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ABSTRACT

We explore the floating-point arithmetic implemented in the NVIDIA tensor cores,
which are hardware accelerators for mixed-precision matrix multiplication available
on the Volta, Turing, and Ampere microarchitectures. Using Volta V100 and Turing
T4 graphics cards, we determine what precision is used for the intermediate results,
whether subnormal numbers are supported, what rounding mode is used, in which
order the operations underlying the matrix multiplication are performed, and whether
partial sums are normalized. These aspects are not documented by NVIDIA, and we
gain insight by running carefully designed numerical experiments on these hardware
units. Knowing the answers to these questions is important if one wishes to: 1)
accurately simulate NVIDIA tensor cores on conventional hardware; 2) understand the
differences between results produced by code that utilizes tensor cores and code that
uses only IEEE 754-compliant arithmetic operations; and 3) build custom hardware
whose behavior matches that of NVIDIA tensor cores. As part of this work we provide
a test suite that can be easily adapted to test newer versions of the NVIDIA tensor
cores as well as similar accelerators from other vendors, as they become available.
Moreover, we identify a non-monotonicity issue affecting floating-point multi-operand
adders if the intermediate results are not normalized after each step.

1 INTRODUCTION

One hundred and twelve of the computers in the June 2020 TOP500 list1 are equipped
with NVIDIA graphics processing units (GPUs) based on the Volta, Turing, and Ampere
microarchitectures. A prominent feature of these GPUs is the tensor cores, which
are specialized hardware accelerators for performing a matrix multiply-accumulate
operation. Here, in particular, we focus on the tensor cores available on the NVIDIA
V100 (Volta microarchitecture) and T4 (Turing architecture) GPUs, which implement

1https://www.top500.org/lists/top500/list/2020/06/



Table 1. Processing units or architectures equipped with mixed-precision matrix
multiply-accumulate accelerators. The notation m× k×n refers to the matrix
multiply-accumulate operation in (1) where C and D are m×n matrices, and A and B
have size m× k and k×n, respectively.

Year of
Device

Matrix Input Output
Reference

release dimensions format format

2016 Google TPU v2 128×128×128 bfloat16 binary32 (Google, 2020)
2017 Google TPU v3 128×128×128 bfloat16 binary32 (Google, 2020)
2017 NVIDIA V100 4×4×4 binary16 binary32 (NVIDIA, 2017)
2018 NVIDIA T4 4×4×4 binary16 binary32 (NVIDIA, 2018)
2019 Arm v8.6-A 2×4×2 bfloat16 binary32 (Arm Ltd., 2020)

2020 NVIDIA A100

8×8×4 bfloat16 binary32

(NVIDIA, 2020b)
8×8×4 binary16 binary32
4×2×2 binary64 binary64
4×8×4 TensorFloat-32 binary64

the operation

D = C + A × B,
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

binary16 or
binary32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

binary16 or
binary32

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

binary16

×


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

binary16

(1)

where A, B, C, and D are 4×4 matrices and “binaryxy” denotes the xy-bit format from
the IEEE Standard 754 for floating-point arithmetic (IEEE, 2019). The entries of A
and B must be in binary16 format, whereas those of C and D can be either binary16
or binary32 floating-point numbers depending on the accumulation mode. The newer
A100 (Ampere microarchitecture) GPUs support a wider range of matrix dimensions, as
well as an additional floating-point format, as shown in Table 1. The element di j in (1)
can be seen as the sum of ci j and the dot product between the ith row of A and the jth
column of B, so that, for instance

d11 = a11b11 +a12b21 +a13b31 +a14b41 + c11. (2)

Unfortunately, NVIDIA provides very little information about the numerical features
of these units, and many questions naturally arise. The white paper that describes the
Volta microarchitecture (NVIDIA, 2017, p. 15) states that2

Tensor Cores operate on FP16 input data with FP32 accumulation. The FP16
multiply results in a full precision product that is then accumulated using FP32
addition with the other intermediate products for a 4×4×4 matrix multiply.

2The binary16 and binary32 formats are sometimes referred to as fp16 (or FP16) and fp32 (or FP32),
respectively.
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The official documentation (NVIDIA, 2020a) adds only a few more details:

Element-wise multiplication of matrix A and B is performed with at least single
precision. When .ctype or .dtype is .f32, accumulation of the intermediate values is
performed with at least single precision. When both .ctype and .dtype are specified
as .f16, the accumulation is performed with at least half precision. The accumulation
order, rounding and handling of subnormal inputs is unspecified.

From a numerical point of view, many essential aspects of tensor cores are not spec-
ified. This lack of key information makes it challenging to simulate tensor cores on
conventional IEEE 754-compliant systems and to build hardware that can reproduce
their behavior. Moreover, it can lead to unexpected differences between the results
computed on NVIDIA devices with tensor cores enabled or disabled.

We now briefly recall some key aspects of IEEE-compliant floating-point systems
and the definitions and main properties of normalization and subnormal numbers, which
are two important concepts in this work. A binary floating-point number x has the
form (−1)s×m×2e−p, where s is the sign bit, p is the precision, m ∈ [0, 2p−1] is the
integer significand, and e ∈ [emin, emax], with emin = 1− emax, is the integer exponent.
In order for x to have a unique representation, the number system is normalized so
that the most significant bit of m—the implicit bit in IEEE 754 parlance—is always set
to 1 if |x| ≥ 2emin . Therefore, all floating-point numbers with m≥ 2p−1 are normalized.
Numbers below the smallest normalized number 2emin in absolute value are called
subnormal numbers, and are such that e = emin and 0 < m < 2p−1. Subnormal numbers
provide a means to represent values in the subnormal range, that is, between 0 and the
minimum normalized number. They have lower precision than normalized values (from
p−1 bits to as low as 1 bit), and require special treatment to be implemented in software
and hardware. Therefore it is not uncommon for hardware manufacturer not to support
them, in order to avoid performance or chip area overheads.

In implementing floating-point operations the result of an operation must be normal-
ized (if possible) by shifting the significand left or right until it falls within the interval
[2p−1,2p− 1] and adjusting the exponent accordingly. More details can be found in
Muller et al. (2018, Sec. 7.3).

The IEEE 754 standard for floating-point arithmetic provides a somewhat relaxed
set of requirements for reduction operations such as dot product and multi-operand
addition (IEEE, 2019, Sec. 9.4): the order in which the partial sums should be evaluated
is not prescribed, and the use of a higher-precision internal format in allowed. In
particular, the standard does not specify: 1) whether this internal format should be
normalized, as it would be if the multi-operand addition were implemented using IEEE
754 elementary arithmetic operations, 2) which rounding mode should be used, and 3)
when the rounding should happen. These loose requirements can potentially cause the
results computed with a given multi-operand addition unit to be significantly different
from those obtained using other hardware implementations or a software implementation
based on IEEE 754-compliant elementary arithmetic operations.

With matrix multiplication being ubiquitous in artificial intelligence, accelerators for
mixed-precision matrix multiply-accumulate operations are becoming widely available,
as Table 1 shows. Hardware vendors often design these units focusing on performance
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rather than numerical reliability, and this may lead to the implementation of unconven-
tional, non-IEEE-compliant arithmetics. Some of the hardware units in Table 1, for
instance, use bfloat16, a 16-bit format that allocates 8 bits to the significand (including
the implicit bit) and 8 bits to the exponent and does not support subnormal numbers (Intel
Corporation, 2018, 2020). It is worth noting that Volta is the first NVIDIA microarchi-
tecture supporting tensor cores—the older Pascal GPUs, such as the P100, which are
not reported in Table 1, supported binary16 arithmetic but did not include tensor cores.
The NVIDIA Ampere A100 GPUs introduce a new 19-bit format called TensorFloat-32,
which was designed to have the same dynamic range as binary32 (8 bits) and the same
precision as binary16 (11 fraction bits, including the implicit bit) (NVIDIA, 2020b). In
order to better understand the differences between the results computed using different
systems, it is necessary to develop techniques to probe the numerical features of these
units.

The situation is reminiscent of that before the widespread adoption of the IEEE
754-1985 standard, when different floating-point arithmetics had different properties.
To address the issue, Kahan (1981) developed a program called paranoia that analyzes
and diagnoses a floating-point arithmetic, and it was subsequently translated into C
by Karpinski (1985). We follow a similar route: using idiosyncrasies of floating-point
arithmetic, we design tests to better understand the numerical behavior of tensor cores,
extending the testing approach recently introduced by Hickmann and Bradford (2019).
Our aim is to explore the following questions.

• Are subnormal inputs supported or are they flushed to zero? Can tensor cores
produce subnormal numbers?

• Are the multiplications in (2) exact and the additions performed in binary32
arithmetic, resulting in four rounding errors for each element of D? In what order
are the four additions in (2) performed?

• What rounding mode is used in (2)?

• Is the result of each floating-point operation in (2) normalized, or do tensor cores
only normalize the final sum? What rounding mode is used for the normalization?

The answers to these questions are of wide interest because these accelerators, despite
being introduced to accelerate the training of deep neural networks (NVIDIA, 2017,
p. 12), are increasingly being used in general-purpose scientific computing, where their
fast low precision arithmetic can be exploited in mixed-precision algorithms (Abdelfattah
et al., 2020), for example in iterative refinement for linear systems (Haidar et al., 2018a,b,
2020).

The results discussed here were produced by running our test suite, which is freely
available on Github.3 The file tc test numerics.cu can be compiled following
the instructions in the README.md file, so as to produce an executable that will run
all the tests we describe in the following sections and produce a report. We run the
test suite on two machines, one equipped with an NVIDIA Tesla V100 SXM2 16GB
GPU (Volta microarchitecture), and one equipped with an NVIDIA Tesla T4 16GB

3Available at https://github.com/mfasi/tensor-cores-numerical-behavior.
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GPU (Turing microarchitecture), using version 10.1 of the CUDA library. Note that the
latest Ampere GPUs require CUDA version 11 in order to utilize the latest numerical
features such as the TensorFloat-32 numerical type. Some graphic cards designed for
intensive graphic processing workloads such as video gaming, computer-aided design,
or computer-generated imagery, also include tensor cores: all the GPUs in the GeForce
20 and Quadro RTX series are based on the Turing microarchitecture, and those in
the recently announced GeForce 30 series are based on the Ampere microarchitecture.
We do not consider this wealth of different graphic cards here, as our focus is on the
NVIDIA hardware that is present in the supercomputers in the TOP500 list and target
scientific computing applications. We stress, however, that the ideas we employ are
very general and can be exploited to understand the numerical features of any hardware
accelerator based on operations of the form (2).

Finally, we remark that the binary16 arithmetic implemented in the NVIDIA CUDA
cores is not fully IEEE 754 compliant, as round-to-nearest is the only rounding mode
implemented for elementary arithmetic operations (NVIDIA, 2020c)—we use this
observation in Section 3.1.1.

2 PREVIOUS WORK
From a hardware perspective, instruction-level details, register configuration, and mem-
ory layout of the tensor cores in the NVIDIA Volta (Jia et al., 2018b; Yan et al., 2020)
and Turing (Yan et al., 2020; Jia et al., 2018a) GPUs have been extensively described.
Another study by Basso et al. (2020) explores the reliability of tensor cores in terms of
rate of hardware errors in matrix multiplications. The main finding is that low-precision
operations and usage of tensor cores increase the amount of correct data produced by the
GPU, despite increasing the impact of numerical errors due to the use of lower-precision
data. In order to quantify the accuracy of tensor cores, Blanchard et al. (2020) provide
a rounding error analysis of what they call a block fused multiply-add (FMA), a gen-
eralization of the multiply-accumulate operation in (1) in which the matrix sizes, the
precisions of the arguments, and the internal precision of the accumulator are taken as
parameters.

Markidis et al. (2018) discuss various aspects of tensor cores and propose a tech-
nique, called precision refinement, to enhance the accuracy of mixed-precision matrix
multiplication. Improving the accuracy of tensor-core-based matrix multiplications was
further explored by Mukunoki et al. (2020).

None of the these sources, however, examines to what extent tensor cores conform to
the IEEE 754 standard or investigates how tensor cores compare with a matrix multiply-
accumulate operation based on dot products implemented in software. Hickmann
and Bradford (2019) explore some details of the numerical behavior of tensor cores
with the main goal of inferring the hardware-level design of these units. Our work
follows a similar approach and complements their findings by supplying further insights
into the subject. We show that the additions in (2) are performed starting from the
operand that is largest in magnitude, that at least 2 extra bits are used for carries, and
that (2) may be non-monotonic for certain sets of inputs. Furthermore, we consider the
second generation of tensor cores, which equips the Turing T4 GPUs, and conclude
that their internal accumulator has an extra bottom bit compared with the tensor cores
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Table 2. Summary of the subsections of Section 3.

Section Devices used and decription of tests performed on them

3.1 Tests performed on the NVIDIA V100 (Volta) GPU.
3.1.1 Support for subnormal numbers (on the inputs, outputs and the computation

of subnormals from the normalized inputs).
3.1.2 Accuracy of the inner products performed as part of matrix multiply-

accumulate (accuracy of scalar multiplies, accuracy of addition, and number
of rounding errors introduced).

3.1.3 Tests for determining what rounding modes are used in the inner products
and the final rounding.

3.1.4 Tests that explore the number of extra bits in the alignment step of floating-
point addition inside the inner product (extra bits at the bottom of the
internal significand).

3.1.4 A test to find out whether the normalization is performed only at the end or
after each addition in the computation of the inner products.

3.1.4 A similar test for the normalization in subtraction.
3.1.4 Tests for determining the number of extra bits for carries in floating-point

addition (extra bits at the top of the internal significand).
3.1.4 A test to check the monotonicity of the inner products.
3.2 All tests from Section 3.1 rerun on the NVIDIA T4 (Turing) GPU.

on V100 GPUs. Finally, unlike Hickmann and Bradford (2019) we make our test suite
freely available, in order to guarantee reproducibility and facilitate testing other matrix
multiply-accumulate units, such as the third generation tensor cores in the latest NVIDIA
A100 GPUs (NVIDIA, 2020b).

3 RESULTS
In this section we describe our testing methodology and give the results obtained on the
two NVIDIA graphics cards we considered. Table 2 summarizes the tests we performed
and indicates the subsections in which they are described. Our methodology is to find
test cases that demonstrate specific numerical behaviours and, by making the (quite
reasonable) assumption that the hardware has a consistent behavior across the input
space, conclude that the discovered features should be true for all possible inputs.

3.1 NVIDIA Volta Tensor Cores
Tensor cores can be accessed using the cuBLAS library, or the native hardware assem-
bly instructions HMMA.884 (Jia et al., 2018b,a) and HMMA.1688 (Yan et al., 2020;
Jia et al., 2018a). In our experiments, we opted for the warp-level C++ function
wmma::mma sync(), which performs a 16× 16× 16 matrix multiply-accumulate
operation. This is the lowest level interface to access the tensor cores in the NVIDIA
CUDA programming environment. In order to use only a single tensor core, we set
all but the top left 4×4 blocks to 0. We ensure that our experiments do use the tensor
cores by running our test suite with the NVIDIA profiler nvprof, which shows the
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Table 3. Parameters of various floating-point formats: number of digits of precision
including the implicit bit (p), boundary of the exponent range (emin and emax), machine
epsilon (ε), and smallest positive representable normal ( fmin) and subnormal (smin)
numbers. The formats from the IEEE 754 standard (IEEE, 2019) are binary16,
binary32, and binary64.

binary16 bfloat16 TensorFloat-32 binary32 binary64

p 11 8 11 24 53
emax 15 127 127 127 1023
emin −14 −126 −126 −126 −1022
ε 2−10 2−7 2−10 2−23 2−52

fmin 2−14 2−126 2−126 2−126 2−1022

smin 2−24 2−133 2−136 2−149 2−1074

utilization levels of different hardware components on the GPU, and by observing that
the assembly code produced by the nvcc compiler contains HMMA instructions. At the
software level, tensor cores can be used in either binary16 or binary32 mode, which
defines the number format of D in (1).

The experiments in this section were run on an NVIDIA Tesla V100 SXM2 16GB
(Volta microarchitecture) GPU.

3.1.1 Support for subnormal numbers
We start by investigating the support for subnormal numbers, as this knowledge will
dictate what range of input values we are allowed to use in subsequent tests.

Table 3 compares precision, exponent range, machine epsilon, and magnitude of
smallest representable subnormal and normal number for various floating-point number
formats, including those supported by the three generations of tensor cores. By looking
at the data in the table, we can make two important observations. First, conversion from
binary16 to binary32 does not result in subnormal numbers. Second, the product of two
binary16 numbers requires at most 22 bits for the significand, 6 bits for the exponent
and one for the sign, and thus can be represented exactly in binary32.

As for tensor cores, there are multiple questions regarding the support of subnormal
numbers.

1. Can tensor cores take binary16 subnormal numbers as inputs for A and B in (2)
without flushing them to zero, use them in computation, and return binary16 or
binary32 normal or subnormal results?

2. Can tensor cores take binary32 subnormal numbers as inputs for C in (2) without
flushing them to zero, use them in computation, and return subnormal binary32
results?

3. Can tensor cores compute subnormal numbers from normal numbers and return
them?

The first question can easily be addressed by considering (2) and setting a11 = 2−24,
b11 = 22 (arbitrarily chosen), and the remaining elements to zero. The tensor cores
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return the subnormal result a11b11 = 2−22 in both binary16 and binary32 mode, thereby
answering the first question in the affirmative.

An analogous idea can be used to clarify the second point: setting c11 to the smallest
positive binary32 subnormal 2−149 and all the elements of A and B to zero yields
d11 = 2−149, which confirms that the subnormal number c11 is not altered by the dot
product in (2). We note, however, that whether support for binary32 subnormals is
needed is questionable. The absolute value of the smallest nonzero value that can be
produced from the multiplication of two binary16 numbers is 2−48, thus c11 would
not contribute to the sum if it were a binary32 subnormal: in binary32 arithmetic with
round-to-nearest, one has that 2−48 + x > 2−48 only if x > 2−48 ·2−24 = 2−72, which is
normal in binary32.

For the third question, we can obtain subnormal numbers as outputs in several ways.
For instance, we can set a11 to 2−14, the smallest normal number in binary16, and b11 to
2−1, and confirm that tensor cores return the binary16 subnormal 2−15 in both binary16
and binary32 modes. Another possibility is to set a11 = 2−14, b11 = 1, and c11 =−2−15,
which produces the subnormal binary16 number d11 = 2−15. As mentioned above, it
is not possible to obtain subnormal binary32 number from binary16 inputs in (2). In
summary, these experiments demonstrate that there is full support for subnormal inputs
in tensor cores.

One might wonder whether tensor cores natively support subnormals or some degree
of software interaction is present. The NVIDIA profiler confirms that the experiments
discussed in this section make use of the tensor cores, but we implemented an additional
test to further reinforce the evidence that subnormals are supported in hardware. In
Section 3.1.3 we show that tensor cores use round-towards-zero. We can use the fact
that CUDA cores provide only round-to-nearest for binary16 computations to show that
subnormals are in fact manipulated with tensor cores. In order to do so, we set a11 and
a12 to 1, b11 to the binary16 subnormal 2−23 +2−24, b21 to 2 and the other elements of
A and B to 0. Since the addition in (2) is done in binary32 arithmetic, the smallest value
that can be exactly added to b21 = 2 is 2−22. In this case, b11 = 2−23 +2−24 = 3

4 ·2
−22

will either be round down to 0, if round-towards-zero is being used, or rounded up
to 2−22, if the summation is carried out using the CUDA cores, which support only
round-to-nearest. This computation returned the value 2, meaning that b11 was rounded
down—further indicating that subnormals are natively supported by tensor cores.

3.1.2 Accuracy of the dot products
Our second goal is to test the accuracy of the dot product (2) with the tensor cores. The
first step is to check that the products of two binary16 values are computed exactly,
which implies that the products must be kept in some wider intermediate format and
accumulated without being rounded back to binary16. Specifically we want to test that
a1ibi1, for i = 1, . . . , 4, is computed exactly. This can be achieved by ensuring that
the four multiplications produce floating-point numbers that are not representable in
binary16 and checking that these are preserved and returned as binary32 entries of D.

In order to demonstrate this, we set the first row of A and the first column of B to
1−2−11 and c11 to 0. The exact value of each partial products is

(1−2−11) · (1−2−11) = 1−2−10 +2−22,

8/17



which, depending on the rounding mode, would be rounded to either 1−2−10 or 1−2−11,
if the products were stored in binary16. As tensor cores produce the exact binary32
answer d11 = 4 · (1−2−10 +2−22), we conclude that partial products are held exactly.

Another question is whether the precision of the 5-operand addition in (2) changes
in any way when binary16 is used to store the elements of the matrices C and D in (1).
The test is to set a11 = b11 = a12 = 1−2−11, b21 = 2−11, and the remaining elements to
0. In this test, the first product a11b11 = 1−2−10 +2−22 requires precision higher than
binary16 to be represented, whereas the second evaluates to a12b21 = 2−11−2−22. The
sum of these two products is a11b11 +a12b21 = 1−2−10 +2−11, which is representable
in binary16 but could not be computed exactly by a binary16 accumulator, since storing
the first product requires higher precision. Indeed we found that tensor cores output the
exact value, confirming that the partial products are still held exactly even when C and
D are in binary16 format.

A third question concerns the number of rounding errors in the 5-operand adder that
accumulates the partial products. The dot product in (2) contains four additions, three to
sum up the exact partial products and a fourth to add the binary32 argument c11. Our
expectation is that the additions are done in binary32 rather than exactly, as indicated
by NVIDIA (2017, 2020a). In order to confirm this, we can set the first row of A to 1,
thereby reducing (2) to

d11 = b11 +b21 +b31 +b41 + c11, (3)

and then run 5 different cases with one of the addends in (3) set to 1 and the rest set to
2−24. In this test, an exact addition would return 1+2−22, whereas inexact binary32
arithmetic would cause 4 round-off errors when adding 2−24 to 1, causing the number 1
to be returned. All permutations return d11 = 1, leading to the following conclusions.

• In the worst case each element of D includes four rounding errors, which conforms
to the block FMA model used by Blanchard et al. (2020, Sec. 2.1).

• The partial products in (2) are not accumulated in a fixed order, but always starting
from the largest value in magnitude. This sorting is necessary in order to know
which arguments require to be shifted right in the significand alignment step
of a standard floating-point addition algorithm (Muller et al., 2018, Sec. 7.3),
(Tenca, 2009), and is most likely done in hardware. This is in line with the
literature on hardware dot products (Kim and Kim, 2009; Tao et al., 2013; Sohn
and Swartzlander, 2016; Kaul et al., 2019), where either sorting or a search for the
maximum exponent is performed. Furthermore, this experiment demonstrates that
none of the additions are performed before aligning the significands relative to the
largest exponent: if evaluated before the arguments are shifted right relative to
the largest magnitude arguments’ exponent (by having multiple alignment stages),
any other sum would compute 2−24 + 2−24 = 2−23, a value that then could be
added exactly to the total sum as the least significand bits would not be lost in the
alignment.

In summary, each entry of D in (1) can have up to four rounding errors, and the
5-operand additions that compute each element are performed starting from the largest
summand in absolute value.
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0−∞ x1xmx2

xRN / RD RZ / RU

(a) x < xm < 0
0 +∞x1 xm x2

xRZ / RD RN / RU

(b) x > xm > 0

0−∞ x1xmx2

xRD RN / RZ / RU

(c) xm < x < 0
0 +∞x1 xm x2

xRN / RZ / RD RU

(d) xm > x > 0

Figure 1. Demonstration of the possible IEEE 754 rounding modes for different
positions of the exact value x; x1 and x2 are the two floating-point numbers closest to x,
and xm is the half-way point between them. The dotted arrows surrounding x show the
direction in which various rounding modes would round it.

3.1.3 Rounding modes in tensor core computations
If binary32 mode is used, only the four additions in (2) can be subject to rounding
errors. The IEEE 754 standard defines four rounding modes for elementary arithmetic
operations (IEEE, 2019, Sec. 4.3): round-to-nearest with even-on-ties, round-towards-
zero, round-towards-minus-infinity, and round-towards-plus-infinity. In this section
we use the notation defined by Muller et al. (2018, Sec. 2.2.1) and denote these four
rounding operators by RN, RZ, RD, and RU, respectively.

As round-to-nearest is the default rounding mode in the IEEE 754 standard, we
start by testing whether this is the rounding mode used by the tensor cores. This can
be verified by setting any two partial products to values such that one of them would
be rounded up only if round-to-nearest or round-towards-plus-infinity were used. If
the result is rounded down we can conclude that the tensor cores implement either
round-towards-zero or round-towards-minus-infinity, but neither round-to-nearest nor
round-towards-plus-infinity (Figure 1b). One such test is to set in (3) b11 = 2, b21 =
2−23+2−24, and the remaining entries in the first column of B to 0. Note that in binary32
arithmetic RN(2+x)> 2 if x > 2 ·2−24 = 2−23, whereas the smallest positive y such that
RZ(2+y)> 2 is 2 ·2−23 = 2−22. The choice b21 =

3
4 ·2
−22 is such that x < b21 < y, thus

RN(b11 +b21) = RU(b11 +b21) = 2+2−22 while RZ(b11 +b21) = RD(b11 +b21) = 2.
Running this experiment on tensor cores returns c11 = 2, suggesting that either round-
towards-zero or round-towards-minus-infinity is used for the additions in (2).

We can discriminate between these two rounding modes by repeating the same
experiment on the negative semiaxis (Figure 1a), by changing the sign of the nonzero
elements in B. This experiment produces c11 = −2, and assuming that the rounding
mode does not depend on the input, we conclude that the additions in (2) are performed
in round-towards-zero. We note that this rounding mode is known to be the cheapest
option to implement (Santoro et al., 1989, Sec. 6.1) and is usually chosen for that reason.

When tensor cores are used in binary16 mode, the result computed in the format of
the internal accumulator of the 5-operand adder has to be rounded to binary16 before
being returned. In order to test the rounding mode used by this operation, we set
a11 = a12 = 2−24, b11 = 2−1, b21 = 2−2, and the rest of elements of A and B as well
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as c11 to 0. The exact result of the dot product in this case is 2−25 + 2−26, which is
not representable in binary16, and therefore will cause rounding errors in the result.
Note that 2−25+2−26 = 3

4 ·2
−24, therefore RN(2−25+2−26) =RU(2−25+2−26) = 2−24

while RZ(2−25 +2−26) = RD(2−25 +2−26) = 0. The fact that tensor cores return 2−24

confirms that round-towards-zero is not used, thereby suggesting that this conversion is
performed in software rather than inside the tensor cores, which use round-towards-zero
as we have determined above.

Figures 1c and 1d show how round-towards-minus-infinity and round-towards-plus-
infinity could alternatively be determined by choosing x such that |x|< |xm|.

3.1.4 Features of the accumulator
We now discuss some tests that allowed to determine various features of the internal
accumulator of the 5-operand adder calculating (2). The quotes from NVIDIA that we
provided in Section 1 indicate that the internal accumulation is done in binary32 format;
here we show that the internal format used by the accumulator has higher precision and
that the partial sums are not normalized.

Extra bits in the alignment of significands In order to compute the sum of two
floating-point values, the floating-point adder matches the exponents of the two sum-
mands by shifting the significand of the number that has the smaller exponent to the
right. In general this operation causes loss of information, as the least significant bits of
the shifted significand are typically discarded, but it is customary to retain a few of these
digits to guard the computation against numerical cancellation and to obtain correct
rounding in round-to-nearest, round-towards-plus-infinity, and round-towards-minus-
infinity. As tensor cores use truncation in the additions, we know that they do not require
any such guard digits for rounding, and we can easily show that in fact they do not
implement guard digits at all. If in (3) we set b11 = 1 and c11 =−1+2−24, the tensor
cores return d11 = 2−23, which represents a relative error of (2−23−2−24)/2−24 = 1.

Normalization in addition When two floating-point values are added, the significand
of the result may become larger than 2 (with m> 2p−1, where m is an integer significand
as in our definitions in Section 1), in which case a normalization step (shifting the
significand right by one place and increase the exponent by one) is required (Muller
et al., 2018, Sec. 7.3). In an IEEE 754-compliant arithmetic, the result of each partial sum
in (2) would be normalized, as floating-point adders always normalize the result in order
to produce a normalized floating-point number. But tensor cores compute the whole
expression (2) in hardware rather than by means of IEEE 754 elementary arithmetic
operations, and it is natural to ask whether each partial result in (2) is normalized or only
the final answer is. We can verify this by adding values chosen so to produce different
results with and without normalization of the partial sums. In (3) we set c11 = 1−2−24

and the elements of the first column of B to 2−24.
Recalling that the values are accumulated on the summand of largest magnitude,

we start by examining what would happen if each partial result were normalized. The
exact value of the partial sum s := c11 + 2−24 is 1, and the normalization step would
shift the significand by one bit to the right. At this point the three remaining addends
would be smaller than the least significant bit of the partial sum, thus adding them to s
separately would have no effect with round-towards-zero. If the partial results were not
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normalized, on the other hand, the sum of c11 and 2−24 would be held with one extra bit,
and the remaining addends could be added to it. Running this test on tensor cores shows
that only the final result of the dot product is normalized. This has probably been done
in order to simplify the implementation; a similar choice was made for example in the
hardware accelerator for performing vector inner product described by Kim and Kim
(2009).

Normalization in subtraction As the products in (2) can be positive as well as neg-
ative, some of the partial sums can in fact be subtractions. The significand of the
difference of two floating-point numbers may be smaller than 1, in which case the
result has to be normalized by shifting the significand left and decreasing the exponents
accordingly until the result becomes a normal number. We can show that tensor cores do
not perform this kind of normalization as follows. If in (3) we set c11 =−1+2−24, and
two of the elements of the first column of B to 1 and −2−24, we have that d11 evaluates
to 0 if the partial sums are normalized. Instead, running this experiment on tensor cores
yields d11 = 2−23, which can be explained as follows. When the sum is evaluated as
(1+ c11)−2−24, then the lack of guard digit implies that 1+ c11 evaluates to 2−23, and
if the partial results were normalized the tensor cores would return 2−23−2−24, which
can be represented exactly in binary32 format’s precision. If, on the other hand, the
sum were evaluated as (−2−24 +1)+ c11, the first sum would return 1 due to the lack
of guard digit, and the lack of normalization would not have any effect in this case. We
can conclude that the result of the subtraction is not normalized, as long as we assume
that the summands in (3) are accumulated on the largest in magnitude in a fixed order.

Extra bits for carry out Another question concerns the number of extra bits required
due to lack of normalization. If only the final result is normalized, then accumulating
k addends requires dlog2 ke bits for the carry-out bits (Ercegovac and Lang, 2004,
Sec. 3.1), and the hardware for accumulating the 5 values in (2) would internally require
dlog2 5e = 3 extra carry-out bits at the top of the significand. We can prove that the
internal accumulator of the 5-operand adder in tensor cores has at least two extra bits as
follows. In (3) we take c11 = 1+2−22 +2−23, which sets the two least significant bits
of the significand to 1, and assign to the first column of B a permutation of the values 1,
1, 1, and 2−23. We consider all four possible permutations of these values in the first
column of B, as we assume that the addends apart from the largest in magnitude are
not sorted. The main idea is to show that if 1 is added to c11 three times, then the last
two bits of c11 are not dropped as they would be if the accumulation were performed
using IEEE 754 floating-point arithmetic, as the significand of c11 +3 > 4 would have
to be shifted by two places to the right in order to be normalized. Then, when 2−23 is
added at the end, the carry propagates into the third bit from the bottom and therefore
is not lost in the final normalization step. If there are 2 extra bits, then all the four
possible orderings of the first column of B will return the exact result 4+2−21. Running
these tests on tensor cores, we found that all four combinations returned the exact result,
thereby proving that the significand of the internal accumulator has at least 2 extra bits
for carries.

This technique cannot be used to incontrovertibly show that the five-operand adder
has a third extra bit for carries. On the one hand, all inputs to the multi-operand adder
must have the most significant bit of the fraction (the implicit bit) set to 1, in order to
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produce carry that requires all three extra bits, on the other, the result of one of the four
products of the form a1kbk1 in (2) must have the least significant bit of the fraction set
to 1. As the product of two binary16 numbers can have at most 22 significant digits, no
combination of input can produce a partial product with the required characteristics.

It is possible, however, to show the presence of the third bit if we assume that the
alignment of the significand is always performed so that the most significant bit of the
largest summand in the five-operand adder occupies the left-most position. Since we
know that there are two extra bits and no normalization, we can show that there is also
a third bit by showing that there is no overflow when each of the four additions in (3)
causes carry out.

We can set, for example, c11 = 1 + 2−1 + 2−2 + 2−3, b11 = 1, b21 = 1 + 2−1,
b31 = 1+2−1 +2−2, and b41 = 1+ 2−1 + 2−2 + 2−3 and observe that the tensor core
returns d11 = 8. If only two extra bits were present, on the other hand, overflow would
occur and the adder would incorrectly return d11 = 0. In summary, we can conclude that
the internal significand of the tensor cores is most likely 27 bits wide in Volta cards and
28 bits wide in Turing cards.

It is worth noting at this point that if 1) there is no normalization, 2) the additions
in (2) start with the largest value in magnitude, and 3) all of the significands of the
addends are shifted right relative to the exponent of the largest value in magnitude, then
the order in which the remaining addends are accumulated will not impact the final
result.

In the test case above, by replacing one of the 2−23 by 1 we can also confirm, using
the methods developed in Section 3.1.3, that the rounding mode in the final normalization
step (internal accumulator conversion to binary32 answer) is round-towards-zero.

Monotonicity of dot product The observation in section 3.1.4 raises one final question
regarding the monotonicity of the sums in (2). The accumulation is monotonic if in
floating-point arithmetic the sum x1+ · · ·+xn is no larger than y1+ · · ·+yn if xi ≤ yi for
all 1≤ i≤ n.

We can show that the lack of normalization causes the dot product in tensor cores—
and most likely in any other similar architectures in which partial sums are not normal-
ized (Kim and Kim, 2009; Tao et al., 2013; Sohn and Swartzlander, 2016; Kaul et al.,
2019)—to behave non-monotonically. Let us consider (3) and set all the elements in the
first column of B to 2−24 and then c11 to 1−2−24 and 1 in turn. When c11 = 1−2−24,
the difference in exponents guarantees that the values in B are large enough to be added
to c11. This causes the result to become larger than 1, requiring a normalization that
returns 1−2−24 +3 ·2−24 = 1+2−23. On the other hand, when c11 = 1, none of the
summands in (3) is large enough to be added to c11, as the elements in the first column
of B are all zeroed out during the significand alignment step of each addition. This
happens because the exponent of 1 is larger than that of 1−2−24. In summary we have

d11 = c11 +2−24 +2−24 +2−24 +2−24 = 1+2−23 when c11 = 1−2−24,

d11 = c11 +2−24 +2−24 +2−24 +2−24 = 1 when c11 = 1.

These two sets of inputs demonstrate that tensor cores can produce non-monotonic
behavior.
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3.2 NVIDIA Turing tensor cores
NVIDIA Turing T4 GPUs are equipped with the second generation of tensor cores,
which adds an integer matrix multiply-accumulate operation. It is not documented
whether the binary16/binary32 tensor core arithmetic in Turing chips differs from that
in Volta cards, therefore it is of interest to run the test suite we designed on one of the
Turing cards.

We ran all the above experiments on an NVIDIA Tesla T4 16GB (Turing microar-
chitecture) GPU, and noticed that some of the results were different from those obtained
on a V100 GPU. We found that this is due to the presence of an additional extra bit of
precision at the bottom of the significand of the internal accumulator of the 5-operand
adder. This has an impact over several of the tests above: the operation 1+2−24 +2−24,
for example, can now be performed exactly because of the presence of the extra bit. The
results obtained on the V100 GPU can be replicated by means of a suitable change of
the constants that are chosen depending on the number of extra bits in the accumulator.
For instance, in the test for the order of operations in Section 3.1.2, the constant 2−24

should be replaced by 2−25, which is the value of the next bit to the right. Using this
approach, we found that all the conclusions we drew about the tensor cores in V100
GPUs remain valid for the second version of tensor cores in the T4 GPUs, with the only
exception of the extra bit at the bottom of the internal storage of the 5-operand adder.

If we denote the fixed-point format with I integer bits and F fraction bits by {I.F},
the significand of the internal format of the 5-operand adder of a V100 GPU has format
{3.23} (or {4.23} if 3 extra bits for carries are present as discussed in Section 3.1.4),
whereas that of a T4 GPU has format {3.24} (or {4.24}). The final normalization and
rounding produce a number whose significand has format {1.23}, which is the format
of the significand of a binary32 floating-point number.

4 CONCLUSIONS
In summary, our experiments indicate that the tensor cores in the NVIDIA V100 ar-
chitecture have the following numerical features. The first two of these (except the
rounding mode for the second one) are stated in the NVIDIA documentation and are
confirmed by our experiments, while the rest are not documented by NVIDIA and have
been revealed by our experiments.

1. The binary16 products in (2) are computed exactly, and the results are kept in full
precision and not rounded to binary16 after the multiplication.

2. The additions in (2) are performed using binary32 arithmetic with round-towards-
zero.

3. Subnormal numbers in binary16 and binary32 are supported.

4. The five summands in (2) are accumulated starting with the largest in absolute
value.

5. Only the final result of (2) is normalized; the partial sums are not, and the accu-
mulator uses three extra bits for carries.
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6. The dot products in tensor cores are non-monotonic: in some cases, increasing
the magnitude of the inputs to (2) reduces the magnitude of the final result, when
the summands in (2) are all nonnegative or all nonpositive,

The same properties were found in the second generation tensor cores which equip the
NVIDIA T4 GPUs, the main difference being one extra bit of precision in the significand
of the internal accumulator of the binary32 5-operand adder.

The test suite that we have developed as part of this work can be used to test various
properties of the floating-point arithmetic of future versions of tensor cores as well as
similar accelerators. We aim to keep extending our test suite by adding new test cases for
standard non-mixed-precision binary32 or binary64 dot product or matrix multiply units,
as well as for integer arithmetic. The new NVIDIA Turing and Ampere tensor cores,
for instance, added support for 4- and 8-bit integer modes (NVIDIA, 2018, 2020b),
and rounding issues become relevant when these are used to implement fixed-point
arithmetic. Furthermore, the NVIDIA Ampere microarchitecture adds the bfloat16,
TensorFloat-32, and binary64 formats to the tensor cores, and we aim to test these cards
using the techniques we have developed here as soon as they become available.
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