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0.1. INTRODUCTION 1

0.1 Introduction

Electrical Impedance Tomography (EIT) is the recovery of the conductivity (or
conductivity and permittivity) of the interior of a body from a knowledge of
currents and voltages applied to its surface. In geophysics, where the method
is used in prospecting and archaeology, it is known as electrical resistivity to-
mography. In industrial process tomography it is known as electrical resistance
tomography or electrical capacitance tomography. In medical imaging, when at
the time of writing it is still an experimental technique rather than routine clin-
ical practice, it is called EIT. A very similar technique is used by weakly electric
fish to navigate and locate prey and in this context it is called electrosensing.
An example of a medical application of EIT is given in Figure 1, which shows
a ten day old healthy neonate breathing spontaneously and lying in the prone
position with the head turned to the left. Sixteen EIT electrodes are placed
in a transverse plane around the chest, and EIT data acquired with the Goe
MF-II system. This child was a subject in a study which used EIT to examine
patterns of breathing in neonates and the relationship to body posture [59]. In
this study, EIT was able to show, for the first time, that, in a prone position,
the lung on the opposite side (contralateral) to the face receives significantly
larger air flows.

Figure 1: 10-day old spontaneously breathing neonate lying in the prone position
with the head turned to the left. Sixteen medical grade Ag/AgCl electrodes were
placed in a transverse plane and connected to a Geo MF-II EIT system[59]

The simplest mathematical formulation of inverse problem of EIT can be
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stated as follows. Let Ω be a conducting body described by a bounded domain
in Rn, n ≥ 2, with electrical conductivity a bounded and positive function
γ(x) (later we will consider also γ complex). In absence of internal sources,
the electrostatic potential u in Ω, is governed by the elliptic partial differential
equation

Lγu := ∇ · γ∇u = 0 in Ω. (0.1.1)

It is natural to consider the weak formulation of 0.1.1 in which u ∈ H1(Ω)
is a weak solution to (0.1.1). Given a potential φ ∈ H1/2(∂Ω) on the boundary,
the induced potential u ∈ H1(Ω) solves the Dirichlet problem{

Lγu = 0 in Ω,
u|∂Ω = φ.

(0.1.2)

The currents and voltages measurements taken on the surface of Ω, ∂Ω,
are given by the so-called Dirichlet-to-Neumann map (associated with γ) or
voltage-to-current map

Λγ : u|∂Ω ∈ H1/2(∂Ω) −→ γ
∂u

∂ν
∈ H−1/2(∂Ω).

Here, ν denotes the unit outer normal to ∂Ω and the restriction to the
boundary is considered in the sense of the trace theorem on Sobolev spaces.
We require that ∂Ω be at least Lipschitz continuous and γ ∈ L∞(Ω) with
ess inf Re γ = m > 0.

The forward problem under consideration is the map γ ∈ Dm 7→ Λγ , where
Dm = {γ ∈ L∞(Ω)|ess infγ ≥ m} The inverse problem for complete data is then
the recovery of γ from Λγ . As is usual in inverse problems we will consider
the questions of (1) uniqueness of solution (or from a practical point of view
sufficiency of data) (2) stability/instability with respect to errors in the data
and (3) practical algorithms for reconstruction. It is also worth pointing out
to the reader who is not very familiar with EIT the well known fact that the
behavior of materials under the influence of external electric fields is determined
not only by the electrical conductivity γ but also by the electric permittivity ε so
that the determination of the complex valued function γ(x, ω) = σ(x) + iωε(x),
would be the more general and realistic problem, where i =

√
−1 and ω is the

frequency. The simple case where ω = 0 will be treated in this work. For a
description of the formulation of the inverse problem for the complex case we
refer for example to [17]. Before we address questions (1)-(3) mentioned above,
we will consider how the problem arises in practice.

0.1.1 Measurement systems and physical derivation

For the case of direct current, that is the voltage applied is independent of time,
the derivation is simple. Of course here Ω ⊂ R3. Let us first suppose that we
can apply an arbitrary voltage φ ∈ H1/2(Ω) to the surface. We assume that
the exterior R3\Ω is an electrical insulator. An electric potential (voltage) u
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results in the interior and the current J that flows satisfies the continuum Ohm’s
law J = −γ∇u; the absence of current sources in the interior is expressed by
the continuum version of Kirchoff’s law ∇ · J = 0 which together result in
0.1.1. The boundary conditions are controlled or measured using a system of
conducting electrodes which are typically applied to the surface of the object.
In some applications, especially geophysical, these may be spikes that penetrate
the object, but it is common to model these as points on the surface. Systems
are used that to a reasonable approximation apply a known current on (possibly
a subset) or electrodes and measure the voltage that results on electrodes (again
possibly a subset, in some cases disjoint from those carrying a non-zero current).
In other cases it is a predetermined voltage applied to electrodes and the current
measured; there being practical reasons determined by electronics or safety for
choosing one over the other. In medical EIT applying known currents and
measuring voltages is typical. One reason for this is the desire to limit the
maximum current for safety reasons. In practice the circuit that delivers a
predetermined current can only do so while the voltage required to do that is
within a certain range so both maximum current and voltage are limited. For
an electrode (let us say indexed by `) not modelled by a point but covering a
region E` ⊂ ∂Ω the current to that electrode is the integral

I` =

∫
E`

−J · ν dx. (0.1.3)

Away from electrodes we have

γ
∂u

∂ν
= 0, on ∂Ω\

L⋃
`=1

E` (0.1.4)

as the air surrounding the object is an insulator. On the conducting electrode
we have u|E` = V` a constant, or as a differential condition

ν ×∇u = 0 on ∂Ω\
L⋃
`=1

E`. (0.1.5)

Taken together, (0.1.3)-(0.1.5) are called the shunt model. This ideal of a per-
fectly conducting electrode is of course only an approximation, and we note
that while the condition u ∈ H1(Ω) is a sensible condition, ensuring finite total
dissipated power, it is not sufficient to ensure (0.1.3) is well defined. Indeed
for smooth γ and smooth ∂E` the condition results in a square root singularity
in the current density on the electrode. We will come back to a more realistic
model of electrodes.

It is more common to use alternating current in geophysical and process
monitoring applications, and essential in medical applications. Specifically the
direction of the current must be reversed within a sufficiently short time to avoid
electrochemical effects. This also means that the time average of the applied
current should be zero. In medical applications, current in one direction for
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sufficient duration would result in transport of ions, and one of the effects of
this can be stimulation of nerves. It would also degrade electrode behavior due to
charge build up and ionic changes in the electrode. As a general rule higher levels
of current and voltage are considered safer at higher temporal frequencies. The
simplest EIT system therefore operates at a fixed frequency using an oscillator
or digital signal processing to produce a sinusoidal current. Measurements are
then taken of the magnitude, or in the some cases the components that are in
phase and π/2 out of phase with the original sine wave. Of course when current
or voltage is first applied to the object a transient results, and typical EIT
systems are designed to start measuring after this transient term has decayed
so as to be negligible.

In geophysics a technique that is complementary to EIT called induced polar-
ization tomography IPT is used to find polarizable minerals. In effect this uses a
square wave pulse and measures the transient response [86]. In process tomog-
raphy a technique known as electrical capacitance tomography is designed for
imaging insulating materials with different dielectric permittivities, for example
oil and gas in a pipe[56] [103]. Again square waves or pulses are used.

In medical and geophysical problems the response of the materials may vary
with frequency. For example in a biological cell higher frequency current might
penetrate a largely capacitive membrane and so be influence by the internal
structures of the cell while lower frequency currents pass around the cell. This
has led to Electrical Impedance Tomography Spectroscopy (EITS)[48], and in
geophysics Spectral Induced Polarization Tomography (SIPT)[86]. The spectral
response can be established either by using multiple sinusoidal frequencies or
by sampling the transient response to a pulse.

Our starting point for the case of alternating current is the time harmonic
Maxwell equations at a fixed angular frequency ω. Here it is assumed that the
transient components of all fields are negligible and represent the time harmonic
electric and magnetics vector fields using the complex representation F(x, t) =
Re (F exp(iωt)) and we have

∇×E = −iωB (0.1.6)

∇×H = J + iωD. (0.1.7)

The electric and magnetic fields E and H are related to the current density
J, electric displacement D and magnetic flux B by the material properties
conductivity σ, permittivity ε and permeability µ by

J = σE, D = εE, B = µH. (0.1.8)

The fields E and H are evaluated on directed curves, while the “fluxes” J,D
and B on surfaces. In biomedical applications one can typically take µ to be
constant and to be the same inside the body as outside in air. In non-destructive
testing and geophysical applications there may well be materials with differing
permeability. We are also assuming linear relations in (0.1.8). For example the
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first is the continuum Ohm’s law. We allow for the possibility that the material
properties are frequency dependent. In this, dispersion is important in EIS and
SIPT. For the moment we also assume isotropy (so that the material properties
are scalars).

There are many inverse problems governed by time harmonic Maxwell’s
equations. For very large values of ω this includes optical and microwave to-
mographic techniques and scattering problems such as radar which we do not
discus in this chapter. There are also systems where the fields arise from al-
ternating current in a coil, and measurements are made either with electrodes
or with other coils. Mutual (or magnetic) induction tomography (MIT) falls
in to this category and has been tried in medical and process monitoring ap-
plications [49]. In these cases the eddy current approximation [9] to Maxwell’s
equations is used. While for direct current EIT (that is ERT) the object is as-
sumed surrounded by an insulator, in MIT one must account for the magnetic
fields in the surrounding space, there being no magnetic ‘shielding’.

We now come to the assumptions used to justify the usual mathematical
model of EIT that are distinct from many other inverse problems for Maxwell’s
equations. We already have

Assumption 1 Transients components of all fields are negligible.

This assumption simply means we have waited a sufficient ‘settling time’ before
making measurements.

We are interested in relatively low frequencies where magnetic effects can be
neglected this translates in to two assumptions

Assumption 2 ω
√
εµ is small compared with the size of Ω.

This means that the wavelength of propagating waves in the material is large.
A measurement accuracy of 2−12 = 1/4096 is ambitious at higher frequencies
means that for wave effects to be negligible

dω
√
εµ < cos−1 4095

4096
, (0.1.9)

where d is the diameter of the body. Taking the relative permittivity to be 10
and R = 0.3m gives a maximum frequency of 1MHz.

Assumption 3
√
ωσµ/2 is small compared with the size of Ω.

The quantity

δ =

√
2

ωσµ
(0.1.10)

is known as the skin depth. For a frequency of 10kHz and a conductivity of
0.5Sm−1 typical in medical applications, the skin depth is 7m. In geophysics
lower frequencies are typical but length scales are larger. In a conducting cylin-
der the electric field decays with distance r from the boundary at a rate e−r/δ

due to the opposing magnetic field. At EIT frequencies this simple example
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Figure 2: A system of eletrodes used for chest EIT at Oxford Brookes University.
The positions of the electrodes was measured manually with a tape measure
and the cross sectional shape was also determined by manual measurements.
These electrodes have a disk of jell containing silver chloride solution that makes
contact with the skin. Each eletrode was attached to the EIT system by a
screened lead, not shown in this picture for clarity.

suggests that accurate forward modelling of EIT should take account of this
effect although it is currently not thought to be a dominant source of error.

The effect of assumptions 2 and 3 combined together is that we can neglect
∇ × E in Maxwell’s equations resulting in the standard equation for complex
EIT

∇ · (σ + iωε)∇u = 0. (0.1.11)

Here the expression γ = σ + iωε is called complex conductivity, or logically
the admittivity, while 1/σ is called resistivity and the rarely-used complex 1/γ
impedivity. A scaling argument is given for the approximation (0.1.11)in [33],
and numerical checks on the validity of the approximation in [39] and [106].

It is often not so explicitly stated but, while in the direct current case one
can neglect the conductivity of the air surrounding the body, for the alternating
current case the electrodes are coupled capacitively and, while σ can be assumed
to be zero for air, the permittivity of any material is no smaller than that of a
vacuum ε0 = 8.85×10−12, although dry air approaches that value. One requires
then

Assumption 4 ωε in the exterior is negligible compared to |σ + iωε| in the interior.

For example, with a conductivity or 0.2Sm−1, the magnitude of the exterior
admittivity reaches 2−12 of that value for a frequency of 0.88 MHz. For a more
detailed calculation the capacitance between the electrodes externally could be
compared with the impedance between electrodes. In ECT frequencies above
1 MHz are used and the exterior capacitance can not be neglected. Indeed an
exterior grounded shield is used so that the exterior capacitive coupling is not
affected by the surroundings (see fig 3).



0.1. INTRODUCTION 7

Figure 3: A cross section through a typical ECT sensor around a pipe (internal
wall) showing the external screen with radial screens designed to reduce the
external capacitive coupling between electrodes.

0.1.2 The concentric anomaly: a simple example

A simple example helps us to understand the instability in the inverse conduc-
tivity problem. Let Ω be the unit disk in R2 with polar coordinates (r, θ) and
consider a concentric anomaly in the conductivity of radius ρ < 1

γ(x) =

{
a1, |x| ≤ ρ
a0, ρ < |x| ≤ 1.

(0.1.12)

From separation of variables, matching Dirichlet and Neumann boundary
conditions at |x| = ρ, we find for n ∈ Z

Λγeinθ = |n|1 + µρ2|n|

1− µρ2|n| e
inθ, (0.1.13)

where µ = (a1−a0)/(a1+a0). From this one sees the effect of the Dirichlet to
Neumann map on the complex Fourier series, and the effect on the real Fourier
series is easily deduced. This example was considered in [65] as an example
of the eigenvalues and eigenfunctions of Λγ , and also by [2] as an example of
instability. We see that ||γ − a0||L∞(Ω) = |a1 − a0| independently of ρ and yet
Λγ → Λa0 in the operator norm. Hence if an inverse map Λγ 7→ γ exists, it
cannot be continuous in this topology. Similar arguments can be used to show
instability of inversion in other norms.

This example reveals many other features of the more general problem. For
example experimentally one observes saturation: for an object placed away from
the boundary, changes in the conductivity of an object with a conductivity close
to the background are fairly easily detected, but for an object of very high or
low conductivity further changes in conductivity of that object have little effect.
This saturation effect was explored for offset circular objects (using conformal
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mappings) by Seagar[100]. This is also an illustration of the non-linearity of
γ → Λγ . One can also see in this example that smaller objects (with the same
conductivity) produce smaller changes in measured data as one might expect.

On the unit circle S1 one can define an equivalent norm on the Sobolev space
Hs
�(S

1) (see definitions in Section 0.2.3) by

||
∞∑

n=−∞,n6=0

cnmre
inθ||2s =

∞∑
n=−∞,n6=0

n2sc2n. (0.1.14)

It is clear for this example that Λγ : Hs
�(S

1)→ Hs−1
· (S1), for any s. Roughly the

current is a derivative of potential and one degree of differentiability less smooth.
Technically Λγ (for any positive γ ∈ C∞(Ω)) is a first order pseudo-differential
operator [82]. The observation that for our example e−inθΛγeinθ = |n|+ o(n−p)
as |n| → ∞ for any p > −1 illustrates that the change in conductivity and radius
of the interior object is of somewhat secondary importance! In the language
of pseudodifferential operators for a general γ such that γ − 1 vanishes in a
neighbourhood of the boundary, Λγ and Λ1 differ by a smoothing operator.

We see also from (0.1.13) that Λ−1
γ is also well defined operator on L2

· → L2
·

with eigenvalues O(|n|−1) and is therefore a Hilbert-Schmidt operator. This is
also known for the general case [38].

Early work on medical applications of EIT [60], [75] hoped that the forward
problem in EIT would be approximated by generalized ray transform – that
is integrals along current stream lines. The example of a concentric anomaly
was used to illustrate that EIT is nonlocal [101]. If one applies the voltage
cos(θ + α), which for a homogeneous disk would result in current streamlines
that are straight and parallel, a change in conductivity in a small radius ρ from
the centre changes all measured currents, not just on lines passing through the
region of changed conductivity |x| ≤ ρ. In the 1980s a two dimensional algorithm
that backprojected filtered data along equipotential lines was popularized by
Barber and Brown [12]. Berenstein [15] later showed that the linearized EIT
problem in a unit disc can be interpreted as the Radon transform with respect
to the Poincaré metric and a convolution operator and that Barber and Brown’s
algorithm is an approximate inverse to this.

In process applications of EIT and related techniques the term soft field
imaging is used, which by analogy to soft field X-rays means a problem that is
non-linear and non-local. However in the literature when the ‘soft field effect’
is invoked, it is often not clear if it is the nonlinear or non local aspect to which
they refer and in our opinion the term is best avoided.

0.1.3 Measurements with electrodes

A typical electrical imaging system uses a system of conducting electrodes at-
tached to the surface of the body under investigation. One can apply current
or voltage to these electrodes and measure voltage or current respectively. For
one particular measurement the voltages (with respect to some arbitrary refer-
ence) are V` and the currents I`, which we arrange in vectors as V and I ∈ CL .
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The discrete equivalent of the Dirichlet-to-Neumann Λγ map is the transfer
admittance, or mutual admittance matrix Y which is defined by I = YV.

It is easy to see that the vector 1 = (1, 1, . . . , 1)T is in the null space of Y,
and that the range of Y is orthogonal to the same vector. Let S be the subspace
of CL perpendicular to 1 then it can be shown that Y|S is invertible from S
to S. The generalized inverse Z = Y† is called the transfer impedance. This
follows from uniqueness of solution of shunt model boundary value problem.

The transfer admittance, or equivalently transfer impedance, represents a
complete set of data which can be collected from the L electrodes at a single
frequency for a stationary linear medium. It can be seen from the weak formu-
lation of (0.1.11) that Y and Z are symmetric (but for ω 6= 0 not Hermittian).
In electrical engineering this observation is called reciprocity. The dimension
of the space of possible transfer admittance matrices is clearly no bigger than
L(L − 1)/2, and so it is unrealistic to expect to recover more unknown pa-
rameters than this. In the analogous case of planar resistor networks with L
‘boundary’ electrodes the possible transfer admittance matrices can be charac-
terized completely [35], a characterization which is known at least partly to hold
in the planar continuum case [64]. A typical electrical imaging system applies
current or voltage patterns which form a basis of the space S, and measures
some subset of the resulting voltages which as they are only defined up to an
additive constant can be taken to be in S.

We have seen that the shunt model is non physical. In medical application
with electrodes applied to skin and in “phantom” tanks used to test EIT systems
with ionic solutions in contact with metal electrodes, a contact impedance layer
exists between the solution or skin and the electrode. This modifies the shunting
effect so that the voltage under the electrode is no longer constant. The voltage
on the electrode is still a constant V` so now on E` there is a voltage drop across
the contact impedance layer

φ+ z`σ
∂φ

∂ν
= V`, (0.1.15)

where the contact impedance z` could vary over E` but is usually assumed
constant. Experimental studies have shown [58] that a contact impedance on
each electrode is required for an accurate forward model. This new boundary
condition together with (0.1.3) and (0.1.4) form the Complete Electrode Model
or CEM. For experimental validation of this model see [32], theory [105] and
numerical calculations [97, 114]. A nonzero contact impedance removes the
singularity in the current density, although high current densities still occur at
the edges of the electrodes (fig 4). For further details on the singularity in the
current density see [37]. While ‘point electrodes’, in which the current density is
a sum of delta functions, are a limiting case of the CEM they are not physically
realistic as they result in non-physical potentials not in H1(Ω). The trace on
the boundary cannot be evaluated at a point so point measurements of voltage
are undefined. However it can be shown that the if the conductivity is changed
only in the compliment of a neighbourhood of ∂Ω the resulting voltage difference
at the boundary can be evaluated at points [52].
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(a) Current density on the boundary for passive and ac-
tive electrodes. In fact there is a jump discontinuity at
the edge of electrodes for non-zeros contact impedance al-
though our plotting routine has joined the left and right
limits.

(b) The effect of contact impedance on the potential be-
neath an electrode. The potential is continuous.

(c) Interior current flux near an active electrode. (d) Interior current flux near a passive electrode.

Figure 4: The current density on the boundary with the CEM is greatest at the
edge of the electrodes, even for passive electrodes. This effect is reduced as the
contact impedance increases. Diagrams courtesy of Andrea Borsic.



0.1. INTRODUCTION 11

The set of imposed current patterns, or excitation patterns, is designed to
span S, or at least that part of it that can be accurately measured in a given
situation. In medical EIT, with process ERT following suit, early systems de-
signed at Sheffield [12] assumed a two dimensional circular domain. Identical
electrodes were equally spaced on the circumference and, taking them to be
numbered anticlockwise, the excitation patterns used were adjacent pairs, that
is proportional to

Ii` =

 1, i = `
−1, i = `+ 1

0, otherwise ,
(0.1.16)

for i = 1, ...L − 1. The electronics behind this is balanced current source con-
nected between two electrodes [61, chapter 2]. and this is somewhat easier to
achieve in practice than a variable current source at more than two electrodes.
For general geometries, where the electrodes are not placed on a closed curve,
other pairs of electrodes are chosen. For example Ii1 = −1, while Ii` = δi`, ` 6= 1.

Measurements of voltage can only be differential and so voltage measure-
ments are taken between pairs of electrodes, for example adjacent pairs, or
between each and some fixed electrode. In pair drive systems, similar to the
original Sheffield system, voltages on electrodes with nonzero currents are not
measured, resulting in incomplete knowledge of Z.

In geophysical surface resistivity surveys it is common to use a pair drive and
pair measurement system, using electrodes in a line where a two dimensional
approximation is used, or laid out in a rectangular or triangular grid where the
full three dimensional problem is solved. Measurements taken between pairs of
non-current carrying electrodes. The choice of measurement strategy is limited
by the physical work involved in laying out the cables and by the switching
systems. Often electrodes will be distributed along one line and a two dimen-
sional approximate reconstruction used as this gives adequate information for
less cost. A wider spacing of the current electrodes is used where the features of
interest is located at a greater depth below the ground. In another geophysical
configuration, cross borehole tomography, electrodes are deployed down several
vertical cylindrical holes in the ground, typically filled with water, and current
passed between electrodes in the same or between different bore holes. Surface
electrodes may be used together with those in the bore holes. In some systems
the current is measured to account for a non-ideal current source.

In capacitance tomography a basis of voltage patterns is applied and the
choice V i` = δi` is almost universal. The projection of these vectors to S (we call
an “electrode-wise basis’) is convenient computationally as a current pattern.

Given a multiple drive system capable of driving an arbitrary vector of cur-
rents in S (in practice with in some limits on the maximum absolute current and
on the maximum voltage) we have a choice of excitation patterns. While exact
measurements of ZIi for Ii in any basis for S is clearly sufficient, the situation is
more complicated with measurements of finite precision in the presence of noise.
If a redundant set of currents is taken, the problem of estimating Z becomes
one of multivariate linear regression. The choice of current patterns is then a
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design matrix. Another approach seeks the minimum set of current patterns
that results in usable measurements. Applying each current pattern and taking
a set of measurements takes a finite time, during which the admittivity changes.
Without more sophisticated statistical methods (such as Kalman filters [115]),
there are diminishing returns in applying redundant current patterns. Suppose
that the total power V∗ZI is constrained (we want to keep our patient elec-
trically safe) and the current best estimate of the admittivity gives a transfer
admittance Zcalc, then it is reasonable to apply currents I such that (Z−Zcalc)I
is above the threshold of voltages that can be accurately measured and mod-
elled. One approach is to choose current patterns that are the right generalized
singular vectors of Z−Zcalc with singular values bigger than an error threshold.
The generalized singular values are with respect to the norm ||I||Z := ||ZI|| on
S and are the extrema of the distinguishability defined as

||(Z− Zcalc)I||
||I||Z

, (0.1.17)

for I ∈ S. These excitation patterns are called “optimal current patterns” [47]
and can be calculated from an iterative procedure involving repeated measure-
ment. For circular disk with rotationally symmetric admittivity and equally
spaced identical electrodes, the singular vectors will be discrete samples of a
Fourier basis and these trigonometric patterns are a common choice for multiple
drive systems using a circular array of electrodes.

0.2 Uniqueness of solution

Uniqueness of solution is very important in inverse problems, although when
talking to engineers it is often better to speak of sufficiency of data to avoid
confusion. Interestingly it is generally true that results that show insufficiency
of data, that one cannot recover an unknown function even if an infinite number
of measurements of arbitrary precision are taken, have more impact in applied
areas. While there are still unsolved problems in the uniqueness theory for
the EIT inverse problem, there has been considerable progress over the last
three decades and many important questions have been answered. While for
an isotropic real conductivity γ (with certain smoothness assumptions for di-
mensions n ≥ 3), γ is uniquely determined by the complete data Λγ (see [11],
[26], [109]), an anisotropic conductivity tensor is not uniquely determined by
the boundary data, although some progress on what can be determined in this
case has been made (see [3], [6], [45], [80]). Aside from knowing what can
and cannot be determined with ideal data, there are two important ways the
theoretical work has a practical impact. Firstly in some cases the proof of
uniqueness of solution suggests a reconstruction algorithm. As we will see for
the two-dimensional case the most effective approach (the so called ∂̄-method)
to uniqueness theory has now been implemented as a fast, practical algorithm.
The other is an understanding of the instability and conditional stability of the
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inverse problem. This helps us to determine what a priori information is helpful
in reducing the sensitivity of the solution to errors in the data.

In 1980 A. P. Calderón published a paper with the title ‘On a inverse bound-
ary value problem’ [28], where he addressed the problem of whether it is possible
to determine the conductivity of a body by making current and voltage mea-
surements at the boundary. It seems that Calderón thought of this problem
when he was working as an engineer in Argentina for the Yacimientos Petro-
liféros Fiscales (YPF), but it was only decades later that he decided to publish
his results. This short paper is considered the first mathematical formulation of
the problem. For a reprinted version of this manuscript we refer to [29]. The au-
thors wish to recall also the work due to Druskin (see [40], [41], [42]) which has
been carried on independently from Calderón’s approach and has been devoted
to the study of the problem from a geophysical point of view.

0.2.1 The isotropic case

Calderón’s paper

Calderón considered a domain Ω in Rn, n ≥ 2, with Lipschitz boundary ∂Ω. He
took γ be a real bounded measurable function in Ω with a positive lower bound.
Let Qγ be the quadratic form (associated to Λγ) defined by

Qγ(φ) = 〈φ,Λγφ〉 =

∫
Ω

γ |∇u |2 dx, (0.2.1)

where u ∈ H1(Ω) solves the Dirichlet problem (0.1.2). Physically Qγ(φ) is the
Ohmic power dissipated when the boundary voltage φ is applied. The bilinear
form associated with Qγ is then obtained by using the polarization identity

Bγ(φ, ψ) =
1

2

{
Qγ(φ+ ψ)−Qγ(φ)−Qγ(ψ)

}
=

1

2

{∫
Ω

(
γ|∇(u+ v)|2 − γ|∇u|2 − γ|∇v|2

)
dx

}
=

∫
Ω

γ∇u · ∇v dx, (0.2.2)

where Lγv = 0 in Ω and v|∂Ω = ψ ∈ H 1
2 (∂Ω). Clearly a complete knowledge of

any of Λγ , Qγ and Bγ are equivalent. Calderón considered the ‘forward’ map

Q : γ −→ Qγ

and proved that Q is bounded and analytic in the subset of L∞(Ω) consisting of
functions γ which are real and have a positive lower bound. He then investigated
the injectivity of the map and in order to do so, he linearized the problem. He
in fact proved the injectivity of the Fréchet derivative of Q at γ = 1. Here we
will fill in a few details of the linearization for a general γ. Let u be the solution
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to (0.1.2) and U = u+w satisfy Lγ+δU = 0, with U |∂Ω = φ. The perturbation
in potential satisfies w|∂Ω = 0, we are considering the Dirichlet data fixed and
investigating how the Neumann data varies when γ is perturbed to γ + δ. We
have

Lδu+ Lγw + Lδw = 0. (0.2.3)

Now let G : H−1(Ω) → H1
0 (Ω) be the Green’s operator that solves the

equivalent of Poisson’s equation for Lγ with zero Dirichlet boundary conditions.
That is for g ∈ H−1(Ω), LγGg = g and G(g)|∂Ω = 0 and we have the operator
equation

(1 +GLδ)w = −GLδu. (0.2.4)

An advantage of using the L∞ norm is that it is clear ||Lδ|| → 0 in the H1(Ω)→
H−1(Ω) operator norm as ||δ||∞ → 0. This means we can choose δ small enough
that ||GLδ|| < 1 (in the operator norm on H1(Ω)) and this ensures that the term
in the bracket in (0.2.4) is invertible and the operator series in

w = −

( ∞∑
k=1

(−GLδ)k
)
u (0.2.5)

is convergent. This proves that the map γ 7→ u and hence Q is not just C∞ but
analytic with (0.2.5) its Taylor series. We see immediately that the linearization
of the map γ 7→ Λγ is

Λγ+δφ = Λγφ+ γ
∂

∂ν
GLδu+ δ

∂u

∂ν
+O(||δ||2∞). (0.2.6)

A strength of this argument is that it gives the Fréchet derivative in these norms,
rather than just the Gateaux derivative. It is easy to deduce that the Fréchet
derivative of Q at γ in the direction δ is given by

dQ(γ)δ(φ) =

∫
Ω

δ|∇u|2 dx. (0.2.7)

In many practical situations it is more common to fix the Neumann boundary
conditions and measure the change in boundary voltage as the conductivity
changes. Suppose Lγu = 0, Lγ+δU = 0, w = U − u with

γ∂u/∂ν = (γ + δ)∂U/∂ν = g ∈ H−1/2
· (∂Ω)

then a similar argument to the above shows∫
∂Ω

wγ
∂u

∂ν
dx = −

∫
Ω

δ|∇u|2 dx+O(||δ||2∞). (0.2.8)

The polarization identity is often applied to (0.2.8) giving∫
∂Ω

wγ
∂v

∂ν
dx = −

∫
Ω

δ∇u · ∇v dx+O(||δ||2∞), (0.2.9)
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where Lγv = 0. This is often used in practice with

γ
∂v

∂ν
= χEi/|Ei| − χEj/|Ej |, (0.2.10)

which represents the difference in the characteristic functions of a pair of elec-
trodes. In the case of the shunt model this makes the left hand side of (0.2.8)
the change in the difference between voltages on that pair of electrodes when
the conductivity is perturbed. The formula (0.2.8) and its relatives are referred
to as the Geselowitz Sensitivity Theorem in the bioengineering literature. With
the complete electrode model (0.2.8) still holds, but with u and v satisfying
(0.1.15)[99].

We now return to Calderón’s argument: for γ = 1 we have that L1u = ∇2u.
To prove the injectivity of dQ(1) we have to show that if the integral appearing
in (0.2.7) vanishes for all the harmonic functions in Ω, then δ = 0 in Ω. Suppose
the integral in (0.2.7) vanishes for all u ∈ H1(Ω) such that ∇2u = 0 in Ω, then∫

Ω

δ∇u · ∇v = 0, (0.2.11)

whenever ∇2u = ∇2v = 0 in Ω. For any z ∈ Rn consider a ∈ Rn such that
|a| = |z|, a · z = 0 and consider the harmonic functions

u(x) = eπi(z·x)+π(a·x),

v(x) = eπi(z·x)−π(a·x), (0.2.12)

which is equivalent to choosing

u(x) = ex·ρ, v(x) = e−x·ρ̄,

where ρ ∈ Cn with

ρ · ρ = 0.

Here we use the real dot product on complex vectors ρ · ρ := ρT ρ. With the
choice made in (0.2.12), (0.2.11) leads to

2π|z|2
∫
δ(x)e2πi(z·x) dx = 0, for each z,

therefore δ(x) = 0, for all x ∈ Ω. Calderón also observed that if the linear
operator dQ(1) had a closed range, then one could have concluded that Q itself
was injective in a sufficiently small neighbourhood of γ=constant. However
conditions on the range of dQ(1), that would allow us to use the implicit function
theorem, are either false or not known. Furthermore if the range was closed
one could have also concluded that the inverse of dQ(1) was a bounded linear
operator by the open mapping theorem. Calderón concluded the paper by giving
an approximation for the conductivity γ if
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γ = 1 + δ

and δ is small enough in the L∞ norm, by making use of the same harmonic
functions (0.2.12). Calderón’s technique is based on the construction of low
frequency oscillating solutions. Sylvester and Uhlmann proved in their fun-
damental paper [109] a result of uniqueness using high frequencies oscillating
solutions of Lγu = 0. Their solutions are of type

u(x, ξ, t) = ex·ξ γ−
1
2 (1 + ψ(x, ξ, t)),

which behaves (for high frequencies ξ) in the same way as the solutions used
by Calderón. These oscillating solutions have come to be known as complex
geometrical optics (CGO) solutions. Before going in to more details of the use
of CGO solutions we give an earlier result using a different approach.

Uniqueness at the boundary

In 1984 Kohn and Vogelius [76] proved that boundary values, and derivatives at
the boundary, of a smooth isotropic conductivity γ could be determined from
the knowledge of Qγ . Their result is given by the following theorem.

THEOREM 0.2.1. Let Ω be a domain in Rn (n ≥ 2) with smooth boundary ∂Ω.
Suppose γi ∈ C∞(Ω̄), i = 1, 2 is strictly positive and that there is a neighborhood
B of some x? ∈ ∂Ω so that

Qγ1(f) = Qγ2(f), for all f, f ∈ H 1
2 (∂Ω), supp(f) ⊂ B.

Then

∂|α|

∂xα
γ1(x?) =

∂|α|

∂xα
γ2(x?), ∀α.

Theorem 0.2.1 is a local result in the sense that we only need to know Qγ in
a open set of the boundary in order to determine the Taylor series of γ on that
open set. The global reformulation of this result given in terms of Λγ is given
below.

THEOREM 0.2.2. Let γi ∈ C∞(Ω̄), i = 1, 2 be strictly positive. If Λ1 = Λ2,
then

∂|α|

∂xα
γ1 =

∂|α|

∂xα
γ2, on ∂Ω, ∀α.

For a sketch of the proof of theorem 0.2.2 see [112, Sketch of proof of theorem
4.1, pp 6].
This result settled the identifiability question in the real-analytic category of
conductivities. Kohn and Vogelius have extended this result to piecewise real-
analytic (piecewise constant, for example) conductivities in [77]. The proof of
this result is based on [76] together with the Runge approximation theorem for
solutions of Lγu = 0.
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Complex geometrical optics solutions for the Schrödinger equation

In 1987 Sylvester and Uhlmann [108], [109] constructed in dimension n ≥ 2
complex geometrical optics solutions in the whole space for the Schrödinger
equation with potential q. Before we state their result, the well known relation
between the conductivity equation and the Schrödinger equation will be derived.
This relationship is also important in diffuse optical tomography

LEMMA 0.2.3. Let γ ∈ C2(Ω̄) be strictly positive then we have

γ−
1
2Lγ(γ−

1
2 ) = ∇2 − q, (0.2.13)

where

q =
∇2(γ

1
2 )

γ
1
2

.

Proof of Lemma 0.2.3.

Lγu = γ∇2u+∇γ · ∇u (0.2.14)

therefore

γ−
1
2Lγu = γ

1
2∇2u+

∇ γ · ∇u
γ

1
2

.

Consider for w = γ
1
2u

∇2w − q w = ∇2
(
γ

1
2 u
)
−
(
∇2γ

1
2

)
u

= ∇ ·
(
∇(γ

1
2u)
)
−
(
∇2γ

1
2

)
u

= ∇ ·
(

(∇γ 1
2u) + γ

1
2 (∇u)

)
−
(
∇2γ

1
2

)
u

= (∇2γ
1
2 )u+ 2∇γ 1

2 · ∇u+ γ
1
2∇2u− (∇2γ

1
2 )u

= γ
1
2∇2u+

∇γ · ∇u
γ

1
2

= γ−
1
2Lγu,

which proves (0.2.13). �

The term q is usually called the potential of the Schrödinger equation, by analogy
with the potential energy in quantum mechanics, this definition being somehow
confusing given that in EIT u is the electric potential. The results in [108], [109]
state the existence of complex geometrical optics solutions for the Schrödinger
equation with potential q bounded and compactly supported in Rn. We cite the
result as given in [112], which relies on the weighted L2 space L2

δ(Rn) = {f :∫
Rn

(1 + |x|2)δ|f(x)|2 dx}. For δ < 0 this norm controls the “growth at infinity”.

The Sobolev spaces Hk
δ (Rn) are formed in the standard way from L2

δ(Rn)
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Hk
δ (Rn) = {f ∈W k(Rn) |Dαf ∈ L2

δ(Rn), for all |α| ≤ k},

where α is a multi-index, Dαf denotes the αth weak derivative of f and
W k(Rn) is the set of k times weakly differentiable functions on Rn.

THEOREM 0.2.4. Let q ∈ L∞(Rn), n ≥ 2, with q(x) = 0 for |x| ≥ R > 0 and
−1 < δ < 0. Then there exists ε(δ) and such that for every ρ ∈ Cn satisfying

ρ · ρ = 0

and

||(1 + |x|2)1/2q||L∞(Rn) + 1

|ρ|
≤ ε

there exists a unique solution to

(∇2 − q)u = 0 (0.2.15)

of the form

u(x, ρ) = ex·ρ (1 + ψq(x, ρ)) , (0.2.16)

with ψq(·, ρ) ∈ L2
δ(Rn). Moreover ψq(·, ρ) ∈ H2

δ (Rn) and for 0 ≤ s ≤ 2 there
exists C = C(n, s, δ) > 0 such that

||ψq(·, ρ)||H2 ≤ C

|ρ|1−s
. (0.2.17)

Sketch of the proof of theorem 0.2.4. Let u be a solution of (0.2.15) of type
(0.2.16), then ψq must satisfy

(∇2 + 2ρ · ∇ − q)ψq = q. (0.2.18)

The idea is that equation (0.2.18) can be solved for ψq by constructing an
inverse for (∇2 + 2ρ · ∇) and solving the integral equation

ψq = (∇2 + 2ρ · ∇)−1 (q(1 + ψq)) (0.2.19)

for ψq. For more details about how to solve the above equation we refer to
[112, Lemma 5.2] where it is shown that the integral equation (0.2.19) can only
be solved in L2

δ(Rn) for large |ρ|. �

Other approaches for the construction of complex geometrical optics solu-
tions for the Schrödinger equation have been considered in [54], [68]. We refer
to [112] for more details about references on this topic and a more in-depth
explanation about the constructions of this kind of solutions.
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Dirichlet-to-Neumann map and Cauchy data for the Schrödinger equa-
tion

If 0 is not a Dirichlet eigenvalue for the Schrödinger equation, then the Dirichlet-
to-Neumann map associated to a potential q can be defined by

Λ̃q(f) =
∂u

∂ν
|∂Ω,

where u solves the Dirichlet problem{
(∇2 − q)u = 0 in Ω
u|∂Ω = f.

As a consequence of lemma 0.2.3, for any q = ∇2γ1/2

γ1/2 we have

Λ̃q(f) =
∂

∂ν
(γ

1
2 γ−

1
2 u)|∂Ω

=
(∂γ 1

2

∂ν
(γ−

1
2u) + γ

1
2
∂(γ−

1
2u)

∂ν

)
|∂Ω

=
(1

2
γ−

1
2
∂γ

∂ν
γ−

1
2 + γ

1
2
∂(γ−

1
2u)

∂ν

)
|∂Ω

=
1

2

(
γ−1 ∂γ

∂ν

)
|∂Ω f + γ

1
2 |∂Ω Λγ

(
γ−

1
2 |∂Ω f

)
.

So the two Dirichlet-to-Neumann maps Λ̃q and Λγ are related in the following
way

Λ̃q(f) =
1

2

(
γ−1 ∂γ

∂ν

)
|∂Ω f + γ

1
2 |∂Ω Λγ

(
γ−

1
2 |∂Ω f

)
, (0.2.20)

for any f ∈ H 1
2 (∂Ω). For q ∈ L∞(∂Ω) we also define the Cauchy data as the

set

Cq =

{(
u|∂Ω,

∂u

∂ν
|∂Ω

)
| u ∈ H1(Ω), (∇2 − q)u = 0 in Ω

}
.

If 0 is not an eigenvalue of ∇2 − q, then Cq is the graph given by

Cq =
{(
f, Λ̃q(f)

)
∈ H 1

2 (∂Ω)×H− 1
2 (∂Ω)

}
.

What we saw so far is very general and holds in any dimension n ≥ 2. We
will distinguish in the rest of our discussion on the uniqueness of Calderón’s
problem between the higher dimensional case n ≥ 3 and the two-dimensional
one.
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Global uniqueness for n ≥ 3

Sylvester and Uhlmann proved in [109] a result of global uniqueness for C2(Ω̄)
conductivities by solving in this way the identifiability question with the fol-
lowing result. Their result follows in dimension n ≥ 3 from a more general one
for the Schrödinger equation, which is useful in its own right for other inverse
problems.

THEOREM 0.2.5. Let qi ∈ L∞(Ω), i=1, 2. Assume Cq1 = Cq2 , then q1 = q2.

Proof of theorem 0.2.5. This result has been proved by constructing oscil-
latory solutions of (∇2 − qi) ui = 0 in Rn with high frequencies. We start by
stating that the following equality∫

Ω

(q1 − q2)u1u2 = 0 (0.2.21)

is true for any ui ∈ H1(Ω) solution to

(∇2 − qi)ui = 0 in Ω, i = 1, 2.

Equality (0.2.21) follows by∫
Ω

(q1 − q2)u1u2 =

∫
∂Ω

(
∂u1

∂ν
u2 − u1

∂u2

∂ν

)
dS,

which can be easily obtained by the divergence theorem. We extend qi on
the whole Rn by taking qi = 0 on Rn \ Ω and we take solutions of

(∇2 − qi)ui = 0 in Rn, i = 1, 2

of the form

ui = ex·ρi (1 + ψqi(x, ρi)) , i = 1, 2, (0.2.22)

with |ρi| large. This type of solutions are known as complex geometrical optics
solutions. ρi, i = 1, 2 is chosen of type

ρ1 =
η

2
+ i

(
k + l

2

)
ρ2 = −η

2
+ i

(
k − l

2

)
, (0.2.23)

with η, k, l ∈ Rn and satisfying

η · k = k · k = η · l = 0, |η|2 = |k|2 + |l|2, (0.2.24)
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the choices of η, k, l having been made so that ρi · ρi = 0, i = 1, 2. With these
choices of ρi, i = 1, 2 we have

u1u2 =
[
ex·

η
2 +ix·( k+l2 ) + ex·

η
2 +ix·( k+l2 )ψq1

]
·
[
e−x·

η
2 +ix·( k−l2 ) + e−x·

η
2 +ix·( k−l2 )ψq2

]
= eix·k (1 + ψq1 + ψq2 + ψq1ψq2)

and therefore

̂(q1 − q2)(−k) = −
∫

Ω

eix·k(q1 − q2)(ψq1 + ψq2 + ψq1ψq2)dx. (0.2.25)

By recalling that

||ψqi ||L2(Ω) ≤
C

|ρi|
and letting |l| → ∞ we obtain q1 = q2 (see [112, proof of theorem 6.2, pp
10]). �

As a consequence of this result we finally obtain result [109] stated here
below.

THEOREM 0.2.6. Let γi ∈ C2(Ω̄), γi strictly positive, i=1, 2. If Λγ1 = Λγ2 ,
then γ1 = γ2 in Ω̄.

Theorem 0.2.6 has been proved in [109] in a straightforward manner by
constructing highly oscillatory solutions to Lγu = 0 in Ω. In this chapter we
follow the line of [112] in the exposition of such result as a consequence of the
more general theorem 0.2.5. Such a choice has been made because of the clearer
exposition made in [112].

We will proceed by showing that theorem 0.2.5 implies theorem 0.2.6 for
sake of completeness. The reader can find it also in [112]. The argument used
is the following. Let γi ∈ C2(Ω̄) be strictly positive and Λγ1 = Λγ2 . Then by
[76] we have

γ1|∂Ω = γ2|∂Ω,

∂γ1

∂ν
|∂Ω =

∂γ2

∂ν
|∂Ω,

therefore (0.2.20) implies Cq1 = Cq2 i.e. q1 = q2 =: q because of theorem 0.2.5.
Recall that

qi =
∇2γ

1/2
i

γ
1/2
i

, i = 1, 2,

which leads to

∇2γ
1
2
1 − q γ

1
2
1 = 0

∇2γ
1
2
2 − q γ

1
2
2 = 0
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i.e.
∇2(γ

1
2
1 − γ

1
2
2 )− q(γ

1
2
1 − γ

1
2
2 ) = 0

with
(γ

1
2
1 − γ

1
2
2 )|∂Ω = 0.

Therefore it must be that

γ1 = γ2 in Ω,

by uniqueness of the solution of the Cauchy problem.

The identifiability question was then pushed forward to he case of γ ∈
C1, 1(Ω̄) with an affirmative answer by Nachman, Sylvester and Uhlmann in
1988 [92]. Nachman extended then this result to domains with C1, 1 bound-
aries (see [90]). The condition on the boundary was relaxed to ∂Ω Lipschitz
by Alessandrini in 1990 in [3]; he proved uniqueness at the boundary and gave
stability estimates for γ ∈W 1, p(Ω), with p > n by making use of singular solu-
tions with an isolated singularity at the centre of a ball. This method enables
one to construct solutions of Lγu = 0 on a ball behaving asymptotically like the
singular solutions of the Laplace-Beltrami equation with separated variables.
His results hold in dimension n ≥ 2. Results of global uniqueness in the interior
were also found in [3] among piecewise analytic perturbations of γ, giving an
extension of Kohn and Vogelius result in [77] to Lipschitz domains.

Going back to the issue of global uniqueness, Brown [25] relaxed the regular-
ity of the conductivity to 3

2 +ε derivatives, which was followed by the uniqueness

result of Päivärinta-Pachenko-Uhlmann [98] for W
3
2 ,∞ conductivities. Their re-

sult is based on the construction of complex geometrical optics (CGO) solutions
for conductivities γ ∈ W 1,∞(Rn) (n ≥ 2). We recall in what follow their con-
struction of the CGO followed by their uniqueness result.

THEOREM 0.2.7. [98] Let γ ∈ W 1,∞(Rn), γ strictly positive and γ = 1
outside a large ball. Let −1 < δ < 0, then for |ρ| sufficiently large there is a
unique solution of

div(γ∇u) = 0 in Rn

of the form

u = ex·ρ
(
γ−

1
2 + ψγ(x, ρ)

)
, (0.2.26)

with ψγ ∈ L2
δ(Rn). Moreover, ψγ has the form

ψγ(x, ρ) =
(
ω0(x, ρ)− γ− 1

2

)
+ ω1(x, ρ), (0.2.27)

where ω0, ω1 satisfy

lim
|ρ|→∞

||ω0(x, ρ)− γ− 1
2 ||H1

δ
= 0 (0.2.28)
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and

lim
|ρ|→∞

||ω1(x, ρ)||L2
δ

= 0 (0.2.29)

Here we want to recall the idea behind the proof of the above Theorem 0.2.7.
The first step is to rewrite the conductivity equation

div(γ∇u) = 0 in Rn

as

∆u+A · ∇u = 0 in Rn,

where

A+∇ log γ ∈ L∞(Rn)

has compact support. By introducing

Φε = ε−n
(x
ε

)
,

with Φ(x) a mollifier, one can define

ϕε = Φε ∗ log γ

Aε = Φε ∗A
ω0(x, ε) = e−

ϕε(x)
2

and with the above choice of ω0 one can show that

lim
ε→0
|| ω0 − γ−

1
2 ||H1

δ
= 0. (0.2.30)

Let ρ ∈ Cn be such that ρ · ρ = 0 and define the operators

∆ρu := e−x·ρ∆(ex·ρu) = ∆u+ 2ρ · ∇u (0.2.31)

∇ρu := e−x·ρ∇(ex·ρu) = ∇u+ ρu. (0.2.32)

One can then define for any f ∈ C∞0 (Rn)

∆−1
ρ f =

1

(2π)n

∫
e
ix·ξ f̂(ξ)

−|ξ|2+2iρ·ξ dξ,

which can then be extended to a bounded operator

∆−1
ρ : Hs

δ+1(Rn)→ Hs
δ (Rn),

for any −1 < δ < 0 and s ≥ 0. Moreover
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||∆−1
ρ ||Hsδ+1→H

s
δ
≤ C(s, δ, n)

|ρ|
,

for some C > 0. The idea is now to construct ω1 solution to

(∆ρ +A · ∇ρ)ω1 = −(∆ρ +A · ∇ρ)ω0, (0.2.33)

where we recall that ω0(x, ε) = e−
ϕε(x)

2 and therefore depends on ε. If we
set now

ω1 = ∆−1
ρ ω̃,

we can then rewrite (0.2.33) as

(I +A · ∇ρ∆−1
ρ )︸ ︷︷ ︸

:=Tρ(γ)

ω̃ = fε, (0.2.34)

where

fε := −(∆ρ +A · ∇ρ)ω0

= −e−
ϕε
2

(
−1

2
∆ϕε +

1

4
(∇ϕε)2 − 1

2
A · ∇ϕε + (A−Aε) · ρ

)
.

An approximate inverse of Tρ(γ) is given by

Sρ(γ) := γ−
1
2 (I −A · ∇ρδ−1

ρ )γ
1
2

= γ−
1
2Tρ(γ

−1)γ
1
2 ,

therefore (0.2.34) has a unique solution in an appropriate space. To study
now the behavior of ω1 as ε→ 0 and |ρ| → ∞, we recall that

ω1(x, ε, ρ) = ∆−1
ρ Sρfε + ∆−1

ρ (T−1
ρ − Sρ)fε︸ ︷︷ ︸
:=hρ

(0.2.35)

and now one can show that

lim
|ρ|→∞

||hρ||H1
δ (Rn) = 0, (0.2.36)

which concludes the proof. Theorem 0.2.26 is then used in [98] to prove global

uniqueness for conductivities γ ∈ W 3
2 ,∞(Ω), where Ω is a bounded domain in

Rn, with n ≥ 3. More precisely they prove the following theorem.
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THEOREM 0.2.8. Let n ≥ 3. Let γi ∈ W
3
2 ,∞(Ω) be strictly positive on Ω̄,

i = 1, 2. If

Λγ1 = Λγ2 ,

then

γ1 = γ2 on Ω.

Again we just want to give to the reader a flavor of how Theorem 0.2.8 is
proven in [98]. The main idea is that if γi ∈ W 1,∞(Ω) and Λγ1 = Λγ2 , with
ai =

√
γi, i = 1, 2, then the identity

∫
Ω

(∇a1 · ∇(u1v)−∇a2 · ∇(u2v))−
∫

Ω

(∇(a1u1) · ∇v −∇(a2u2) · ∇v) dx = 0,

(0.2.37)
holds true ∀v ∈ H1(Ω), ∀ui ∈ H1(Ω) solution to div(γi∇ui) = 0 in Ω,

= 1, 2. The reader should notice that so far the results obtained hold true for
conductivities of type γ ∈W 1,∞(Ω). It is at this stage that one needs to assume

γ ∈W 3
2 ,∞(Rn)

to show the following technical results for ω1(x, ρ) = ω1(x, ε, ρ) as in (0.2.35),
ε = |ρ|−1

lim
|ρ|→∞

∫
eix·ξ∇γ 1

2 · ∇ω1 dx = 0. (0.2.38)

With this choice of ω1, by substituting the complex geometrical optics so-
lutions (0.2.27) into identity (0.2.37) one then can gain the desired uniqueness
result.

The above result was then followed by uniqueness for W
3
2 ,p (with p > 2n) in

[24]. Recently Haberman and Tataru [50] proved that uniqueness holds for C1

conductivities and Lipschitz conductivities close to the identity. Their result is
the following.

THEOREM 0.2.9. Let n ≥ 3 and Ω ⊂ Rn be a bounded domain with Lipschitz
boundary. Let γi ∈ W 1,∞(Ω̄) be a real conductivity, i = 1, 2. Suppose there
exists a constant C = C(n,Ω) such that γi, i = 1, 2 satisfies either

||∇ log γi||L∞(Ω̄) ≤ C (0.2.39)

or

γi ∈ C1(Ω̄). (0.2.40)

If

Λγ1 = Λγ2 ,
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then

γ1 = γ2.

Global uniqueness in the two-dimensional case

The two-dimensional inverse conductivity problem must often be treated as a
special case. Although results in [77] gave a positive answer to the identifiability
question in the case of piecewise analytic conductivities, it was not until 1996
that Nachman [91] proved a global uniqueness result to Calderón problem for
conductivities in W 2, p(Ω), for some p > 1. An essential part of his argument is
based on the construction of the complex geometrical optics solutions and the
∂̄-method (sometimes written ‘d-bar method’) in inverse scattering introduced
in one dimension by Beals and Coifman (see [22], [23]). The result of [91] has
been improved in 1997 for conductivities having one derivative in an appropriate
sense (see [26]) and the question of uniqueness was settled in L∞(Ω) finally by
Astala and Päivärinta [11] using ∂̄-methods. They proved

THEOREM 0.2.10. Let Ω be a bounded domain in R2 and γi ∈ L∞, i = 1, 2
be real functions such that for some constant M , M−1 < γi < M . Then

Λγ1 = Λγ2 =⇒ γ1 = γ2.

Let us first explain the complex version of the problem used by [11]. We use
the complex variable z = x1 + ix2, use the notation ∂ = ∂/∂z, ∂̄ = ∂/∂z̄. Then
we have the following result [11]:

LEMMA 0.2.11. Let Ω be the unit disk in the plane and u ∈ H1(Ω) be a
solution of Lγu = 0. Then there exists a real function v ∈ H1(Ω), unique up to
a constant, such that f = u+ iv satisfies the Beltrami equation

∂̄f = µ∂f, (0.2.41)

where µ = (1− γ)/(1 + γ).
Conversely if f ∈ H1(Ω) satisfies (0.2.41), with a real valued µ, then u =

Re f and v = Im f satisfy

Lγu = 0 and Lγ−1v = 0, (0.2.42)

where γ = (1− µ)/(1 + µ).

Astala and Päivärinta reduce the general case of Ω to that of the disk,
and show that the generalized Hilbert transform Hµ : u|∂Ω 7→ v|∂Ω uniquely
determines, and is determined by Λγ . They go on to construct CGO solutions
to (0.2.41) of the form

fµ(z, k) = eikz

(
1 +O

(
1

z

))
as |z| → ∞ (0.2.43)
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and using a result connecting pseudoanalytic functions with quasi-regular maps
prove that Hµ determines µ. The original method Nachman used to prove
uniqueness has resulted in the development of ∂̄ reconstruction methods which
are described below (section 0.3.5). See also the work of Druskin [40], which
provides some answers to the 2-D geophysical settings.

Some open problems for the uniqueness

One of the main open problems in dimension n ≥ 3 is to investigate whether
global uniqueness holds for the minimal assumption γ ∈ L∞(Ω) or else to find
what are the minimal assumptions on γ in order to guarantee uniqueness. The
inverse conductivity problem makes sense for conductivities that are indeed
merely L∞. There are neither proofs nor counter-examples for this in any di-
mension as far as we know but it has been conjectured by Uhlmann that the op-
timal assumption is that the conductivities are Lipschitz. These open problems
influence of course also the stability issue of finding appropriate assumptions
(possibly on γ) in order to improve the unstable nature of EIT. This issue will
be study in the next section.

Stability of the solution at the boundary

The result of uniqueness at the boundary of theorem 0.2.2 has been improved
in [110] to a stability estimate. The result is the following.

THEOREM 0.2.12. Let γi ∈ C∞(Ω̄), i = 1, 2, satisfy

0 <
1

E
≤ γi ≤ E, i = 1, 2 (0.2.44)

||γi||C2(Ω̄) ≤ E, i = 1, 2. (0.2.45)

Given any 0 < σ < 1
n+1 , there exists C = C(Ω, E, n, σ) such that

||γ1 − γ2||L∞(∂Ω) ≤ C||Λγ1 − Λγ2 ||∗ (0.2.46)

and

||∂γ1

∂ν
− ∂γ2

∂ν
||L∞(∂Ω) ≤ C||Λγ1 − Λγ2 ||σ∗ , (0.2.47)

where || · ||∗ denotes the norm in the space of bounded linear operators from

H
1
2 (∂Ω) to H−

1
2 (∂Ω).

This result improves the one of theorem 0.2.2 in the sense that we no longer
require that γ ∈ C∞(Ω̄) to determine γ itself and its derivative at the boundary.
We only need γ to be continuous on Ω̄ to determine the boundary values of γ,
where if γ ∈ C1(Ω̄) then we can determine γ and its first derivative on ∂Ω as
well. Subsequent results of stability at the boundary along the same lines have
been proved in [3], [7], [25], [45], [90] and [93].
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Global stability for n ≥ 3

In 1988 Alessandrini [2] proved that, in dimension n ≥ 3, under an a priori
assumption on γ of type

||γ||Hs(Ω) ≤ E, for some s >
n

2
+ 2,

γ depends continuously on Λγ with a modulus of continuity of logarithmic type.
The result is stated below.

THEOREM 0.2.13. Let n ≥ 3. Suppose that s > n
2 and that γi ∈ C∞(Ω̄),

i = 1, 2 is a conductivity satisfying

0 <
1

E
≤ γi ≤ E, i = 1, 2 (0.2.48)

||γi||Hs+2(Ω) ≤ E, i = 1, 2. (0.2.49)

Then there exists C = C(Ω, E, n, s) and τ = τ(n, s), with 0 < τ < 1 such
that

||γ1 − γ2||L∞(Ω) ≤ C
(
| log ||Λγ1 − Λγ2 ||∗|−τ + ||Λγ1 − Λγ2 ||∗

)
. (0.2.50)

It has been proved [3], [4] that a similar stability estimate holds if (0.2.49)
is replaced by

||γi||W 2,∞(Ω) ≤ E, i = 1, 2. (0.2.51)

Mandache [87] proved that logarithmic stability is optimal for dimension
n ≥ 2 if the a priori assumption is of the form

||γ||Ck(Ω̄) ≤ E, (0.2.52)

for any finite k = 0, 1, 2, . . . . One of the main open problems in the stability issue
is then to improve this logarithmic-type stability estimate under some additional
a priori condition. In [8] it has been shown that (0.2.50) can be improved to a
Lipschitz-type estimate in the case in which γ is piecewise constant with jumps
on a finite number of domains. For piecewise constant complex conductivities
a similar result has been proved in [19], where piecewise constant potentials of
the Schrödinger equation have been investigated in [20] and Lipschitz stability
estimates have been proved in this case as well. We refer to [5] for a more in
depth discussion about the stability in EIT and open problems in that regard.
A similar estimate to (0.2.50) for the potential case can be found in [112].

Global stability for the two-dimensional case

Logarithmic-type stability estimates in dimension n = 2 were obtained by [13]
and [14], [83]. The results obtained in the last require only γ be Hölder contin-
uous of positive exponent
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||γ||Cα(Ω̄) ≤ E, (0.2.53)

for some α, 0 < α ≤ 1.

Some open problems for the stability

The main open problem is to improve the logarithmic-type estimate found in
[2] in any dimension n ≥ 2. One approach would be to investigate whether the
a priori regularity assumptions (0.2.51) can be further relaxed. On the other
hand, since it has been observed [87] that this logarithmic-type of estimate
cannot be avoided under any a priori assumption of type (0.2.52) for any finite
k = 0, 1, 2, . . . , it seems natural to think that another direction to proceed would
be the one of looking for different a priori assumptions rather than the one of
type (0.2.52). For a complete analysis of open problems in this area we refer to
[5].

0.2.2 The anisotropic case

The non-uniqueness

In anisotropic media the conductivity depends on the direction, therefore it is
represented by a matrix γ = (γij)

n
i, j=1, which is symmetric and positive definite.

Anisotropic conductivity appears in nature, for example as a homogenization
limit in layered or fibrous structures such as rock stratum or muscle, as a result
of crystalline structure or of deformation of an isotropic material. Let Ω ⊂ Rn
be a domain with smooth boundary ∂Ω (a Lipschitz boundary will be enough
in most cases). The Dirichlet problem associated in the anisotropic case takes
the form 

n∑
i,j=1

∂
∂xi (γij

∂u
∂xj ) = 0 in Ω

u|∂Ω = f,
(0.2.54)

where f ∈ H 1
2 (∂Ω) is a prescribed potential at the boundary. The Dirichlet-to-

Neumann map associated with γ is defined by

Λγf = γ∇u · ν|∂Ω, (0.2.55)

for any u solution to (0.2.54). Here γ∇u ·ν =
∑n
i,j=1

(
γij

∂u
∂xj

)
νi|∂Ω and as usual

ν = (νi)
n
i=1 is the unit outer normal to ∂Ω. The weak formulation of (0.2.55) is

commonly used and will be given below for sake of completeness.

DEFINITION 0.2.1. The Dirichlet-to-Neumann map associated with (0.2.54)
is

Λγ : H
1
2 (∂Ω) −→ H−

1
2 (∂Ω)
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given by

〈Λγ f, η〉 =

∫
Ω

σ(x)∇u(x) · ∇φ(x) dx, (0.2.56)

for any f , η ∈ H 1
2 (∂Ω), u, φ ∈ H1(Ω), φ|∂Ω = η and u is the weak solution to

(0.2.54).

A conductor is isotropic when γ = (γij) is rotation invariant, i.e., when at
each point

RT γR = γ,

for all rotations R. This is the case exactly when γ = α I, where α > 0 is a
scalar function and I the identity matrix.

We saw in section 0.2.1 that the uniqueness problem for the isotropic case can
be considered solved; on the other hands, in the anisotropic case, Λγ does not
in general determine γ. Tartar (see [76]) observed the following non-uniqueness
result.

PROPOSITION 0.2.14. If ψ : Ω̄ −→ Ω̄ is a C1 diffeomorphism such that

ψ(x) = x, for each x ∈ ∂Ω, then γ and γ̃ = (Dψ)γ(Dγ)T

det(Dψ) ◦ ψ−1 have the same

Dirichlet-to-Neumann map.

The proof of this result is given below as a tutorial for the first-time reader
of this material.

Proof. Let us consider the change of variables y = ψ(x) on the Dirichlet integral∫
Ω

γij(x)
∂u

∂xi
∂u

∂xj
dx =

∫
Ω

γ̃ij(y)
∂ũ

∂yi
∂ũ

∂yj
dx (0.2.57)

where

γ̃(y) =
(Dψ) γ(Dψ)T

det(Dψ)
◦ ψ−1(y)

and

ũ(y) = u ◦ ψ−1(y).

Notice that the solution u of the Dirichlet problem{
∇ · γ∇u = 0 inΩ
u|∂Ω = f

minimizes the integral appearing on the left hand side of (0.2.57), therefore
ũ = u ◦ ψ−1 minimizes the Dirichlet integral appearing on the right hand side
of the same. One can then conclude that ũ solves{

∇ · (γ̃∇ũ) = 0 in Ω

ũ|∂Ω = f̃ = u ◦ ψ−1.
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Let us consider now the solution v of{
∇ · (γ∇v) = 0 in Ω
v|∂Ω = g

and let ṽ be obtained by v by the change of variable, therefore ṽ solves{
∇ · (γ̃∇ṽ) = 0 in Ω
ṽ|∂Ω = g̃ = g ◦ ψ−1.

By the change of variables in the Dirichlet integrals we get∫
Ω

γij
∂u

∂xi
∂v

∂xj
dx =

∫
Ω

γ̃ij
∂ũ

∂yi
∂ṽ

∂yj
dy,

which can be written as∫
Ω

γ∇u · ∇v dx =

∫
Ω

γ̃∇ũ · ∇ṽ dy,

which is equivalent to

∫
Ω

∇ · (vγ∇u) dx−
∫

Ω

v∇ · (γ∇u) dx =

∫
Ω

∇ · (ṽγ̃∇ũ) dy −
∫

Ω

ṽ∇ · (γ̃∇ũ) dy

and by the divergence theorem∫
∂Ω

vγ∇u · ν ds =

∫
∂Ω

ṽγ̃∇ũ · ν ds,

but ṽ = v ◦ ψ−1 = v = g and ũ = u ◦ ψ−1 = u = f at the boundary ∂Ω, then∫
∂Ω

gΛγ(f) ds =

∫
∂Ω

gΛγ̃(f) ds

then Λγ = Λγ̃ .

Since Tartar’s observation has been made, different lines of research have
been pursued. One direction was to prove the uniqueness of γ up to diffeo-
morphisms that fix the boundary, whereas the other direction was to study
conductivities with some a priori information. The first direction of research is
summarized in what follows.

Uniqueness up to diffeomorphism

The question here is to investigate whether Tartar’s observation is the only
obstruction to unique identifiability of the conductivity. We start by observing
that the physical problem of determining the conductivity of a body is closely
related to the geometrical problem of determining a Riemannian metric from
its Dirichlet-to-Neumann map for harmonics functions [82].
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Let (M, g) be a compact Riemannian manifold with boundary. The Laplace-
Beltrami operator associated to the metric g is given in local coordinates by

∆g :=

n∑
i j = 1

(det g)−
1
2
∂

∂xi

{
(det g)

1
2 gij

∂u

∂xj

}
.

The Dirichlet-to-Neumann map associated to g is the operator Λg mapping
functions u|∂M ∈ H1/2(∂M) into (n−1)-forms Λσ(u|∂M ) ∈ H−1/2

(
Ωn−1(∂M)

)
Λg(f) = i?(∗gdu), (0.2.58)

for any u ∈ H1(M) solution to ∆gu = 0 in M , with u|∂M = f . Here i is the
inclusion map i : ∂M → M and i? denotes the pull-back of forms under the
map i. In any local coordinates (0.2.58) becomes

Λg(f) =

n∑
i,j=1

νigij
∂u

∂xj

√
det g|∂M . (0.2.59)

The inverse problem is to recover g from Λg. In dimension n ≥ 3, the
conductivity γ uniquely determines a Riemannian metric g such that

γ = ∗g, (0.2.60)

where ∗g is the Hodge operator associated the the metric g mapping 1-forms
on M into (n − 1)-forms (see [44], [81], [82]). In any local coordinates (0.2.60)
becomes

(gij) = (det γkl)
1

n−2 (γij) and (γij) = (det gkl)
1
2 (gij), (0.2.61)

where (gij), (γij) denotes the matrix inverse of (gij) and (γij) respectively. It
has been shown in [82] that if M is a domain in Rn, then for n ≥ 3

Λg = Λγ . (0.2.62)

In dimension n ≥ 3 if ψ is a diffeomorphism of M̄ that fixes the boundary,
we have

Λψ∗g = Λg, (0.2.63)

where ψ∗g is the pull-back of g under ψ. For the case n = 2 the situation is
different as the two-dimensional conductivity determines a conformal structure
of metrics under scalar field, i.e. there exists a metric g such that γ = ϕ∗g, for
a positive function ϕ. Therefore in n = 2, if ψ is a diffeomorphism of M̄ that
fixes the boundary, we have

Λϕψ∗g = Λg, (0.2.64)

for any smooth positive function such that ϕ|∂M = 1. It seems natural to think
that (0.2.63) and (0.2.64) are the only obstructions to uniqueness for n ≥ 3 and
n = 2 respectively. In 1989 Lee and Uhlmann [82] formulated the following two
conjectures.
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Conjecture 0.2.15. Let M̄ be a smooth, compact n-manifold, with boundary,
n ≥ 3 and let g, g̃ be smooth Riemannian metrics on M̄ such that

Λg = Λg̃.

Then there exists a diffeomorphism ψ : M̄ → M̄ with ψ|∂M = Id, such that
g = ψ?g̃.

Conjecture 0.2.16. Let M̄ be a smooth, compact 2-manifold with boundary,
and let g, g̃ be smooth Riemannian metrics on M̄ such that

Λg = Λg̃.

Then there exists a diffeomorphism ψ : M̄ → M̄ with ψ|∂M = Id, such that ψ? g̃
is a conformal multiple of g, in other words there exists φ ∈ C∞(M̄) such that

ψ? g̃ = φ g.

Conjecture 0.2.15 has been proved in [82] in a particular case. The result is
the following.

THEOREM 0.2.17. Let M̄ be a compact, connected, real-analytic n-manifold
with connected real-analytic boundary, and assume that π1(M̄, ∂M) = 0 (this
assumption means that every closed path in M̄ with base point in ∂M is homo-
topic to some path that lies entirely in ∂M). Let g and g̃ be real-analytic metrics
on M̄ such that

Λg = Λg̃,

and assume that one of the following conditions holds:

1. M̄ is strongly convex with respect to both g and g̃;

2. either g or g̃ extends to a complete real-analytic metric on a non-compact
real-analytic manifold M̃ (without boundary) containing M̄ .

Then there exists a real-analytic diffeomorphism ψ : M̄ → M̄ with ψ|∂M = Id,
such that g = ψ? g̃.

Theorem 0.2.17 has been proved by showing that one can recover the full
Taylor series of the metric at the boundary from Λg. The diffeomorphism ψ is
then constructed by analytic continuation from the boundary. As we previously
mentioned the full Taylor series of γ was recovered by Kohn and Vogelius in [76]
from the knowledge of Λγ in the isotropic case and then a new proof was given
in [108] by showing that the full symbol of the pseudodifferential operator Λγ
determines the full Taylor series of γ at the boundary. In [82] a simpler method
suggested by R. Melrose consisting of factorizing ∆g, is used. In 1990 Sylvester
proved in [107] conjecture 0.2.16 in a particular case. His result is the following.
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THEOREM 0.2.18. Let Ω be a bounded domain in R2 with a C3 boundary
and let γ1, γ2 be anisotropic C3 conductivities in Ω̄ such that

‖ log (det γi) ‖C3< ε (M, Ω), for i = 1, 2, (0.2.65)

with M ≥‖ γi ‖C3 , for i=1, 2 and ε(M, Ω) sufficiently small. If

Λγ1 = Λγ2 ,

then there exists a C3 diffeomorphism ψ of Ω̄ such that ψ|∂Ω = Id and such that

ψ? γ1 = γ2.

Nachman [91] extended this result in 1995 by proving the same theorem but
removing the hypothesis (0.2.65). In 1999 Lassas and Uhlmann [79] extended the
result of [82]. They assumed that the Dirichlet-to-Neumann map is measured
only on a part of the boundary which is assumed to be real-analytic in the case
n ≥ 3 and C∞-smooth in the two-dimensional case. The metric is here recovered
(up to diffeomorphism) and the manifold is reconstructed. Since a manifold is
a collection of coordinate patches, the idea is to construct a representative of
an equivalent class of the set of isometric Riemannian manifolds (M, g). Let us
recall that if Γ is an open subset of ∂M , we define

Λg,Γ(f) = Λg(f)|Γ,

for any f with suppf ⊆ Γ. The main result of [79] is given below.

THEOREM 0.2.19. Let us assume that one of the following conditions is
satisfied:

1. M is a connected Riemannian surface;

2. n ≥ 3 and (M, g) is a connected real-analytic Riemannian manifold and
the boundary ∂M is real-analytic in the non-empty set Γ ⊂ ∂M .

Then

1. For dimM = 2 the Λg, Γ-mapping and Γ determine the conformal class of
the Riemannian manifold (M, g).

2. For a real-analytic Riemannian manifold (M, g), dimM > 2 which bound-
ary is real analytic in Γ, the Λg, Γ-mapping and Γ determine the Rieman-
nian manifold (M, g).

This result improved the one in [82] also because here the only assumption
on the topology of the manifold is the connectedness, while in [82] the manifold
was simply connected and the boundary of the manifold was assumed to be
geodesically convex. Theorem 0.2.19 has been extended in [80] to a completeness
hypothesis on M̄ .
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Anisotropy which is partially a priori known

Another approach to the anisotropic problem is to assume that the conductivity
γ is a priori known to depend on a restricted number of unknown spatially
dependent parameters. In 1984 Kohn and Vogelius (see [76]) considered the
case where the conductivity matrix γ = (γij) is completely known with the
exception of one eigenvalue. The main result is the following.

THEOREM 0.2.20. Let γ, γ̃ be two symmetric, positive definite matrices with
entries in L∞(Ω), and let {γi}, {γ̃i} and {ei}, {ẽi} be the corresponding eigen-
values and eigenvectors. For x0 ∈ ∂Ω, let B be a neighborhood of x0 relative to
Ω̄, and suppose that

γ, γ̃ ∈ C∞(B); (0.2.66)

∂Ω ∩B is C∞; (0.2.67)

ej = ẽj , λj = λ̃j in B, for 1 ≤ j ≤ n− 1; (0.2.68)

en(x0) · ν(x0) 6= 0. (0.2.69)

If

Qγ(φ) = Qγ̃(φ) for every φ ∈ H 1
2 (∂Ω),

with suppφ ⊂ B ∩ ∂Ω, then

Dkλ̃n(x0) = Dkλn(x0),

for every k = (k1, . . . ,kn), ki ∈ Z+, i = 1 . . . n.

In 1990 Alessandrini [3] considered the case in which γ is a priori known to be
of type

γ(x) = A(a(x)),

where t → A(t) is a given matrix-valued function and a = a(x) is an unknown
scalar function. He proved results of uniqueness and stability at the boundary
and then uniqueness in the interior among the class of piecewise real-analytic
perturbations of the parameter a(x). The main hypothesis he used is the so-
called monotonicity assumption

DtA(t) ≥ C I,

where C > 0 is a constant. In 1997 Lionheart [81] proved that the parameter
a(x) can be uniquely recovered for a conductivity γ of type

γ(x) = a(x)A0(x),

where A0(x) is given. Results in [3] have been extended in 2001 by Alessandrini
and Gaburro [6] to a class of conductivities
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γ(x) = A(x, a(x)),

where A(x, t) is given and satisfies the monotonicity condition with respect to
the parameter t

DtA(x, t) ≥ C I,

where C > 0 is a constant (see [6] or [43] for this argument). In [6] the authors
improved results of [3] since they relaxed the hypothesis on A(·, t) for the global
uniqueness in the interior and the result there obtained can be applied to [81]
as well. The technique of [6] can also be applied to the so called one-eigenvalue
problem introduced in [76]. Results of [6] have been recently extended to mani-
folds [45] and to the case when the local Dirichlet-to-Neumann map is prescribed
on an open portion of the boundary [7].

0.2.3 Some remarks on the Dirichlet-to-Neumann map

EIT with partial data

In many applications of EIT one can actually only take measurements of voltages
and currents on some portion of the boundary. In such situation the Dirichlet-
to-Neumann map can only be defined locally.

Let Ω ⊆ Rn be a domain with conductivity γ. If Γ is a non-empty open
portion of ∂Ω we shall introduce the subspace of H

1
2 (∂Ω)

H
1
2
co(Γ) =

{
f ∈ H 1

2 (∂Ω) | supp f ⊂ Γ
}
. (0.2.70)

DEFINITION 0.2.2. The local Dirichlet-to-Neumann map associated to γ and
Γ is the operator

ΛΓ
γ : H

1
2
co(Γ) −→ (H

1
2
co(Γ))∗ (0.2.71)

defined by

〈ΛΓ
γ f, η〉 =

∫
Ω

γ∇u · ∇φ dx, (0.2.72)

for any f , η ∈ H
1
2
co(Γ), where u ∈ H1(Ω) is the weak solution to{

∇ · (γ(x)∇u(x)) = 0, in Ω,
u = f, on ∂Ω,

and φ ∈ H1(Ω) is any function such that φ|∂Ω = η in the trace sense.

Note that, by (0.2.72), it is easily verified that ΛΓ
σ is self adjoint. The inverse

problem is to recover γ from ΛΓ
γ .

The procedure of reconstructing the conductivity by local measurements has
been studied first by Brown [25], where the author gives a formula for recon-
structing the isotropic conductivity pointwise at the boundary of a Lipschitz
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domain Ω without any a priori smoothness assumption of the conductivity.
Nakamura and Tanuma [93] give a formula for the pointwise reconstruction of
a conductivity continuous at one point x0 of the boundary from the local D-N
map when the boundary is C1 near x0. Under some additional regularity hy-
pothesis the authors give a reconstruction formula for the normal derivatives of
γ on ∂Ω at x0 ∈ ∂Ω up to a certain order. A direct method for reconstructing
the normal derivative of the conductivity from the local Dirichlet-to-Neumann
(D-N) map is presented in [94]. The result in [93] has been improved by Kang
and Yun [71] to an inductive reconstruction method by using only the value of
γ at x0. The authors derive here also Hölder stability estimates for the inverse
problem to identify Riemannian metrics (up to isometry) on the boundary via
the local D-N map. An overview on reconstructing formulas of the conductivity
and its normal derivative can be found in [95].

For related uniqueness results in the case of local boundary data, we refer to
Alessandrini and Gaburro [7], Bukhgeim and Uhlmann [27], Kenig, Sjöstrand
and Uhlmann [74] and Isakov [69], and, for stability, [7] and Heck and Wang [57].
We refer also to the more recents results of Kenig-Salo ([72], [73]). We would
like to stress out that [73] generalizes the results obtained in both [74] and [69]
by making use of improved Carleman estimates with boundary terms, complex
geometrical optics solutions involving reflected Gaussian beam quasimodes and
invertibility of (broken) geodesics ray transforms. Results of stability for cases
of piecewise constant conductivities and local boundary maps have also been
obtained by Alessandrini and Vessella [8], and by Di Cristo [36]. We also refer
to [112, section 7].

The Neumann-to-Dirichlet map

In many applications of EIT especially in medical imaging, rather than the local
Dirichlet-to-Neumann map, one should consider the so-called local Neumann-to-
Dirichlet (N-D) map. That is, the map associating to specified current densities
supported on a portion Γ ⊂ ∂Ω the corresponding boundary voltages, also
measured on the same portion Γ of ∂Ω. Usually electrodes are only applied to
part of the body and in geophysics of course we have an extreme example where
Γ is a small portion of the surface of the earth Ω. It seems appropriate at this
stage to recall the definition of the N-D map and its local version for sake of
completeness [7].

Let us introduce the following function spaces (see [7])

H
1
2
� (∂Ω) =

{
φ ∈ H 1

2 (∂Ω)|
∫
∂Ω

φ = 0

}
,

H
− 1

2
� (∂Ω) =

{
ψ ∈ H− 1

2 (∂Ω)| 〈ψ, 1〉 = 0
}
.

Observe that if we consider the (global) D-N map Λγ , that is the map intro-
duced in (0.2.71) ΛΓ

γ in the special case when Γ = ∂Ω, we have that, it maps

onto 0H
− 1

2 (∂Ω), and, when restricted to H
1
2
� (∂Ω), it is injective with bounded

inverse. Then we can define the global Neumann-to-Dirichlet map as follows.
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DEFINITION 0.2.3. The Neumann-to-Dirichlet map associated to γ, Nγ :

H
− 1

2
� (∂Ω) −→ H

1
2
� (∂Ω) is given by

Nγ =
(

Λγ |
0H

1
2 (∂Ω)

)−1

. (0.2.73)

Note that Nγ can also be characterized as the self adjoint operator satisfying

〈ψ, Nγψ〉 =

∫
Ω

γ(x)∇u(x) · ∇u(x) dx, (0.2.74)

for every ψ ∈ H−
1
2

� (∂Ω), where u ∈ H1(Ω) is the weak solution to the Neumann
problem  Lγu = 0, in Ω,

γ∇u · ν|∂Ω = ψ, on ∂Ω,∫
∂Ω
u = 0.

(0.2.75)

We are now in position to introduce the local version of the N-D map. Let Γ be

an open portion of ∂Ω and let ∆ = ∂Ω \ Γ̄. We denote by H
1
2
00(∆) the closure

in H
1
2 (∂Ω) of the space H

1
2
co(∆) previously defined in (0.2.70) and we introduce

H
− 1

2
� (Γ) =

{
ψ ∈ H

− 1
2

� (∂Ω)| 〈ψ, f〉 = 0, for any f ∈ H
1
2
00(∆)

}
, (0.2.76)

that is the space of distributions ψ ∈ H− 1
2 (∂Ω) which are supported in Γ̄ and

have zero average on ∂Ω. The local N-D map is then defined as follows.

DEFINITION 0.2.4. The local Neumann-to-Dirichlet map associated to γ, Γ

is the operator NΓ
γ : 0H

− 1
2 (Γ) −→

(
0
H−

1
2 (Γ)

)? ⊂ 0H
1
2 (∂Ω) given by

〈NΓ
γ i, j〉 = 〈Nγ i, j〉, (0.2.77)

for every i, j ∈ 0H
− 1

2 (Γ).

0.3 The Reconstruction problem

0.3.1 Locating objects and boundaries

The simplest form of the inverse problem is to locate a single object with a
conductivity contrast in a homogeneous medium. Some real situations approx-
imate this, such as a weakly electric fish locating a single prey or the location
of an insulating land mine in homogeneous soil. Typically the first test done on
an EIT system experimentally is to locate a cylindrical or spherical object in a
cylindrical tank. Linearization about γ = 1 simplifies to

∇2w = −∇δ · ∇u+O
(
||δ||2L∞

)
. (0.3.1)

We see the disturbance in the potential w is, to first order, the solution of
Poisson’s equation with a dipole source centred on the object oriented in the
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direction of the unperturbed electric field. With practice experienced experi-
menters (like electric fish) can roughly locate the object from looking at a display
of the voltage changes. When it is known a priori that there is single object,
either small or with a known shape, the reconstruction problem is simply fitting
a small number of model parameters (eg position, diameter, conductivity con-
trast) to the measured voltage data, using an analytical or numerical forward
solver. This can be achieved using standard nonlinear optimization methods.
For the two dimensional case a fast mathematically rigorous method of locating
an object (not required to be circular) from one set of Cauchy data is presented
by Hanke [51]. Results on the recovery of the support of the difference between
two piece-wise analytic conductivities by solving the linearized problem is given
in [55].

In the limiting case where the object is insulating, object location becomes
a free boundary problem, where the Dirichlet to Neumann map is known on
the known boundary and only zero Neumann data known on the unknown
boundary. This is treated theoretically for example by [62] and numerically in
[63]. A practical example is the location of the air core of a hydrocyclone, a
device used in chemical engineering [117].

In more complex cases the conductivity may be piecewise constant with a
jump discontinuity on a smooth surface. In that case there are several methods
that have been tested at least on laboratory data for locating the surface of the
discontinuity. One would expect in general that the location of a surface can
be achieved more accurately or with less data than the recovery of a spatially
varying function and this is confirmed by numerical studies.

A natural method of representing the surface of discontinuity is as a level
set of a smooth surface. This approach has the advantage that no change in
parameterisation is required as the number of connected components changes,
in contrast for example to representing a number of star-shaped objects using
spherical polar coordinates. The approach to using the level set method in EIT
is exactly the same as its use in scattering problems apart from the forward
problem. Level set methods have been tested on experimental ERT and ECT
data by Soleimani et al [104] and we reproduce some of their results in Figure
5 and we use some of their results in Figure 3.

Another approach to locating a discontinuity, common with other inverse
boundary value problems for PDEs are “sampling and probe methods” in which
a test is performed at each point in a grid to determine if that point is in
the object. Linear sampling and factorization methods are treated in Chapter
Theory and numerical results for the application of Linear Sampling to ERT for
a half space are given by Hanke and Schappel[53]. Sampling methods generally
require the the complete transfer impedance matrix and where only incomplete
measurements are available they must be interpolated.

Also in the spirit of probe methods is the monotonicity method of Tamburrino
and Rubinacci [111]. This method follows from the observation that for γ real
the map γ 7→ Zγ is monotone in the sense that γ1 ≤ γ2 ⇒ Zγ1 − Zγ2 ≥ 0,
where a matrix Z ≥ 0 if its eigenvalues are non-negative. Suppose that for some
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(a) Level set reconstruction (c) from experimental ERT data for high contrast objects (a) compared
with generalized Tikhonov regularization.

(b) Level set reconstruction (c) from experimental ECT data for a pipe (a) compared with gener-
alized Tikhonov regularization.

Figure 5: Comparison of level set reconstruction of 2D experimental data com-
pared to generalized Tikhonov regularization using a Laplacian smoothing ma-
trix (EIDORS-2D [113]). Thanks to Manuchehr Soleimani for reconstruction
results, and Wu Quaing Yang and colleagues for the ECT data[118], the exper-
imental ERT data was from [113].
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partition {Ωi} of Ω (for example pixels or voxels)

γ =
∑
i

γiχΩi (0.3.2)

and each γi ∈ {m,M}, 0 < m < M . For each i let Zmi be the transfer impedance
for a conductivity that is M on Ωi and m elsewhere. Now suppose Z−Zmi has a
negative eigenvalue, then we know γi = m. For each set in the partition the test
is repeated, and it is inferred that some of the conductivity values are definitely
m, the equivalent procedure is repeated for each ZMi . In practice, for large
enough sets in the partition and M−m big enough, most conductivity values in
the binary image are determined, although this is not guaranteed. In practice
the method is very fast as Zmi and ZMi can be precomputed and one only needs
to find the smallest eigenvalue of two modestly sized matrices for each set in the
partition. In the presence of noise, of course, one needs a sufficiently negative
eigenvalue to be sure of the result of the test, and the method does assume that
the conductivity is of the given form (0.3.2). Recently a partial converse of the
monotonicity result has been found [?] and this promises more accurate fast
methods of reconstructing the shape of an inclusion.

If conductivies on some sets are undetermined they can then be found using
other methods. For example [116] use a Markov Chain Monte Carlo method to
determine the expected value and variance of undetermined pixels in ECT.

0.3.2 Forward solution

Most reconstruction algorithms for EIT necessitate solution of the forward prob-
lem, that is to predict the boundary data given the conductivity. In addition,
methods that use linearisation typically require electric fields in the interior.
The simplest case is an algorithm that uses a linear approximation calculated
at a homogenous background conductivity. For simple geometries this might
be done using an analytical method, while for arbitrary boundaries Boundary
Element Method is a good choice, and is also suitable for the case where the
conductivity is piecewise constant with discontinuities on smooth surfaces. For
general conductivities the choice is between finite difference, finite volume and
finite element methods. All have been used in EIT problems. Finite element
method (FEM) has the advantage that the mesh can be adapted to a general
boundary surface and to the shape and location of electrodes, whereas regular
grids in finite difference/volume methods can result in more efficient compu-
tation, traded off against the fine discretization needed to represent irregular
boundaries. One could also use a hybrid method such as finite element on a
bounded domain of variable conductivity coupled to BEM for a homogeneous
(possibly unbounded) domain.

In reconstruction methods that iteratively adjust the conductivity and re-
solve the forward problem, a fast forward solution is needed, whereas in methods
using a linear approximation, the forward solution can be solved off-line and
speed is much less important.
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The simplest, and currently in EIT the most widely used, FE method is
first order tetrahedral elements. Here a polyhedral approximation Ωh to Ω is
partitioned in to a finite set of tetrahedra Tk, k = 1, ..., nt which overlap at
most in a shared face, and with vertices xi, i = 1 < ..nv. The potential is
approximated as a sum

uh(x) =
∑

uiφi(x), (0.3.3)

where the φi are piecewise linear continuous functions with φi(xj) = δij . The
finite element system matrix K ∈ Cnv×nv is given by

Kij =

∫
Ωp

γ∇φi · ∇φj dx. (0.3.4)

On each tetrahedron ∇φi is constant which reduces calculation of (0.3.4) in
the isotropic case to the mean of γ on each tetrahedron. One then chooses an
approximation to the conductivity in some space spanned by basis functions
ψi(x)

γ =
∑
i

γiψi (0.3.5)

One can choose these functions to implement some a priori constraints such
as smoothness and to reduce the number of unknowns in the discrete inverse
problem. Or one can choose basis functions just as the characteristic functions
of the tetrahedra, which makes the calculation, and updating, of the system
matrix very simple. In this case ,all a priori information must be incorporated
later, such as by a regulariziation term. In general the integrals∫

Ωp

ψl∇φi · ∇φj dx. (0.3.6)

are evaluated using quadrature if they cannot be done explicitly. If the inverse
solution uses repeated forward solutions with updated conductivity but with a
fixed mesh, the coefficients (0.3.6) can be calculated once for each mesh and
stored. For a boundary current density j = γ∇u ·ν we define the current vector
Q ∈ Rnv by

qi =

∫
∂Ω

jφi dx (0.3.7)

and the FE system is
Ku = Q (0.3.8)

where u is the vector of ui. One additional condition is required for a unique
solution, as the voltage is only determined up to an additive constant. One
way to do this is to choose one (“grounded”) vertex ig and enforce uig = 0 by
deleting the ig row and column from the system (0.3.8). It is clear from (0.3.4)
that for a pair of vertices indexed by i, j that are not both in any tetrahedron,
Kij = 0. The system (0.3.8) is equivalent to Ohm’s and Kirchoff’s law for a
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resistor network with resistors connecting nodes i and j when the corresponding
vertices in the FE mesh share and edge (where some dihedral angles are obtuse
we must allow the possibility of negative conductances). It is worth noting that
whatever basis is user to represent the approximate conductivity (including
an anisotropic conductivity) the finite element system has only one degree of
freedom per edge and we cannot hope, even with perfect data and arithmetic, to
recover more than ne (the number of edges) unknowns from our discretization
of the inverse problem.

The above formulation implements the shunt model. The Complete Elec-
trode Model (CEM) with specified currents can be implemented following Vauhkonen[114]
using an augmented matrix. We define

K◦ij = Kij +
L∑
l=1

1

zl

∫
El

φiφjdx, (0.3.9)

where, here, |El| denotes the area of the lth electrode, and

K∂
`` =

1

z`
|E`| for ` = 1, ..., L, (0.3.10)

K◦∂i` = −
∫
Ell

1

z`
φi dx i = 1, .., n, ` = 1, .., L (0.3.11)

The system matrix for the CEM, KCEM ∈ C(nv+L)×(nv+L) is

KCEM =

[
K◦ K◦∂

K◦∂ T K∂

]
(0.3.12)

In this notation, the linear system of equations has the form

KCEMũ = Q̃ (0.3.13)

where ũ = (u1, ..., unv , V1, ..VL)T and Q̃ = (0, ..., 0, I1, ..., IL)T . The constraint
V ∈ S (see section.0.1.3) is often used to ensure uniqueness of solution. The
transfer impedance matrix is obtained directly as

Z =
(
K∂ −K◦∂TK◦ †K◦∂

)†
(0.3.14)

although it is usual to solve the system 0.3.12 as u in the interior is used in
the calculation of the linearization. This formulation should only be used for
reasonably large z`, as small z` will result in the block K∂ dominating the
matrix. For an accurate forward model it is necessary to estimate the contact
impedance accurately. This is more important when measurements from current
carrying electrodes are used in the reconstruction, or when the electrodes are
large (even if they are “passive” I` = 0). The CEM boundary condition is
rather unusual and most commercial FE systems will not include the boundary
condition easily. This is one of the reasons forward solution code for EIT is
generally written specifically for the purpose, such as the EIDORS project[1].
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It is possible to calculate the transadmitance matrix Y = Z† more easily with
standard solvers. One sets Robin boundary u+ z`γ∂u/∂ν = V` on each E` and
the zero Neumann condition (0.1.4) using V forming a basis for S, one then
takes the integral of the current over each electrode as the current I = YV.
For a given current pattern I one applies the Robin conditions V = Y†I and
the solver gives the correct u. Advantages of commercial solver are that they
might contain a wide variety of element types, fast solvers and mesh generators.
Disadvantages are that they may be hard to integrate as part of a non-linear
inverse solver, and it might be harder to calculate the linearization efficiently.

In fact implementing code to assemble a system matrix is quite straight-
forward; much harder for EIT is the generation of three dimensional meshes.
For human bodies with irregular boundaries of inaccurately known shape this
is a major problem. To apply boundary conditions accurately without overfine
meshes it is also important that the electrodes are approximated by unions of
faces of the elements. While the accuracy of the finite element method is well
understood in terms of the error in the solution u, in EIT we require that the
dependence of the boundary data on the conductivity is accurate, something
that is not so well understood. In addition if the conductivities vary widely it
may be necessary to remesh to obtain the required accuracy, and ideally this
capability with be integrated with the inverse solver [89].

0.3.3 Regularized linear methods

Methods based on linearization are popular in medical and process versions of
EIT. The reasons are twofold. Process and medical applications benefit from
very rapid data acquisition times with even early systems capable measuring
a transfer impedance matrix in less that 0.04s, and it was often required to
produce an image in real time. The application of a precomputed (reguarized)
inverse of the linearized forward problem required only about 1

2L
2(L−1)2 float-

ing point operations. For reasons of both speed and economy early systems also
assumed a two dimensional object with a single ring of electrodes arranged in
a plane. The second reason for using a linear approximation is that in medical
applications especially there is uncertainty in the body shape, electrode position
and contact impedance. This means that a computed forward solution, based
on an assumed conductivity (typically constant), has a much larger error than
the errors inherent in the measurements. A compromise called difference imag-
ing (by contrast to absolute imaging) uses a forward solution to calculate the
linearization (0.2.8) and then forms an image of the difference of the conduc-
tivities between two different times, for example inspiration and expiration in a
study of the lungs. Alternatively measurements can be taken simultaneously at
two frequencies and a difference image formed of the permittivity.

Given a basis of applied current patterns Ii and a chosen set of measure-
ments Mi expressed as a set of independent vectors in S that are 1/|El| for
one electrode El, −1/|Ek| for another electrode Ek (the two electrodes between
which we measure the voltage), and a set of functions ψi with our approximate
admittivity satisfying γ̃ =

∑
γkψk, the discretization of the Fréchet derivative
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is the Jacobian matrix

J(ij)k =
∂

∂γk
MT
i ZIj = −

∫
Ω

ψk∇vi · ∇uj dx (0.3.15)

where Lγ̃ui = Lγ̃vj = 0 (at least approximately) with ui satisfying the CEM
with current Ii and vj with Mj . If the finite element approximation is used
to solve the forward problem it has the interesting feature that the natural
approximation to the Fréchet derivative in the FE context coincides with the
Fréchet derivative of them FE approximation. The indices (ij) are bracketed
together as they are typically ‘flattened’ so the matrix of measurements becomes
a vector and J a matrix (rather than a tensor). Let Ṽ be the vector of all
voltage measurements, Ṽcalc the calculated voltages, and γ the vector of γi.
Our regularized least-squares version of the linearized problem is now

γreg = arg min
γ
||Jγ − (Ṽ − Ṽcalc)||2 + α2Ψ(γ) (0.3.16)

where Ψ is a penalty function and α a regularization parameter. The same for-
mulation is used for difference imaging where Ṽcalc is replaced by measured data
at a different time or frequency. Typical choices for Ψ are quadratic penalties
such a weighted sum of squares of the γi, the two norm of (a discretization) a
partial differential operator R applied to γ−γ0, for some assumed background
γ0. ||R (γ − γ0) ||2. Another common choice is a weighted sum of squares, ie
L a positive diagonal matrix. In Total Variation regularization Ψ approximates
||∇(γ − γ0)||1, and can be used where discontinuities are expected in the con-
ductivity. Where there is a jump discontinuity on a surface (a curve in the
two-dimensional case) the total variation is the integral of the absolute value of
the jump over the surface (curve). The singular values of J are found to decay
faster than exponentially (see fig 9), so it is a severely illconditioned problem
and regularization is needed even for very accurate data. There are also to some
extent diminishing returns in increasing the number of electrodes without also
increasing the measurement accuracy.

For a quadratic penalty function the minimization problem with Ψ(γ) =
||R(γ − γ0)||2 the solution to (0.3.16) is given by the well-known Tikhonov
inversion formula

γreg − γ0 =
(
J∗J + α2R∗R

)−1
J∗
(
Ṽ − Ṽcalc

)
(0.3.17)

For a total variation penalty Ψ(γ) = ||R(γ − γ0)||1 minimization is more dif-
ficult, and standard gradient based optimization methods have difficulty with
the singularity in Ψ where a component of Rγ vanishes. One way around this
is to use the Primal Dual Interior Point Method; for details, see [18] and for
comparison of TV and a quadratic penalty applied to a difference image of the
chest, see fig 6.

0.3.4 Regularized iterative non-linear methods

As the problem is non-linear clearly a solution based on linearization is inac-
curate. Intuitively there are two aspects to the non-linearity that are lost in a
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(a) Generalized Tikhonov (b) Total variation

Figure 6: Time difference EIT image of a human thorax during breathing,
comparison of generalized Tikhonov ||Rγ||22 and of the TV ||Rγ||1 regularized
algorithms. Both are represented on the same colour scale and in arbitrary
conductivity units. See [18] for details.
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Figure 7: An “L-curve”: data mismatch ||V−Vcalc(γ)||2 (vertical) versus regu-
larization norm ||R(γ −γ0)||2 (horizontal) for a range of 6 orders of magnitude
of the regularization. In each case, a single step of the iterative solution was
taken. Three representative images are shown illustrating the “overregulariza-
tion”, appropriate regularization, and “underregularization”. The data are from
the RPI chest phantom [66] shown left.
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linear approximation. If one considers an object of constant conductivity away
from the boundary the norm of the voltage data will exhibit a sigmoid curve
as the conductivity of that object varies, as seen in the example of a concen-
tric anomaly and illustrated numerically in fig 10. This means that voltage
measurements saturate, or tends to a limiting value, as the conductivity con-
trast to the background tends to zero or infinity. Typically this means that
linear approximations underestimate conductivity contrast. One has to be care-
full in communications between mathematicians and engineers: the latter will
sometimes take linearity (eg of Y(γ)) to mean a function that is homogenous of
degree one, ignoring the requirement for “superposition of solutions”. If we con-
sider two small spherical objects in a homogeneous background we know from
(0.2.5) that to first order the change in u due to the objects is approximately
the sum of two dipole fields. The effect of non-linearity, the higher order terms
in (0.2.5) can be thought of as interference between these two fields, analogous
to higher order scattering in wave scattering problems. The practical effect is
that linear approximations are not only poor at getting the correct conductivity
contrast, but also poor at resolving a region between two objects that are close
together. Many non-linear solution methods calculate an update of the admit-
tivity from solving a linear system, that update is applied to the conductivity
in the model and the forward solution solved again. One severe problem with
linear reconstruction methods that do not include a forward solver is that one
cannot test if the updated admittivity even fits the data better than the initial
assumption (for example of a constant admittivity). Such algorithms tend to
produce some plausible image even if the data are erroneous.

The usual approach taken in geophysical and medical EIT to nonlinear re-
construction is to numerically perform the (non-linear generalized Tikhonov)
minimization

γreg = arg min
γ
||Ṽcalc(γ)−V||2 + α2Ψ(γ) (0.3.18)

using standard numerical optimization techniques. As the Jacobian is known
explicitly it is efficient to use gradient optimization methods such as Gauss-
Newton , and in that context the update step is very similar to the solution of
the linear problem (0.3.16), and is a linear system for quadratic Ψ. Assuming
conductivity initialized as the background level γ0 a typical iterative update
scheme for successive approximations to the conductivity is

γn+1 = γn + (J∗nJn + α2R∗R)−1
(
J∗n(Ṽ − Ṽcalc(γn) + α2R∗R(γ0 − γn)

)
(0.3.19)

In contrast to the linearized problem, the non-linear problem requires repeated
solution of the forward solution Ṽcalc(γn) for variable conductivity, typically
using the finite element or finite difference method. One also has to constrain
the conductivity Re γ to be positive and this is made easier by a choice of φi
as the characteristic functions of a partition on Ω. This could be a rectangular
grid or a courser tetrahedral mesh than that used for u. Accurate modelling
of electrodes requires a fine discretization near electrodes, and yet one cannot
hope to recover that level of detail in the admittivity near an electrode. In
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many practical situations a priori bounds are known for the conductivity and
permittivity and as the logarithmic stability result predicts, enforcing these
bounds has a stabilising effect on the reconstruction. The positivity constraint
can be enforced by a change of variables to log γ and this is common practice,
with the Jacobian adjusted accordingly. It is generally better to perform a line
search in the update direction from (0.3.19) to minimize the cost function in
(0.3.18) rather than simply applying the update. Mostly commonly this search
is approximated, for example by fitting a few points to a low order polynomial
although implementation details of this are rarely well documented. It is also
worth mentioning that most absolute reconstruction algorithms start by finding
a homogeneous conductivity γ0 best fitting the data before the iterative method
starts.

In geophysical ERT nonlinear solution is well-established. Although it is
more common, for reasons of economy, to measure only along a line and recon-
struct on the plane beneath that line, fully three dimensional reconstruction is
also widely used. The most common reconstruction code used is RES3DINV[46]
which builds on the work of Loke and Barker at the University of Birmingham[85].
The code is available commercially from Loke’s company Geotomo Software.
RES3DINV has a finite difference forward solver used when the ground is as-
sumed flat, and a finite element solver for known non-flat topography. In geo-
physical applications there is the advantage that obtaining a trangularization
of the surface is common surveying practice. The Jacobian is intialised using
an analytical initial solution assuming homogeneous conductivity. Regularized
non-linear inversion is performed using Gauss-Newton, with recalculation of
Jacobian[46], or using a quasi-Newton method in which a rank one update is
performed on the Jacobian. The penalty function used in the regularization is
of the form Ψ(γ) = ||Rγ||22 where R is an approximate differential operator
that penalises horizontal and vertical variations differently. Total variation reg-
ularization Ψ(γ) = ||Rγ||1 is also an option in this code. When data is likely
to be noisy one can select one can select a “robust error norm”, in which the
one-norm is used also to measure the fit of the data to the forward solution.
A maximum and minimum value of the regularization parameter can be set by
the user, but in a manner similar to the classical Levenburg-Marquard method
for well-posed least squares problems the parameter can be varied within that
range depending on the residual at each iteration.

Although it is common in inverse problems to think of (0.3.18) as a regular-
ization scheme a more rational justification for the method is probabilistic. We
consider the error in the measured data to be a sampled from a zero mean, pos-
sibly correlated, random variables. We then represent our a priori belief about
the distribution of γ as a probability distribution. The minimization (0.3.18) is
the Maximum a posteriori (MAP) estimate for the case of independent Gaus-
sian error and with prior distribution with log probability density proportional
to −Ψ(γ). A more sophisticated approach goes beyond Gauss distributions
and MAP estimates and samples the posterior distribution using Markov Chain
Monte Carlo methods [70] (see chapter 36 statistical inverse problems). As this
involves a large number of forward problem solutions this is infeasible for large
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scale three dimensional EIT problems. However as computers increase in speed
and memory size relative to price, we expect this will eventually become a fea-
sible approach. It will make it easier to approach EIT with a specific question
such ”as what is the volume of the region with a specified conductivity” with
the answer expressed as an estimate of the probability distribution. Going back
to (0.3.18) the regularization parameter α2 controls the ratio of the variances
of the prior and error distribution. In practice this choice of this parameter
is somewhat subjective, and the usual techniques in choice of regularization
parameter, and the caution in their application, are relevant.

Results of a geophysical ERT study are shown in fig 8 and we would like to
thank the Geophysical Tomography Team, British Geological Survey
(www.bgs.ac.uk/research/tomography) for this figure and the description of the
survey we sumarize below. In this case ERT was used to identify the concen-
trations of leachate, the liquid that escapes from buried waste in a landfill site.
The leachate can be extracted and recirculated to enhance the production of
landfill gas, which can ultimately be used for electricity generation. It was im-
portant to use a non-invasive technique – the more standard practice of drilling
exploratory wells could lead to new flow paths. Data were collected sequentially
on 64 parallel survey lines, using a regular grid of electrode positions. The
inter-line spacing was 15 m with a minimum electrode spacing of 5 m along line.
For the current sources, electrode spacings between 15 m and 95 m were used,
while electrode spacings for the measurement electrodes were between 5 m and
225 m.

The inversion was performed using RES3DINV with the FE forward solver
with a mesh generated using the measured surface topography. The two norm
was used for both penalty term and error norm. Due to the large number of da-
tum points (approx 85,000 in total), the dataset was split in four approximately
equal volumes for subsequent inversion. The resulting resistivity models were
then merged to produce a final model for the entire survey area. The resulting
3D resistivity model was used to identify a total of fourteen drilling locations
for intrusive investigation. Eight wells were drilled and the results (i.e initial
leachate strikes within these wells) were used to calibrate the resistivity model.
Based on this ground-truth calibration a resistivity threshold value of 4 Ωm
was used to represent the spatial distribution of leachate for volumetric analysis
within the waste mass. A commercial vizualization package was used to display
cross sections, iso-resistivity surfaces as well as topography and features on the
surface and the boreholes. For other similar examples of geophysical ERT see
[30] [31].

Experiments on tanks in process tomography or as simulated bodies for med-
ical EIT show that several iterations of a non-linear method can improve the
accuracy of conductivity and the shape of conductivity contours for known ob-
jects. In medical EIT it has yet to be demonstrated that the shape and electrode
position can be measured and modelled with sufficient accuracy that the error
in the linear approximation is greater than the modelling error. Although these
technical difficulties are not, we hope, insurmountable.
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Figure 8: A three dimensional ERT survey of a commercial landfill site to map
the volumetric distribution of leachate (opaque blue). Leachate is abstracted
and Reproduction of any BGS materials does not amount to an endorsement by
NERC or any of its employees of any product or service and no such endorse-
ment should be stated or implied
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Figure 9: Normalised singular values of the Jacobian matrix from circular 2D
model with L = 16, 24 and 32 electrodes. EIT measurements are made with
trigonometric patterns such that the number of independent measurements from
L electrodes is 1

2 (L − 1)L. Note the use of more degrees of freedom in the
conductivity than the data so as to be able to study the effect of different
numbers of electrodes using SVD
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Figure 10: Saturation of EIT signals as a function of conductivity contrast. Left:
Slices through a finite element model of a 2D circular medium with a circular
conductivity target at four horizontal positions. EIT voltages are simulated at
32 electrodes for 31 trigonometric current patterns. Right: Right: Change in a
voltage difference as a function of conductivity contrast (target vs. background)
for each horizontal position (horizontal centre of contrast specified in legend).
Vertical axis is normalised with respect to the maximum change from the central
target, and scaled by the sign of conductivity change.

0.3.5 Direct non-linear solution

Nachman’s [90, 91] (see also [96]) uniqueness result for the two dimensional case
was essentially constructive and has resulted in a family of reconstruction algo-
rithms called ∂̄-methods or scattering transform methods. Nachman’s method
was implemented by Siltanen at al [102] in 2000. Of course there are few practi-
cal situations in which the two dimensional approximation is a good one – both
the conductivity and the electrodes have to be translationally invariant. Flow in
a pipe with long electrodes is one example in which it is a good approximation.
We will sketch the main steps in the method (following Knudsen et al [78]) and
refer the interested reader to the references for details.

We assume Ω is the unit disk for simplicity and we start with the Faddeev
Green’s function

Gk(x) := eikxgk(x), gk(x) =
1

(2π)2

∫
R2

eix·ξ

|ξ|2 + 2k(ξ1 + iξ2)
dξ (0.3.20)

and the single layer potential

(Skφ)(x) :=

∫
∂Ω

Gk(x− y)φ(y) dθ(y). (0.3.21)

Here k = k1 + ik2 and by abuse of notation we consider x as a vector in x · ξ
and a complex number x1 + ix2 in the complex product kx. By θ(y) we mean
the angular polar coordinate of y. We assume we have the measured Dirichlet
to Neumann map Λγ and of course we know Λ1. The first step in the algoritm
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Figure 11: Iteration (horizonal axis) and regularization parameter selection (ver-
tial axis) for two choices of regularization matrix R. Data are from the RPI
chest phantom [66]. The regularization parameter (α in 0.3.19) in the middle
row (1) was selected at the “knee” of the L-curve, indicating an appropritate
level of regularization. Overregularization (top row) is shown for 10α, and un-
derregularization (bottom row) for 0.1α. Columns indicate 1, 3 or 5 iteration
of (0.3.19). With increased iteration, we see improved separation of targets and
more accurate conductivity estimates, although these improvements trade off
against increased electrode artefacts due to model mismatch. The difference
between the Laplacian and weighted diagonal regularization is shown in the
increased smoothness of (a), especially in the underregularized case.
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is for each fixed k to solve the linear Fredholm integral equation for a function
ψ(·, k) on the boundary.

ψ(·, k)|∂Ω = eikx − Sk(Λγ − Λ1)ψ(·, k)|∂Ω (0.3.22)

This is an explicit calculation of the Complex Geometrics Optics solution of
Theorem 3. It is fed in to the calculation of what is called the non-physical
scattering transform t : C→ C defined by

t(k) =

∫
∂Ω

ek̄x̄(Λγ − Λ1)ψ(·, k) dθ (0.3.23)

Note here that (0.3.22) is a linear equation to solve the resulting ψ depends
nonlinearly on the data Λγ , and of course as ψ depends on the data t is a
nonlinear function of the data. The second step is to find the conductivity from
the scattering data as follows. let ex(k) := exp(i(kx+ k̄x̄)). For each fixed x we
solve another integral equation

V (x, k) = 1 +
1

(2π)2

∫
R2

t(k′)

(k − k′)k̄′
e−x(k′)V (x, k′) dk′1 dk

′
2 (0.3.24)

finally setting γ(x) = V (x, 0)2. The integral equation (0.3.24) is the solution to
the partial differential equation

∂̄kV (x, k) =
1

4πk̄
t(k)e−x(k)V (x, k), k ∈ C (0.3.25)

where ∂̄k = ∂/∂k̄. Equation(0.3.25) is refered to as the ∂̄ equation hence the
name of the method.

The reconstruction procedure is therefore a direct nonlinear method in which
the steps are the solution of linear equations. The only forward modelling
required is the construction of Λ1. In some practical realisations of this methods
[66] an approximation to the scattering transform is used in which ψ is replaced
by an exponential

texp(k) =

∫
∂Ω

ek̄x̄(Λγ − Λ1) dθ. (0.3.26)

In practical reconstruction schemes t or texp are replaced by an approxima-
tion truncated to zero for |k| > R for some R > 0, which effectiviely also
truncates the domain of integration in (0.3.24) to the disk of radius R. Re-
construction of data from a two dimensional agar phantom simulating a chest
was performed in [66] using truncated texp, and in [67] a difference imaging
version of the ∂̄-method is implemented using a truncated scattering transform
and applied to chest data. A rigorous regularization scheme for two dimensional
∂̄-reconstruction is given in [78]. In this case the regularization is applied to the
data, in a similar spirit to X-ray CT recontruction in which the data is filtered
and then backprojected (see chapter 38 Tomography) and the regularization is
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applied in the filter on the data. In this sense it is harder to understand the
regularized algorithm in terms of systematic a priori informationa applied to the
image. As in CT this is traded off against having a fast explicit reconstruction
algorithm that avoids iteration.

So far our discussion of ∂̄-methods has been confined to two dimensional
problems. At the time of writing three dimesnional direct reconstruction meth-
ods are in their infancy. A three dimensional ∂̄-algorithm for small conductiv-
ities is outlined in [34] and it is yet to be seen if this will result in practical
implementation with noisy data on a finite array of electrodes. See the thesis of
Bikowski [16] for the latest steps in this direction. If these efforts are succesful,
the impact on EIT is likely to be revolutionary.

0.4 Conclusions

Electrical impendance tomography and its relatives are among the most chal-
lenging inverse problems in imaging as the problem is non-linear and highly ill-
posed. The problem has inspired detailed theoretical and numerical study and
this has had an influence across a wide range of related inverse boundary value
problems for (systems of) partial differential equations. Medical and industrial
process applications have yet to realise their potential as routine methods while
the equivalent methods in geophysics are well established. A family of direct
non-linear solution techniques until recently only valid for the two dimensional
problem, may soon be extended to practical three dimensional algorithms. If
this happens fast three dimensional non-linear reconstruction may be possible
on relatively modest computers. In some practical situations in medical and
geophysical EIT the conductivity is anisotropic, in which case the solution is
non-unique. A specification of the a priori information needed for a unique
solution is poorly understood and practical reconstruction algorithms have yet
to be proposed in the anisotropic case.

For a more complete summary of uniqueness results we refer the reader to
the review article of Uhlmann [112]. For a review of biomedical applications
of EIT we refer the reader to the recent book by Holder [61], while subse-
quent progress in the medical area can generally be found in special issues of
the journal Physiological Measurement arising from the annual conferences on
Biomedical Applications of EIT. A good reference for details of geophysical EIT
reconstruction can be found in the manual[46] and the notes by Loke[84]. For
applications in process tomography see [119] and the proceedings of the biennial
World Congress on Industrial Process Tomography (www.isipt.org/wcipt)
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[14] J. A. Barceló, T. Barceló and A. Ruiz, Stability of Calderón Inverse Con-
ductivity Problem in the Plane, J. Math. Pures Appl., Vol.88 (2007), 522-
556.

[15] C.A. Berenstein and E. Casadio Tarabusi, Integral geometry in hyper-
bolic spaces and electrical impedance tomography, SIAM J. Appl. Math.
56 75564, (1996)

[16] J. Bikowski, Electrical Impedance Tomography Reconstructions in Two
and Three Dimensions; from Calderón to Direct Methods, Ph.D. thesis,
Colorado State University, Fort Collins, CO, (2009).

[17] L. Borcea Electrical impedance tomography Inverse Problems 18 R99136,
(2002) Borcea L Addendum to ‘Electrical impedance tomography Inverse
Problems 19 9978 (2003)

[18] A Borsic, B.M. Graham, A Adler, W.R.B. Lionheart, Total Variation
Regularization in Electrical Impedance Tomography, IEEE TMI, 29, 1, 44-
54 , (2010)

[19] E. Beretta and E. Francini, Lipschitz stability for the electrical impedance
tomography problem: the complex case, Comm. in PDEs, Vol.36 (2011),
17231749.

[20] E. Beretta, M. V. de Hoop and L. Qiu, Lipschitz Stability of an Inverse
Boundary Value Problem for a Schrdinger-Type Equation, SIAM J. Math.
Analysis Vol.45, No.2 (2013), 679-699.

[21] R. Brown, Recovering the conductivity at the boundary from the Dirichlet
to Neumann map: a pointwise result, J. Inverse Ill-Posed Problems, Vol.9
(2001), 567-574.

[22] R. Beals and R. Coifman, Transformation spectrales et equation
d’evolution non lineares, Seminaire Goulaouic-Meyer-Schwarz, exp.9,
1981-1982, (1982)

[23] R. Beals and R.R. Coifman. Linear spectral problems, non-linear equations
and the ∂̄-method, Inverse Problems, 5:87130, (1989).

[24] R. Brown and R. Torres, Uniqueness in the inverse conductivity problem
for conductivities with 3/2 derivatives in Lp, p > 2n, J. Fourier Anal.
Appl., Vol.9 (2003), 1049-56.



BIBLIOGRAPHY 57

[25] R. Brown, Global Uniqueness in the Impedance-Imaging Problem for Less
Regural Conductivities, SIAM J. Math. Anal., Vol.27, no. 4 (1996), 1049.

[26] R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity prob-
lem with less regular conductivities in two dimensions, Commun. PDE.,
Vol.22 (1997), 1009-1027.

[27] A.L. Bukhgeim and G. Uhlmann, Recovery a potential from partial Cauchy
data., Commun. PDE., Vol.27 (2002), 653-668.

[28] A. P. Calderón, On an inverse boundary value problem, Seminar on Nu-
merical Analysis and its Applications to Continuum Physics (Rio de
Janeiro, 1980), Rio de Janeiro: Soc. Brasil. Mat., 65-73.

[29] A. P. Calderón, On an inverse boundary value problem, Comput. Appl.
Math., Vol.25, No2-3 (2006), 133-138. (Note this reprint has some differ-
ent typographical errors from the original: in particular on the first page
the Dirichlet data for w is φ not zero).

[30] J.E. Chambers, P.I. Meldrum, R.D. Ogilvy and P.B. Wilkinson Char-
acterisation of a NAPL-contaminated former quarry site using electrical
impedance tomography, Near Surface Geophysics, 79-90, (2005)

[31] J.E. Chambers, O. Kuras, P.I. Meldrum, R. D. Ogilvy, and J. Hollands,
Electrical resistivity tomography applied to geologic, hydrogeologic, and en-
gineering investigations at a former waste-disposal site, Geophysics, 71,
B231B239, (2006)

[32] K. Cheng, D. Isaacson, J.C. Newell and D.G. Gisser, Electrode models for
electric current computed tomography, IEEE Trans. on Biomedical Engi-
neering 36 918-24, (1989)

[33] M. Cheney, D. Isaacson and J.C. Newell. Electrical Impedance Tomogra-
phy. SIAM Review. 41, 85-101, (1999).

[34] H. Cornean, K. Knudsen, S. Siltanen, Towards a D-bar reconstruction
method for three dimensional EIT J. Inverse Ill-posed Probl. 14, 111134
(2006)

[35] Y Colin de Verdière, I. Gitler, D. Vertigan, Réseaux électriques planaires.
II. Comment. Math. Helv., 71, 144–167 (1996)

[36] M. Di Cristo, Stable determination of an inhomogeneous inclusion by lo-
cal boundary measurements, J. Computational and Applies Mathematics,
Vol.198 (2007), 414-425.

[37] S. Ciulli, S. Ispas, and M. K. Pidcock, Anomalous thresholds and edge
singularities in electrical impedance tomography, J. Math. Phys. 37, 4388
(1996)



58 BIBLIOGRAPHY

[38] D.C. Dobson, Stability and regularity of an inverse elliptic boundary value
problem, Technical Report TR90-14 Rice University, Dept of Math. Sci-
ences, (1990)

[39] B.H. Doerstling A 3-d reconstruction algorithm for the linearized inverse
boundary value problem for Maxwell’s equations PhD thesis, Rensselaer
Polytechnic Institute, (1995)

[40] V. Druskin, The unique solution of the inverse problem of electrical sur-
veying and electrical well-logging for piecewise-constant conductivity, Izv.
earth Phys. Vol. 18 (1982), 51-53 (in Russian).

[41] V. Druskin, On uniqueness of the determination of the three-dimensional
underground structures from surface measurements with variously posi-
tioned steady-state or monochromatic field sources, Sov. Phys.-Solid Earth
Vol. 21 (1985), 210-214 (in Russian).

[42] V. Druskin, On the uniqueness of inverse problems for incomplete bound-
ary data, SIAM J. Appl. Math. Vol. 58, No.5 (1998), 1591-1603.

[43] R. Gaburro, Sul Problema Inverso della Tomografia da Impedenza Elet-
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