
CPFloat: A C library for emulating low-precision
arithmetic

Fasi, Massimiliano and Mikaitis, Mantas

2020

MIMS EPrint: 2020.22

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

CPFloat: A C library for
emulating low-precision arithmetic∗

Massimiliano Fasi † Mantas Mikaitis ‡

Abstract

Low-precision floating-point arithmetic can be simulated via software by executing each arith-
metic operation in hardware and rounding the result to the desired number of significant bits.
For IEEE-compliant formats, rounding requires only standard mathematical library functions,
but handling subnormals, underflow, and overflow demands special attention, and numerical
errors can cause mathematically correct formulae to behave incorrectly in finite arithmetic.
Moreover, the ensuing algorithms are not necessarily efficient, as the library functions these
techniques build upon are typically designed to handle a broad range of cases and may not
be optimized for the specific needs of rounding algorithms. CPFloat is a C library that of-
fers efficient routines for rounding arrays of binary32 and binary64 numbers to lower precision.
The software exploits the bit level representation of the underlying formats and performs only
low-level bit manipulation and integer arithmetic, without relying on costly library calls. In
numerical experiments the new techniques bring a considerable speedup (typically one order of
magnitude or more) over existing alternatives in C, C++, and MATLAB. To the best of our
knowledge, CPFloat is currently the most efficient and complete library for experimenting with
custom low-precision floating-point arithmetic available in any language.

Key words: low-precision arithmetic, floating-point arithmetic, mixed precision, IEEE 754
standard, binary16, bfloat16, round-to-nearest, directed rounding, round-to-odd, stochastic
rounding

1. A plethora of floating-point formats and rounding modes. The 2019 revision
of the IEEE 754 standard for floating-point arithmetic [32] specifies three basic binary
formats for computation: binary32, binary64, and binary128. The majority of 64-bit
CPUs equipped with a floating-point unit support natively both the 32-bit and the 64-
bit formats, and 32-bit CPUs can emulate 64-bit arithmetic very efficiently by relying
on highly optimized software libraries. The binary128 format, introduced in the 2008
revision [31] of the original IEEE 754 standard [30], has not gained much popularity
among hardware manufacturers, and over ten years after having been standardized is

∗Version of October 19, 2020. Funding: The work of the first author was supported by the Royal
Society. The work of the second author was supported by an EPSRC Doctoral Prize Fellowship. This
work was carried out when the first author was at the Department of Mathematics, The University of
Manchester, Oxford Road, Manchester, M13 9PL, UK.
†School of Science and Technology, Örebro University, Örebro, Sweden (mssimiliano.fasi@oru.se).
‡Department of Mathematics, The University of Manchester, Manchester, UK (mantas.mikaitis@

manchester.ac.uk).

1

mssimiliano.fasi@oru.se
mantas.mikaitis@manchester.ac.uk
mantas.mikaitis@manchester.ac.uk

1 A plethora of floating-point formats and rounding modes 2

supported only by the supercomputer-grade IBM POWER9 CPUs, which implement
version 3.0 of the Power Instruction Set Architecture [24].

In fact, under the pressure of the low-precision requirements of artificial intelligence
applications, hardware vendors have moved in the opposite direction, and in recent years
have developed a wide range of fewer-than-32-bit formats. The first widely available
16-bit floating-point format is arguably binary16. Despite having been defined in the
last two revisions of the IEEE 754 standard only as an interchange format, it has been
supported as an arithmetic format by all NVIDIA microarchitectures since Pascal [28] and
all AMD architectures since Vega [35]. Google has recently introduced the bfloat16 data
type [22], a 16-bit format with approximately the same dynamic range as binary32. The
latest Armv8 CPUs support a wide variety of floating-point formats, including binary32,
binary64, bfloat16 [1, Sec. A1.4.5], binary16, and an alternative custom half-precision
format [1, Sec. A1.4.2]. The latter is a 16-bit format that reclaims the 2,050 bit patterns
(about 3%) that the binary16 format uses for infinities and NaNs (Not a Number) to
double the dynamic range from [−65,504, +65,504] to [−131,008, +131,008]. The latest
NVIDIA graphics card microarchitecture, NVIDIA Ampere, features a 19-bit floating-
point format, called TensorFloat-32, which has the same exponent range as binary32,
but the same precision as binary16 [29]. We discuss the general framework to which all
these floating-point formats belong in Section 3.

Such a broad range of floating-point formats poses a major challenge to those de-
veloping mixed-precision algorithms for scientific computing, as studying the numerical
behavior of an algorithm in different working precisions may require access to a number
of high-end hardware platforms. To alleviate this issue, several software packages for
simulating low-precision floating-point arithmetics have been proposed in recent years.
We review the most widely adopted alternatives in Section 2.

Our contribution is two-fold. First, we discuss how all the operations underlying the
rounding of a floating-point number x to lower precision can be performed directly on
the binary representation of x in the floating-point format in which the numbers are
stored. We present the new algorithms in Section 4, and in Section 5 we explain how to
implement them efficiently using bitwise operations.

Second, we introduce CPFloat, a header-only C library that implements our algo-
rithms and can be used to round numbers stored in binary32 or binary64 format to lower
precision. The name of the package is a shorthand for Custom-Precision Floats. Section 6
describes how the library was implemented and tested, and Section 7 provides a minimal
self-contained code snippet to exemplify how the library can be used in practice.

We remark that this is not the first library for simulating low-precision in C, as the
GNU MPFR library [14] allows the programmer to work with arbitrarily few bits of
precision. Unlike MPFR, however, CPFloat is intended only for simulating low-precision
floating-point formats, and it supports only formats that require an exponent range and
a number of digits of precision smaller than those offered by binary64. This narrower
aim provides scope for the wide range of optimizations discussed in the following sections,
which in turn yield more efficient implementations.

We provide a MEX interface to CPFloat for MATLAB and Octave, which we use to
compare the new library with the MATLAB function chop [20] in terms of performance.
Our experimental results in Section 8 show that the new codes bring a considerable
speedup over the MATLAB implementation, as long as the matrices being rounded are
large enough to offset the overhead due to calling C code from MATLAB.

2 Related work 3

Tab. 1: Synoptic table of available software packages for simulating low-precision floating-point
arithmetic. The first three columns reports the name of the package, the main pro-
gramming language in which the software is written, and what storage formats are
supported. The following three columns describe the parameters of the target formats:
whether the number of bits of precision in the significand is arbitrary (A) or limited to
the number of bits in the significand of the storage format (R); whether the exponent
range can be arbitrary (A), must be the same as the storage format (R), or a sub-range
thereof (S); whether the target format supports subnormal numbers (S), does not sup-
port them (N), supports them only for builtin types (P), or supports them but allows
the user to switch the functionality off (F). The following column lists the floating-
point formats that are built into the system. The last five columns indicate whether
the software supports round-to-nearest wih ties-to-even (RNE), ties-to-zero (RNZ),
or ties-to-away (RNA), the three directed rounding modes of the IEEE 754 standard
round-toward-zero (RZ), round-to-+∞ and round-to-−∞ (RUD), round-to-odd (RO),
and the two variants of stochastic rounding discussed in Section 3 (SR). The abbre-
viations bf16, tf32, fp16, fp32, and fp64 denote the formats bfloat16, TensorFloat-32,
binary16, binary32, and binary64, respectively.

Package Primary Storage Target format

R
N

E

R
N

Z

R
N

A

R
Z

R
U

D

R
O

R
S

name language format p e s builtin

GNU MPFR C custom A A F X X X
rpe Fortran fp64 R S P fp16 X
FloatX C++ fp32/fp64 R R S X
chop MATLAB fp32/fp64 R R F fp16/bf16 X X X X
QPyTorch Python fp32 R R N X
FLOATP MATLAB fp64 R A N X X X X
CPFloat C fp32/fp64 R R F fp16/bf16/tf32 X X X X X X X

2. Related work. Low-precision floating-point arithmetic can be simulated using a
number of existing packages. For each of these packages, Table 1 reports the main
programming language in which the software is written, and details what storage formats,
target formats, and rounding modes are supported.

The most comprehensive software package for simulating arbitrary-precision floating-
point arithmetic is the GNU MPFR library [14], which extends the formats in the IEEE
754 standard to any number of bits of precision and an arbitrarily large exponent range.
GNU MPFR is written in C, but interfaces for most programming languages are available,
and this library is the de facto standard choice for simulating arbitrary precision via
software. For this reason, GNU MPFR is typically used for higher-precision, rather than
low-precision, floating-point arithmetics.

Dawson and Düben [8] recently developed a Fortran library, called rpe, for emulating
reduced-precision floating-point arithmetic in large numerical simulations. In rpe, the
reduced-precision floating-point values are stored as binary64 numbers, a solution that
provides a very efficient technique for simulating floating-point formats with the same
exponent range as binary64 and at most 53 bits of precision.

FloatX [11] is a header-only C++ library for simulating low-precision arithmetic that
supports both binary32 and binary64 as storage formats. This software is more flexible
than rpe, in that it allows the user to choose also the number of bits used to represent
the exponent of the floating-point numbers in the reduced-precision format, and not only

3 Storage formats for floating-point numbers, rounding 4

the number of significant digits in their fraction.
The only rounding mode currently implemented by both rpe and FloatX is round-

to-nearest with ties-to-even, which may be too restrictive when one wants to simulate
hardware units that provide only truncation or stochastic rounding.

Higham and Pranesh [20] have recently proposed chop, a MATLAB function for
rounding arrays of binary32 or binary64 numbers to lower precision. This solution is
more efficient and flexible than the fp16 and vfp16 MATLAB data types proposed by
Moler [26], as it allows the user to specify not only the boundaries of the dynamic exponent
range and the number of binary digits of precision for the fraction, but also the rounding
mode to be used and whether subnormals are supported. In particular, chop supports
six rounding modes, the four default rounding modes prescribed by the IEEE 754-2019
for single operations, and two variants of stochastic rounding. This function can be used
only from within the MATLAB programming environment, and the underlying algorithms
rely on mathematical operations involving the exponent and fraction of the represented
floating-point numbers, which makes them less suitable for efficient implementations in a
low-level language such as C. For example, chop uses built-in MATLAB functions such as
abs, sign, ceil, floor, log2, pow2, which are not necessarily optimized for the narrow
range of inputs required in order disassemble and reassemble floating-point numbers.

The QPyTorch library is a low-precision arithmetic simulator written natively in Py-
Torch, whose primary aim is to facilitate the training of neural networks in low precision
without the overhead of building low-precision hardware [39]. The approach taken by
the developers of this library is similar to that of the MATLAB function chop, as the
numbers are stored in binary32 before as well as after rounding. QPyTorch supports
custom floating-point formats that can fit into the binary32 format, fixed-point formats
of arbitrary precision but not wider than 24 bits, and block floating-point formats [38].
Infinities, NaNs, and subnormal numbers are not supported for efficiency reasons and
because, as the authors point out, these typically do not appear when training neural
networks and may not be supported by the underlying low-precision hardware. In terms
of rounding, it supports stochastic rounding and round to nearest with three tie-breaking
rules: ties-to-away, ties-to-zero, and ties-to-even.

FLOATP Toolbox [25] is a MATLAB toolbox for simulating reduced-precision fixed-
point and floating-point arithmetics which uses binary64 as storage format. This li-
brary supports the same six rounding modes as chop [20], and implements a number of
mathematical functions, such as log, exp, sin, and others. The functionalities of the
FLOATP Toolbox can be used in two ways: either by calling the functions that work
directly on the binary64 data structure, or by relying on the methods of the floatp class,
which override a number of built-in MATLAB functions. A similar library is available
for posit arithmetic [19, 9] from the same author.

The algorithms presented here complement existing software by proposing efficient
techniques for implementing rounding using low-level bitwise instructions. Our library is
intended as a software package that enables the use of these rounding functionalities in
lower-level languages such as C and C++, but can benefit all those high-level languages
that allow the user to call C routines either directly or indirectly.

3. Storage formats for floating-point numbers, rounding. A family of binary
floating-point numbers F〈p, emin, emax, sn〉 is a finite subset of the real line. In our nota-
tion, the three integer parameters p, emin, and emax represent the number of binary digits

3 Storage formats for floating-point numbers, rounding 5

of precision, the minimum exponent, and the maximum exponent, respectively, and the
Boolean flag sn indicates whether subnormal numbers are supported. A real number
x := (s,m, e) in F〈p, emin, emax, sn〉 can be written as

x = (−1)s ·m · 2e−p+1, (3.1)

where s is the sign bit, set to 0 if x is positive and to 1 otherwise, the integral siginificand
m is a natural number not greater than 2p− 1, and the exponent e is an integer between
emin and emax inclusive.

In order to ensure a unique representation for all numbers in F〈p, emin, emax, sn〉\{0}, it
is customary to normalize the system by assuming that if x ≥ 2emin then 2p−1 ≤ m ≤ 2p−
1, that is, the number is represented using the smallest possible exponent and the largest
possible significand. In such systems, the number (s,m, e) ∈ F〈p, emin, emax, sn〉 \ {0}
is normal if m ≥ 2p−1, and subnormal otherwise. The exponent of subnormal numbers
is always emin, and in a normalized system any number x = (s,m, e) 6= 0 has a unique
p-digit binary expansion (−1)s · m̃ · 2e, where

m̃ = m · 21−p = d0 +
d1
2

+ · · ·+
dp−1

2p−1 = d0.d1 . . . dp−1, (3.2)

for some d0, d1, . . . , dp−1 ∈ {0, 1}, is called the normal significand of x. One can verify
that if x is normal then d0 = 1 and 1 ≤ m̃ < 2, whereas if x is subnormal then d0 = 0
and 0 < m̃ < 1. Conventionally, 0 is considered neither normal nor subnormal. In a nor-
malized system, the smallest subnormal is xminsub := 2emin−p+1, whereas the smallest and
largest positive normal numbers are xmin := 2emin and xmax := 2emax(2− 21−p), respec-
tively. Their negative counterparts can be obtained by observing that a floating point
number system is symmetric with respect to 0. In our notation, subnormal numbers are
kept if sn = true, and then rounded to either 0 or the smallest floating-point number of
appropriate sign if sn = false.

Now we discuss how the floating-point numbers in F〈p, emin, emax, sn〉 can be repre-
sented efficiently as binary strings. The sign is stored in the leftmost bit of the repre-
sentation, and the following be bits are used to store the exponent. Under the IEEE 754
assumption that emin = 1 − emax, the most efficient way of representing the exponent is
obtained by setting emax = 2be−1 − 1 and using a representation biased by emax, so that
00 · · · 012 is the smallest allowed exponent and 11 · · · 102 is the largest. The trailing p− 1
bits are used to store the significand of x. It is not necessary to store the value of d0
explicitly, as the IEEE standard uses an encoding often referred to as “implicit bit”: d0 is
assumed to be 1 unless the binary encoding of the exponent is the all-zero string, in which
case d0 = 0 and the floating-point number represents 0 if m = 0 and a subnormal num-
ber otherwise. If the exponent field contains the reserved all-one string, then the number
represents +∞ or −∞ if the significand is set to 0, and a NaN otherwise. Infinities are
needed to express values whose magnitude exceeds that of the largest positive and nega-
tive numbers that can be represented in F〈p, emin, emax, sn〉, whereas NaNs represent the
result of invalid operations, such as taking the square root of a negative number, dividing
0 by 0, or multiplying an infinity by 0. These are needed in order to ensure that the
semantics of all floating-point operations is well specified and the resulting floating-point
number system is closed.

A rounding is an operator that maps a real number x to one of the floating-point
numbers closest to x in a given floating-point family. The IEEE 754 standard [32, Sec. 4]

4 Efficient rounding to a lower-precision format 6

defines four rounding modes for binary formats, the default round-to-nearest with ties-
to-even, and three directed rounding modes, round-toward-+∞, round-toward-−∞, and
round-toward-zero. We consider also two less usual rounding strategies, round-to-odd
and stochastic rounding, and two other tie-breaking rules for round-to-nearest.

Round-to-odd is the rounding mode that requires setting the least significant bit of
the rounded number to 1, unless the infinitely-precise number is already representable
exactly in the target format. This rounding has applications in several domains. In
computer arithmetic, for instance, it can be used to emulate a correctly rounded fused
multiply-and-add (FMA) operator when a hardware FMA unit is not available [2], and
the fact that it can be implemented at low cost in hardware has recently prompted interest
from the machine learning community [5].

Unlike all rounding modes discussed so far, stochastic rounding is non-deterministic,
in the sense that the direction in which to round is chosen randomly and repeating
the rounding may yield different results. The simplest variant of stochastic rounding
rounds an infinitely-precise number that is not representable in the target format to
either of the two closest representable floating-point numbers with equal probability. A
more interesting flavor of stochastic rounding rounds a non-representable number x to
either of the closest floating-point numbers with probability proportional to the distance
between x and the two rounding candidates. This rounding mode dates back to the
fifties [12, 13], and has recently gained prominence owing to the surge of interest in
low-precision floating-point formats. It has been shown to be particularly effective at
alleviating swamping in long sums [6] and ordinary differential equation solvers [21, 10],
as well as at counteracting the loss of accuracy observed when the precision used to
train neural networks is reduced [18, 37]. Stochastic rounding is not widely available in
general-purpose hardware, but it has started to appear in some specialized processors,
such as the Intel Loihi neuromorphic chips [7] and the Graphcore IPU, an accelerator for
machine learning [17].

4. Efficient rounding to a lower-precision format. Now we discuss how to ex-
ploit the binary representation in the storage format to develop efficient algorithms for
rounding x ∈ F (h) to x̃ ∈ F (`), where

F (h) := F〈p(h), e(h)min, e
(h)
max, s

(h)
n 〉, and F (`) := F〈p(`), e(`)min, e

(`)
max, s

(`)
n 〉, (4.1)

and the same superscript notation is used for xminsub, xmin, and xmax . We assume
that e(`)max ≤ e(h)max, so that numbers in F (`) are representable exactly in F (h), and that

p
(`) ≤ p

(h)
/2 − 1, which guarantees that double rounding will be innocuous for the four

elementary arithmetic operations (+, −, ×, and ÷) and for the square root [36]. We
do not assume that the storage format supports subnormals, but we note that if that
is not the case then one must additionally require that e(h)min ≤ e(`)min − p

(`)
, in order to

ensure that the smallest subnormal number in F (`) is representable as a normal number
in F〈p(h), e(h)min, e

(h)
max, false〉.

We now list the high-level functions we need to operate on floating-point numbers. In
the description, x denotes a floating-point number in F (h), n denotes a positive integer,
and i is an integer index between 0 and p

(h) − 1 inclusive.

• abs(x) returns the absolute value of x.

4 Efficient rounding to a lower-precision format 7

Algorithm 4.1: Round a number from F (h) to F (`) in (4.1).

1 function CPFloat(x ∈ F (h), F (`), roundFun : F (h) × N+ ×F (h) → F (h))

2 if s(`)n then

3 ζ ← x
(`)
minsub

4 else

5 ζ ← x
(`)
min

6 if abs(x) < x
(`)
min and e(`)min > e(h)min then

7 p← p
(`) − (e(`)min − (exponent(x)− 1))

8 else

9 p← p
(`)

10 x̃← roundFun(x, p, ζ)

• digit(x, i) returns the ith digit of the fraction of x from the left. The indexing
starts from 0, so that digit(x, i) is di in (3.2).

• exponent(x) returns the exponent of x, that is, the signed integer e in (3.1).

• fraction(x) returns the integral significand of x, that is, the positive integer m
in (3.1).

• rand(n) returns a string of n randomly generated bits.

• sign(x) returns −1 if the floating-point number x is negative and +1 otherwise.

• tail(x, i) returns the trailing p
(h)−i bits of the fraction of x as an unsigned integer.

• trunc(x, i) returns the number x with the last p
(h) − i bits of the fraction set to

zero.

• ulp(x, i) returns the number 2exponent(x)−i+1, that is, the gap between x and its
successor in a floating-point number system with i bits of precision. As noted by
Muller [27], this function corresponds to the unit in the last place as defined by
Overton [34, p. 14] and Goldberg [15].

How to implement these efficiently will be discussed in detail in Section 5.
Our rounding strategy is summarized in Algorithm 4.1. The function CPFloat

computes the representation of the floating-point number x ∈ F (h) in a lower-precision
format F (`). In the pseudocode, N+ denotes the set of positive integers. The input
parameter roundFun is a pointer to one of the functions in Algorithm 4.2, 4.4, or 4.5.
A call to roundFun(x, p, ζ) returns the floating-point number x̃ ∈ F (h) which represents

the rounding of x to F (`). The function starts by setting the underflow threshold ζ, which
corresponds to the smallest subnormal number if s(`)n = true and to the smallest normal
number if s(`)n = false. This value will be used by roundFun to flush to zero numbers
that are too small to be represented. Then the algorithm computes the number p of
significant digits in the significand of the binary representation of x̃. If x falls within the
normal range of F (`), then its fraction has p

(`)
significant digits and the algorithm sets

4 Efficient rounding to a lower-precision format 8

Algorithm 4.2: Function for round-to-nearest with ties-to-even.

1 function roundToNearest(x ∈ F (h), p ∈ N+, ζ ∈ F (h))

2 if abs(x) < ζ/2 or (abs(x) = ζ/2 and s(`)n) then
3 x̃← 0

4 else if abs(x) ≤ ζ then
5 x̃← ζ

6 else if abs(x) ≥ 2e
(`)
max(2− 2−p

(`)

) then
7 x̃← +∞
8 else
9 x̃← trunc(abs(x), p)

10 if tail(x, p) > 2p
(h)−p−1 or (tail(x, p) =

2p
(h)−p−1 and digit(x, p

(h) − p) = 1) then
11 x̃← x̃+ ulp(x̃, p)

12 return sign(x) · x̃

p = p
(`)

. If, on the other hand, |x| is between x
(`)
minsub and x

(`)
min, then the exponent of x is

smaller than e(`)min and the number p of significant binary digits has to be reduced unless
e(`)min = e(h)min, in which case x is subnormal in both storage and destination format and
has the same number of leading zeros in both. If not, then p is given by the difference

between p
(`)

and the number of leading zeros after the binary point in the representation
of x̃.

In the coming sections we discuss how the function roundFun can be implemented
for the six rounding strategies we consider.

4.1. Round-to-nearest. Our algorithm for rounding a floating-point number in F (h)

to the closest floating-point number in the lower-precision format F (`) is given in Al-
gorithm 4.2. Initially, the function checks if the number to be rounded is too small to
be represented in F (`). The direction in which the two tie values x ∈ F (h) such that
|x| = ζ/2 are rounded changes depending on whether subnormal numbers are supported

or not. The significand of the smallest normal number x
(`)
min representable in F (`) is even,

thus if subnormals are not supported x is equidistant from two numbers with even sig-
nificands. If there is a tie and both closest floating-point numbers have same parity,
the IEEE 754 standard requires rounding to the candidate largest in magnitude [32,
Sec. 4.3.1], thus we round x to sign(x) · ζ. The significand of the smallest subnormal

x
(`)
minsub, on the other hand, is odd, and when subnormals are available (s(`)n = true), 0

is the floating-point number with even fraction that is closer to the the mid-point value
ζ/2 = x

(`)
min/2 , thus x underflows to 0 in this case. Next, a number x ∈ F (h) that is too

large to underflow but has absolute value below the threshold ζ is rounded to sign(x) · ζ.
If |x| is larger than the threshold, the algorithm checks whether its exponent is within

the exponent range of F (`). According to the IEEE 754 standard, a number of magnitude

at least 2e
(`)
max(2−2−p

(`)

) should overflow to infinity without changes in sign [32, Sec. 4.3.1].

If x is within the range of numbers presentable in F (`), then the algorithm truncates

4 Efficient rounding to a lower-precision format 9

Algorithm 4.3: Function for round-to-odd.

1 function roundToOdd(x ∈ F (h), p ∈ N+, ζ ∈ F (h))
2 if abs(x) < ζ and x 6= 0 then
3 x̃← ζ
4 else
5 x̃← trunc(x̃, p)
6 if tail(x, p) 6= 0 and p > 1 then

7 digit(x̃, p
(h) − p)← 1

8 if x̃ > x
(`)
max and x̃ 6= +∞ then

9 x̃← x
(`)
max

10 return sign(x) · x̃

x ∈ F (h) to p significant digits to compute x̃ ∈ F (h), which is the largest nonnegative
number such that x̃ ≤ |x|. In general, x̃ is the representation of one of the two floating-

point numbers in F (`) closest to |x|, the other candidate being x̃ + ulp(x̃, p). In order
to choose a rounding direction, it is necessary to examine the value of the discarded bits.
The unsigned integer d := tail(x, p) represents the trailing p

(h)− p digits of the fraction

of x. Thus 0 ≤ d ≤ 2p
(h)−p−1, and it is easy to see that if d < γ := 2p

(h)−p−1 then x̃ is the
absolute value of x rounded to p significant digits, whereas if d > γ then it is necessary
to add ulp(x̃, p) to x̃ in order to obtain the correct value. If d = γ, then we have a tie
and we need to round to the nearest even number, that is, a number whose fraction has
a zero in position p

(h) − p. Therefore we increment x̃ by ulp(x̃, p) if the (p
(h) − p)th bit

of x̃ is a 1, and we leave x̃ unchanged otherwise.
Finally, we change the sign of x̃ so to match that of x, and return the number thus

obtained.
The latest revision of the IEEE 754 standard mentions two other tie-breaking rules for

round-to-nearest: ties-to-zero, to be used for the recommended augmented operations,
and ties-to-away, which is required for decimal formats. These can be easily implemented
by changing the conditions of the if statements on lines 2 and 10 in Algorithm 4.2 to

2 if abs(x) ≤ ζ/2 then

[. . .]

10 if tail(x, p) > 2p
(h)−p−1 then

for ties-to-zero, and to

2 if abs(x) < ζ/2 then

[. . .]

10 if tail(x, p) ≥ 2p
(h)−p−1 then

for ties-to-away.
Note that this implementation preserves the sign of zero, maps infinities to infini-

ties, and does not change the encoding of quiet and signaling NaN values. The same
observation is true for the rounding functions in Algorithm 4.3, 4.4, and 4.5.

4 Efficient rounding to a lower-precision format 10

4.2. Round-to-odd. The function roundToOdd in Algorithm 4.3 implements round-
to-odd according to the definition in [2, Sec. 3.1], as this rounding mode is not part of

the IEEE standard. Informally speaking, if x is exactly representable in F (`), then the
function returns it unchanged, otherwise it returns the number closest to x with an odd
fraction, that is, a fraction with a trailing 1. In the spirit of the algorithms discussed
so far, one could obtain x̃ by truncating |x| to the first p significant digits, checking the
parity of the fraction of x̃, and adding ulp(x̃, p) to the result if x̃ is even. However, in
this case we know that the result of the truncation requires a correction only if the least
significant digit of x̃ is a 0, in which case adding ulp(x̃, p) amounts to setting that bit to
1. Therefore, we check the bits obliterated by the truncation, and if tail(x, p) 6= 0 then

x is not exactly representable in F (`) and the fraction of the rounded x̃ must be odd. We
can ensure this by setting the (p

(h) − p)th bit of x̃ to 1, as long as this digit is stored
explicitly, which is the case if and only if p is not 1. The core idea of this algorithm is the
same as that of the second of the two methods for round-to-odd discussed in [2, Sec. 3.4].

The algorithm must round x̃ to the closest odd number in F (`) if it falls within the
underflow or the overflow range. Note that since 0 is even, underflow is not possible
when this rounding mode is used, and numbers smaller than the smallest representable
number in absolute value must be rounded to the smallest floating-point number with
an odd fraction of corresponding sign. When subnormal numbers are supported, the
smallest representable number x

(`)
minsub is odd, thus numbers smaller than x

(`)
minsub are

simply rounded up to x
(`)
minsub. If subnormal numbers are not supported, on the other

hand, the smallest representable number x
(`)
min is even, and we are faced with a choice.

We could round x̃ < x
(`)
min to the smallest number larger than x

(`)
min that has odd fraction,

that is, x
(`)
min+ulp(x

(`)
min, p), but this choice feels unnatural, since the operator thus defined

would not be rounding to either of the floating-point numbers closest to x̃. In fact, in our
pseudocode we prefer to round x̃ to the rounding candidate largest in magnitude, that
is, sign(x) · x(`)min.

The definition given by Boldo and Melquiond cannot be applied directly to values in
the overflow range, as in principle the fraction of±∞ is neither odd nor even. Since−x(`)max

and x
(`)
max are necessarily odd, we prefer to round values outside the range of floating-point

number representable in F (`) to the closest finite number. Infinities themselves represent
an exception to this rule, and the algorithm leaves them unchanged.

Finally, we restore the sign of the input, and return the result.

4.3. Directed rounding. The functions in Algorithm 4.4 show how to implement the
three directed rounding modes prescribed by the IEEE 754 standard. The idea underlying
the three functions is similar to that discussed for the function roundToNearest in
Algorithm 4.2, the main differences being the use of the sign, which is relevant when the
rounding direction is not symmetric with respect to 0, and the conditions under which a
unit in the last place has to be added.

We start by discussing the function roundTowardPlusInfinity. First, we check
whether x is within the range of numbers that are representable in F (`). Numbers that
are too small to be represented are rounded up to 0 if negative and to ζ if positive.
Finite positive numbers larger than the largest representable number x

(`)
max overflow to

+∞, whereas negative numbers smaller than the smallest representable number −x(`)max

4 Efficient rounding to a lower-precision format 11

Algorithm 4.4: Functions for directed rounding modes.

1 function roundTowardPlusInfinity(x ∈ F (h), p ∈ N+, ζ ∈ F (h))
2 if x > 0 and x < ζ then
3 x̃← ζ
4 else if x ≤ 0 and x > −ζ then
5 x̃← sign(x) · 0
6 else
7 x̃← trunc(x, p)
8 if tail(x, p) 6= 0 and x > 0 then
9 x̃← x̃+ ulp(x̃, p)

10 if x̃ > x
(`)
max then

11 x̃← +∞
12 else if x̃ < −x(`)max and x̃ 6= −∞ then

13 x̃← −x(`)max

14 return x̃

15 function roundTowardMinusInfinity(x ∈ F (h), p ∈ N+, ζ ∈ F (h))
16 if x < 0 and x > −ζ then
17 x̃← −ζ
18 else if x ≥ 0 and x < ζ then
19 x̃← sign(x) · 0
20 else
21 x̃← trunc(x, p)
22 if tail(x, p) 6= 0 and x < 0 then
23 x̃← x̃− ulp(x̃, p)

24 if x̃ > x
(`)
max and x̃ 6= +∞ then

25 x̃← x
(`)
max

26 else if x̃ < −x(`)max then
27 x̃← −∞

28 return x̃

29 function roundTowardZero(x ∈ F (h), p ∈ N+, ζ ∈ F (h))
30 if x < ζ then
31 x̃← 0

32 else if x ≥ x
(`)
max and x̃ 6= +∞ then

33 x̃← x
(`)
max

34 else
35 x̃← trunc(abs(x), p)

36 return sign(x) · x̃

4 Efficient rounding to a lower-precision format 12

are rounded up to −x(`)max .
Next, the function computes x̃, that is, the number x with fraction truncated to p

significant digits, and checks whether x̃ is smaller than the smallest number representable
in F (`). The rounding can be easily performed by noting that the truncation x̃ computed
at the beginning is the correct result if x is negative or exactly representable in F (`).
Otherwise, x̃ is incremented by ulp(x̃, p).

The function roundTowardMinusInfinity is identical, modulo some sign adjust-
ments to take the opposite rounding direction into account. The algorithm starts by
checking that x is within the range of numbers representable in F (`). Numbers between
−ζ and 0 are rounded down to −ζ, whereas those between 0 and the smallest repre-
sentable number underflow and are flushed to 0. Numbers that are smaller than the
smallest number representable in F (`) underflow to −∞, whereas finite numbers greater
than the largest number representable in F (`) are rounded to x

(`)
max . In order to round

the number that falls within the range of F (`), we compute x̃ by truncating the fraction
of x to p significant digits, and then subtract ulp(x̃, p) from x̃ if x is negative and not
exactly representable with a p-digit fraction.

The function roundTowardZero is simpler than the other two, as truncation is suf-
ficient to correctly round the fraction of x to p significant digits. Underflow and overflow
are also easier to handle: finite numbers that are smaller than the smallest representable
number in absolute value are flushed to 0, whereas numbers outside the interval of repre-
sentable finite numbers are rounded to the closest representable finite number. In order
to simplify the function we work with the absolute value of the truncation of x, and
restore the sign just before returning the result.

4.4. Stochastic rounding. The functions in Algorithm 4.5 describe how to implement
the two variants of stochastic rounding we are concerned with, which are those discussed
by Higham and Pranesh [20].

The function roundStochastic implements the strategy that rounds x ∈ F (h) to
one of the two closest floating-point numbers with probability proportional to the dis-
tance. First, the algorithm considers numbers in the underflow range, whose rounding
candidates are 0 and the threshold value ζ, which equals xminsub if subnormals are sup-
ported and xmin if they are not. The distance between |x| and 0 depends not only on
the fraction but also on the magnitude of x, thus the algorithm starts by computing the
two values ex and mx, which represent the exponent and the integral significand of x,
respectively. Being the exponent of a floating-point number in F (h), ex can be much
smaller than e(`)min, in which case it may be necessary to rescale mx in order to align its

exponent to e(`)min. This is achieved by multiplying mx by 2ex+1−e(`)min ; in the pseudocode
we take the floor of the result in order to keep it integer, although this is not strictly
necessary. We prefer to work with integer arithmetic here so to be able to use directly the
integers generated by the random number generator without any further post-processing.
This is desirable not only from a performance point of view, but also because drawing
floating-point numbers from the uniform distribution over an interval is not a trivial task,
even if a good pseudo-random number generator for integers is available [16]. Finally, a

random integer with p
(h)

digits of precision is generated, and the rounding direction is
chosen according to the definition of stochastic rounding.

The procedure for numbers in the representable range is easier. In this case it suffices

4 Efficient rounding to a lower-precision format 13

Algorithm 4.5: Functions for stochastic rounding modes.

1 function roundStochastic(x ∈ F (h), p ∈ N+, ζ ∈ F (h))
2 x̃← x
3 if abs(x) < ζ then
4 emin ← exponent(ζ)
5 ex ← exponent(x)
6 mx ← fraction(x)

7 t← bmx · 2ex+1−eminc
8 if t > rand(p

(h)
) then

9 x̃← ζ
10 else
11 x̃← 0

12 else if abs(x) < 2e
(`)
max(2− 2−p

(`)

) then
13 x̃← trunc(abs(x), p)

14 if tail(x, p) > rand(p
(h) − p) then

15 x̃← x̃+ ulp(x̃, p)

16 if x̃ ≥ 2e
(`)
max(2− 2−p

(`)

) then
17 x̃← +∞
18 return sign(x) · x̃
19 function roundStochasticEqual(x ∈ F (h), p ∈ N+, ζ ∈ F (h))
20 x̃← x
21 if abs(x) < ζ and x 6= 0 then
22 x̃← randSelect(0, ζ)

23 else if abs(x) > x
(`)
max and abs(x) 6= +∞ then

24 x̃← randSelect(x
(`)
max ,+∞)

25 else if tail(x, p) 6= 0 then
26 x̃← trunc(abs(x), p)
27 x̃← randSelect(x̃, x̃+ ulp(x̃, p))

28 return sign(x) · x̃
29 function randSelect(x ∈ F (h), y ∈ F (h))
30 if rand(1) = 1 then
31 return x
32 else
33 return y

5 Efficient implementation for IEEE-like representation formats 14

to compute x̃, the value of x truncated to p significant binary digits, and then generate a

random integer r between 0 and 2p
(h)−p . Since tail(x, p) represents the distance between

x and x̃, we increment x̃ by ulp(x̃, p) if r < tail(x, p), and leave it unchanged otherwise.
For overflow, we use the threshold value that the IEEE 754 standard recommends for
round-to-nearest, and round numbers whose absolute value after rounding is larger than

the threshold 2e
(`)
max(2− 2−p

(`)

) to infinity, leaving the sign unchanged.
The function roundStochasticEqual deals with the simpler strategy that rounds

x up or down with equal probability. Depending on the interval in which x falls, the
function selects the two closest representable numbers in F (`) and calls the function
randSelect to select one of them with equal probability. In the pseudocode, we use a
single bit generated randomly to discriminate between the two rounding directions.

5. Efficient implementation for IEEE-like representation formats. Now we
explain how the subroutines used in the previous section can be implemented efficiently
assuming that the numbers are represented using the floating-point format described in
Section 3. We begin by defining the semantics of the operators for bit manipulation
that we will need in this section. These are available in most programming languages,
although the notation varies greatly from language to language. For clarity, we use a
prefix notation for all the operators.

Let a and b be strings of n bits. As it is customary in computer engineering, the bits
are indexed from right to left, so that an−1 and a0 denote the leftmost and the rightmost
bit of a, respectively.

For p ∈ N, we define the following operators.

• Conjunction: c = and(a, b) is an n-bit string such that ci = 1 if ai and bi are both
set to 1 and ci = 0 otherwise.

• Disjunction: c = or(a, b) is an n-bit string such that ci = 1 if at least one of ai and
bi is set to 1 and ci = 0 otherwise.

• Negation: c = not(a) is an n-bit string such that ci = 1 if ai = 0 and ci = 0
otherwise.

• Logical shift left: c = lsl(a, p) is an n-bit string such that ci = 0 if i < p and
ci = ai−p otherwise.

• Logical shift right: c = lsr(a, p) is an n-bit string such that ci = 0 if i > (n−1)−p
and ci = ai+p otherwise.

Most of the operations used in the previous section require extracting a certain subset
of the bits in the binary representation of the floating-point number x ∈ F〈p, emin, emax, sn〉
while zeroing out the remaining ones. This can be achieved by using the bitwise con-
junction between the binary string that represents x and a bitmask, that is, a string as
long as the binary representation of x that has ones in the positions corresponding to the
bits to be extracted and zeros everywhere else. More generally, the functions in Section 4
can be performed using the operators above as follows. In the descriptions, x denotes the
floating-point representation of x, n denotes a positive integer, and i denotes an integer
index between 0 and p− 1.

5 Efficient implementation for IEEE-like representation formats 15

• abs(x) can be implemented as and(x,mabs), where mabs is constituted by a single
leading 0 followed by ones.

• digit(x, i) can be implemented as and(x,mdigit), where mdigit has a 1 in the position
corresponding to the digit to be extracted and 0 everywhere else. We note that
checking whether this digit is 0 or 1 does not require any additional operations in
programming languages such as C where 0 is interpreted as false and any other
integer is interpreted as true.

• exponent(x) can be implemented as a sequence of logic and arithmetic operations.
The raw bits of the exponents can be extracted with c = and(x,mexp), where mexp

has 1 in the positions corresponding to the exponent bits of the binary representa-
tion of x. This can be converted into the unsigned integer lsr(c, p − 1), and the
signed exponent can be obtained by subtracting the bias of the storage floating-
point format. If x is subnormal in F (h), then the value computed in this way is
−e(h)max = e(h)min − 1, and the correct value to return in this case is e(h)min.

• fraction(x) can be implemented leveraging the function exponent. The digits
to the right of the radix point can be obtained as c = and(x,mfrac) where mfrac is

the bitmask that has the p
(h) − 1 trailing bits set to 1 and the remaining bits set

to 0. If xmin ≤ |x| ≤ xmax , then exponent(x) > emin and the implicit bit must be

set to 1 using, for instance, or(c, lsr(1, p
(h)

)).

• rand(n) can be implemented by concatenating numbers produced by a pseudo-
random number generator. Two m-bit strings a and b can be joined together
by or(lsl(a,m), b), and the unnecessary bits can be set to zero using a suitable
bitmask.

• sign(x) is relatively expensive to implement by means of bit manipulation. How-
ever, note that we only need to compute the product sign(x) · x̃ where x̃ is a positive
floating-point number. This operation can be implemented as or(and(x,msign), x̃),
where msign is the bitmask with a leading 1 followed by zeros and the string x̃
denotes the floating-point representation of x̃.

• tail(x, i) can be implemented as and(x,mtail), where the trailing p− i bits of mtail

are set to 1 and the remaining bits are set to 0.

• trunc(x, i) can be implemented as and(x,m′), where m′ = not(mtail).

• ulp(x, p) is a rather expensive function to implement, because it requires extracting
the exponent from the binary representation of x and then performing arithmetic
operations on it. Increasing or decreasing x by ulp(x, p), on the contrary, can be
achieved efficiently using only one bit shift and one integer arithmetic operation. In
particular, it suffices to add to the binary representation of x, seen as an unsigned
integer, a number that has 0 everywhere but in position p

(h)− p. We note that this
technique could fail if x = ±∞, since adding ulp(x, p) in this fashion would turn
infinities into NaNs. It is easy to check that this is not a problem in our setting,
as we only add or subtract ulp(x, p) when x is finite.

6 Implementation and validation of the code 16

It is possible to implement some of the rounding routines more efficiently yet by
extending to other rounding modes the technique for round-to-nearest with ties-to-even
developed in [23, p. 2-17], which manipulates the binary representation of the floating-
point number by using only integer arithmetic. To fix ideas, here we show the concrete
values of the bitmasks, expressed in hexadecimal notation, that one should use in order
to round a binary32 number y to binary16, but these methods are easily generalized
to other combinations of storage and target formats. We show this by explaining how
to round the floating-point number x ∈ F〈p, emin, emax, sn〉 to p digits of precision. We
denote the 32-bit string containing the floating-point representation of y by y, and use the
uppercase Latin letters X and Y to denote the unsigned integers that can be obtained by
interpreting x and y as unsigned integers in radix 2. All the usual underflow and overflow
checks are not included here—the aim is to demonstrate the core ideas for performing
each type of rounding efficiently. We recall that the sign of a floating-point number
can be determined by checking the leftmost bit, and that x (resp. y) is positive if xn−1
(resp. y31) is set and negative otherwise. The rounding modes that can benefit from this
approach can be implemented as follows.

• Round-to-nearest with ties-to-even: isolate the bit in position n−p−1 of x, and then
compute trunc(X + lsr(mtail, 1) + xn−p−1, p). For rounding a binary32 number to
binary16, the formula becomes trunc(Y + 0x7FFF + y15, 16).

• Round-to-nearest with ties-to-away: return trunc(X + lsl(0x1, n − p − 1), p),
which in our example becomes trunc(Y + 0x8000, 16).

• Round-to-nearest with ties-to-zero: return trunc(X + lsr(mtail, 1), p), which in
our example trunc(Y + 0x7FFF, 16).

• Round-toward-+∞: return trunc(X, p) if xn−1 is set and trunc(X + mtail, p)
otherwise. For our example, return trunc(Y, 16), if y31 is set and trunc(Y +
0xFFFF, 16) if not.

• Round-toward-−∞: return trunc(X, p) if xn−1 is not set and trunc(X +mtail, p)
otherwise. For our example, return trunc(Y, 16) if y31 is not set and trunc(Y +
0xFFFF, 16) otherwise.

• Round-toward-zero: return trunc(X, p). For our example, return trunc(Y, 16).

• Stochastic rounding with probability of rounding proportional to distance: return
trunc(X + rand(p), p) in the general case and trunc(Y + rand(16), 16) for our
example.

6. Implementation and validation of the code. Our C implementation of the

algorithms discussed in Section 4 and Section 5 is available on GitHub.1 The code is
provided as a header-only library, to allow the users to take advantage of the inlining
feature of the C language for maximum efficiency. This also enhances the portability of
the code, as packaging of the binaries and installation of the library are not required. The
main drawback of this approach is an increase in the compilation time, which we alleviate

1
https://github.com/mfasi/cpfloat/

https://github.com/mfasi/cpfloat/

6 Implementation and validation of the code 17

by dividing the library into two separate units which can be selected by including the
header files cpfloat binary32.h and cpfloat binary64.h, respectively.

In order to achieve a better performance when working on large amount of data,
our functions were designed to work directly on C arrays. All the algorithms discussed
in Section 4 are embarrassingly parallel, and each element of an array can be rounded
independently from all the others. Therefore, our code was written so to take advantage
of the OpenMP library, if available on the system in use.

In general, OpenMP brings significant gains in terms of performance, but greatly in-
creases the execution time for arrays with a limited number of elements. This well-known
phenomenon is due to the fact that synchronization and loop scheduling in OpenMP
brings an additional overhead [3] which, while negligible for large arrays, can be signifi-
cant when only a small amount of work is allocated to each OpenMP thread. The impact
of this overhead is hard to quantify in general, as it depends on the hardware platform
as well as the number of OpenMP threads and the compiler used [4]. In our library we
provide both a parallel and a sequential version of the rounding functions, but we were
unable to provide a single threshold that would allow the code to switch automatically
from one variant to the other for optimal performance. Thus we devised a simple auto-
tuning strategy that tries to determine the optimal threshold for the system in use by
running the rounding function on several arrays of different lengths and using a binary
search to determine the optimal array size.

For generating the pseudo-random numbers required for stochastic rounding, we
rely on algorithms from the family of permuted congruential generators developed by
O’Neill [33], who provides a pure C implementation available on GitHub.2 In our code
we use the functions pcg32_random_r and pcg64_random_r to generate 32-bit and 64-
bit random numbers, respectively, and we initialize the random number generator with
pcg32_srandom_r and pcg64_srandom_r, respectively. As initial state, we use a linear
combination of the current time as returned by time(NULL) and the OpenMP thread
number as returned by omp_get_thread_num(). For completeness, the option of using
the default C pseudo-random number generator is also provided.

In order to validate our code experimentally, we wrote a suite of extensive unit tests.
We considered two storage formats, binary32 and binary64, which are available in C
through the native data types float and double, respectively, and three target formats,
binary16, bfloat16, and TensorFloat-32. For each combination of storage and target
formats, we performed three types of tests. First we checked that all the numbers that
can be represented exactly in the target format, including subnormal numbers and special
values such as infinities and NaNs, are not altered by any of the rounding routines. As
the target formats we consider do not have an unduly large cardinality, we could test
that this property is true for all representable numbers. When checking the correctness
of the rounding routines when rounding is necessary, exhaustive testing is not an option,
as there are too many distinct numbers in the storage format, thus we opted for testing
only a set of representative values.

The correctness of the function for deterministic rounding can be assessed by checking
that the output of the rounding routine matches the value predicted by the definition.
For each pair of numbers x1, x2 ∈ F (`) such that x1 and x2 are consecutive in F (`)

and x1 < x2, we considered five values in F (h): nextafter(x1,+∞), nextafter(xm,−∞),

2
https://github.com/imneme/pcg-c

https://github.com/imneme/pcg-c

7 Usage example 18

xm, nextafter(xm,+∞), and nextafter(x2,−∞), where the nextafter(x, y) denotes the

next number in F (h) after x in the direction of y, and xm denotes the mid point be-
tween x1 and x2. We used the same technique for numbers in the underflow range,

whereas for testing the correctness of overflow we used the values nextafter(±x(`)max ,±∞),

nextafter(±x(`)bnd,∓∞), ±x(`)bnd, nextafter(±x(`)bnd,±∞), where x
(`)
bnd = 2e

(`)
max(2 − 2−p

(`)

) is
the IEEE 754 threshold for overflow in round-to-nearest.

This technique would not work for stochastic rounding, as each value that is not
representable in F (`) can be rounded to two different values. We produced a test set by
taking, for each pair of numbers x1, x2 ∈ F (`) such that x1 and x2 are consecutive in
F (`) and x1 < x2, the numbers (3x1 + x2)/4, (x1 + x2)/2, and (x1 + 3x2)/4. We rounded
each number 1,000 times and confirmed that the rounding routines always return either
x1 or x2, and that the empirical probability distribution matches the expected one. We
validated the correctness of the implementation for values in the underflow range by using
the same technique, whereas for inputs in the overflow range, we repeated the test on
the three values: (3x

(`)
max + x

(`)
bnd)/4, (x

(`)
max + x

(`)
bnd)/2, and (x

(`)
max + 3x

(`)
bnd)/4. The Makefile

target

$ make ctest

runs the test suite for the C implementations.
We designed a MEX interface for MATLAB and Octave which is in charge of parsing

and checking the input, allocating the output, and calling our library to perform the
rounding. In order to show that our function is fully compatible with chop, we designed
a set of tests by modifying the MATLAB function test_chop, the default test suite for
chop. We confirmed that our interface is fully compatible with that of the MATLAB
function chop. The tests for the MEX interface can be run with

$ make mtest

in MATLAB, and with

$ make otest

in Octave.

7. Usage example. When in the CPFloat source directory, the optional auto-tuning
procedure for the C library can be triggered with the command

$ make autotune

which computes the optimal threshold for switching between the sequential and the paral-
lel version of the rounding routines defined in cpfloat binary32.h and cpfloat binary64.h.

The following example, which can be compiled with

$ make example

illustrates how to round a small C array from binary64 to binary16 and bfloat16.

#include <math.h>

#include <stdio.h>

#include "cpfloat_binary64.h"

int main()

{

7 Usage example 19

// Allocate the data structure for target formats and rounding

parameters.

static optstruct *fpopts;

fpopts = malloc(sizeof(optstruct));

// Set up the parameters for binary16 target format.

fpopts ->precision = 11; // Bits in the significand + 1.

fpopts ->emax = 15; // The maximum exponent value.

fpopts ->subnormal = 1; // Support for subnormals is on.

fpopts ->round = 2; // Round toward +infinity.

fpopts ->flip = 0; // Bit flips are off.

fpopts ->p = 0; // Bit flip probability (not used here).

fpopts ->explim = 1; // Exponent in the target format is

limited.

// Validate the parameters in fpopts.

int retval = cpfloat_validate_optstruct(fpopts);

printf("The validation function returned %d.\n", retval);

// Initialize a 2x2 matrix with four arbitrary elements

double X[4] = { (double)1/3, M_PI , M_E , M_SQRT2 };

double Y[4];

printf("Values in binary64 :\n %.15e %.15e\n %.15e %.15e \n",

X[0], X[1], X[2], X[3]);

// Round the values of X to the binary16 format and store in Y

cpfloat (&Y[0], &X[0], 4, fpopts);

printf("Rounded to binary16 :\n %.15e %.15e\n %.15e %.15e \n",

Y[0], Y[1], Y[2], Y[3]);

// Set the precision of the significand to 8 bits ,

// and the maximum exponent to 127, which gives the bfloat16 format

fpopts ->precision = 8;

fpopts ->emax = 127;

// Round the values of X to the bfloat16 and store in Y

cpfloat (&Y[0], &X[0], 4, fpopts);

printf("Rounded to bfloat16 :\n %.15e %.15e\n %.15e %.15e \n",

Y[0], Y[1], Y[2], Y[3]);

return 0;

}

When executed, this program produces the following output, which shows the original
truncated values and the exact rounded values in binary16 and bfloat16.

The validation function returned 0.

Values in binary64:

3.333333333333333e-01 3.141592653589793e+00

2.718281828459045e+00 1.414213562373095e+00

Rounded to binary16:

3.334960937500000e-01 3.142578125000000e+00

2.718750000000000e+00 1.415039062500000e+00

Rounded to bfloat16:

3.339843750000000e-01 3.156250000000000e+00

2.718750000000000e+00 1.421875000000000e+00

8 Performance evaluation 20

8. Performance evaluation. The experiments were run on a machine equipped with
a 12-core Intel Xeon E5-2690 v3 CPU running at 2.6 GHz (Haswell microarchitecture)
and 125 GiB of RAM. The C code was compiled with version 6.4.0 of the GNU Compiler
Collection (GCC) with the optimization flag -O3 and the architecture options -mfma and
-march=native. The MATLAB experiments were run using the GNU/Linux version of
MATLAB 9.8 (R2020a) Update 2. For the parallel version of our code, we used version
4.5 of the OpenMP library. In this section, we compare the following codes.

• cpfloat seq is the sequential C implementation of the algorithms in Section 4.

• cpfloat is a C function that employs the auto-tuning technique discussed in Sec-
tion 6 to switch between the sequential and the parallel implementation of the
algorithm described in Section 4.

• chop mpfr performs the rounding to a lower-precision target format in two steps
by relying on the GNU MPFR library. Our implementation sets the precision and
exponent range of MPFR to those of the target format, then converts the binary64
input to to the mpfr_t data type using the function mpfr_set_d, and finally uses
the function mpfr_get_d to obtain the representation in the storage format. For C
arrays we set the parameters of MPFR only once, and allocate only one variable of
type mpfr_t, in order to reduce the memory footprint of the application and the
overall execution time.

• floatx converts binary64 numbers to a lower-precision target format by invoking
the constructor of the floatx class from the FloatX library.3 This code requires
the parameters of the target format to be specified at compile time, as the floatx

class uses C++ templates and the method is compiled only for the low-precision
formats declared at compile-time.

• floatxr invokes the constructor of the floatxr class from the FloatX library. This
function is more flexible than floatx in that the number of bits of precision and
the maximum exponent allowed for the target format can be specified at runtime.

• cpfloat ml is our MEX interface to cpfloat compiled in MATLAB. For large
matrices, this function relies on the parallel version of our C codes.

• chop ml is the MATLAB function chop, available on GitHub.4

• floatp ml is the MATLAB function f_d_dec2floatp from the FLOATP Toolbox,
available from the website of the author.5

In the plots, we use the shorthand notation 〈fs | ft〉 to denote the conversion of numbers
in the storage format fs to the target format ft. As the numerical validation of the
code has already been discussed in Section 6, here we focus on performance, which we
measure in terms of execution time. We time the C or C++ code by comparing the
value returned by the function clock_gettime with CLOCK_MONOTONIC before and after
the execution, and take the median of 1,000 repetitions in order to reduce the influence

3
https://github.com/oprecomp/FloatX

4
https://github.com/higham/chop/

5
https://gerard-meurant.pagesperso-orange.fr/floatp.zip

https://github.com/oprecomp/FloatX
https://github.com/higham/chop/
https://gerard-meurant.pagesperso-orange.fr/floatp.zip

8 Performance evaluation 21

101 102 103 104

10−6

10−4

10−2

100

𝑛

⟨binary64 | binary16⟩

101 102 103 104

10−6

10−4

10−2

100

𝑛

⟨binary64 | bfloat16⟩

101 102 103 104

10−6

10−4

10−2

100

𝑛

⟨binary64 | TensorFloat-32⟩

chop_mpfr floatxr floatx cpfloat_seq

Fig. 1: Execution time of chop mpfr, floatxr, floatx, and cpfloat seq to convert
matrices of size n from binary64 to binary16 (left), bfloat16 (middle), and
TensorFlow-32 (right) using round-to-nearest with even-on-ties.

of possible outliers. For the MATLAB code, we rely on the function timeit, which runs
a portion of code several times and returns the median of the measurements.

8.1. Performance of the C interface. Figure 1 compares the time required by
chop mpfr, floatxr, floatx, and cpfloat seq to convert square matrices of increas-
ing order n to lower precision. In all the experiments the storage format is binary64, and
we consider three target formats: binary16 (left column), bfloat16 (middle column), and
TensorFloat-32 (right column). In this experiment we use only round-to-nearest with
ties-to-even, as the FloatX library currently does not support any other rounding modes.
We observe, however, that chop mpfr also supports directed rounding as prescribed by
the IEEE 754 floating-point standard.

Broadly speaking, the execution time of the four algorithms grows quadratically with
the order of the matrix to be converted, and thus linearly with the number of entries. The
execution time of floatxr and floatx increases at a regular pace, with the former being
about five times slower than the latter. For n ≥ 20, cpfloat seq is always the fastest
of the four implementations we consider: it is typically about one order of magnitude
faster than floatxr, with a gap that seems to widen as the size of the matrix to be
converted increases, and about a factor two faster than floatx. For the three target
formats in Figure 1, chop mpfr is the slowest of the four algorithms, particularly for
matrices of very small order.

We remark that chop mpfr, floatxr, and cpfloat seq are more flexible than floatx,
as the latter requires the parameters of the target format to be known at compile time,
in order for the compiler to instantiate the templates appropriately.

8.2. Performance of the MATLAB interface. Figure 2 reports the speedup of
cpfloat ml over chop ml. In each plot we consider the conversion of square matrices of
size n between 10 and 10,000 to binary16 (left column), bfloat16 (middle column), and
TensorFloat-32 (right column) using the six rounding modes implemented in chop ml.
As storage format, we consider both binary32 (top row) and binary64 (bottom row).

The input data is obtained by generating an n×nmatrixX of pseudo-random numbers

8 Performance evaluation 22

101 102 103 104
10−1

100

101

102

103

𝑛

⟨binary32 | binary16⟩

101 102 103 104
10−1

100

101

102

103

𝑛

⟨binary32 | bfloat16⟩

101 102 103 104
10−1

100

101

102

103

𝑛

⟨binary32 | TensorFloat-32⟩

101 102 103 104
10−1

100

101

102

103

𝑛

⟨binary64 | binary16⟩

101 102 103 104
10−1

100

101

102

103

𝑛

⟨binary64 | bfloat16⟩

101 102 103 104
10−1

100

101

102

103

𝑛

⟨binary64 | TensorFloat-32⟩

round-to-nearest round-toward-+∞ round-toward-−∞
round-toward-zero stochastic rounding (prop.) stochastic rounding (unif.)

Fig. 2: Ratio of the execution time of chop ml to that of cpfloat ml on n×n matrices of
normal floating-point numbers stored in binary32 (top row) and binary64 (bottom
row).

uniformly distributed in (0, 1), and then adding to each entry of X the constant value

x
(`)
min, which guarantees that xij is distributed uniformly in the interval

(
x
(`)
min, 1 + x

(`)
min

)
for i, j = 1, . . . , n.

In all six cases, the speedup is greater than one for matrices of order 40 or more,
and increases with the size of the input matrix. The two rounding modes for which the
new algorithms bring the most significant gains are the two flavors of stochastic rounding.
This is expected, as for this rounding mode a large fraction of the computation is devoted
to the generation of pseudo-random numbers, an operation for which the new algorithms
have a great advantage over chop ml, as they use a more efficient pseudo-random number
generator. Round-to-nearest and round-toward-zero show a very similar speedup, just
below that of stochastic rounding. The performance gain is somewhat lower for round-
toward-−∞ and round-toward-+∞, and the two rounding modes typically achieve very
similar results, as the underlying algorithms are essentially equivalent in terms of the
operations they perform.

In order to investigate whether the use of subnormal numbers has any impact on the
difference in performance between the two implementations, we repeated the experiments
above with matrices containing only subnormal entries in the target format. In our
experiments, we generated a matrix with these characteristics by first constructing an
n × n matrix X with entries sampled from the uniform distribution over (0, 1), scaling

8 Performance evaluation 23

101 102 103 104
10−1

100

101

102

103

𝑛

⟨binary32 | binary16⟩

101 102 103 104
10−1

100

101

102

103

𝑛

⟨binary32 | bfloat16⟩

101 102 103 104
10−1

100

101

102

103

𝑛

⟨binary32 | TensorFloat-32⟩

101 102 103 104
10−1

100

101

102

103

𝑛

⟨binary64 | binary16⟩

101 102 103 104
10−1

100

101

102

103

𝑛

⟨binary64 | bfloat16⟩

101 102 103 104
10−1

100

101

102

103

𝑛

⟨binary64 | TensorFloat-32⟩

round-to-nearest round-toward-+∞ round-toward-−∞
round-toward-zero stochastic rounding (prop.) stochastic rounding (unif.)

Fig. 3: Ratio of the execution time of chop ml to that of cpfloat ml on n× n matrices
of subnormal floating-point numbers stored in binary32 (top row) and binary64
(bottom row).

its entries by x
(`)
min − x

(`)
minsub, and then adding x

(`)
minsub to the result. This guarantees that

all the entries of X belong to the interval (x
(`)
minsub, x

(`)
min), and are thus subnormal in the

target precision. According to the results reported in Figure 3, the speedups are largely
unaffected when the storage format is binary64, but tend to be larger for n up to 1,000
if the storage format is binary32 and the target format is binary16 or bfloat16.

The result of a similar comparison between cpfloat and floatp ml are given in
Figure 4. In this case, we limit n to 100, because of the large execution time of the
former code on this test set. As with chop ml, the speedup grows linearly with the
number of elements in the matrix being converted. However, floatp ml seems to be less
efficient than chop ml at the task we examine: the speedup is typically above 100, and
is always above 1,000 for the TensorFloat-32 format.

8.3. Overhead of the MATLAB interface. As a final test, we consider the overhead
introduced by MATLAB when calling the underlying C implementation of the rounding
algorithms. In Figure 5 we compare the execution time required to convert a matrix
to binary16 by means of a direct call to the C code (left column) with that required
by a call to the MEX interface from MATLAB (right column). As the performance of
the two algorithms is very similar and the data in the two series is hard to compare
directly, we provide the speedup in the third column. As done in previous experiments,

8 Performance evaluation 24

101 102
101

102

103

104

105

𝑛

⟨binary64 | binary16⟩

101 102
101

102

103

104

105

𝑛

⟨binary64 | bfloat16⟩

101 102
101

102

103

104

105

𝑛

⟨binary64 | TensorFloat-32⟩

101 102
101

102

103

104

105

𝑛

⟨binary64 | binary16⟩

101 102
101

102

103

104

105

𝑛

⟨binary64 | bfloat16⟩

101 102
101

102

103

104

105

𝑛

⟨binary64 | TensorFloat-32⟩

round-to-nearest round-toward-+∞ round-toward-−∞
round-toward-zero stochastic rounding (prop.) stochastic rounding (unif.)

Fig. 4: Ratio of the execution time of floatp ml to that of cpfloat ml on n×n matrices
of normal (top row) and subnormal (bottom row).

we repeat the experiment for both binary32 (top row) and binary64 (bottom row). We
remark that the C function was tuned by using the make autotune command, whereas
for the MEX interface we used cpfloat_autotune, a MATLAB function included in the
software package.

By looking at the raw execution time, we can see that in our implementation stochastic
rounding is the slowest rounding mode, whereas the performance of the other rounding
modes is so similar that the lines are hard to distinguish for both the C interface and the
MEX interface. The data in the right-most column shows that for both storage formats
we consider, the overhead of the MEX interface is significant for small matrices, but
becomes negligible for matrices of order 3,000 or larger.

We conclude with an important observation. Our results indicate that MATLAB code
that requires the functionalities of cpfloat ml should be translated into C in order to
obtain the maximum efficiency. We would like to stress, however, that this translation
might bring only a minor performance gain, and in fact not be worth the effort unless
the cpfloat function is used extensively on matrices of small size. In fact, the overhead
of the MEX interface is small in an absolute sense, and for the small matrices where
it is noticeable, the overall execution time of both cpfloat and cpfloat ml is below 5
milliseconds. This suggests that switching to a pure C implementation would bring only
a marginal benefit in most cases.

9 Summary and future work 25

102 103 104
10−5

10−4

10−3

10−2

10−1

100

𝑛

cpfloat in binary32.

102 103 104
10−5

10−4

10−3

10−2

10−1

100

𝑛

cpfloat_ml in binary32.

102 103 104
0

2

4

6

8

10

𝑛

Speedup in binary32.

102 103 104
10−5

10−4

10−3

10−2

10−1

100

𝑛

cpfloat in binary64.

102 103 104
10−5

10−4

10−3

10−2

10−1

100

𝑛

cpfloat_ml in binary64.

102 103 104
0

2

4

6

8

10

𝑛

Speedup in binary64.

ties-to-away ties-to-zero ties-to-even
round-toward-+∞ round-toward-−∞ round-toward-zero
stochastic rounding (prop.) stochastic rounding (unif.) round-to-odd

Fig. 5: Execution time, in seconds, of cpfloat (first column) and cpfloat ml (second
column) on matrices of increasing order n and target format binary16. The third
column represents the ratio of the execution time in the first column to that in
the second.

9. Summary and future work. Motivated by the growing number of tools and li-
braries for simulating low-precision arithmetic, we considered the problem of rounding
floating-point numbers to low precision in software. We developed low-level algorithms
for a number of rounding modes, explained how to implement them efficiently using bit
manipulation, and how to validate their behavior experimentally by means of exhaustive
testing. We developed CPFloat, an efficient C library that implements all the algorithms
discussed here and can be used from within MATLAB and Octave by means of a MEX
interface we provide. Our experimental results showed that the new implementations
outperform existing alternatives in C, C++, and MATLAB.

Traditionally, floating-point arithmetic has been the most widely adopted technique
for working with non-integer numbers in high-performance scientific computing, but al-
ternative methods have recently begun to gain popularity. In particular, we believe that
the techniques we developed here could be adapted to posit arithmetic [19, 9], a general-
ization of the IEEE 754 floating-point number format, and to fixed-precision arithmetic,
the de facto standard technique for working with reals on systems that are not equipped
with a floating-point unit. This will be the subject of future work.

9 Summary and future work 26

Acknowledgments. The authors thank Nicholas J. Higham for useful discussions
about the MATLAB function chop and for insightful feedback on early drafts of this
manuscript. The authors are also grateful to Theo Mary for testing the MEX interface
to CPFloat and for reporting bugs affecting the software.

References.

[1] Arm Limited, Arm architecture reference manual, Tech. Report ARM DDI 0487F.c
(ID072120), Mar. 2020.

[2] S. Boldo and G. Melquiond, Emulation of a FMA and correctly rounded
sums: Proved algorithms using rounding to odd, IEEE Trans. Comput., 57 (2008),
p. 462–471.

[3] J. M. Bull, Measuring synchronisation and scheduling overheads in OpenMP, in
Proceedings of First European Workshop on OpenMP, Lund, Sweden, Sept. 1999,
pp. 99–105.

[4] J. M. Bull, F. Reid, and N. McDonnell, A microbenchmark suite for OpenMP
tasks, Lecture Notes in Computer Science, (2012), p. 271–274.

[5] N. Burgess, J. Milanovic, N. Stephens, K. Monachopoulos, and
D. Mansell, Bfloat16 processing for neural networks, Proceedings of the 26th IEEE
Symposium on Computer Arithmetic, (2019), pp. 88–91.

[6] M. P. Connolly, N. J. Higham, and T. Mary, Stochastic rounding and its
probabilistic backward error analysis, MIMS EPrint 2020.12, Manchester Institute
for Mathematical Sciences, The University of Manchester, UK, Apr. 2020. Revised
August 2020.

[7] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu,
D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-
H. Weng, A. Wild, Y. Yang, and H. Wang, Loihi: A neuromorphic manycore
processor with on-chip learning, IEEE Micro, 38 (2018), pp. 82–99.

[8] A. Dawson and P. D. Düben, rpe v5: An emulator for reduced floating-point
precision in large numerical simulations, Geosci. Model Dev., 10 (2017), pp. 2221–
2230.

[9] F. de Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, Posits: The good,
the bad and the ugly, Proceedings of the Conference for Next Generation Arithmetic,
(2019), pp. 1–10.

[10] M. Fasi and M. Mikaitis, Algorithms for stochastically rounded elementary
arithmetic operations in IEEE 754 floating-point arithmetic, MIMS EPrint 2020.9,
Manchester Institute for Mathematical Sciences, The University of Manchester, UK,
Mar 2020.

https://developer.arm.com/documentation/ddi0487/fc/
http://dx.doi.org/10.1109/tc.2007.70819
http://dx.doi.org/10.1109/tc.2007.70819
https://www.epcc.ed.ac.uk/sites/default/files/PDF/ewomp99paper.pdf
http://dx.doi.org/10.1007/978-3-642-30961-8_24
http://dx.doi.org/10.1007/978-3-642-30961-8_24
http://dx.doi.org/10.1109/arith.2019.00022
http://eprints.maths.manchester.ac.uk/2778/
http://eprints.maths.manchester.ac.uk/2778/
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.5194/gmd-10-2221-2017
http://dx.doi.org/10.5194/gmd-10-2221-2017
http://dx.doi.org/10.1145/3316279.3316285
http://dx.doi.org/10.1145/3316279.3316285
http://eprints.maths.manchester.ac.uk/2758/
http://eprints.maths.manchester.ac.uk/2758/

9 Summary and future work 27

[11] G. Flegar, F. Scheidegger, V. Novaković, G. Mariani, A. E. Tomás,
A. C. I. Malossi, and E. S. Quintana-Ort́ı, FloatX: A C++ library for cus-
tomized floating-point arithmetic, ACM Trans. Math. Software, 45 (2019), p. 1–23.

[12] G. E. Forsythe, Round-off errors in numerical integration on automatic machin-
ery, Bull. Amer. Math. Soc., 56 (1950), pp. 55–64.

[13] , Reprint of a note on rounding-off errors, SIAM Rev., 1 (1959), p. 66–67.

[14] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
MPFR: A multiple-precision binary floating-point library with correct rounding, ACM
Trans. Math. Software, 33 (2007), pp. 13:1–13:15.

[15] D. Goldberg, What every computer scientist should know about floating-point
arithmetic, ACM Comp. Surv., 23 (1991), p. 5–48.

[16] F. Goualard, Generating random floating-point numbers by dividing integers:
A case study, in Computational Science – ICCS 2020, V. V. Krzhizhanovskaya,
G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, and J. Teixeira,
eds., Lecture Notes in Computer Science, Cham, Switzerland, 2020, Springer-Verlag,
p. 15–28.

[17] Graphcore Limited, IPU programmer’s guide, 2020.

[18] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, Deep
learning with limited numerical precision, in Proceedings of the 32nd International
Conference on Machine Learning, F. Bach and D. Blei, eds., vol. 37 of Proceedings
of Machine Learning Research, Lille, France, July 2015, PMLR, pp. 1737–1746.

[19] J. L. Gustafson and I. T. Yonemoto, Beating floating point at its own game:
Posit arithmetic, Supercomputing Frontiers and Innovations, 4 (2017), pp. 71–86.

[20] N. J. Higham and S. Pranesh, Simulating low precision floating-point arithmetic,
SIAM J. Sci. Comput., 41 (2019), pp. C585–C602.

[21] M. Hopkins, M. Mikaitis, D. R. Lester, and S. Furber, Stochastic rounding
and reduced-precision fixed-point arithmetic for solving neural ordinary differential
equations, Philos. Trans. R. Soc. A, 378 (2020).

[22] Intel Corporation, BFLOAT16—hardware numerics definition. White paper.
Document number 338302-001US, Nov. 2018.

[23] , Intel architecture instruction set extensions and future features programming
reference, Mar. 2020.

[24] International Business Machines Corporation, Power ISA version 3.0 B,
2017.

[25] G. Meurant, FLOATP Toolbox, Matlab software, variable precision floating point
arithmetic, 2020.

http://dx.doi.org/10.1145/3368086
http://dx.doi.org/10.1145/3368086
http://dx.doi.org/10.1090/S0002-9904-1950-09343-4
http://dx.doi.org/10.1090/S0002-9904-1950-09343-4
http://dx.doi.org/10.1137/1001011
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
http://dx.doi.org/10.1007/978-3-030-50417-5_2
http://dx.doi.org/10.1007/978-3-030-50417-5_2
https://www.graphcore.ai/docs/ipu-programmers-guide
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v37/gupta15.html
http://dx.doi.org/10.14529/jsfi170206
http://dx.doi.org/10.14529/jsfi170206
http://dx.doi.org/10.1137/19M1251308
http://dx.doi.org/10.1098/rsta.2019.0052
http://dx.doi.org/10.1098/rsta.2019.0052
http://dx.doi.org/10.1098/rsta.2019.0052
https://software.intel.com/en-us/download/bfloat16-hardware-numerics-definition
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://ibm.ent.box.com/s/1hzcwkwf8rbju5h9iyf44wm94amnlcrv
https://gerard-meurant.pagesperso-orange.fr/floatp.zip
https://gerard-meurant.pagesperso-orange.fr/floatp.zip

9 Summary and future work 28

[26] C. B. Moler, “Half precision” 16-bit floating point arithmetic. Blog post, Dec.
2017.

[27] J.-M. Muller, On the definition of ulp(x), Research Report RR-5504, LIP RR-
2005-09, INRIA, LIP, May 2005.

[28] NVIDIA Corporation, NVIDIA Tesla P100 GPU architecture, Tech. Report
WP-08019-001 v01.1, 2016.

[29] , NVIDIA A100 tensor core GPU architecture, 2020. NVIDIA whitepaper v1.0.

[30] I. of Electrical and E. Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985, Institute of Electrical and Electron-
ics Engineers, Piscataway, NJ, USA, Oct. 1985. Reprinted in SIGPLAN Notices,
22(2):9–25, 1987.

[31] , IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008 (revision of
IEEE Std 754-1985), Institute of Electrical and Electronics Engineers, Piscataway,
NJ, USA, Aug. 2008.

[32] , IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (revision of
IEEE Std 754-2008), Institute of Electrical and Electronics Engineers, Piscataway,
NJ, USA, July 2019.

[33] M. E. O’Neill, PCG: A family of simple fast space-efficient statistically good al-
gorithms for random number generation, Tech. Report HMC-CS-2014-0905, Harvey
Mudd College, Claremont, CA, Sept. 2014.

[34] M. L. Overton, Numerical Computing with IEEE Floating Point Arithmetic, So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.

[35] Radeon Technologies Group, Radeon’s next-generation Vega architecture,
tech. report, Advanced Micro Devices, 2017. File no longer available on the
AMD website. Archived version at https://en.wikichip.org/w/images/a/a1/

vega-whitepaper.pdf.

[36] P. Roux, Innocuous double rounding of basic arithmetic operations, J. Formaliz.
Reason., 7 (2014), pp. 131–142.

[37] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan, Train-
ing deep neural networks with 8-bit floating point numbers, in Advances in Neural
Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, eds., Curran Associates, Inc., Montreal,
Canada, Dec. 2018, pp. 7675–7684.

[38] J. H. Wilkinson, Rounding Errors in Algebraic Processes, Notes on Applied Sci-
ence No. 32, Her Majesty’s Stationery Office, London, 1963. Also published by
Prentice-Hall, Englewood Cliffs, NJ, USA. Reprinted by Dover, New York, 1994.

[39] T. Zhang, Z. Lin, G. Yang, and C. De Sa, QPyTorch: A low-precision arith-
metic simulation framework. arXiv:1910.04540 [cs.LG], Oct. 2019.

https://blogs.mathworks.com/cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic
https://hal.inria.fr/inria-00070503
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
http://dx.doi.org/10.1137/1.9780898718072
https://en.wikichip.org/w/images/a/a1/vega-whitepaper.pdf
https://en.wikichip.org/w/images/a/a1/vega-whitepaper.pdf
http://dx.doi.org/10.6092/issn.1972-5787/4359
http://papers.nips.cc/paper/7994-training-deep-neural-networks-with-8-bit-floating-point-numbers.pdf
http://papers.nips.cc/paper/7994-training-deep-neural-networks-with-8-bit-floating-point-numbers.pdf
http://arxiv.org/abs/1910.04540
http://arxiv.org/abs/1910.04540

