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We present algorithms for performing the five elementary arithmetic operations
(+, −, ×, ÷, and

√
) in floating point arithmetic with stochastic rounding,

and demonstrate the value of these algorithms by discussing various applica-
tions where stochastic rounding is beneficial. The algorithms require that the
hardware be compliant with the IEEE 754 floating-point standard and that a
floating-point pseudorandom number generator be available. The goal of these
techniques is to emulate stochastic rounding when the underlying hardware
does not support this rounding mode, as is the case for most existing CPUs
and GPUs. Simulating stochastically rounded floating-point operations can be
used to explore the behavior of this rounding, as well as to develop applications
before hardware with stochastic rounding is available—once such hardware be-
comes available, the proposed algorithms can be replaced by calls to the relevant
hardware routines. When stochastically rounding double precision operations,
the algorithms we propose are between 7.3 and 19 times faster than the imple-
mentations that use the GNU MPFR library to simulate extended precision.
We test our algorithms on various problems where stochastic rounding is ex-
pected to bring advantages, which includes summation algorithms and ordinary
differential equation solvers.
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out when this author was at the Department of Mathematics, University of Manchester, Manchester,
M13 9PL, UK (massimiliano.fasi@oru.se).

‡Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK (mantas.mikaitis@
manchester.ac.uk).

1

massimiliano.fasi@oru.se
mantas.mikaitis@manchester.ac.uk
mantas.mikaitis@manchester.ac.uk


1 Introduction

The IEEE 754-1985 standard for floating-point arithmetic specifies four rounding modes:
the default round-to-nearest, which we denote by RN, and three directed rounding modes,
round-toward-+∞, round-toward-−∞, and round-toward-zero, which we denote by RU,
RD, and RZ, respectively. The 2008 revision of the standard handles rounding by means of
the attribute rounding-direction, which can take any of five possible values: roundTiesTo-
Even and roundTiesToAway for round-to-nearest with two different tie-breaking rules, and
roundTowardPositive, roundTowardNegative, and RoundTowardZero for directed rounding.
The standard states, however, that it is not necessary for a binary format to implement
roundTiesToAway, thus confirming that only four rounding modes are necessary for a
floating-point hardware implementation to be IEEE compliant. The 2019 revision of the
standard [1] does not introduce any major changes to this section, but recommends the
use of roundTiesTowardZero for augmented operations [1, Sec. 9.5].

These five rounding modes are deterministic, in that the rounded value of a number
is determined solely by the value of that number in exact arithmetic, and an arbitrary
sequence of rounded elementary arithmetic operations will always produce the same result.
Here we focus on stochastic rounding, a non-deterministic rounding mode that randomly
chooses in which direction to round a number that cannot be represented exactly in the
working precision. To the best of our knowledge, this rounding mode was first mentioned by
Forsythe [2]. Informally speaking, the goal of stochastic rounding is to round a real number
x to a nearby floating-point number y with a probability that depends on the proximity
of x to y, that is, on the quantity |x− y|. We formalize this concept in Section 4.

Despite the similar name, stochastic rounding should not be confused with stochastic
arithmetic [3], a custom rounding mode in which each number that is not exactly repre-
sentable in the current precision is rounded to either of the closest floating-point numbers
with equal probability. Stochastic arithmetic is used by the CADNA library [4] to esti-
mate the propagation of rounding errors in floating-point programs. A similar device for
the experimental analysis of rounding errors is Monte Carlo arithmetic [5], a technique
that comprises both stochastic arithmetic, as used by the CADNA library, and stochastic
rounding, which we consider here. Monte Carlo arithmetic is used by tools such as Verifi-
carlo [6] and Verrou [7] in order to estimate the impact of round-off errors in floating-point
computation, but we are not aware of any examples of use in numerical software. All
these tools propose to run an a program multiple times using stochastic or Monte Carlo
arithmetic, sample the result, and then use this set of answers to draw conclusions on the
propagation of rounding errors and the numerical stability of the same code when run with
deterministic rounding. None of them, however, considers the use of stochastic rounding
for alleviating rounding errors when running a program (even if only once) for its intended
purpose.

Stochastic rounding is inherently more expensive than the standard IEEE rounding
modes, as it requires the generation of a floating-point pseudorandom number, and its
advantages might not be entirely obvious, at first. Round-to-nearest maps an exact number
to the closest floating-point number in the floating-point number system in use, and always
produces the smallest possible roundoff error. In doing so, however, it discards most
of the data encapsulated in the bits that are rounded off. Stochastic rounding aims to
capture more of the information stored in the least significant of the bits that are lost when
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rounding. This benefit should be understood in a statistical sense: stochastic rounding
may produce an error larger than that of round-to-nearest on a single rounding operation,
but over a large number of roundings it may help to obtain a more accurate result, as errors
of opposite signs cancel out. This rounding strategy is particularly effective at alleviating
stagnation [8], a phenomenon that often occurs when computing the sum of a large number
of terms that are small in magnitude. A sum stagnates when the summands become so
small—compared with the partial sum—that their values are “swamped” [9], causing a
dramatic increase in forward error. We examine stagnation experimentally in Section 8.

2 Motivation

Stochastically rounded arithmetic operations are widely used in fixed- and floating-point
arithmetic, both in software and hardware. The need for efficient software implementations
of stochastic rounding arises in several contexts.

First of all, floating-point operations with stochastic rounding are useful in tools for
the verification of rounding errors such as Verificarlo [6] and Verrou [7], which are used in
industrial Verification & Validation processes. Févotte and Lathuilière [7] discuss plans for
using Verrou in numerical simulations of electricity production units, in order to analyze
the propagation or rounding errors in floating-point arithmetic, detect their origin in the
source code, and verify that they are kept within some acceptable limits throughout the
simulation.

Secondly, stochastic rounding has been shown to reduce the worst-case bounds on the
backward error of various numerical linear algebra algorithms [10]. Connolly, Higham,
and Mary [10] show that if stochastic rounding is used then 1) rounding errors are mean-
independent random variables with zero mean, and 2) the worst-case bound on the back-
ward error of inner products can be lowered from nu, which holds when round-to-nearest
is used, to

√
nu, where n is the problem size and u the unit roundoff of the floating-point

arithmetic in use. Advantages of stochastic rounding were also shown in other types of
numerical algorithms such as, for example, those used for solving the ordinary differential
equations arising in the Izhikevich neuron model [11]. The general floating-point format
simulator developed by Higham and Pranesh [12] includes stochastic rounding because, as
the they point out themselves, there is a need to better understand its behavior.

Furthermore, stochastic rounding is being increasingly used in machine learning [13–
18]. When training neural networks, in particular, it can help compensate for the loss of
accuracy caused by reducing the precision at which deep neural networks are trained in
fixed-point [14] as well as floating-point [17] arithmetic. Graphcore Intelligence Processing
Units (IPUs) include stochastic rounding in their mixed-precision matrix multiplication
hardware [19].

Lastly, stochastic rounding plays an important role in neuromorphic computing. Intel
uses it to improve the accuracy of biological neuron and synapse models in the neuro-
morphic chip Loihi [20]. The SpiNNaker2 neuromorphic chip [21] will be equipped with a
hardware rounding accelerator designed to support, among others, fast stochastic rounding.
In general, various patents from AMD, NVIDIA, and other companies propose hardware
implementations of stochastic rounding [22–24]. Of particular interest is a patent from
IBM [25], in which the entropy from the registers is proposed as a source of randomness.
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Figure 3.1: Illustration of the stochastic rounding of a negative (left) or positive (right)
real number x which sits in-between two floating-point numbers dxe and bxc.
The number x is rounded to dxe with probability rx and to bxc with probability
1 − rx. The residual %x in the diagrams and the probability rx are connected
by the identity in (4.3).

3 Contributions

Our contribution is twofold: on the one hand, we present algorithms for emulating stochas-
tic rounding of addition/subtraction, multiplication, division, and square root; on the
other, we discuss some examples in which using stochastic rounding can yield more accu-
rate solutions, and even achieve convergence in cases where round-to-nearest would lead
numerical methods to diverge.

In order to round the result of an arithmetic operation stochastically, it is necessary to
know the error between the exact result of the computation and its truncation to working
precision. Today’s CPUs and GPUs typically do not return this value to the software
layer, and the most common technique to emulate stochastic rounding via software relies
on the use of two levels of precision. The operation is performed at higher precision and the
direction of the rounding is chosen with probability proportional to the distance between
this reference and its truncation to the target precision. The MATLAB chop function,1

for instance, follows this approach [12].
In general, this strategy cannot guarantee an accurate implementation of stochastic

rounding unless an extremely high precision is used to perform the computation. The
sum of the two binary32 numbers 2127 and 2−126, for instance, would require a floating
point system with at least 253 bits of precision in order to be represented exactly, and
up to 2045 bits may be necessary for binary64. The requirements would be even higher
if subnormal numbers were allowed. This is hardly an issue in practice, and it is easy
to check, theoretically as well as experimentally, that as long as enough extra digits of
precision are used the results obtained with chop differ from those obtained using full
precision only in a negligible portion of cases [10].

The main drawback of this technique is that it requires the availability of an efficient
mechanism to perform high-precision computation, which may not be a viable option if
one wants to simulate stochastic rounding when using the highest precision available in
hardware.

In Section 6 we show how the five elementary arithmetic operations can be implemented
stochastically with the same guarantees as chop without resorting to higher precision. This
approach brings a performance gain, as we show in Section 7. In Section 8, we explore

1https://github.com/higham/chop
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three applications showing that stochastic rounding may be more effective than the four
rounding modes defined by the IEEE 754 standard. We summarize our contribution and
point at directions for future work in Section 9.

4 Stochastic rounding

Let F be a normalized binary floating-point number system with p digits of precision and
maximum exponent emax, and let ε := 21−p be the machine epsilon of F . The number
x ∈ F can be written as x = (−1)s · 2e · m, where s ∈ {0, 1} is the sign bit of x, the
exponent e is an integer between emin := 1 − emax and emax inclusive, and the significand
m ∈ [0, 2) can be represented exactly with p binary digits, of which only p− 1 are stored
explicitly. We remark that since F is normalized m can be smaller than 1 only when
e = emin. For a number x ∈ F we denote s and e by sign(x) and exponent(x), respectively.

As mentioned in the previous section, here we consider stochastic rounding. In order
to give a precise definition, let us denote the truncation of a number m ∈ [0, 2) to its p
most significant digits by bmc := sign(m) · 21−pb2p−1|m|c. The function SR : R → F is a
stochastic rounding if one has that (we use “w. p.” as a shorthand for “with probability”)

SR(x) =

{
(−1)s · 2e · bmc, w. p. 1− rx,
(−1)s · 2e · (bmc+ ε), w. p. rx,

(4.1)

where

rx =
m− bmc

ε
, (4.2)

for any real number x with absolute value between the smallest and the largest repre-
sentable numbers in F . We note that m− bmc ∈ [0, ε), which implies that rx ∈ [0, 1).
The definition is illustrated pictorially in Fig. 3.1.

We note that this definition gives the desired result if x is subnormal. Let xmax be the
largest floating-point number representable in F . If |x| ≥ xmax, then the definition (4.1)
cannot be used, as (−1)s ·2e · (bmc+ ε) is not representable in F . For consistency with the
informal definition of stochastic rounding, we could assume that if x is larger than xmax in
absolute value, then SR(x) = sign(x) · xmax rather than SR(x) = sign(x) · ∞. In practice,
we can have different overflow behavior based on intermediate rounding modes used to
simulate stochastic rounding—we discuss this for each algorithm below. The quantity rx
in (4.2) is proportional to the rounding error when rounding toward zero, since

x− RZ(x) = sign(x) · 2e · (m− bmc)
= sign(x) · 2e · ε · rx
=: %x.

(4.3)

As %x depends only on x, we call it the residual of x.
We now discuss how to implement (4.1). Let X ∼ UI denote a random variable X that

follows the uniform distribution over the interval I ⊂ R. Then for any x ∈ R we have that

SR(x) =

{
(−1)s · 2e · bmc, X ≥ rx,

(−1)s · 2e · (bmc+ ε), X < rx,
(4.4)
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where rx is as in (4.2) and X ∼ U[0,1). Using the strict inequality for the second case
ensures that if x ∈ F then SR(x) = x, since rx = 0 if x is exactly representable in F .

Note that (4.4) can equivalently be rewritten as

SR(x) =

{
(−1)s · 2e · bmc, X ′ > rx,

(−1)s · 2e · (bmc+ ε), X ′ ≤ rx,
(4.5)

for X ′ ∼ U(0,1]. An alternative way of implementing (4.1) can be obtained by substituting
Y = 1−X in (4.5), which yields

SR(x) =

{
(−1)s · 2e · bmc, Y < 1− rx,
(−1)s · 2e · (bmc+ ε), Y ≥ 1− rx,

(4.6)

where Y ∼ U[0,1). We will rely on both (4.4) and (4.6) in later sections.
Definitions (4.4) and (4.6) are equivalent not only if X and Y are continuous random

variables, but also in the discrete case. In particular, it is possible to show that both
definitions round up for 2prx cases out of 2p. This is illustrated for the case p = 2 in
Table 4.1, and can be proven by induction on the structure of the table for any p.

Here we provide only the proof for (4.4), that for (4.6) is analogous and therefore omitted.
For p = 1, the result can be verified by exhaustion. Now we consider the inductive step
p = k. For a k-digit floating-point number y, let us denote by t(y) the integer obtained
by interpreting the string containing all but the leading bit in the significand of y as an
integer. If the leading bit of y is 1 then y = 2−1 + 2−kt(y), whereas if the leading bit of y
is 0 then y = 2−kt(y).

If the leading bit of rx is 0, then x is rounded up only when the leading bit of X is 0 and
t(rx) > t(X), which by inductive hypothesis happens in 2krx cases out of 2k−1. Taking
into account the 2k−1 cases in which the leading bit of X is 1 and x is rounded down, we
obtain that x is rounded up in 2krx cases out of 2k.

If the leading bit of rx is 1, on the other hand, x will be rounded up if 1) the leading
bit of the significand of X is 0, which happens in 2k−1 cases; or 2) the leading bit of X is
1 but t(rx) > t(X). By inductive hypothesis, the former happens in 2kt(rx) cases out of
2k−1, and accounting for the 2k−1 cases in which the leading bit of X is 0 and x is rounded
up, we obtain that even in this case x is rounded up in 2k−1 + t(rx) = 2krx cases out of 2k.

5 TwoSum and TwoProdFMA algorithms

The IEEE 754-2019 standard for floating-point arithmetic [1] includes, among the new
recommended operations, three augmented operations : augmentedAddition, augmented-
Subtraction, and augmentedMultiplication. These homogeneous operations take as input
two values in any binary floating-point format and return two floating-point numbers in
the same format: a correctly rounded result and an exact rounding error. The func-
tionality of the new recommended operations in the standard are very similar to the
classical FastTwoSum, TwoSum, and TwoProdFMA algorithms. The only differ-
ence is that the tie-breaking rule in round-to-nearest, which is ties-toward-zero rather
ties-to-even [26, 27]. For simplicity, we will refer to these algorithms as augmented addi-
tion/multiplication algorithms (they are also called error-free transformations).
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Table 4.1: Demonstration of stochastic roundings in a 2-bit case for every pair of X/Y
and rx. The table on the left considers (4.4), whereas (4.6) is shown on the right.
The direction of the arrows corresponds to rounding directions, ↓ for round-
toward −∞ and ↑ for round-toward +∞. Note that corresponding columns
in the two tables have the same number of arrows pointing upward and arrows
pointing downward: this shows that for any given rx the probability of rounding
up or down does not depend on which definition is used.

rx
X 0.00 0.01 0.10 0.11

0.00 ↓ ↑ ↑ ↑

0.01 ↓ ↓ ↑ ↑

0.10 ↓ ↓ ↓ ↑

0.11 ↓ ↓ ↓ ↓

rx
Y 0.00 0.01 0.10 0.11

0.00 ↓ ↓ ↓ ↓

0.01 ↓ ↓ ↓ ↑

0.10 ↓ ↓ ↑ ↑

0.11 ↓ ↑ ↑ ↑

How to perform these tasks efficiently is a well-understood problem. Algorithms for
augmented addition (and thus subtraction) and augmented multiplication are discussed
in [28, Sec. 4.3] and [28, Sec. 4.4], respectively. The former can be performed efficiently by
using the function TwoSum in Algorithm 5.1, due to Knuth [29, Th. B] and Møller [30],
which for ◦ = RN computes the correctly rounded sum and the rounding error at the cost of
six floating-point operations. If the two summands are ordered by decreasing magnitude,
this task can be achieved more efficiently by using Dekker’s FastTwoSum [31], which
requires only 3 operations in round-to-nearest.

The names we use for these two routines were originally proposed by Shewchuck [32].
Boldo, Grillat, and Muller [33] explore the robustness of FastTwoSum and TwoSum
with rounding modes other than round-to-nearest. They conclude that both algorithms
return a very accurate approximation of the error of addition, and that FastTwoSum is
immune to overflow in all the internal steps, while TwoSum is not only in rare cases, as
long as the main addition does not overflow.

When dealing with augmented multiplication, extra care is required, as in this case it
is necessary to ensure that underflow does not occur. In [28, Sec. 4.4] it is shown that if
a, b ∈ F and

exponent(a) + exponent(b) ≥ emin + p− 1, (5.1)

then τ = a · b− ◦(a× b), with ◦ ∈ {RN,RD,RU,RZ}, also belongs to F . In other words,
the error of a floating-point product is exactly representable in the same format as its
arguments. If an FMA (Fused Multiply-Add) instruction is available, augmented multipli-
cation can be realized very efficiently with the function TwoProdFMA in Algorithm 5.2,
which requires only two floating-point operations and guarantees that if a and b satisfy
(5.1), then σ + τ = a · b regardless of the rounding mode used for the computation.
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Algorithm 5.1: TwoSum augmented addition.

1 function TwoSum(a ∈ F , b ∈ F , ◦ : R→ F)
Compute σ, τ ∈ F s.t. σ + τ = a+ b.

2 σ ← ◦(a+ b);
3 a′ ← ◦(σ − b);
4 b′ ← ◦(σ − a′);
5 δa ← ◦(a− a′);
6 δb ← ◦(b− b′);
7 τ ← ◦(δa + δb);
8 return (σ, τ);

Algorithm 5.2: TwoProdFMA augmented multiplication.

1 function TwoProdFMA(a ∈ F , b ∈ F , ◦ : R→ F)
If a, b satisfy (5.1), compute σ, τ ∈ F s.t. σ + τ = a · b.

2 σ ← ◦(a× b);
3 τ ← ◦(a× b− σ);
4 return (σ, τ);

If an FMA is not available, another algorithm, due to Dekker [31], may be used to
compute σ and τ . This algorithm requires 16 floating-point operations, and is therefore
considerably more expensive than TwoProdFMA, which requires only 2. We do not
reproduce the algorithm here, and in our pseudocode we denote by TwoProdDek the
function that has the same interface as TwoProdFMA and implements [28, Alg. 4.10].
This algorithm also requires that condition (5.1) holds, but has been proven to work
correctly only when round-to-nearest is used.

6 Operations with stochastic rounding

In order to round a real number x according to the definition in Section 4, we need to
know rx in (4.2). We refer the reader to Fig. 3.1 for a graphical demonstration. It may
be possible to compute this quantity exactly, if the operation producing x is carried out
in higher precision, but the value of rx (or %x) is not available when one wishes to round
the result of an arithmetic operation performed in hardware in the same precision as the
arguments. When rounding the sum of two binary64 numbers of different magnitude, for
example, in order to match the exponent of the two summands one must shift the fraction
of the smaller operand in absolute value to the right, causing roundoff bits to appear.
These leftmost bits form rx, a quantity that is used in hardware for rounding purposes
but is usually not returned to the user (this, however, might change in the future with
the introduction of augmented operations in the IEEE 754-2019 standard [1]). In order to
manipulate the rounded sum of the two values in a way that simulates stochastic rounding,
we need to obtain rx in order to control the probability of rounding up and down. The
algorithms for basic operations below use error-free transformations or other techniques for

8



Algorithm 6.1: Stochastically rounded addition.

1 function Add(a ∈ F , b ∈ F)
Compute % = SR(a+ b) ∈ F .

2 Z ← rand();
3 (σ, τ)← TwoSum(a, b,RN);
4 η ← get exponent(RZ(a+ b));
5 π ← sign(τ)× Z × 2η × ε;
6 if τ ≥ 0 then
7 ◦ = RD;
8 else
9 ◦ = RU;

10 %← ◦(�(τ + π) + σ);
11 return %;

π π1 π2

b b2b1

1
a a1 a2

2

Figure 6.1: Alignment of the fractions of a, b, and π on line 10 of Algorithm 6.1.

approximating the error in order to obtain rx or 1−rx (alternatively %x or 2exponent(x) ·ε−%x)
and conditionally change the result produced in hardware.

6.1 Addition

The solution we propose leverages the TwoSum algorithm to round stochastically the
sum of two floating-point numbers without explicitly computing the quantity rx. This is
achieved by exploiting the relation between the residual and the roundoff error in round-
to-nearest, which can be computed exactly with the TwoSum algorithm, provided that
the sum does not overflow in round-to-nearest [33, Th. 6.2]. This approach is shown in
Algorithm 6.1.

In the pseudocode, rand() returns a pseudorandom floating-point number in the interval
[0, 1). The algorithm first computes σ, the sum of a and b in round-to-nearest, the error
term τ such that σ + τ = a + b in exact arithmetic, and the exponent η of the sum
computed in round-toward-zero. Then it generates a p-digit floating-point number in the
interval [0, 1) which is scaled by the value of the least significant digit of RZ(a+ b), so to
have the same sign as the rounding error τ and absolute value in [0, 2ηε).

Finally, the operation on line 10 performs stochastic rounding. The alignment of a, b,
and π in Algorithm 6.1 is illustrated in Fig. 6.1.

We now argue the correctness of the algorithm. We will assume, for now, that the
quantity �(τ + π) on line 10 is computed exactly; we will discuss the effect of errors
striking this operation later. Note that if σ = a+ b, then τ = 0 and 0 ≤ Z < 1 guarantees
that % = σ on line 10.

9



If σ and τ have the same sign, then |σ| < |a + b|, and it is easy to check that if
the rounding mode ◦ used on line 10 is chosen according to the strategy on line 6, then
% = RZ(a+b) if and only if |�(τ+π)| < 2ηε or, under the assumption that �(τ+π) = τ+π,
if and only if |τ + π| < 2ηε. Since σ and τ have same sign, the latter condition can be
rewritten as |π| < 2ηε−|τ |, or equivalently as Z < 1− ra+b. Similarly, % = RZ(a+ b) + 2ηε
if and only if Z ≥ 1 − ra+b, and we conclude that Algorithm 6.1 implements (4.6) when
sign(σ) = sign(τ).

If σ and τ have opposite sign, on the other hand, then |σ| > |a + b|. In this case we
have that % = RZ(a + b) if and only if |�(τ + π)| ≥ 2ηε, which reasoning as above can be
equivalently rewritten as Z ≥ ra+b, since ra+b = 1 − |τ |/ε. The case % = RZ(a + b) + 2ηε
is analogous, which shows that Algorithm 6.1 implements (4.4) for sign(σ) = − sign(τ).

The diagram in Fig. 6.2 aids to clarify why the rounding operator ◦ used on line 10
depends on the sign of τ . The idea is that |�(τ +π)| can become as large or larger than the
least significant digit of σ, in which case the instruction on line 10 will revert the rounding
performed by TwoSum. If, on the other hand, |�(τ + π)| ends up being smaller than 2ηε,
then the sum computed in round-to-nearest and is returned unchanged.

The error of Algorithm 6.1 depends on the magnitude of ϕ := |τ + π− �(τ + π)|, which
clearly depends on which rounding operator � is chosen on line 10. It is easy to see that for
round-to-nearest and directed rounding we have that ϕ < 2η−pε and ϕ < 2η+1−pε = 2ηε2,
respectively.

The function get exponent(x) returns the biased exponent of the floating-point number x
as stored in the binary representation of x. It is important to stress that get exponent(x)
does not coincide with the exponent of x as computed by the C mathematical library
functions frexp or ilogb if x represents 0 or a subnormal number whose leading bit is set
to 0. In fact, when x is subnormal or zero, get exponent(x) returns 0−emax = emin−1, and
not the exponent that x would have if it were a normal number, as frexp and ilogb would.
This exponent is more efficient to obtain, as computing it does not require to count the
leading zeros in the significand of x when the latter is subnormal, which in turn brings a
performance gain. Our implementation of get exponent(x) for binary64 arithmetic simply
isolates the exponent bits from the binary representation of x with an appropriate mask,
shifts them by 52 places to the right, and adds the bias of −1023. This ensures that no
rounding is performed when x = 0, as it is the case, for example, when a = −b, since
get exponent(0) = emin − 1 which ensures that π = 0 if line 5 is evaluated in round-to-
nearest.

In the addition and all other algorithms below, the calculations of the type sign(τ) ×
Z × 2η × ε are implemented by first isolating the sign bit of τ . The computation is then
done by using ldexp to multiply the random number Z (with the sign of τ attached to it
using bitwise disjunction) by 2η+ε.

Lastly, we comment on the behavior of overflow. The following applies to all the al-
gorithms in this section that use a rounding mode other round-to-nearest. If overflow
happens in the error-free transformation, TwoSum in this case, then we return a NaN
since TwoSum sets τ as a NaN. If this is not acceptable, then an extra check (not shown
in our algorithms) can be added to return σ = ±∞. However, if the operation on line 10
of Algorithm 6.1 overflows, then the maximum representable floating-point number of ap-
propriate sign will be returned.
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τ > 0

σ a � b σ + 2ηε a � b+ 2ηε

|τ | π

σ σ+2ηε

τ < 0

a � b− 2ηε σ − 2ηε a � b σ

|τ |π

σ−2ηε σ

Figure 6.2: Diagram that motivates the use of different directed rounding modes depend-
ing on the sign of τ . The dot dashed line represents the range of the variable π,
numbers that fall in the range of a thick grey line are rounded in the direction
of the black dot at one end. The symbol � represents any of the elementary
arithmetic operations, a � b and σ denote the result computed in exact arith-
metic and in round-to-nearest, respectively.

Algorithm 6.2: Multiplication with stochastic rounding using the FMA instruc-
tion.
1 function Mul(a ∈ F , b ∈ F)

If a, b satisfy (5.1), compute % = SR(a · b) ∈ F .
2 Z ← rand();
3 (σ, τ)← TwoProdFMA(a, b,RZ);
4 η ← get exponent(σ);
5 π ← sign(τ)× Z × 2η × ε;
6 %← RZ(�(τ + π) + σ);
7 return %;

6.2 Multiplication

The function Mul in Algorithm 6.2 exploits TwoProdFMA to compute SR(a × b).
Since the algorithm works with any rounding mode [28, Sec. 4.4.1], we prefer to use round-
toward-zero for efficiency sake. In this way, %x = τ and the exponent can be calculated
directly from σ, without requiring an extra floating-point operation as was the case in
Algorithm 6.1.

The correctness of Algorithm 6.2 can be shown with an argument analogous to that used
for Algorithm 6.1. Note that the proof is easier in this case, as the use of round-to-zero
implies that either τ = 0 or sign(σ) = sign(τ).

A method that exploits TwoProdDek in place of TwoProdFMA is given in Al-
gorithm 6.3. As Dekker’s multiplication algorithm has not been shown to be exact for
rounding modes other than round-to-nearest, an extra floating-point operation to get the
correct exponent of ba × bc is necessary. This corresponds to the operation on line 4 of
Add in Algorithm 6.1.

As discussed in Section 5, the error-free transformation for multiplication does not work
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Algorithm 6.3: Multiplication with stochastic rounding using Dekker’s algo-
rithm.
1 function MulDekker(a ∈ F , b ∈ F)

If a, b satisfy (5.1), compute % = SR(a · b) ∈ F .
2 Z ← rand();
3 (σ, τ)← TwoProdDek(a, b);
4 η ← get exponent(RZ(a× b));
5 π ← sign(t)× Z × 2η × ε;
6 if τ ≥ 0 then
7 ◦ = RD;
8 else
9 ◦ = RU;

10 %← ◦(�(τ + π) + σ);
11 return %;

if the error is smaller than the smallest number representable in the working precision. Our
algorithms for multiplication do not try to solve this issue, and we return an unrounded
result in the case of underflow in τ . In terms of overflow, the behavior of Mul hinges
on what TwoProdFMA returns when the multiplication overflows. Depending on the
implementation of the FMA, τ on line 3 of Algorithm 6.2 may be either ±∞ or a NaN.
If τ = +∞, then Mul will return +∞ correctly, whereas if τ is −∞ or a NaN, then an
extra check will be required to ensure that +∞ is correctly returned.

6.3 Division

We note that it would not be possible to derive an algorithm for stochastically rounded
division in the spirit of the other algorithms in this section, as the binary expansion of the
error arising in the division of two floating-point numbers may have, in general, infinitely
many nonzero digits. An example of this is the binary number 1/11 = 0.01 = 0.010101 . . . .

In order to obtain an algorithm for division, we exploit a result by Bohlender et al. [34].
Let a and b be floating-point numbers and let σ := ◦(a ÷ b) where ◦ is any of the IEEE
rounding functions. If σ is neither an infinity nor a NaN, then under some mild assumptions
(see [35, Th. 4]) τ ′ := a − σ × b is exactly representable. In our algorithm, we first
compute σ, then obtain τ ′ using a single FMA operation, and estimate the rounding error
in the division by computing τ ′/b. When an FMA is not available, τ ′ can be computed
with Dekker’s multiplication algorithm. The stochastic rounding step is performed as
in previous algorithms. The method we propose to stochastically round this operation
without relying on higher precision is illustrated in Algorithm 6.4.

The error of ϕ := |τ +π−�(τ +π)| is larger than that of the other algorithms discussed
so far, since only an approximation to the actual residual τ is available. We note, however,
that this error is of the same magnitude as that introduced by rounding τ + π, which
suggests that ϕ < 2ηε for round-to-nearest and ϕ < 2η+1ε for directed rounding.
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Algorithm 6.4: Division with stochastic rounding.

1 function Div(a ∈ F , b ∈ F)
Compute % = SR(a÷ b) ∈ F .

2 Z ← rand();
3 σ ← RZ(a÷ b);
4 τ ′ ← RZ(−σ × b+ a);
5 τ ← RZ(τ ′ ÷ b);
6 η ← get exponent(σ);
7 π ← sign(τ)× Z × 2η × ε;
8 %← RZ(�(τ + π) + σ);
9 return %;

Algorithm 6.5: Square root with stochastic rounding.

1 function Sqrt(a ∈ F)
Compute % = SR(

√
a) ∈ F .

2 Z ← rand();
3 σ ← RZ(

√
a);

4 τ ′ ← RZ(−σ2 + a);
5 τ ← RZ(τ ′ ÷ (2× σ));
6 η ← get exponent(σ);
7 π ← sign(τ)× Z × 2η × ε;
8 %← RZ(�(τ + π) + σ);
9 return %;

6.4 Square root

The algorithm for the square root, given in Algorithm 6.5, is very similar to that for
division. The only difference is the computation of the approximate error τ , which is
performed as discussed by Brisebarre et al. [36].

6.5 Algorithms without the change of the rounding mode

Most floating-point hardware uses round-to-nearest by default, thus we now discuss how the
algorithms discussed so far can be modified to rely on this rounding mode only. It is widely
known that changing the rounding mode of a processor can result in a severe performance
degradation, therefore the algorithms in this section should be much faster, yet more
complex. Algorithms 6.7, 6.8, 6.9, and 6.10 show how to adapt Algorithms 6.1, 6.2, 6.4,
and 6.5, respectively. The function SRround in Algorithm 6.6 is an auxiliary routine
on which the stochastic rounding algorithms rely on. The quantity called “ulp” in the
algorithm is a gap between the two floating-point values surrounding σ+ τ , except when σ
is zero or subnormal, in which case it is a quantity half-way between zero and the smallest
subnormal. The function pred(x) := (1− 2−p)× x returns the floating-point number next
to x in the direction of 0, if |x| > 2emin , and the number x itself otherwise, as per line 1
of [27, Alg. 4]. Note that pred(x) = x when |x| ≤ 2emin , which includes subnormals and
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Algorithm 6.6: A helper function for stochastic rounding.

1 function SRround(σ ∈ F , τ ∈ F , Z ∈ F)
Compute round ∈ F .

2 if sign(τ) 6= sign(σ) then
3 η ← get exponent(pred(σ));
4 else
5 η ← get exponent(σ);

6 ulp← sign(τ)× 2η × ε;
7 π ← ulp× Z;
8 if |RN(τ + π)| ≥ |ulp| then
9 round = ulp;

10 else
11 round = 0;

12 return round;

Algorithm 6.7: Stochastically rounded addition without the change of the
rounding mode.

1 function Add2(a ∈ F , b ∈ F)
Compute % = SR(a+ b) ∈ F .

2 Z ← rand();
3 (σ, τ)← TwoSum(a, b,RN);
4 round← SRround(σ, τ, Z);
5 %← RN(σ + round);
6 return %;

the smallest normal value, as shown in [27]. However, for the purposes of Algorithm 6.6
we only need this functions when get exponent(σ) from get exponent(pred(σ)), which is
never the case in the subnormal range.

The function pred(σ) in our C implementation of the algorithms is calculated, in the
case of binary64 arithmetic, by multiplying σ by the constant 1-ldexp(1, -53).

We now discuss the behavior of the modified algorithms in case of overflow. If there is
no overflow in the error-free transformation, then the exact results of magnitude at least
2emax(2 − 2−p) overflow to the closest infinity, whereas those below this threshold but of
magnitude larger than the maximum representable value will be rounded stochastically to
the corresponding infinity. This is due to use of round-to-nearest in the final step of the
computation of %. If, on the other hand, the computation performed during the error-free
transformation overflows, then σ = ±∞ is returned.

7 Performance

In this section we evaluate experimentally the performance of a C implementation of the
techniques in Section 6.
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Algorithm 6.8: Multiplication with stochastic rounding using the FMA instruc-
tion without the change of the rounding mode.

1 function Mul2(a ∈ F , b ∈ F)
If a, b satisfy (5.1), compute % = SR(a · b) ∈ F .

2 Z ← rand();
3 (σ, τ)← TwoProdFMA(a, b,RN);
4 round← SRround(σ, τ, Z);
5 %← RN(σ + round);
6 return %;

Algorithm 6.9: Division with stochastic rounding without the change of the
rounding mode.

1 function Div2(a ∈ F , b ∈ F)
Compute % = SR(a÷ b) ∈ F .

2 Z ← rand();
3 σ ← RN(a÷ b);
4 τ ′ ← RN(−σ × b+ a);
5 τ ← RN(τ ′ ÷ b);
6 round← SRround(σ, τ, Z);
7 %← RN(σ + round);
8 return %;

We compared our methods with a C port of the stochastic rounding functionalities of
the MATLAB chop function [12]. As our focus in this section is on binary64 arithmetic, we
used the GNU MPFR library [37] (version 4.0.1) to compute in higher-than-binary64 preci-
sion. We denote by sr <mpfr op> the function that uses the MPFR operator <mpfr op> to
compute the high-precision result that is subsequently stochastically rounded to binary64.
The codes we used for this benchmark (as well as experiments of the next section) are
available on GitHub.2

In Table 7.1 we consider the throughput (in Mop/s, millions of operations per second) of
the functions we implemented on a test set of 100 pairs of uniformly distributed binary64
random numbers in the interval [fmin, 1+fmin), where fmin := 2−1022 is the smallest positive
normal number in binary64. We remove subnormals from the interval from which we
draw the random samples, in order to avoid the possible performance degradation should
subnormals be handled in software rather than in hardware. For each pair of floating-point
inputs, we estimate the throughput by running each algorithm 10,000,000 times, and in
the table report the minimum, maximum, and mean value over the 100 test cases, as well
as the value of the standard deviation and the speedup with respect to the 113-bit variant
of the GNU MPFR-based algorithm.

Our experiments were performed on a machine equipped with an Intel Xeon Gold
6130 CPU running CentOS GNU/Linux release 7 (Core). The codes were compiled with
GCC 8.2.0 using the options -mfpmath=sse and -march=native, which includes the flags

2https://github.com/mmikaitis/stochastic-rounding-evaluation
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Algorithm 6.10: Square root with stochastic rounding without the change of
the rounding mode.

1 function Sqrt2(a ∈ F , b ∈ F)
Compute % = SR(

√
a) ∈ F .

2 Z ← rand();
3 σ ← RN(

√
a);

4 τ ′ ← RN(−σ2 + a);
5 τ ← RN(τ ′ ÷ (2× σ));
6 round← SRround(σ, τ, Z);
7 %← RN(σ + round);
8 return %;

-mfma and -msse2, since the Skylake CPU we used supports the FMA instruction and the
Streaming SIMD Extensions 2 (SSE2) supplementary instruction set. The flags -msse2

and -mfpmath=sse together ensure that 80-bit extended precision is not used at any point
in the computation [38]. For the optimization level, we were forced to use -O0 for the
implementation of Algorithms 6.1, 6.2, 6.4, and 6.5 (more strict optimization causes some
issues with the changes of the rounding mode so that the algorithms do not pass basic
tests), but used -O3 for the functions based on MPFR and for implementation of Algo-
rithms 6.7, 6.8, 6.9, and 6.10.

The benchmark results show that the new algorithms that work only in binary64 arith-
metic but switch rounding mode are 7.3 to 9.1 times faster than those relying on the GNU
MPFR library, regardless of the number of extra digits of precision used. The alternative
algorithms discussed in Section 6.5, which do not require the change of rounding mode,
are 16.3 to 19 faster than the reference implementation based on GNU MPFR.

8 Numerical experiments

Now we gauge the accuracy of the new algorithms in Section 6. We do so by illustrat-
ing their numerical behavior on three benchmark problems on which stochastic rounding
outperforms round-to-nearest when low-precision arithmetic is used. These are the com-
putation of partial sums of the harmonic series in finite precision, the summation of badly
scaled random values, and the solution of simple ordinary differential equations (ODEs).
The experiments were run in MATLAB 9.7 (2019b) using the Stochastic Rounding Tool-
box we developed, also available on GitHub.3 Reduced-precision floating-point formats
were simulated on binary64 hardware using the MATLAB chop function [12].

8.1 Harmonic series

In exact arithmetic, the harmonic series
∞∑
i=1

1

i
= 1 +

1

2
+

1

3
+ . . . (8.1)

3https://github.com/mfasi/srtoolbox
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Table 7.1: Throughput (in Mop/s) of the C implementations of the algorithms discussed
in the paper. The parameter p represents the number of significant digits in the
fraction of the MPFR numbers being used; algorithms that do not use MPFR
have a missing value in the corresponding row. The baseline for the speedup is
the mean thoughtput of the MPFR variant that uses 113 bits to perform the
same operation.

sr mpfr add Add Add2 sr mpfr mul Mul Mul2

p 61 88 113 – – 61 88 113 – –

min 3.5 3.7 3.5 18.5 62.5 3.7 3.7 3.7 32.2 66.6
max 3.8 4.2 4.0 31.2 71.4 4.2 4.1 4.0 34.4 76.9
mean 3.7 3.8 3.8 28.2 68.8 3.9 3.9 3.8 33.9 72.4
↪→ speedup 0.9× 1.0× 1.0× 7.3× 17.9× 1.0× 1.0× 1.0× 8.7× 18.6×
deviation 0.1 0.1 0.1 2.3 2.5 0.1 0.1 0.1 0.6 2.3

sr mpfr div Div Div2 sr mpfr sqrt Sqrt Sqrt2

p 61 88 113 – – 61 88 113 – –

min 3.3 3.4 3.4 31.2 62.5 3.6 3.0 2.8 28.5 52.6
max 3.6 3.6 3.6 33.3 71.4 4.2 3.6 3.6 30.3 58.8
mean 3.5 3.5 3.5 32.2 67.2 4.1 3.5 3.5 29.5 57.4
↪→ speedup 1.0× 1.0× 1.0× 9.1× 19.0× 1.1× 1.0× 1.0× 8.3× 16.3×
deviation 0.1 0.1 0.1 0.4 1.9 0.1 0.1 0.1 0.4 1.7

is divergent. If the partial sums of (8.1) are evaluated in finite precision, however, this
is not the case: using binary64 arithmetic and round-to-nearest, Malone [39] showed that
the series converges numerically to the value S248 ≈ 34.122 after N = 248 terms. In the
experiment, the author evaluated the sum by simply adding the terms from left to right,
and convergence was achieved on an AMD Athlon 64 processor after 24 days. The same ex-
periment was run in fp8 (an 8-bit floating-point format), bfloat16, binary16, and binary32
arithmetics by Higham and Pranesh [12], who showed that in binary32 arithmetic with
round-to-nearest the series converges to S221 ≈ 15.404 on iteration N = 221 = 2,097,152.

Here we use the computation of

Hk(s0) := s0 +
k∑
i=1

1

i
= s0 + 1 +

1

2
+

1

3
+ · · ·+ 1

k
(8.2)

as a simple test problem to compare the behavior of stochastic summation with classic sum-
mation algorithms in round-to-nearest. We include two variants of stochastically rounded
recursive summation, one that simulates stochastic rounding using Algorithm 6.1 and one
that relies on the MATLAB chop function [12]. We use a single stream of random numbers
produced by the mrg32k3a generator seeded with the arbitrarily chosen integer 300, and
at each step we generate only one random number and use it for both algorithms. For
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(b) binary16, s0 = 256.
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cascaded RN recursive with SR (Alg. 6.1) recursive with SR (chop)

Figure 8.1: Numerical value of the sum Hk(s0) in (8.2) accumulated in bfloat16 (left) and
binary16 (right) arithmetics with various summation algorithms. The sum
computed in binary64 precision is taken as reference. The algorithms use
round-to-nearest (RN) or stochastic rounding (SR) as indicated in the legend.

round-to-nearest we consider, besides recursive summation at working precision, compen-
sated summation [40], which at each step computes the rounding error with TwoSum and
adds it to the next summand, and cascaded summation [41], which accumulates all the
rounding errors in a temporary variable which is eventually added to the total sum. We
do not include doubly compensated summation [28, Sec. 5.3.2], [42] because its results are
indistinguishable from those of compensated summation on this example. As reference we
take the sum computed by recursive summation in binary64 arithmetic.

Our goal is to show that recursive and compensated summation stagnate with the stan-
dard IEEE 754 rounding mode but not when stochastic rounding is used; stagnation is
easily achieved in bfloat16 and binary16 arithmetics for k well below 105. For binary16,
we had to set s0 = 256 to cause stagnation. In other words, for binary16 we computed
256+

∑∞
i=1 1/i, obtaining the results in Fig. 8.1(b). As expected, recursive summation is the

first method to fail, while compensated summation follows the reference quite accurately
before starting to stagnate. Cascaded summation stagnates after recursive summation but
before compensated summation. When paired with stochastic rounding, on the other hand,
recursive summation suffers from an error larger than that of compensated summation,
but does not stagnate. Observe that Algorithm 6.1 and chop perform differently, despite
the fact that the same random number was used at each step: this is expected, as the two
algorithms follow a totally different approach for the computation of the stochastically
rounded sum.
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8.2 Sum of random values
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(a) bfloat16, s0 = 0, xi ∈ (−0.002, 0.008).
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(b) binary16, s0 = 1000, xi ∈ (−0.002, 0.008).

binary64 recursive RN recursive RN compensated RN
cascaded RN recursive with SR (Alg. 6.1) recursive with SR (chop)

Figure 8.2: Numerical value of the sum Sk(s0) in (8.3) accumulated in bfloat16 (left) and bi-
nary16 (right) arithmetics using various algorithms. The algorithms use round-
to-nearest (RN) or stochastic rounding (SR) as indicated in the legend.

In this second test we compare the different summation algorithms on the task of com-
puting the sum

Sk(s0) = s0 +
k∑
i=1

xi, (8.3)

where the xi are uniformly distributed over an open interval that contains both negative
and positive numbers, but is biased towards positive values to ensure that the value of
Sk(s0) is increasing for large k. These random numbers were generated from a stream of
random numbers, this time seeded with the arbitrarily chosen integer 500. We initialized
the sum to a positive number s0 large enough compared with the range of the random
numbers to cause stagnation.

Fig. 8.2 shows the results of this experiment. As in the previous experiment, in binary16
both recursive and cascaded summation stagnate very early, but compensated summation
does not in this test. We note, however, that all three algorithms would face this problem
if smaller random numbers were used.

In order to test the algorithms at precision natively supported by the hardware without
using simulated arithmetics, we ran some experiments in binary64. In MATLAB, the
rounding behavior of the underlying hardware can be controlled in an IEEE-compliant
way: the commands feature(’setround’, 0) and feature(’setround’, 0.5) switch
to round-towards-zero and round-to-nearest respectively. Our test problem is similar to
those above, as we aim to sum random values small enough for stagnation to occur (random
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Figure 8.3: Numerical value of Sk(s0) − 1, for the sum Sk(s0) as defined in (8.3), ac-
cumulated in binary64 arithmetic using various algorithms with s0 = 1,
xi ∈ (0, 2−65). The algorithms use round-to-nearest (RN) or stochastic round-
ing (SR) as indicated in the legend.

numbers required to observe stagnation in binary64 are so small that this phenomenon is
unlikely to be observed in real applications).

The results of this experiments are reported in Fig. 8.3. While recursive summation
stagnated as expected, we were unable to find any combination of parameters that caused
compensated summation to stagnate in binary64. Therefore, compensated summation
seems to be the best choice in binary64 arithmetic, whereas lower precision appears to
benefit from recursive summation with stochastic rounding, as in this case both compen-
sated and cascaded summation stagnate in our experiments.

8.3 ODE solvers

8.3.1 Exponential decay ODE

Explicit solvers for ODEs of the type y′ = f(x, y) have the form yt+1 = yt +hφ(xt, yt, h, f)
for a fixed step size h. For small h, they are therefore susceptible to stagnation. In fixed-
point arithmetic, stochastic rounding was shown to be very beneficial on four different ODE
solvers [11]. Here we use the algorithms developed in Section 6 to show that stochastic
rounding brings similar benefits in floating-point arithmetic, as it increases the accuracy
of the solution for small values of h. For these experiments we used the default MATLAB
random number generator seeded with the value 1.

Higham and Pranesh [12] tested Euler’s method on the equation y′ = −y using different
reduced precision floating-point formats, and showed the importance of subnormal num-
bers. A similar experiment for time steps as small as 10−8 is shown in [43, Sec. 4.3]. We use
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their code4 and compare round-to-nearest and stochastic rounding on the same test prob-
lem. The ODE with initial condition y(0) = 2−6 (chosen so that it is representable exactly
in all arithmetics) is solved over [0, 1] using the explicit scheme yn+1 = yn+hf(tn, yn) with
h = 1/n for n ∈ [10, 106]. Fig. 8.4(a) shows the absolute errors of the ODE solution at
x = 1 for increasing values of the discretization parameter n. For small integration steps,
the error is around four orders of magnitude smaller when stochastic rounding is enabled
for the 16-bit arithmetics.
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(a) Euler for y′ = −y, y(0) = 2−6, over [0, 1].
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(b) Midpoint for y′ = −y, y(0) = 2−6, over [0, 1].

101 102 103 104 105 106

10−10

10−8

10−6

10−4

10−2

(c) Heun for y′ = −y, y(0) = 2−6, over [0, 1].
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(d) Euler for y′ = − y
20 , y(0) = 1 over [0, 2−6].

binary64
bfloat16 with RN binary16 with RN binary32 RN
bfloat16 with SR (Algs. 6.1, 6.2) binary16 with SR (Algs. 6.1, 6.2) binary32 SR (Algs. 6.1, 6.2)

Figure 8.4: Absolute errors in Euler, Midpoint, and Heun methods for the exponential
decay ODE solutions with different floating point arithmetics and rounding
modes. The x-axis represents n while y-axis represents the error.

4https://github.com/SrikaraPranesh/LowPrecision_Simulation
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We tested two other algorithms for the numerical integration of ODEs:

• the midpoint second-order Runge–Kutta method (RK2)

yn+1 = yn + hf
(
tn +

1

2
h, yn +

1

2
hf(tn, yn)

)
,

• Heun’s method {
y′n = yn + hf(tn, yn),

yn+1 = yn + 1
2
h
(
f(tn, yn) + f(tn + h, y′n)

)
.

The results for these two methods are reported in Fig. 8.4(b) and Fig. 8.4(c), respectively.
To cause stagnation in binary32 we reformulated the problem to have a smaller integra-

tion period and a larger initial condition. For instance we could consider the same ODE
y′ = −y, but take as initial condition y(0) = 1 over [0, 2−6] with h = 2−6/n for n ∈ [10, 106].
We only need the constant in the initial condition to be large relative to the time step size,
the number 1 was an arbitrary choice. Now at every step of the integration, we would
subtract from 1 a very small positive value whose magnitude decreases with the time step
size, and we expect that even binary32 will show more significant errors. Another way to
increase the errors is to introduce a decay time constant other than 1 into the differential
equation. The ODE y′ = −y/20, for instance, will cause the updates at each step of a
solver to be even smaller. Fig. 8.4(d) shows this scenario using Euler’s method. In this
case only binary64 and binary32 with stochastic rounding manage to avoid stagnation for
small time steps.

8.3.2 Unit circle ODE

The solution to the system of ODEs{
u′(t) = v(t),

v′(t) = −u(t),

with initial values u(0) = 1 and v(0) = 0 represents the unit circle in the uv-plane [44,
p. 51]. Higham [44, p. 51] shows also that the forward Euler scheme{

uk+1 = uk + hvk,

vk+1 = vk − huk,
(8.4)

with h = 2π/32 produces a curve that spirals out of the unit circle. Euler’s method can be
improved by using a smaller time step, which gives a more accurate approximation to the
unit circle at a higher computational cost. From the previous section we know, however,
that smaller time steps are more likely to cause issues with rounding errors.

The goal of this experiment is therefore to see what curve the methods draw when using
round-to-nearest and stochastic rounding at small step sizes. We note that here stochastic
rounding is used for both addition and multiplication operations in (8.4). Fig. 8.5 shows
some circles drawn when solving (8.4) for various step sizes h = 2π/n.
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Figure 8.5: Unit circle drawn by Euler’s method in (8.4) with various arithmetics and
rounding modes compared to the exact solution. The default MATLAB random
number generator seeded with 500 was used. The x- and y-axis represent u and
v, respectively. Note that in (d) and (h) only a very small part of the solution
with RN is visible (marked with an arrow) since the ODE solver failed due to
stagnation.

As expected, for large step sizes the solution spirals out of the unit circle, then gets
gradually closer to the right solution as the step size decreases, until rounding errors start
to dominate the computation causing major issues: for a small enough step size the solution
computed using round-to-nearest looks like an octagon. Stochastic rounding seems to avoid
this problem and keeps the solution near the unit circle. We do not report the results for
binary32, as we found its behavior to be the same as that of binary16/bfloat16 at n = 25

regardless of the step size.
The octagonal shape of the circle approximation with round-to-nearest is interesting

and worth looking at in more detail. In Fig. 8.5c and 8.5g we can see that during the
first few iterations, v changes while u remains constant. In theory, we would expect u
to start decreasing because of the negative values of v, but the number being subtracted
from u0 = 1 is too small for the 16-bit floating-point number systems considered in this
experiment, as we now explain.
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In order to simplify the analysis, we now assume exact arithmetic. If no rounding errors
strike the computation, after 7 integration steps we get, for a given h,

u7 = 1− 21h2 + 36h4 − 7h6,

v7 = −7h+ 35h3 − 21h5 + h7.
(8.5)

It is clear that the value of v7 will depend on h even for very small time steps, but the value
of u7 might not, as this coordinate has a constant term and the update is a second-order
term in h that can potentially be much smaller. The other terms in this expression for u7
are even smaller, so we focus only on the the first two. If we expand them so to make the
sequence of operations performed by Euler’s method explicit, we obtain that

u7 ≈ 1− 21h2 = 1− h2 − 2h2 − 3h2 − 4h2 − 5h2 − 6h2,

where each multiplication and subtraction can potentially cause a rounding error. If h2 is
significantly smaller than 1, in particular, the subtraction 1−kh2 might result in stagnation
due to the rounding returning 1 and yielding uk+1 = 1 = u0. That is why in Fig. 8.5 the
value of u initially remains constant with round-to-nearest but changes immediately with
stochastic rounding: the latter manages to erode 1 by rounding up some of the kh2 terms.
As k increases, the terms kh2 will eventually become large enough for subtractions to start
taking effect with round-to-nearest, at which point the curve will move to a different edge
of the octagon.

The situation is similar at the bottom of the circle, where vN/4 = −1 and uN/4 = 0. At
first, the value of hui is so small that vi+1 = −1−hui evaluates to −1 in finite precision. As
the magnitude of ui < 0 increases, so does −hui, which eventually becomes large enough
for round-to-nearest to round up the result of −1−hui. When rounding stochastically, this
is not as problematic, since any nonzero value of hui has a nonzero probability of causing
the subtraction to round up. The expanded expression for the first two terms of vN/4+7 is
similar to u7, with increasingly larger multiples of h2 being added to −1 at each step of
Euler’s method

vN/4+7 ≈ −1 + 21h2 = −1 + h2 + 2h2 + 3h2 + 4h2 + 5h2 + 6h2.

In Fig. 8.5d and 8.5h, on the other hand, the step size h is so small that even v stops
progressing in round-to-nearest, and only a small portion of the octagon is drawn. This
can be explained by looking at (8.5): the largest term supposed to decrease v0 = 0 is the
first order term −h, therefore for large enough h in finite-precision arithmetic one will have
vk = −kh. As can be seen from the figure, this works for the first few iterations, during
which v grows in magnitude while h remains constant, eventually causing stagnation to
occur. Note that u is also fixed at 1 at that point, which means that the other terms in
the expansion of v in (8.5) vanish and the whole system of ODEs cannot progress any
further. This does not happen when rounding stochastically, as this rounding mode avoids
stagnation of both variables.

This simple experiment resembles the integration of planetary orbits. For example,
Quinn, Tremaine, and Duncan [45, Sec. 3.2] use multistep methods to integrate orbits over
a time span of millions of years with a time step of 0.75 days. The authors comment
that roundoff errors arising in the additions within the integration algorithm can become
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a dominant source of the total error, and propose to keep track of these errors and add
them back to the partial sum as soon as their sum exceeds the value of the least significant
bit. This technique is similar to the approach taken by cascaded summation. The use of
stochastic rounding in the floating-point addition might alleviate this issue by reducing the
total summation error without requiring any additional task-specific code or extra storage
space at runtime.

We believe that the exploration of stochastic rounding in this particular application
should be a main direction of future work. Our algorithms for emulating stochastically
rounded elementary arithmetic operations, along with the code for binary64 precision
arithmetic that we provide, will allow those interested in looking into this problem to easily
access arithmetic with stochastic rounding without requiring the use MPFR or alternative
multiple-precision libraries.

9 Conclusions

There is growing interest in stochastic rounding in various domains [6, 7, 10, 14–18], and
this rounding mode has started appearing in hardware devices produced by Graphcore [19]
and Intel [20]. In this work we proposed and compared several algorithms for simulating
stochastically rounded elementary arithmetic operations via software. The main feature
of our techniques is that they only assume an IEEE-compliant floating-point arithmetic,
but do not require higher-precision computations. This is a major advantage in terms
of both applicability and performance. On the one hand, these methods can be readily
implemented on a wide range of platforms, including those, such as GPUs, for which
multiple-precision libraries are not available. On the other hand, the new techniques lead
to more efficient implementations: our experiments in double precision show a speedup of
order 10 or more over an MPFR-based multiple-precision approach.

We also discussed some applications where stochastic rounding is capable of curing the
instabilities to which round-to-nearest is prone. We showed that, in applications where
stagnation is likely to occur, using stochastic rounding can lead to much more accurate
results than standard round-to-nearest or even compensated algorithms. This is especially
relevant for binary16 and bfloat16, two 16-bit formats that are becoming increasingly
common in hardware.

We feel that other applications would benefit from the use of stochastic rounding at lower
precision, and believe that this rounding mode will play an important role as hardware
that does not support 32/64-bit arithmetics becomes more prevalent. This will be the
subject of future work.
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