (σi)wi
z − σi

/
d∑
i=0

wi
z − σi
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obtained after d steps of surrogate AAA. To this end we modify the surrogate AAA
steps as follows. The support points are determined from

(4.13) σk = arg max
z∈Σ(k−1)

‖F (z)−R(k−1)(z)‖F , k > d,

where Σ(k−1) = Σ\{σ0, . . . , σk−1}. The weights wi are computed as for the surrogate
AAA approximation. The procedure terminates at step k = m when

(4.14) max
z∈Σ(m)

‖F (z)−R(m)(z)‖F ≤ εβ̃

holds, where β̃ is the lower bound for ‖F‖
Σ
in (4.4). The rational approximant R(m)

then satisfies (1.4). We named this approach surrogate AAA with exact search on Σ.
Computing σk in (4.13) is expensive so we suggest two ways to reduce the com-

plexity.
1. When F (z) is holomorphic in Ω, we can remove all the sampling points in

the interior part of Σ and only work on the boundary ∂Σ = Σ ∩ ∂ΣT , which
we call surrogate AAA with exact search on ∂Σ.

2. In addition, if the points of Σ(k) are randomly shuffled, instead of choosing
σk as in (4.13), we take the first support point σk ∈ Σ(k) such that

‖F (σk)−R(k−1)(σk)‖F > εβ̃.

We refer to this approach as surrogate AAA with relaxed search.
Our numerical experiments in section 5 show that this approach works well when the
tolerance ε in (1.4) is not too small. For small tolerance, the fact that the weights
are computing using the surrogate function (4.1) prevents the procedure to reach the
required accuracy.

4.3. Surrogate AAA with cyclic Leja–Bagby refinement. Instead of refin-
ing the surrogate AAA approximation R(d) in (4.12) using surrogate AAA with exact
or relaxed search, we propose refining R(d) with a d-cyclic Leja–Bagby procedure.
To be more specific, the surrogate AAA with cyclic Leja–Bagby refinement algorithm
works as follows:
step 1. Run the AAA algorithm on the surrogate function (4.1) and discretized target

set Σ to compute the d + 1 support points σi and weights wi, i = 0, . . . , d
defining the type [d, d] rational approximant R(d) in (4.12) The degree d is
determined by the built-in stopping criterion of the AAA implementation aaa
in [18] and provided in (3.4).

step 2. Compute the d poles as in step 1 of the NLEIGS with poles from surrogate
AAA procedure and reorder them using the Leja–Bagby ordering in (4.5) to
give ξ1, . . . , ξd.

step 3. Apply the d-cyclic Leja–Bagby procedure, i.e., for each new pair of node and
pole (σd+i, ξd+i), where σd+i is computed as in (4.5) and ξd+i as in (4.11)
construct

(4.15) Rd+i =
F (σd+i)−R(d+i−1)(σd+i)

bd+i(σd+i)
, bd+i(z) =

d+i∏
j=1

z − σj−1

βj(1− z/ξj)
,

with βj chosen such that ‖bd+i‖∂Σ
= maxz∈∂Σ

|bd+i(z)| = 1. Terminate the
d-cyclic Leja–Bagby procedure at step k = m with m such that (4.8) holds.

15



This algorithm yields a rational approximation of the form

(4.16) R(m)(z) =

d∑
i=0

F (σi)wi
z − σi

/
d∑
i=0

wi
z − σi

+ bd+1(z)Rd+1 + · · ·+ bm(z)Rm

that satisfies (1.4). We show in Appendix A how to rewrite the rational eigenvalue
problem R(m)(λ)v = 0 as a linear eigenproblem when R(m) is provided in the form
(4.16).

5. Numerical experiments. We test the robustness of the algorithms de-
scribed in sections 3–4, i.e.,

(i) for matrix-valued functions provided in split form:
• the set-valued AAA algorithm as in Lietaert et al. [17]2
• the weighted AAA algorithm, which is the set-valued AAA algorithm

with stopping criterion (3.7) with β as in (3.8);
(ii) for matrix-valued functions provided as black box:

• the surrogate AAA algorithm proposed by Elsworth and Güttel [9];
• the surrogate AAA algorithm with exact search on Σ∩∂ΣT as described

in section 4.2;
• NLEIGS with poles from surrogate AAA as described in section 4.1 with

the new stopping criterion (3.7) (the d-cyclic Leja–Bagby procedure is
employed for the poles as explained in section 4.1.2);

• the surrogate AAA with cyclic Leja–Bagby refinement algorithm as de-
scribed in section 4.3.

We omit the Cauchy approximation (3.1)–(3.2) since we do not know of an automatic
way to choose an “optimal” contour for the Cauchy integral formula.

To benchmark these algorithms, we use the test problems from the NLEVP
collection[3, 14] listed in Table 5.1 (24 problems). These problems are selected to
represent a variety of matrix-valued functions with different sizes and properties. All
our computations are done in MATLAB R2020a.

Experiment 1. For our first set of experiments, we discretize the target sets ΣT
(either discs or half a discs) as follows. We generate 300 random points inside ΣT
plus another set of 100 uniformly distributed points on the contour of ΣT . This gives
a total of 400 points for the finite set Σ. We set the maximum number of steps to 60.

For a given tolerance ε and each problem listed in Table 5.1, we test if an algorithm
fails to construct an approximant R(m) with accuracy ‖F − R(m)‖Σ/‖F‖Σ below a
given tolerance ε or if it does not converge within the maximum number of steps. We
also compare the degrees of the approximants. The results are reported in Table 5.2
for ε = 10−7, Tables 5.3 and 5.4 for ε = 10−10, and Table 5.5 for ε = 10−13. Results
for the rational problems loaded_string, railtrack2_rep, and railtrack_rep are
only reported in Table 5.2 since for these problems and any tolerance ε ≤ 10−5, all
the algorithms return (rightly) a degree 2 rational approximant with a relative error
of about 10−15. The tables show that for our benchmark of test problems and chosen
tolerances ε ∈ {10−7, 10−10, 10−13}:

(a) The set-valued and weighted AAA algorithms always return an approximant
R(m) with relative error below the required accuracy. For problems that
are holomorphic on the target sets, surrogate AAA with cyclic Leja–Bagby

2We use an implementation provided by the authors of [9] with a few adjustments for the solution
of the least squares problems and cleanup of the Froissart doublets.
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Table 5.1: List of benchmark examples from the NLEVP collection [3], their type
and size, the target set ΣT (disc or half disc), and the number of eigenvalues in ΣT .
For the canyon_particle problem, γ =-9e-2+1e-6i. The fiber and sandwich_beam
problems are holomorphic on their respective target set if we remove the negative real
numbers. Similarly, schrodinger_abc is holomorphic on ΣT \ [−15,−10).

Name type size center radius half disc #evs holomorphic

bent_beam nonlinear 6 60 30 yes 2 yes
buckling_plate nonlinear 3 11 9 no 12 no
canyon_particle square root 55 γ 0.1 yes 15 yes
clamped_beam_1d exponential 100 0 10 no 101 yes
distributed_delay1 nonlinear 3 0 2 no 2 yes
fiber nonlinear 2400 0 0.002 yes 1 no
gun square root 9956 62500 50000 yes 21 yes
hadeler exponential 200 -30 11.5 no 14 yes
loaded_string rational 100 362 358 no 9 yes
nep1 nonlinear 2 0 3 no 6 yes
nep2 nonlinear 3 0 2 no 4 yes
nep3 nonlinear 10 5i 2 no 14 yes
neuron_dde exponential 2 0 15 no 11 yes
pdde_symmetric exponential 81 0 2 no 59 yes
photonic_crystal nonlinear 288 11 9 no 28 yes
pillbox_small square root 20 0.08 0.05 yes 1 yes
railtrack2_rep rational 1410 3 2 no 53 yes
railtrack_rep rational 1005 -3 2 no 2 yes
sandwich_beam nonlinear 168 0 2 no ≈ 168 no
schrodinger_abc nonlinear 10 -10 5 no 6 no
square_root square root 20 10+50i 50 no 3 yes
time_delay exponential 3 0 15 no 8 yes
time_delay2 exponential 2 0 15 no 11 yes
time_delay3 exponential 10 2 3 no 38 yes

refinement and NLEIGS with poles from surrogate AAA also return an ap-
proximant R(m) with relative error below the required accuracy.

(b) The set-valued and weighted AAA algorithms typically return the approx-
imants R(m) of lowest degrees. The degrees of the set-valued AAA and
weighted AAA approximants are more or less the same: they are usually
either equal or they differ by one. There are exceptions though such as with
the sandwich_beam and time_delay3 problems, for which weighted AAA re-
turns a lower degree approximant. These two problems have the particularity
that, when viewed in split form, the norms of their coefficient matrices have
large variations. The latter is exploited by the weighted AAA algorithm but
ignored by the set-valued AAA algorithm.

(c) The surrogate AAA approach often fails to return a rational approximant
with relative accuracy below ε. There is no surprise here since there is no
guarantee of any accuracy with the stopping criterion used by this algorithm.

(d) As expected by our analysis, surrogate AAA with exact search either returns
a rational approximant with relative error below the tolerance or fails to
converge. There is an exception though for the fiber problem and tolerance
ε = 10−7 (see Table 5.2), where the constructed rational approximant R(m)

is such that ‖F − R(m)‖Σ/‖F‖Σ = 1.6 × 10−7 > ε, and hence marked as a
failed in the table. The reason why the relative error is slightly above the
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tolerance is that the exact search is done on ∂Σ = Σ ∩ ∂ΣT and since F is
not holomorphic on ΣT , ‖ · ‖Σ ≥ ‖ · ‖∂Σ so the stopping criterion (4.14) does
not guarantee that (1.4) holds. But the surrogate AAA with exact search on
Σ in place of ∂Σ returns a rational approximant R(m) for the fiber problem
and tolerance ε = 10−7 with relative error 4e-8, i.e., below the tolerance.
Also, Tables 5.2, 5.4 and 5.5 show that for a few problems, the algorithm
reaches the maximum number of steps, i.e., 60 (indicated by red stars) while
returning approximants of degree less than 60. This is due to the removal of
the Froissard doublets (see end of Section 3).

(e) NLEIGS with poles from surrogate AAA repeated in a cyclic way has a
behaviour similar to that of surrogate AAA with cyclic Leja–Bagby refine-
ment: they typically return rational approximants of the same degree. The
sandwich_beam problem is an exception, though. First, it is not holomorphic
on the target set so the theoretical results do not hold and unexpected be-
haviour can occur. For an accuracy tolerance of 1e-7, Table 5.2 shows that the
approximant returned by surrogate AAA is a constant which is constructed
from a single sample point σ0. This constant matrix approximant is refined
with cyclic Leja–Bagby using σ0 and a single pole at infinity. This leads to
a cubic approximant once the refinement step ends. In contrast, NLEIGS
works with an initial random point σ′0 and a single pole at infinity and the
procedure stops exactly after it reaches a degree equal to 60 � 3. Table 5.3
for ε=1e-10 shows the opposite behaviour: NLEIGS returns an approximant
of lower degree than surrogate AAA with cyclic Leja–Bagby refinement. The
reason lies in the regime of (non-)convergence of the algorithms, which is re-
ally slow and “noisy”: therefore slightly different initial conditions cause the
algorithms to return approximants whose degrees vary a lot. Note that for
ε=1e-13, both NLEIGS and surrogate AAA with cyclic Leja–Bagby refine-
ment fail to return an approximant with the required accuracy and within
the maximum number of steps for two problems that are not holomorphic on
the target set.

Experiment 2. We now visualize where the algorithms place the interpolation
nodes σi and the poles ξi in and around the target sets ΣT for a small subset of the
problems in Table 5.1. To avoid clutter, Figure 5.1 only displays the nodes and poles
for the weighted AAA and surrogate AAA with cyclic Leja–Bagby refinement. For the
latter, we distinguish the nodes chosen by the surrogate AAA phase from the nodes
chosen by the refinement phase. We leave out the poles that are too far from ΣT .
The discretization of ΣT consists of 300 points randomly generated inside ΣT plus
another 50 points uniformly distributed on the contour ∂ΣT . The maximum number
of steps is set to 60 and the tolerance ε = 10−10.

The results are as anticipated by the theory. For the holomorphic problems, the
nodes lie on the contour ∂ΣT , while the poles form a pattern outside ΣT . For instance,
they are aligned towards the branch points for the gun problem, which contain two
square roots. For the nep1 problem, which is a scalar function camouflaged as a
matrix-valued one, both algorithms use the same interpolation nodes and poles. In-
terestingly, one of the nodes lies inside ΣT despite the problem being holomorphic.
Finally, the poles and the nodes of buckling_plate do not follow the same pattern,
because this problem is not holomorphic in the chosen region.

6. Conclusion. We have developed an error analysis for the eigenpairs of a
matrix-valued function F computed from a rational approximant R(m) ≈ F on a
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Table 5.2: Degree of R(m) for ε = 1e-7 and 24 problems. The lowest degrees are
highlighted in bold/blue including any within one of the lowest and excluding those
corresponding to failed required accuracy that are provided within square brackets.
A ’F’ indicates that the algorithm reached the maximum number of steps.

Problem set-valued weighted surrogate surrogate+ NLEIGS surrogate+
AAA AAA AAA exact search AAA poles LB refine

bent_beam 7 7 [ 4] 8 11 10
buckling_plate 23 23 [21] 26 42 42
canyon_particle 13 12 [ 7] 17 20 20
clamped_beam_1d 11 11 [10] 16 23 24
distributed_delay1 6 6 [ 6] 9 11 10
fiber 13 10 [ 6] [16] 22 21
gun 9 9 [5] [60]F 15 15
hadeler 2 4 2 6 15 5
loaded_string 2 2 2 2 2 2
nep1 21 20 20 20 20 20
nep2 13 13 [ 9] [13]F 20 19
nep3 8 8 [ 7] 10 16 16
neuron_dde 13 13 [12] 13 14 14
pdde_symmetric 8 8 [ 7] 11 16 15
photonic_crystal 5 5 4 5 9 9
pillbox_small 7 6 [ 4] 9 11 11
railtrack2_rep 2 2 2 2 2 2
railtrack_rep 2 2 2 2 2 2
sandwich_beam 35 2 0 2 60 3
schrodinger_abc 11 11 [10] 16 20 20
square_root 9 10 9 10 21 14
time_delay 12 13 12 12 13 12
time_delay2 12 13 12 12 13 12
time_delay3 16 13 12 12 13 12

# of fails 0 0 13 3 0 0
# of lowest degree 21 22 11 11 8 8

discretization of the target set ΣT . We showed in particular that if (λ, v) with λ ∈ ΣT
is a computed eigenpair of R(m) with backward error η, then in order to guarantee
a backward error of η for the eigenpair (λ, v) when considered as an approximate
eigenpair of F , we need the approximant R(m) to have a relative accuracy ε ≤ η.

We have shown that the weighted AAA algorithm, a variant of the set-valued
AAA algorithm, is a robust procedure to approximate matrix-valued functions that
are provided in split form: it is scaling independent and returns a rational approximant
with a user chosen accuracy on the discretized target set Σ, as long as Σ contains
enough points and the chosen accuracy is not too low. This is achieved through the
use of a stopping criterion that includes weights relative to the importance of each
scalar function in the split form.

For black box matrix-valued functions that are holomorphic on the target set, we
have developed a two-phase algorithm that we called surrogate AAA algorithm with
cyclic Leja–Bagby refinement. This algorithm, while more computationally expensive
that the weighted AAA algorithm, only requires the ability to evaluate the matrix-
valued function at the point in the target set. It is scaling independent and returns a
rational approximant with a user chosen accuracy on the discretized target set Σ, as
long as Σ contains enough points. Our algorithm combines the strength of surrogate
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Table 5.3: Accuracy ‖F −R(m)‖Σ/‖F‖Σ for ε = 1e-10 and 21 problems. Any relative
error above ε is highlighted in red and considered as a fail. A ’F’ indicates that the
algorithm reached the maximum number of steps, i.e., 60.

Problem set-valued weighted surrogate surrogate+ NLEIGS surrogate+
AAA AAA AAA exact search AAA poles LB refine

bent_beam 4e-11 7e-12 2e-06 8e-07F 1e-12 2e-11
buckling_plate 3e-11 2e-11 1e-07 2e-06F 3e-11 5e-11
canyon_particle 4e-12 1e-11 2e-06 7e-08F 2e-11 1e-11
clamped_beam_1d 1e-11 1e-11 1e-06 4e-09F 3e-13 5e-13
distributed_delay1 1e-12 5e-13 3e-06 1e-08F 2e-12 2e-12
fiber 4e-13 3e-11 2e-06 1e-06F 1e-11 2e-11
gun 4e-13 3e-13 6e-07 2e-07F 1e-12 1e-12
hadeler 2e-11 5e-12 4e-10 2e-11 2e-12 4e-12
nep1 1e-11 9e-12 9e-12 9e-12 3e-11 9e-12
nep2 3e-12 3e-12 2e-05 5e-06F 1e-11 4e-12
nep3 5e-11 4e-12 2e-07 2e-09F 9e-12 1e-11
neuron_dde 6e-11 3e-11 8e-09 7e-11 8e-12 2e-11
pdde_symmetric 4e-11 3e-13 2e-07 2e-09F 2e-12 4e-12
photonic_crystal 6e-16 7e-16 1e-15 1e-15 2e-15 1e-15
pillbox_small 3e-13 8e-12 3e-07 1e-09F 1e-11 7e-12
sandwich_beam 2e-13 3e-12 5e-11 5e-11 9e-11 1e-11
schrodinger_abc 2e-11 5e-12 1e-07 2e-08F 5e-12 7e-12
square_root 6e-12 4e-12 2e-12 2e-12 3e-12 2e-12
time_delay 3e-11 7e-12 7e-11 1e-11 8e-12 1e-10
time_delay2 3e-11 2e-12 2e-09 4e-11 8e-12 9e-11
time_delay3 6e-12 4e-12 4e-10 4e-11 7e-12 2e-11

# of fails 0 0 16 12 0 0

AAA to identify good pole parameters in the first phase with the robustness of the
Leja–Bagby approach in the second phase.

We have conducted an extensive numerical comparison of algorithms for matrix-
valued functions on a large set of test problems from the NLEVP collections. We
hope this test suite will be useful for other developers of NEP eigensolvers.

Our numerical experiments were performed with the same tolerance for the two
phases of the two-phase algorithms. However, a stricter tolerance for phase 1 (i.e.,
surrogate AAA) could provide phase 2 with a better set of poles and a better ap-
proximant at the start of the Leja–Bagby refinement steps. Also, we limited our
experiments to uniformly distributed (random) sampling points for the discrete set
Σ ⊂ ΣT . However, a uniform grid or a choice that reflects the properties of the specific
matrix-valued function could lead to lower degree rational approximants but this is
outside the scope of this work.

Appendix A. Linearization of R(m) in (4.16). We show how to rewrite
R(m)(λ)v = 0 as a linear eigenproblem L(λ)x = 0, when R(m) is expressed in the
mixed form (4.16). We rewrite R(m) in the form

R(m)(z) =

d∑
i=0

wiF (zi)bi(z) + bd+1(z)Rd+1 + · · ·+ bm(z)Rm,

with bd+i(z), i = 1, . . .m − d, as in (4.6) and bi(z) = 1
z−σi

/∑d
i=0

wi

z−σi
, i = 1, . . . , d.
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Table 5.4: Degree of R(m) for ε = 1e-10 and 21 problems. The lowest degrees are
highlighted in bold/blue including any within one of the lowest and excluding those
corresponding to failed required accuracy that are provided within square brackets).
A ’F’ indicates that the algorithm reached the maximum number of steps, i.e., 60.

Problem set-valued weighted surrogate surrogate+ NLEIGS surrogate+
AAA AAA AAA exact search AAA poles LB refine

bent_beam 9 9 [ 6] [23]F 13 12
buckling_plate 26 27 [24] [35]F 47 48
canyon_particle 18 17 [11] [17]F 29 30
clamped_beam_1d 13 13 [12] [16]F 29 29
distributed_delay1 8 8 [ 7] [ 9]F 15 15
fiber 18 15 [11] [19]F 30 30
gun 12 12 [8] [60]F 21 21
hadeler 7 8 [ 6] 23 21 19
nep1 25 24 24 24 24 24
nep2 16 16 [11] [14]F 22 22
nep3 10 10 [ 9] [11]F 17 17
neuron_dde 16 15 [14] 18 31 31
pdde_symmetric 9 10 [ 9] [11]F 18 18
photonic_crystal 7 6 6 6 6 6
pillbox_small 10 9 [ 7] [11]F 16 16
sandwich_beam 45 25 19 23 26 54
schrodinger_abc 13 13 [12] [60]F 21 21
square_root 13 13 13 13 13 13
time_delay 15 15 14 15 31 20
time_delay2 15 16 [14] 17 31 24
time_delay3 20 16 [14] 16 31 31

# of lowest degree 18 19 5 5 3 3

Then,

bd(z) =
1

z − σd

/
d∑
i=0

wi
z − σi

=

d−1∏
j=0

(z − σj)

/
d∑
i=0

wi
∏
j 6=i

(z − σj) .

The denominator of the right-hand side is, up to a scalar multiple, the same scalar
denominator as that of R(d). Further, the numerator is the same as that of the Newton
basis function obtained after d iterations of Newton interpolation. Consequently,
bd(z) (the last barycentric basis function) is a scalar multiple of the basis function
we would have obtained had we used Newton’s interpolation from the start. We can
therefore write down the recursions for all b0(z), . . . , bm(z) throughout, with the first
d recursions corresponding to the barycentric basis functions, and then switching to
m− d steps of Newton:

b0(z) =
1

z − σ0

/
d∑
i=0

wi
z − σi

,

(z − σi+1)bi+1(z) = (z − σi)bi(z), i = 0, . . . , d− 1,

βd+i+1(1− z/ξd+i+1)bd+i+1(z) = (z − σd+i)bd+i(z), i = 0, . . . ,m− d− 1.

This recursion allows us to write the following linearization.
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Table 5.5: Degree of R(m) for ε = 1e-13 and 21 problems. The lowest degrees are
highlighted in bold/blue including any within one of the lowest and excluding those
corresponding to failed required accuracy that are provided within square brackets).
A ’F’ indicates that the algorithm reached the maximum number of steps, i.e., 60.

Problem set-valued weighted surrogate surrogate+ NLEIGS surrogate+
AAA AAA AAA exact search AAA poles LB refine

bent_beam 12 11 [ 7] [23]F 16 16
buckling_plate 30 30 [26] [35]F [60]F [60]F

canyon_particle 23 22 [16] [18]F 38 39
clamped_beam_1d 15 15 [14] [16]F 32 32
distributed_delay1 9 9 [ 8] [ 9]F 16 16
fiber 22 20 [16] [19]F 42 38
gun 15 15 [11] 60F 27 27
hadeler 10 11 [ 9] [59]F 23 23
nep1 29 28 28 28 28 28
nep2 18 19 [12] [14]F 24 24
nep3 12 12 [10] [11]F 22 22
neuron_dde 19 18 [17] [60]F 30 32
pdde_symmetric 11 11 [11] [11]F 21 20
photonic_crystal 7 6 6 6 6 6
pillbox_small 13 12 [ 9] [11]F 20 22
sandwich_beam 55 38 [31] [60]F [60]F [60]F

schrodinger_abc 15 15 [13] [60]F 26 26
square_root 16 16 15 16 33 15
time_delay 18 18 [17] 23 24 22
time_delay2 17 18 [17] [60]F 28 29
time_delay3 23 19 [17] [60]F 27 24

# of fails 0 0 18 17 2 2
# of lowest degree 17 20 3 3 2 3

Theorem A.1. Given the rational matrix-valued function R(m) in (4.16), the
rational eigenvalue problem R(m)(λ)v = 0 is equivalent to Ax = λBx, where

A =



w0F (σ0) w1F (σ1) · · · wdF (σd) Rd+1 · · · Rm−2 Rm−1 −
σm−1

βm
Rm

σ0I −σ1I
. . . . . .

σd−1I −σdI
σd

βd+1
I I

. . . . . .
. . . . . .

σm−2

βm−1
I I
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Fig. 5.1: The set Σ, the interpolation nodes σi and the poles ξi nearest to Σ for a
subset of the problems in Table 5.1.

and

B =



w0F (σ0)
ξm

w1F (σ1)
ξm

· · · wdF (σd)
ξm

Rd+1

ξm
· · · Rm−2

ξm

Rm−1

ξm
− Rm

βm

I −I
. . . . . .

I −I
I

βd+1

I
ξd+1

. . . . . .
. . . . . .

I
βm−1

I
ξm−1


,

while x = b(λ)⊗ v with b(λ) = [b0(λ) b1(λ) . . . , bm−1(λ)]T .
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